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Abstract

This paper proposes and estimates a tractable, arbitrage-free valuation model for corporate 

coupon bonds that includes a more realistic recovery rate process. Most existing studies use 

a recovery rate process that is misspecified because it includes recovery for coupons due after 

default. Misspecification errors from assuming recovery on all coupons can be substantial; 

they increase with recovery rates, coupons, maturity, and default probabilities. For a large 

sample of market transactions: (i) our model has lower pricing errors than one assuming 

recovery on all coupons, and (ii) the magnitude of our model’s outperformance is linked to 

misspecification errors from assuming recovery on coupons.
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stream of the literature prices bonds or related securities using a reduced form model (see

Duffee (1999), Duffie, Pedersen, and Singleton (2003), Driessen (2005), Bakshi, Madan, and

Zhang (2006)). A careful reading of these papers shows that they all explicitly or implicitly

assume that a single credit spread or spread term structure can be used to value risky debt.

The underlying assumption is that a coupon bond is equivalent to a portfolio of risky zero-

coupon bonds that can be valued using a single spread or spread term structure. The number

of zero-coupon bonds in the portfolio corresponds to the promised coupons and principal with

their maturities equal to the payment dates (see expression (3) in the text). Importantly,

both promised coupons and principal are discounted using the same spread. For the credit

spread estimation literature, this implicit assumption follows because all promised coupons

and principal are included when computing a bond’s credit spread. In the reduced form

model literature, the recovery rate process utilized is the “recovery of market value (RMV)”

due to Lando (1998) and Duffie and Singleton (1999), which implies this result. This pricing

approach assumes that, when discounting, coupon and principal cash flows are treated the

same, and, therefore, that both promised payments entitle the holder to a recovery in default.

For subsequent discussion, we call this the “full-coupon recovery” model.

As shown by Jarrow (2004), a single term structure of risky zero-coupon bonds used for

valuing coupon bonds is valid if and only if all of the risky zero-coupon bonds are of equal

seniority and all have the same recovery rate in the event of default. However, this assumption

is inconsistent with industry practice. After default, as evidenced by financial restructurings

and default proceedings, only the bond’s principal becomes due, and no additional coupon

payments are made on or after the default date. This implies that coupon and principal

payments cannot be valued using the same (single) credit spread or spread term structure

and that basing a bond valuation model on this erroneous assumption of equal seniority will

generate model prices with misspecification errors.

Industry practice has been confirmed in the recovery rate estimation literature which
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finds that alternative recovery rate processes,2 either the “recovery of face value (RFV)” or

the “recovery of Treasuries (RTV)” formulations, provide a better approximation to realized

recovery rates than does RMV (Guha and Sbuelz (2005), Guo, Jarrow and Lin (2008), Bakshi,

Gao, and Zhong (2022)).3 And, it is well known that both the RFV and RTV recovery rate

processes are consistent with a zero recovery on coupons promised after default. Therefore,

these recovery rate processes do not imply the full-coupon recovery model. See Jarrow and

Turnbull (2000), Longstaff, Mithal, and Neis (2005), Bielecki and Rutkowski (2002), chapter

13, Collin-Dufresne and Goldstein (2001), and Huang and Huang (2012) for models with zero

recovery on coupons promised after default.4

The purpose of this paper is to explore, both theoretically and empirically, the effect

on bond prices of assuming zero recovery on coupons after default. We refer to such a

“no-coupon recovery” model to differentiate it from the “full-coupon recovery” model. We

derive an intuitive and straightforward-to-implement no-coupon recovery pricing model that

depends only on the risk-free term structure, risk neutral default probabilities,5 recovery rate,

and an illiquidity parameter. We also present a clear and easy-to-calculate measure, the

misspecification error, that identifies the effect of using a misspecified full-coupon recovery

rate assumption to price bonds. These misspecification errors are due to the full-coupon

recovery model’s erroneous assumption of positive recovery for coupons after default.

We show theoretically that these misspecification errors are larger if recovery rates, de-
2See Bielecki and Rutkowski (2002), Chapter 8 for a discussion of these different recovery rate processes.
3See also Guha, Sbuelz and Tarelli (2020), who provide evidence in support of RFV when studying high-

yield bond duration.
4Huang and Huang (2012) propose a model with no recovery on coupons and a constant recovery rate.

Bakshi, Madan and Zhang (2006) use the Lehman Bond price data set to compare different recovery assump-
tions for a sample of 25 BBB-rated bonds over a nine-year period. They find that pricing errors decline when
choosing the RTV or RFV rather than RMV specification. Our paper uses a much larger data set, explores
the drivers of model misspecification errors on pricing both theoretically and empirically, and estimates the
effect of illiquidity on prices. We also provide direct evidence of prices reflecting no recovery on coupons by
looking at prices of bonds immediately after default.

5The use of risk neutral default probabilities is essential because we are creating valuation formulas, which
require a risk premium. Later, under an additional assumption that default risk is diversifiable, risk neutral
and actual probabilities are empirically equivalent.
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fault probabilities, maturity, or coupon payments are larger. For example, given a 10-year

bond with a face value of $100, a recovery rate of 50%, a coupon of 2.51%, and an annual

default probability of 1%, the full-coupon recovery model will assign a price that is $0.50

too large. If it is a 30-year bond, the price error is $4.33, a substantial difference relative to

the correct price, which is equal to par in both cases. We calculate exact misspecification

errors and also provide an approximate formula that can be used to estimate the misspecifi-

cation error’s magnitudes. In this approximation, misspecification errors are proportional to

the recovery rate, the coupon size, the default probability, and the square of the number of

coupon payments - which is closely related to maturity. Finally, we provide a comprehensive

analysis of the empirical implications of the different pricing models for a large data set of

coupon bond transaction prices.

Before this analysis, we present direct evidence of the different payment seniority between

principal and coupons. We provide three examples of issuers that have filed for bankruptcy:

Lehman Brothers, Pacific Gas and Electric (PG&E), and Weatherford International. We

use both the full-coupon recovery and no-coupon recovery models to price the bonds. We

find that pricing errors from using the misspecified full-coupon recovery model are between

five to ten times larger than the no-coupon recovery model’s pricing errors. This evidence is

consistent with market prices reflecting zero recovery on coupons promised after default.

Our main empirical investigation performs a comparative analysis of the no-coupon and

the full-coupon recovery models using a sample consisting of daily market prices for a collec-

tion of liquidly traded bonds from September 2017 - August 2022. This sample contains close

to 168 thousand bond price observations. We separately fit both models. If market prices

reflect zero recovery for coupons promised after default, the no-coupon recovery model will

outperform the full-coupon recovery model. To test this hypothesis, we compute the average

outperformance. However, this comparison is less informative if done in isolation. The reason

is that our model predicts that the outperformance’s magnitude is directly related to the size
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of the misspecification error – the pricing error from assuming recovery for coupons promised

after default. And, a small average outperformance may simply result from a sample in which

these misspecification errors are small.

Instead, a more relevant test is whether the misspecification error can explain the variation

in the magnitude of the no-coupon recovery model’s outperformance. If a bond has short

maturity with only a few coupons and a small default probability, the two models will predict

nearly the same price (the misspecification error is close to zero) and the no-coupon recovery

model will outperform only slightly. But, if the maturity is long and the default probability

is substantial (and zero recovery of coupons promised after default is reflected in the data)

the no-coupon recovery model’s outperformance will be large.

Given these insights, our empirical investigation proceeds in two steps. First, we calcu-

late the misspecification errors from assuming recovery for coupon payments after default.

Second, we study the performance of both the no-coupon and full-coupon recovery models

separately, and analyze whether any outperformance of the no-coupon recovery model de-

pends on the misspecification errors. In this empirical investigation, we fit both models to

data obtaining prices, and then compare pricing errors between the two models.

The evidence from the first step shows that the misspecification errors are often quite

large (in our data, the 95th percentiles are between $0.97 and $2.18 per $100 face value).

However, the median misspecification error is small and between 5 - 13 cents. Thus, although

the no-coupon recovery model outperforms the full-coupon recovery model, for some bonds

the difference is highly relevant, while for other bonds it is not.

The second step amounts to a horse race between the models, but one that not only tests

average outperformance but also tests whether our model’s predictions regarding relative

outperformance is consistent with the data. We find evidence of the no-coupon recovery

model’s outperformance in the full sample. More importantly, we show that the no-coupon

model’s outperformance is larger when the default probability, the recovery rate, the maturity,
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and the coupons are larger. Thus our approach accurately forecasts when zero recovery of

coupons promised after default is important for pricing.

We find that the no-coupon recovery model outperformance is robust to different model

implementation choices. We estimate two versions of the two models. Model 1 assumes a fixed

recovery rate and no illiquidity effect. The single free parameter is the default probability,

which we estimate implicitly. This model has the benefit of being stable and not requiring

any additional data apart from bond prices, characteristics, and Treasury rates. In Model 2

we also implicitly estimate the recovery rate.

We fit the model at the issuer-day level, and price a collection of bonds using both models.

This allows the full-coupon recovery model to adjust its parameters. Therefore, what matters

when comparing model fit is not the average level of the misspecification error. Indeed, if it

were the same, biased inputs could result in a low pricing error. Instead, the within issuer-

day misspecification error’s standard deviation is what is relevant. When it is large, the

misspecified model will have difficulty adjusting and is more likely to underperform. We find

exactly this pattern in the data. For example, when focusing attention on the top quartile of

misspecification error standard deviation observations, the pricing error difference increases

from 7.2 to 22.4 cents (model 1).

One implication of our results is that default probability and recovery rate have distinct

effects on the bond’s price. As a result, it is possible to back out implied recovery rates from

observed bond prices, something that is not possible in the full -coupon recovery model.6 In

terms of spreads, recovery rate and default probability have different impacts on principal

and coupon-specific spreads (coupon spreads are unaffected by changes in the recovery rate

because they have zero recovery). We exploit this pattern in model 3, where we use an

external estimate of the default probability and fit a parameter for illiquidity.

The outline of the paper is as follows. Section 2 presents the model for valuing risky
6Reflecting this implication of the pricing model, we see instability in fitted recovery rates for the full-

coupon recovery model.
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coupon bonds. Section 3 quantifies how bond-specific characteristics affect full-coupon model

misspecification errors. Section 4 discusses the data and model estimation procedures,

while Section 5 presents some illustrative pricing results for three companies that filed for

bankruptcy. Section 6 presents a comparative analysis of the two alternative pricing models,

discusses variation in model fit and parameters over time, and presents out-of-sample model

performance statistics. Section 7 concludes.

II. The Pricing Model

This section presents the pricing model, which is based on the reduced form model of

Jarrow and Turnbull (1995). We assume that traded in the economy are default-free zero-

coupon bonds of all maturities, a default-free money market account, and a risky coupon

bond (to be described later). The market is assumed to be frictionless and competitive.

Both the frictionless and competitive market assumptions are relaxed, subsequently, when

we add an illiquidity discount to the valuation formula (see expression (4) below).

The default-free money market account earns interest continuously at the default-free

spot rate of interest, rt. The money market account’s time t value is denoted by

(1) Bt = e
∫ t
0 rsds

with B0 = 1. We let the time t value of a default-free zero-coupon bond paying a dollar at

time T be strictly positive and denoted by p(t, T ) > 0.

We consider a firm that issues a bond with a coupon of C dollars, a face value equal

to L dollars, and a maturity date T . The bond pays the C dollar coupons at intermediate

dates {t1, ..., tm = T}, but only up to the default time τ . For notational convenience, let the

current time t = t0. If default happens in the time interval (tk−1, tk], then the bond pays a
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stochastic recovery rate of δtk ∈ [0, 1] at time tk on the notional of L dollars.7 It is important

to note that default can happen anytime within this interval, but the payment only occurs

at the end. If default does not happen, the face value of L dollars is repaid at time T .

A. Risk Neutral Valuation

To value the risky coupon bond, we assume (i) that the markets for both the default-

free coupon bonds and the risky coupon bond are arbitrage-free and (ii) that enough credit

derivatives trade on the risky firm so that the enlarged market is complete (see Jacod and

Protter (2010) for a set of sufficient conditions on an incomplete market such that the ex-

panded market is complete). Given the trading of credit default swaps, this is a reasonable

approximation.

With only a minor loss of generality, we introduce a novel conditional independence as-

sumption to facilitate analytic tractability. The conditional independence assumption (see

the online appendix for the formal definition) is that the default-free spot rate rt, the default

time τ , and the recovery rate process δt are independent under the risk neutral probabil-

ity Q given the information at time t. This is a weak assumption on the evolutions of the

default-free spot rate, the default time, and the recovery rate because it imposes very little

structure on their evolutions under the statistical probabilities. Under the statistical proba-

bilities, these processes need not be independent. Hence, nonzero pairwise correlations under

the statistical probabilities between the observed default-free spot rate, the default time, and

the recovery rate processes, are not excluded by this assumption. And, it is well known that

non-zero correlations across the default-free spot rate, default times, and recovery rates have

been observed in historical data.
7In practice, a portion of the next coupon payment after default represents some accrued interest earned,

but not yet paid. This accrued interest has a recovery rate associated with it. With a slight loss of generality
we exclude this accrued interest payment in the stochastic recovery rate δtk defined above. We appreciate
the comments from a law firm, Morrison & Foerster, in this regard.
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Denote the time t ≤ t1 value of the coupon bond as vt. Under the conditional indepen-

dence assumption, we show in the online appendix that the coupon bond’s price is

(2) vt =
∑m

k=1
C × z(t, tk) + L× z(t, T ) + L× dt

∑m

k=1
x(t, tk)

where

dt := EQ [δτ |Ft ]

z(t, tk) := p(t, tk)[1−Q(t, tk)]

x(t, tk) := p(t, tk)[Q(t, tk+1)−Q(t, tk)]

Q(t, ti) := ProbQ [τ ≤ ti |Ft ] .

In this expression:

(i) Q(t, ti) is the time t conditional risk neutral probability of default before ti given no

default at time t,

(ii) dt is the time t futures recovery rate (for a futures contract receiving the recovery

rate at time T ∗, see the online appendix for the details). As a futures price, the recovery

rate in our valuation formula is a Q - martingale. This is an important implication of the

conditional independence assumption underlying expression (2). Because it is a futures price,

it is expected to be slightly larger than the recovery rate if paid on the debt at time t, δt (see

the online appendix for a proof).

(iii) z(t, tk) is a survival digital, which pays $1 at time tk only if default occurs after tk, 0

otherwise.

(iv) x(t, tk) is a default digital, which pays $1 at time tk if default occurs within (tk−1, tk],

0 otherwise.

We refer to this expression as the “no-coupon recovery” model to emphasize that it has

no recovery on the promised coupons after default. In this form it is easy to see that the
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value of this coupon bond is not equal to the sum of the coupons and principal times the

value of a collection of risky zero-coupon bonds. Indeed, let D(t, tk) denote the time t value

of such a risky zero-coupon bond promising to pay a dollar at time tk for k = 1, . . . ,m with

recovery rate δt in default. Then, it can be shown that

(3)

vfull coupont =
∑m

k=1 C ×D(t, tk) + L×D(t, T )

=
∑m

k=1C × z(t, tk) + L× z(t, T ) + L× dt
∑m

k=1 x(t, tk)

+
∑m

k=1C × (m+ 1− k)× x(t, tk).

This expression is called the “full-coupon recovery model.” The difference between this model

and expression (2) is the term
∑m

k=1C × (m + 1 − k) × dt × x(t, tk),8 which represents the

present value of the recovery on the coupons promised after default.

B. An Illiquidity Discount

Corporate bond markets are illiquid relative to Treasury bonds or exchange traded eq-

uities. This illiquidity implies that corporate bond prices may reflect an illiquidity discount

(see Jarrow and Turnbull (1997), Duffie and Singleton (1999), Cherian, Jacquier, and Jar-

row (2004)). An illiquidity discount modifies the previous valuation formula to implicitly

incorporate the impact on pricing due to transaction costs and trading constraints.

It is important to note that transactions costs (including bid/ask spreads) are a special

case of an illiquidity cost paid when trading, which are implicitly included via an illiquidity

discount (see Cetin, Jarrow and Protter (2004) for the theoretical justification of this state-

ment). Similarly, taxes paid on coupons and capital gains can also be interpreted as a type
8This term follows because if default occurs during the time interval (tk−1, tk], the remaining future

coupons are
∑m

j=k C = (m+1− k)C. In the full coupon recovery model, one gets a recovery payment on all
the remaining coupons.
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of transaction cost, and hence they too are implicitly included in the illiquidity discount as

well.9

We apply the illiquidity discount function eαt(T−t) symmetrically to all the cash flows

promised to the coupon bond. This symmetry enables similar illiquidity discount impacts

across different coupon bonds issued by the same credit entity. Given this, we can rewrite

the coupon bond’s value as

(4) vliqt =
∑m

k=1
C × z(t, tk)e

αt(tk−t) + L× z(t, T )eαt(T−t) + L× dt
∑m

k=1
x(t, tk)e

αt(tk−t).

As we discuss below, we fit different versions of this model to the data. When the recovery

rate and illiquidity discount are included in the estimation, both the recovery rate dt and

the illiquidity parameter αt are stochastic, hence, they can vary randomly across time due to

changing market conditions. Our estimation procedure allows for these estimated parameter

values to reflect this randomness.10 Expression (4) is the valuation model estimated in the

empirical analysis.

III. Misspecification Errors

This section builds intuition for misspecification errors when using the full-coupon recov-

ery model, expression (3) instead of the no-coupon recovery model, expression (2). Recall

that the misspecification error, the difference between the full-coupon and no-coupon recovery
9The complication of explicitly including illiquidity costs (transaction, taxes) into the model is that dif-

ferent traders face different taxes and transaction costs based on their trading activities. Consequently,
to determine a market price, an equilibrium model is needed. Equilibrium models are notoriously ladened
with unrealistic assumptions. Furthermore, an argument can be made that the marginal trader, who deter-
mines the market price, is the lowest illiquidity cost trader. Here, we note that many institutions pay small
transaction costs and there do exist non-taxable institutions that purchase corporate debt.

10We use implicit estimation at a fixed time t allowing αt to depend on the information available at time
t.
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model prices, is equal to
∑m

k=1C×(m+1−k)×dt×x(t, tk). Note that these misspecification

errors are always positive.

We next quantify the magnitudes of these misspecification errors and provide a simple

approximation that allows us to relate the misspecification errors to the model’s inputs.

Later, we relate the predicted misspecification errors to patterns in the data.

A. Misspecification Error Determinants

For illustrative purposes we make the following simplifying assumptions: (1) coupon

bonds are priced on coupon dates, (2) the risk-free term structure of interest rates and the

term structure of risk neutral default probabilities are flat,11 (3) the coupon is set so that

the no-coupon recovery model’s bond price is equal to par, and (4) there is no illiquidity

discount (αt = 0), though we relax this last assumption when we consider the effect of

model parameters on spreads.12 Combined, these imply that the misspecification error is

fully determined by the maturity, default probability, recovery rate, and risk-free rate. We

note the use of risk neutral default probabilities is essential because we are creating valuation

formulas, which require a risk premium. Later, under an additional assumption that default

risk is diversifiable, the distinction between risk neutral and actual probabilities disappear

because under this assumption they are empirically equivalent.

Our data, which we describe in more detail in Section 4, consists of more than 168

thousand observations from September 2017 to August 2022 for a total of 197 issuers. More

than ninety percent of the data have investment grade level ratings equal to BBB- or above;13

11In the empirical implementation (Model 3) we use a term structure of risk neutral default probabilities,
which is not assumed to be flat.

12In this case, the full coupon recovery model including a liquidity discount is vfull coupont =
∑m

k=1 C ×
z(t, tk)e

αt(tk−t)+L×z(t, T )eαt(T−t)+L×dt
∑m

k=1 x(t, tk)e
αt(tk−t)+

∑m
k=1 C× (m+1−k)×x(t, tk)e

αt(tk−t).
The last term is the misspecification error.

13The sample consists primarily of investment grade bonds since many high yield bonds have call features,
all of which are excluded. An analysis of callable bonds goes beyond the scope of this paper.
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average maturity is equal to 3.1 years, the average coupon equals 3.1 percent. We also consider

issuer-day-level statistics since we estimate the model at that level: the average issuer-day

has five observations; ninety five percent of issuer days have eleven or fewer observations; the

average different between the shortest and longest maturity within each issuer-day (‘maturity

range’) is 3.9 years, and ninety percent of observations have maturity ranges between 0.9 and

8.6 years. Our sample is therefore appropriate to study how default risky coupon bonds

should be priced.

Table 1 reports misspecification errors across different inputs, assuming that the risk-free

term structure is flat at 2%. The par value of the bond is set to 100 and the recovery rate is

equal to 50%, a level close to the mean recovery rate we estimate (see below). As expected,

misspecification errors increase with the bond’s maturity and the issuer’s default probability.

For short maturity 2-year bonds, the misspecification error is equal to 0.07 if the annual

default probability is 2%, while the misspecification error is equal to 1.39 for a 10-year bond

with the same default probability. For 30-year bonds the misspecification error can be much

larger, reaching a level of 9.62 for a 2% default probability bond, close to 10% of that bond’s

price.

We now propose a simple approximation for the misspecification error. In the event of

default, the present value of the payoff for the first coupon is equal to the discounted value

of the product of the coupon rate, the recovery value, and the probability of default, i.e. C×

dt×p(t, t1)Q(t, t1). The approximate total error is equal to C×dt×p(t, t1)Q(t, t1)m(m+1)/2

(see the online appendix for additional detail).

We later use the misspecification error to identify portfolios of bonds that are likely to

be mispriced by the full-coupon recovery model. We note that the misspecification error

is zero if the recovery rate, the default probability, or the coupon payment is zero. The

error grows approximately with the square of the number of coupon payments and is exactly

proportional to the product of the coupon payment and the recovery rate. Thus, bonds with
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significant recovery values, default probabilities, and with intermediate to long maturities

will have significant misspecification errors.

B. Pricing with Two Credit Spread Curves

If coupons have a zero recovery after default, while the principal payment has a positive

recovery, both cash flows will not have the same discount rate. Using the same credit spread

for both will result in an inability to price bonds with different maturities and coupons.

However, a priori it is not clear if the effect we are focusing on is empirically large or small.

Spreads appropriate for discounting coupons and principal may be similar.14 Before proceed-

ing with our full model estimation, we examine the difference in the two pricing approaches

by examining seniority-specific spreads. If there is a misspecification error using this full-

coupon recovery model to price bonds, then the two curves will be different. The valuation

formula using different credit spreads for coupon and principal payments is

(5) vspreadt =
∑m

k=1
C × p(t, tk)e

−sC(t,tk)(tk−t) + L× p(t, T )e−sL(t,T )(T−t)

where sC(t, tk) and sL(t, T ) are credit spreads at time t for the coupon and principal cash

flows at times tk and T , respectively, above the default-free rates implicit in the zero-coupon

bond prices p(t, tk).15

Table 2 provides some illustrative examples of credit spread curves. We use the same

methodology as in Table 1. The only difference is that here we introduce the effect of an

illiquidity discount. Panel A reports principal spreads, Panel B reports coupon spreads.
14We note that we are interested in pricing multiple bonds simultaneously. It is, of course, possible to

calculate a bond-specific yield to maturity and therefore a bond specific credit spread. This, however, does
not provide a pricing methodology, but it is simply a transformation of the price into another quantity.

15This is the same as defining p(t, tk)e
−sC(t,tk)(tk−t) = DS(t, tk) and p(t, T )e−sC(t,T )(T−t) = DL(t, T ), which

correspond to distinct risky zero-coupon bond price term structures for discounting coupons and principal
cash flows.
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As long as there is a positive recovery, coupon spreads lie above principal spreads since

the latter will be worth more and thus are discounted less. The difference between coupon

and principal spreads is close to the product of the default probability and the recovery rate,

which follows from the misspecification error relation given above, where, for the first coupon,

the misspecification error is equal to C × dt × p(t, t1)Q(t, t1). A larger default probability

makes all spreads higher. If there is no illiquidity discount, coupon spreads are approximately

equal to the default probability, and since differences relative to principal spreads depend

on the default probability, frictionless spreads are approximately proportional to the default

probability. The effect of the illiquidity discount is seen to be symmetric, affecting all cash

flows equally. Indeed, both credit spreads increase by the amount of the illiquidity discount.

The results imply that principal payments are safer because they deliver potentially large

recovery values in the event of default. Coupon payments, in contrast, do not pay off in

default and therefore need a larger discount rate. It is useful to note that using a single

spread is not suitable to discount both cash flows with zero or positive recovery. For the

former (the coupons), the spread will be too low and for the latter (the principal) it will be

too high. Thus, using a single spread (or spread curve) to price a new bond with a different

maturity or coupon will result in misspecification errors. In addition, using this ‘standard’

spread calculation to assess the market’s implied risk pricing is not possible.

IV. Data and Estimation

The details of the estimation procedures are as follows. To fit the valuation model to

market prices, we obtain traded coupon bond prices for the 1,248 trading days from the

beginning of September 2017 until the end of August 2022 using the TRACE system.

The pricing model is for senior unsecured fixed-rate coupon bonds with no embedded

options. For each firm, we therefore eliminate from the sample any subordinated bonds,
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callable and putable bonds, structured bonds, bonds with “death puts” or a “survivor option,”

and floating rate bonds. Survivor option bonds distort bond prices both because they are

issued in small amounts (typically $20 million or less per tranche) and because the value

of the embedded put option is significant. The survivor option feature has become more

common in recent years.16 In addition, to be included in our sample, the bond issue’s daily

trade volume had to exceed $50,000 (in almost every case, volume was much larger) and

with at least two separate bonds traded (to ensure model convergence, for issuer-days with

only two observations we also require that the maturities are at least half a year apart). We

further excluded some bonds of European issuers subject to a 2014 EU regulation allowing

regulators to demand an exchange of senior debt securities into equity. Because data assembly

and cleaning costs are substantial,17 we restrict our attention to the sample starting in 2017.

Finally, we restrict attention to bond price observations with prices above risk-free bond

prices with the same set of cash flows.18 The resulting sample consists of more than 168

thousand observations for 197 issuers and more than 35 thousand issuer days.

Table 3 presents summary statistics. The average coupon is equal to 3.1%, average
16The largest issuers of survivor option bonds as of 2016 included General Electric, Goldman Sachs, Bank

of America, Wells Fargo, Ford Motor, HSBC Holdings, National Rural Utilities Cooperative Finance Cor-
poration, Dow Chemical, Prospect Capital, and Barclays PLC. A typical survivor option bond’s terms are
described as follows in a recent prospectus supplement from General Electric Capital Corporation: “Specific
notes may contain a provision permitting the optional repayment of those notes prior to stated maturity, if
requested by the authorized representative of the beneficial owner of those notes, following the death of the
beneficial owner of the notes, so long as the notes were owned by the beneficial owner or his or her estate
at least six months prior to the request. This feature is referred to as a ‘Survivor’s Option.’ Your notes will
not be repaid in this manner unless the pricing supplement for your notes provides for the Survivor’s Option.
The right to exercise the Survivor’s Option is subject to limits set by us on (1) the permitted dollar amount
of total exercises by all holders of notes in any calendar year, and (2) the permitted dollar amount of an
individual exercise by a holder of a note in any calendar year.”

17It is necessary to screen out callables and survivor options, data on which is only available in the pricing
supplement. The SEC and FINRA do not maintain public access to prospectus data for more than about 5
years in easily accessible form. Thus including, for example, data from the financial crisis is not feasible. In
addition, the TABB group finds a very high frequency of errors “TABB Group analysis shows reconciliation
differences in more than 20% of new issues.” (http://www.finregalert.com/an-sec-mandated-corporate-bond-
data-monopoly-will-not-help-quality/). There are also non–trivial computational costs.

18Some observations have prices above risk-free bond prices (i.e. negative implied credit spreads), perhaps
due to data errors. A negative credit spread could signal a potential arbitrage opportunity. However, it
may be difficult to capitalize on such mispricing because of illiquidity. We leave further exploration of these
patterns to future research.

16



maturity is equal to 3.1 years,19 and the mean credit spread is 80 bps. There is quite a bit

of variation in the data – 5th to 95th percentile ranges of coupons, maturity and spreads

are 4.2, 7.9 years, and 201 bps, respectively. This variation is important for our ability to

identify differences in the no-coupon and full-coupon recovery models. Misspecification errors

are small if the coupon is low and the maturity is short, while they are high if the maturity

is long and the coupon is large. If there is little variation in misspecification errors, the full-

coupon recovery model may produce biased estimates, but the pricing errors may be similar

to the no-coupon recovery model. However, taking a look at the issuer-day level statistics we

find a lot of variation. Average maturity range is almost four years and the average issuer day

has five bond price observations in it. There is also variation in credit ratings. The average

rating is A- and 7.6% of observations are for non-investment grade (BB+ and below) issuers.

Table 3 Panel B reports additional firm characteristics across rating groups. In order to fit

the bond pricing model to data, we require at least two and ideally more observations for each

issuer day. This restriction naturally focuses attention on issuers with a lot of outstanding

debt, in particular financial institutions that tend to issue a lot of bonds. We note that

across the four rating groups average book leverage declines as rating increases (i.e. rating

quality declines), no doubt because choice of leverage is endogenous and financial institutions

often have low-risk ratings and high leverage. The pattern in stock return volatility is as we

would expect; as rating increases, volatility increases from 24% for AA and above to 46% for

non-investment grade issuers. While there is little variation in leverage within rating group,

the variation in volatility is much larger and increases with rating. Credit spreads exhibit a

similar pattern, ranging from 46 bps for AA and above to 210 bps for non-investment grade.

To these data, we add U.S. Treasury yields reported daily by the U.S. Department of

the Treasury20 and derive the maximum smoothness Treasury forward rate curves from these
19Model 3 (discussed below) implementation is based on default probabilities that extend to a maturity of

ten years. We therefore restrict attention to observations with that maximum maturity.
20https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
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data (see Adams and van Deventer (1994)). Using these historical forward rate curves, we

compute the term structure of default-free zero coupon bond prices on all dates.

Finally, we assemble data on coupon bond prices. The price in the TRACE system does

not represent the full amount paid for the bond. The full amount paid is the price plus

accrued interest.

In our estimation, we compare the full amount paid when acquiring the bond (the present

value of the bond purchase) with the valuation model in expression (4). Specifically, each

issuer day, we use the risk-free term structure, coupon payments and payment dates as inputs.

We then use non-linear least squares estimation, calculated on a volume-weighted basis, to

solve for the best fitting parameter values (recovery rate, default probability, illiquidity). We

estimate the no-coupon and the full-coupon recovery models separately and compare pricing

errors as well as parameter estimates.

A. Three Empirical Model Implementations

Each issuer day we fit the data to three different empirical implementations of the model.

1. Implied Default Probabilities (Models 1 and 2)

Model 1 starts with a restricted version of the model, which allows us to clearly trace the

effect of estimating both the full and no-coupon recovery models on misspecification errors,

pricing errors, and parameter estimates. We first fit our model, expression (4), assuming a

flat term structure of default probabilities estimated implicitly. We also assume no liquidity

discount,21 and a fixed recovery rate futures price (recovery rate for short) equal to 50%, which
21In the model, a change in the default probability affects the present value of all cash flows, both coupons

and principal. The same is true for a change in the illiquidity parameter. From expression (4) and the
spread curve examples in Table 2 we know that the effect is not exactly the same, and so it is possible
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is close to the average recovery rate estimated in the less restrictive model implementation

given below. Importantly, this model has only one parameter, the default probability. Model

1 allows us to see the direct impact of misspecification on estimated default probabilities as

well as model outperformance relative to the full-coupon recovery model.

In Model 2, we relax the restriction on recovery rates and instead allow it to vary between

0.1 and 0.8. This model has two parameters and it is significantly more flexible. We restrict

default probabilities to be greater than 0.1% – close to the first percentile of the distribution

when using an historically estimated default probability, discussed below. These bounds on

the default probability and recovery rates reduce excessive model flexibility, in particular for

the full-coupon recovery model, and allow us to trace the effect of misspecification errors on

pricing errors more easily. Both models 1 and 2 have the advantage that they require only

bond prices and the term structure of risk-free Treasury rates as inputs.

2. Historically Estimated Default Probabilities (Model 3)

Model 3, instead of estimating default probabilities implicitly using bond price data, uses

a historically estimated default probability. That is, we employ independently estimated

default probabilities from a proportional hazard rate model. Because there is then one less

parameter to fit, in this version of the model we include an illiquidity discount parameter

together with the recovery rate.

To facilitate the estimation of the default intensity process, we assume that the default

time τ corresponds to the first jump time of a Cox process with intensity λt = λt(Γt) ≥ 0

where Γt = (Γ1(t), . . . ,Γm(t))
′ ∈ Rm are a collection of stochastic processes characterizing

the state of the firm and the market at time t. In addition, we assume that default risk is

diversifiable in the sense of Jarrow, Lando, and Yu (2005).22 This assumption enables the

to estimate both separately. Nevertheless, to guard against unstable estimates or overfitting, we set the
illiquidity discount equal to zero and estimate only a default intensity. In Model 2, we also fit the recovery
rate. When using historically-estimated default probability (Model 3) we also add an illiquidity parameter
(see below).

22For additional detail, see the online appendix.
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estimation of default intensities without the need to adjust the intensity process for a default

jump risk premium. In conjunction, these two assumptions imply that we can estimate the

default probabilities using a proportional hazard rate model (see Fleming and Harrington

(1991), p. 126), i.e.

λt(Γt) = θeϕΓt

where θ is a constant and where ϕ is a vector of constants. For an application of such a

hazard rate model applied to corporate default probabilities see Chava and Jarrow (2004).

As discussed in Jarrow, Lando, and Yu (2005), this assumption does not imply that

risky coupon bonds earn no risk premium. Quite the contrary. If the state variables Γt

driving the default process represent systematic risk, which is the most likely case, then risky

coupon bond prices necessarily earn a risk premium due to the bond price’s correlation to

Γt. The diversifiable risk assumption just states that the timing of the default event itself,

after conditioning on Γt, is diversifiable in a large portfolio. Alternatively stated, in a poor

economy all firms are more likely to default. But, the timing of which firms actually default

depends on the idiosyncratic risks of the firm’s management and operations.

The default process parameters (θ, ϕ) from the proportional hazard rate model were pro-

vided by the Kamakura Risk Information Services (KRIS) division of SAS Institute, Inc.23

KRIS uses a refinement of the approach employed by Chava and Jarrow (2004) to estimate

these parameters that are then used to construct the full term structure of cumulative de-

fault probabilities.24 Specifically, for each issuer-day we obtain cumulative default probabili-

ties from the 10-year term structure of monthly marginal default probabilities (the monthly

probability of default conditional on no prior default). The state variables used in KRIS’s

hazard rate estimation include both firm specific and macroeconomic variables. Importantly,
23See www.kamakuraco.com.
24The model underlying the default probability calculations is similar to the one used in Campbell, Hilscher

and Szilagyi (2008, 2011), who extend Chava and Jarrow (2004) and Shumway (2001). Campbell et al. show
that the default probability measure is a more accurate predictor of failure than Moody’s EDF numbers,
data that have been widely used in academic studies, e.g. Berndt, Douglas, Duffie and Ferguson (2018).
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the default probabilities do not use traded bond or CDS prices as inputs. Default probabili-

ties are therefore separate inputs relative to the observed bond prices that we fit using model

3.

We restrict the recovery rate to lie between 0.1 and 0.8 and the illiquidity discount to lie

between zero and -5%. Doing so will reduce the influence of observed bond price errors on

the estimates. We report robustness checks below.

V. Illustrations: Coupon and Principal Seniority in

Default

Before moving to the full sample estimation, this section provides evidence that market

prices reflect the difference in seniority between principal and coupons in default. We consider

three companies that filed for bankruptcy: Lehman, PG&E, and Weatherford International.

Lehman is chosen because of the size and importance of its bankruptcy. The latter two firms

are in our sample because each firm has a sufficient number of bonds traded. In each case we

focus on senior bonds, including callable bonds, because on the day bankruptcy is announced

the call option is worthless and can be ignored. We fit the no-coupon and full-coupon recovery

models to the data.

The key reason for analyzing issuer bonds after they file for bankruptcy is that the default

probability equals 100%.25 The recovery amount for the no-coupon recovery model is the

recovery rate times the notional of $100 (par value) for each of the bonds. In contrast, the

recovery amount for the full-coupon recovery model is $100 plus the dollar coupon times the

number of remaining payments on each bond, a different amount for each issue. For each
25Since the bonds are in default, we can include both non-callable as well as callable bonds in this analysis.
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issuer day and for both of the models, referring back to expression (4),

(6) vt = dt × L,

because: (i) default has occurred and there are no more coupon payments after time t, (ii) the

principal is immediately due, and (iii) the liquidity discount is assumed to be zero because

the bond has defaulted. We run a regression on this formula to derive the recovery rate and

the present values (price plus accrued interest) for each bond. As noted earlier, expression

(4) ignores the interest earned since the last coupon payment date. This would be included

in the market prices.

Figures 1-3 depict the pricing errors. We order the bonds by maturity. Pricing errors when

using the no-coupon recovery model (in blue) are substantially lower than those resulting from

the full-coupon recovery model (in red). Mean absolute errors are more than five times as

large for Lehman (2.0 vs. 11.0) and almost ten times as large for PG&E (2.1 vs. 19.7) and

Weatherford International (2.6 vs. 21.0).

We see that the full-coupon recovery model results in prices that are too large, especially

for bonds of longer maturities that have more coupons, which if they were of equal seniority,

would entitle the bondholder to a recovery value. However, in default those coupons are

worthless and so any coupon paying bond would have pricing errors that are positive as

long as the model was using unbiased inputs. However, in an attempt to fit the data, the

model tries to reduce the average pricing error resulting in bonds with short maturities

being underpriced and bonds with long maturities being overpriced. The maximum errors

lie between 19.6 and 37.4. It is worth noting that average market prices are equal to 32.4

(Lehman), 78.2 (PG&E), and 65.0 (Weatherford International) so that the maximum errors

are around one half the market price. The (negative) minimum errors are similar in size lying

between -37.2 and -14.2.

In contrast, the no-coupon recovery model’s maximum and minimum pricing errors are
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much smaller. They lie between 3.9 and 9.1 and -5 and -2.7, and so are approximately one

quarter of the full-coupon recovery model pricing errors. Importantly, and in direct support

of the no-coupon recovery model, its pricing errors have no clear pattern relative to the bond’s

maturity.

To summarize, Lehman, PG&E and Weatherford International’s bond prices provide di-

rect evidence in support of the no-coupon relative to the full-coupon recovery model. Failing

to take into account the different seniority of coupons and principal results in substantial

pricing errors, which have a predictable pattern consistent with our model.

VI. The Pricing Model Comparison

This section provides a comparative analysis of the no-coupon and full-coupon recovery

models.26 The full-coupon recovery model produces different prices only if misspecification

errors (see section 3) are non-zero. We therefore investigate both if the no-coupon recovery

model has better fit on average, and also if it has better fit when misspecification errors

are larger. Both of these predictions are implications of our model because if bonds are

priced according to the no-coupon recovery model, then a necessary condition for model

outperformance is the presence of misspecification errors.

A. Misspecification Errors

26In a previous version of the paper we also compared the no-coupon recovery model to one based on
ratings. In that model coupons are assumed to have full recovery and the credit spread is assumed to depend
only on the rating. The ratings-based valuation model is consistent with numerous pronouncements from the
Basel Committee on Banking Supervision (2010, 2017). It performs poorly primarily because of the erroneous
assumption that all firms that have the same rating have the same risk; analyzing it is therefore less relevant
when comparing no-coupon and full-coupon recovery models.
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Before analyzing model fit and outperformance, we first consider the distribution of the

misspecification errors. We use the unbiased estimates from the no-coupon recovery model as

inputs to compute the misspecification error as the difference in prices between the full-coupon

and the no-coupon recovery model. Recall that the misspecification error is approximately

equal to C × dt × p(t, t1)×Q(t, t1)×m(m+ 1)/2.

The full-coupon recovery model can only exhibit a worse fit if misspecification errors

are present. If they are zero, the two models are the same. The misspecification error’s

approximation formula is multiplicative in coupon rate, recovery rate, default probability,

and maturity. It is useful to note that the approximation is quite accurate in capturing the

variation in misspecification errors. When we regress actual on predicted misspecification

errors, the R2 lies between 93% and 95%.

Table 4 reports summary statistics of model fit, misspecification errors, model outperfor-

mance, and parameter estimates. The 25th percentile issuer-day misspecification error is 4

cents (the median is 13 cents). Thus, as expected, a large fraction of the data is not greatly

affected by the pricing differences between the two models. However, the mean misspecifica-

tion error is more than twice as large and equal to 30 cents, which means that there are many

bonds with large implied price differences across the two models (when input parameters are

held constant). The 95th percentile of the misspecification error distribution is 1.02, which

is substantial, and the 75th percentile (unreported) is 0.30, which is also quite large. The

median observed bond price is equal to 101.33. As a result, these numbers are directly com-

parable to those in Table 1. Of course, when estimating the two models separately, which is

what we do next, the full-coupon recovery model may adjust parameters, resulting in pos-

sible biases. However, as we saw in Section 4, when discussing the bond prices of defaulted

companies, an incorrect model not only produces biased parameter estimates, but a worse

fit.

B. Model Performance
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Following Bakshi, Madan and Zhang (2006) we report mean absolute pricing error to

compare model fit.27 Another alternative could be to measure performance comparing yields

or credit spreads. We do not choose this route because our analysis of model misspecification

errors and our measure of outperformance focuses specifically on dollar pricing errors, not

yields. In addition, one contribution of our paper is to point out that yields and credit

spreads should not be used to price bonds.

As noted previously, if bonds are priced according to the no-coupon recovery model and

not the full-coupon recovery model, this has two implications. First, in a sample of bonds

that have large default risk, we should detect that the no-coupon recovery model has a better

fit. Second, the outperformance will be larger when the two models disagree by more (i.e.

when the misspecification errors are larger and more variable). We next provide evidence

supporting both of these implications. We note that there is nothing mechanical about

the relation between misspecification errors and model outperformance. If bonds were priced

according to the full-coupon recovery model, we would find that it outperforms the no-coupon

recovery model, and that it does so by more when differences between model implied prices

are larger.

We also note that average model outperformance must, necessarily, be a function of sample

characteristics. What this implies is that we expect a sample with higher misspecification

errors to have higher no-coupon model outperformance. In addition, it implies that we may

find low average outperformance for other sample characteristics. This is one reason to focus

on explaining variation in model outperformance: to be consistent with the theory, we should

find evidence that the no-coupon model outperforms where we expect it to outperform.

1. Model 1: A Fixed Recovery Rate
27Eom, Helwege and Huang (2004) calculate percentage pricing errors, and Bakshi, Madan and Zhang

(2006) also report these. In our sample, 90 percent of prices lie between 95.70 and 110.11; results are
therefore robust to using percentage errors instead.
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We compare the two models after fitting them independently to the data. For each

issuer-day, we estimate both the no-coupon and full-coupon recovery models and calculate

the volume-weighted mean absolute error. These average error statistics are reported in Table

4 Panel A.

As expected, we find that the no-coupon recovery model fits the data better than the

full-coupon recovery model. The mean model outperformance is equal to 0.07. However, also

as expected, there are many observations for which the error difference is very small (median

outperformance is equal to 0.02). At the same time, there are also issuer days with larger

pricing error differences. The 95th percentile of the outperformance distribution is 0.27. We

also report overall model fit – the no-coupon recovery model has an average dollar pricing

error of 0.35.

What is more relevant for the performance comparison is how the models perform when

model prices differ, resulting in misspecification errors. In fact, having a large misspecifica-

tion error standard deviation within the data sample is crucial to validating the no-coupon

recovery model. When predicted misspecification errors are small, for example because the

default probabilities are low, pricing differences will also be small. Reflecting the large por-

tion of the data with low misspecification errors, we see that a large fraction of the data also

has a low standard deviation of those errors. The average standard deviation is 26 cents, the

median is 12 cents, and the 25th percentile is 3 cents.

But, even if predicted misspecification errors are large, the full-coupon recovery model

may still generate low pricing errors, for example, if the bonds in the specific issuer-day sample

have very similar predicted misspecification errors. In this case the misspecified model will

be able to adjust by changing parameters and the resulting pricing error differences relative

to the no-coupon recovery model can be small, albeit at the cost of biased model parameter

estimates. But, if there is a high variability in the misspecification errors, the incorrect model

will fail to fit prices as well as the no-coupon recovery model.
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As predicted, we find that the no-coupon recovery model outperformance is large when

the misspecification error standard deviation is large. The second set of results in Panel

A, first line, is for the subsample of issuer days in the top quartile of the misspecification

error standard deviation distribution. In that group, the minimum misspecification error

standard deviation is 30 cents and the mean is 75 cents. Correspondingly, the outperformance

(difference in mean absolute errors across the two models) is much larger, exactly as our

model predicts. The average outperformance more than triples to 0.22. Even though we

are considering only 25% of issuer days, this sample reflects prices from 51,133 observations,

which is 30.4% of observations, or 5.7 observations per issuer-day, compared to 4.7 for the

full sample.

Breaking up the sample across credit rating groups, we find, as expected, that the mis-

specification error increases with rating. The misspecification error increases from 0.10 (AA

and above) to 0.94 (BB and below). Correspondingly, model outperformance increases with

rating, from 0.03 (AA and above) to 0.23 (BB and below). The main driver for larger mis-

specification errors is a larger annual default probability, which in model 1 is the parameter

estimated. It increases from 1.1% (AA and above) to 4.5% (BB and below). These are the

parameters for the no-coupon recovery model.

When estimating the full-coupon recovery model, estimated default probabilities are

larger. If they were not, the full-coupon recovery model would produce prices that are too

large on average. We therefore can see the bias introduced when using the misspecified model.

Of course, all models are incomplete approximations of reality and we can also compare the

no-coupon recovery model estimates to independently-estimated default probabilities based

on historical data, summary statistics for which we report below. Those numbers are lower,

mainly because Model 1 assumes no variation in illiquidity.

2. Model 2: A Variable Recovery Rate

We next estimate Model 2, which relaxes the constraint on the recovery rate, but continues
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to estimate implied default probabilities from bond prices. Adding a degree of freedom,

we expect the overall fit to increase and the no-coupon recovery model outperformance to

decrease, because there are now two parameters also in the full-coupon recovery model, both

of which can be biased. Indeed, average outperformance is equal to 0.03, but that number

approximately triples to 0.10 for the high misspecification standard deviation sample. As

before, outperformance increases with credit rating. We also note that average estimated

recovery rate is close to 50% (restricted value in Model 1) both for the full sample, as well

as for rating subsamples.

C. Determinants of the No-coupon Recovery Model’s

Outperformance

We now explore the determinants of the no-coupon recovery model’s outperformance (the

difference between the no-coupon and full-coupon model volume-weighted absolute pricing

errors). As discussed in Section III, outperformance should be related to the misspecification

error – if this error is larger, we expect outperformance of the no-coupon recovery model to

be larger as well. Table 5 Panel A reports outperformance for the full sample and several

subsamples. In Panel B we regress outperformance on different sets of explanatory variables

in order to explore determinants of no-coupon recovery model outperformace. On average,

the no-coupon recovery model provides a better fit (also see Table 4). For Model 1, pricing

errors are 7.2 cents larger when using the full-coupon recovery model and the difference is

statistically significant. We have already seen that the (in)ability of the full-coupon recovery

model to fit the data reflects its misspecified assumption. Thus, we expect a strong relation-

ship between the no-coupon recovery model outperformance and the misspecification error’s

standard deviation.
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We first focus on the subsample with the top 25% of default probabilities. For that sub-

sample, the average outperformance is 19.1 cents, almost three times as large as in the full

sample. This outperformance is even larger when considering the subsample with the largest

25% average misspecification error issuer days. Here the outperformance is 21.8 cents on

average. As expected, the variable finding the largest outperformance is the misspecification

error’s standard deviation. It may be large because of a large dispersion in maturities com-

bined with large default probabilities. The misspecified full-coupon recovery model does not

have sufficient degrees of freedom to match the data well. The no-coupon recovery model

has, on average, a 22.4 cent lower pricing error than the full-coupon recovery model.

The pattern is the same, only stronger, when examining the pricing errors in the top

deciles. For large default probability issuer days the outperformance is equal to 29.5 cents,

for the misspecification error it is 35.4 cents and for the standard deviation it is equal to

37.3 cents. Pricing error differences are large when the model predicts them to be large. A

similar pattern emerges for Model 2, though pricing error differences are smaller throughout,

reflecting the additional degree of freedom (two instead of one fitted model parameter), and

resulting potential bias in that model. For the top decile of misspecification error standard

deviations, outperformance is on average equal to 16 cents, which is highly statistically

significant.

We next explore in more detail what determines the size of the no-coupon recovery model

outperformance. Specifically, we regress pricing error differences on maturity, coupon, and

default probabilities. Together with the recovery rate, these four variables are the main

determinants of the misspecification error. The recovery rate is fixed in Model 1 and is

therefore not included, but we do include it when explaining variation in the outperformance

of Model 2. Maturity and the default probability are highly significant with a positive sign;

the coupon rate also has a positive sign but is insignificant.

All variables enter the misspecification error, but they do so in a specific way. We next
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include the actual misspecification error and the misspecification error standard deviation

into the regression. We expect the dispersion of the misspecification errors to determine

model outperformance. When we include the misspecification error’s standard deviation, the

coefficient on it is highly significant, while the coefficients on all the other variables becomes

either indistinguishable from zero or switches sign. The R2 of the regression increases from

37.1% to 60.6%. Dropping all the other variables and keeping only the misspecification error’s

standard deviation in the regression results in a similar fit of 58.4%.

The ability of the misspecification error’s standard deviation to explain the variation in

model outperformance is direct evidence supporting our hypothesis that bond market prices

are consistent with the no-coupon recovery model instead of the full-coupon recovery model.

When fitting Model 2, the results are very similar. All four variables individually enter

with the expected sign. When the misspecification error’s standard deviation is included

along with the average misspecification error, the coefficients drop in size by more than

half or become negative. As before, the regression R2 increases dramatically from 18.7% to

41.4% and it is only slightly smaller at 38.2% when only the misspecification error’s standard

deviation remains in the regression.

To summarize, our analysis provides strong evidence that the pricing error differences

between the two models are statistically significant for the full sample. Importantly, variation

in model outperformance occurs exactly when the model predicts it. This evidence is for a

sample consisting of 93.5% investment grade debt (98.7% with a rating of BB+ or above)

and thus one where market participants perceive default is not imminent.

D. Outperformance Over Time

We have documented the no-coupon recovery model’s outperformance in the full sample

and in sub-samples. We next consider the time variation in its outperformance. Each week
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we calculate average outperformance and the average misspecification error’s standard devi-

ation for all issuer days. Figure 4 plots the time series of the no-coupon recovery model’s

outperformance based on Model 1. There is some noticeable time variation. Toward the

end of 2018 and in the beginning of 2019 the model’s outperformance increases, reaching a

local peak of about 11 cents. This episode happened contemporaneously with a stock market

downturn and a corresponding increase in volatility and default probabilities. Then, at the

beginning of the pandemic in early 2020 we see a large increase in model outperformance

reaching a weekly average of 37 cents. Toward the end of the sample, in 2022, the average

outperformance reaches 24 cents. Note also that average outperformance of the no-coupon

recovery model is positive throughout the sample.

As reported in Table 5, the misspecification error’s standard deviation explains 58% of

the variation in no-coupon recovery model outperformance. Using weekly averages – the data

from the figure – results in an R2 of 79%. We note that, during the pandemic, there is a lot of

variation in both outperformance and the misspecification error’s standard deviation; during

that time the relationship is weaker (R2 of 64%). Figure 5 plots weekly averages outside of

2020. We find a clear linear relation between outperformance and the misspecification error’s

standard deviation; the R2 of this relationship is 93%. In short, model outperformance is

large when we expect it to be large.

For Model 2 the pattern outside of 2020 is very similar even though the average outperfor-

mance is lower (see Tables 4 and 5). However, during the height of pandemic (March 2020)

the relationship between outperformance and the misspecification error’s standard deviation

is no longer present when using Model 2. This may be due to the additional degree of freedom

in that model and reflects the lower overall no-coupon recovery model outperformance. Using

a more constrained model with a historically-estimated default probability and in which we

estimate the recovery rate (discussed below) results in a strong relationship between model

outperformance and the misspecification error’s standard deviation in 2020.
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E. Model 3: Using a Historically Estimated Default Probability and

an Illiquidity Discount

In Models 1 and 2, the default probability is estimated implicitly. We now use historically-

estimated default probabilities from a proportional hazard rate model as an input (as dis-

cussed in Section 4.1.2). The data are from the Kamakura Risk Information Services (KRIS)

division of SAS Institute, Inc. We also allow for an effect of illiquidity (as discussed in Section

2.2).

Table 6 reports estimation results. The no-coupon recovery model’s mean average pricing

error is equal to 0.29, slightly lower than Model 2. The average misspecification error is equal

to 0.21 and the average no-coupon recovery model’s outperformance is 0.02. When focusing

on the large misspecification error’s standard deviation subsample the no-coupon recovery

model’s outperformance more than triples and is equal to 0.07.

The median annual default probability used as an input to the model is 0.7% and the mean

is equal to 1.3%.28 We estimate the mean recovery rate as 49%, in line with the restriction in

Model 1 and the mean recovery rate in Model 2. The mean illiquidity parameter is -0.4%. It

is useful to note that both the recovery rate and illiquidity estimates are reasonable. This is,

of course, not guaranteed given that our estimates are implicitly estimated using the traded

bond prices and the no-coupon recovery model. Jankowitsch, Nagler, and Subrahmanyam

(2014) report an average recovery rate value of 0.38. Since our recovery rate is in fact the

recovery rate futures price, as shown in the online appendix, it is expected that our estimate

should be slightly larger than these estimates. In Panel A we report full-sample illiquidity

estimates of 0.26% (median) and 0.42% (mean). Though somewhat lower, these are broadly

consistent with, for example, the spread between Aaa-rated corporate bonds and Treasury
28These probabilities lie below estimated default probabilities in Models 1 and 2. Those measures are

higher because we do not include an illiquidity discount in those models.
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debt. We next discuss variation in the estimated illiquidity parameter over time and note

that it also spikes in March of 2020, similar to the Aaa-Treasury spread.

F. Time Variation in Parameter Estimates

We next study the illiquidity and recovery rate parameter estimates over time. Before

proceeding, it is useful to get a sense of what kind of variation is present in the default

probabilities (which are an input to the model). Figure 6 reports monthly average default

probabilities over the sample period. Two important drivers of default probabilities are

volatility and leverage (see, e.g., Merton (1974), Jarrow (2009), Guha, Sbuelz, and Tarelli

(2020)), which we also plot. Variation in default probabilities over time are dominated by

the effect of the pandemic in 2020. It is also notable that variation in default probabilities is

tracked by variation in stock return volatility, while book leverage remains close to constant

throughout the sample period.

Figure 7 plots weekly average illiquidity, based on the full estimation sample (Table

6). We notice a slight increase in late 2018 and early 2019. The more striking and larger

increase in the estimated illiquidity parameter occurs at the beginning of the pandemic.

Average illiquidity increases to just under 3%. This increase is matched by an increase in

the Aaa-Treasury spread, which we also plot in the figure. We interpret the Aaa-Treasury

spread as a related measure of illiquidity. Indeed, as is evident from the figure, the two

series move together; the correlation is equal to 65% (in levels, 79% in changes). The close

relationship between the Aaa-Treasury spread provides independent validation of our model

and its implied corporate bond illiquidity measure.

There is also considerable variation in the illiquidity parameter across ratings. Figure 8

shows the weekly average illiquidity discounts at a monthly frequency across rating groups,

again based on the full estimation sample. The three investment grade groups have some-
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what similar illiquidity levels, while the non-investment grade’s group has noticeably larger

illiquidity and is also less correlated with the other three groups.29

The average recovery rates over time are plotted in Figure 9. The fact that there is

no recovery of coupons in the event of default means that recovery rates can be inferred

directly from bond prices. This is an important empirical novelty compared to an inability

to disentangle recovery rates and default probabilities if equal seniority is assumed for coupons

and principal, and there is a single spread used to discount all cash flows. There is not much

variation over time, supporting the assumption of a fixed recovery rate in Model 1. Indeed,

there is also little variation in average recovery rate across rating groups (Table 6 Panel B).

We can use these estimates to interpret what happened during the height of the COVID

pandemic. Figure 10 plots weekly averages of recovery rates and illiquidity parameters in

2020. From Figure 6 we already know that the historically estimated default probabilities

increased dramatically in early 2020. We can now see that there was also a dramatic increase

in illiquidity, from an average of 0.18% in January to a maximum of 2.8% in the second half

of March. There is a modest increase in recovery rates from close to 55% in January to 68%

in March, perhaps due to an increased market focus on short-term liquidity-induced defaults,

which may have been perceived to result in slightly lower levels of loss in the event of default.

Bond prices can decline either because of higher default probabilities, lower recovery rates,

or higher illiquidity. Our estimates suggest that, at least during March of 2020, the two main

effects were a loss of liquidity and an increase in default probabilities.

G. Out-of-sample Model Performance

Our analysis so far is based on fitting the pricing model in-sample. A concern is that in-

sample model fit statistics can be biased by overfitting noise in the data. To address this issue,
29Investment grade illiquidity averages lie below the Aaa-Treasury spread (see Table 6) suggesting that,

although the two measures are highly correlated in levels and changes, they do not capture exactly the same
market friction.
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our focus was on relative performance. We measured if the no-coupon model had a lower

overall error as compared to the full-coupon recovery model. Both models have the same

number of parameters and a similar structure. Unless we believe that there is a differential

bias in the model fit statistics, our measure of outperformance should not be affected by the

in-sample methodology.

Nevertheless, it is useful to check relative model performance using an out-of-sample

pricing approach as well. Each issuer day, we split the sample of bonds into two groups of

equal or close to equal size (if there are an odd number of observations, one group will be

slightly larger than the other). One group is the estimation sample that is used to calculate

the models’ parameters – default probability, recovery rate, and illiquidity. We take these

estimated parameters and compute fitted prices for the other group’s observations, the out-

of-sample group. We fit both the full and the no-coupon recovery model in this way. In

order to ensure that we can estimate the parameters in this manner, we restrict attention

to issuer days with at least four observations; that way each group always contains at least

two observations. We repeat the process but switching the observation groups so that the

second group of bonds on that issuer day (that we previously used for out-of-sample fitting)

is now used for estimation purposes. In this way, when calculating each bond price, we are

using parameters that are estimated using a different sample (on the same day, but including

different bonds), while at the same time ensuring that we can work with a large data set of

out-of-sample model prices. To ensure that the samples are comparable, groups are assigned

based on maturity rank.

We estimate all three model implementations, Models 1, 2, and 3. We report full-sample

no-coupon recovery model outperformance as well as outperformance for the sample with

large misspecification error standard deviations. Table 7 Panel A reports summary statistics.

All three models show the no-coupon recovery model outperformance and in each case the

magnitude of the outperformance increases substantially for the sample with large misspec-
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ification error standard deviation observations. These are the main two patterns previously

identified, and both are present when using this out-of-sample estimation approach. We find

that average outperformance is highly statistically different from zero (Panel B) for all three

models and for the full sample as well as the large misspecification error standard deviation

subsamples. Panel C reports average outperformance across rating groups. As the credit rat-

ing increases, the no-coupon recovery model outperformance increases also, consistent with

the in-sample estimation results.

We have performed several additional robustness tests, including a quasi simulation re-

garding biased parameter estimates in the full-coupon recovery model, larger daily observa-

tion cutoffs, grouping observations by month, and using alternative recovery rate estimation

bounds. We discuss these robustness checks in the online appendix.

VII. Conclusion

This paper presents evidence that the common corporate bond pricing assumption of equal

seniority of principal and coupon payments is not supported by market transaction prices. We

propose a tractable coupon bond valuation model, which includes a more realistic recovery

rate process that distinguishes between coupon payments received before and after default.

This setup has important advantages that support our empirical investigation. (1) The model

implies that a single spread or spread term structure cannot be used to discount all cash

flows. Instead, seniority-specific discount rates reflect different recovery rates for principal

and coupons. (2) The model has a clear prediction about the importance of modeling the

market practice of zero recovery paid on coupons after default. We calculate misspecification

errors – those resulting from using the full-coupon recovery model rather than the no-coupon

recovery model. When these errors are large, differences in the no-coupon and the full-coupon

recovery model’s predictions are larger. Misspecification errors are shown to depend directly
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on the coupon, recovery rate, default probability, and time to maturity, and they can be

substantial in size.

We find that our no-coupon recovery model’s predictions are reflected in a large data

set of bond transaction prices, evidence that market prices of risky coupon bonds reflect

zero coupon recovery after default. The model has a clear prediction when no recovery on

coupons after default is relevant for pricing and when it is less important. Indeed, if default

probabilities, coupons, recovery rate, or maturity are small, then the effect of the differing

coupon recovery assumptions has only a very small impact. We find evidence supporting this

prediction, while also identifying our model’s outperformance in the full sample.

We document that model outperformance is closely related to the misspecification er-

ror’s standard deviation within the estimation sample (generally an issuer-day). When that

standard deviation is large, our model predicts that bond prices will be the most affected by

the erroneous assumption of full-coupon recovery after default. The fact that the misspecifi-

cation error’s standard deviation explains model outperformance well is thus direct evidence

supporting the no-coupon recovery model. Separately, we find that the no-coupon recovery

outperformance is evident when considering bond prices of companies in bankruptcy. Model

outperformance is also higher for non-investment grade issuers.

Finally, our model allows for direct estimation of implied recovery rates and an illiquid-

ity parameter’s effects on bond prices. Average recovery rates, though a little higher, are

generally in line and consistent with the previous literature. When the Covid-19 pandemic

hit markets in March of 2020, both the Aaa-Treasury and our illiquidity parameter spiked

(also see Kargar et al. (2021)). In the crisis, default probabilities increased, bond prices

dropped, and illiquidity increased markedly. Indeed, we find that variation in our illiquidity

parameter has a strikingly close relationship to the Aaa-Treasury spread, a standard measure

of corporate bond illiquidity. The close relationship between the two measures, neither of

which uses the same data nor methodology to compute, provides independent validation for
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our pricing model.
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Figure 1: Lehman Brothers Pricing Errors  

 

Note: Full-coupon and no-coupon recovery model pricing errors for Lehman Brothers bonds on September 15, 2008. 
 

Figure 2: Pacific Gas & Electric Pricing Errors 

 
Note: Full-coupon and no-coupon recovery model pricing errors for PG&E January 14, 2019. 

 

 

 

 



 

 

Figure 3: Weatherford International Pricing Errors 

 
Note: Full-coupon and no-coupon recovery model pricing errors for Weatherford International May 10, 2019. 

 
Figure 4: Outperformance and misspecification error SD over time (Model 1) 

 
Note: Model 1 weekly averages: outperformance is the difference in volume-weighted absolute 
pricing errors (in dollars) of the no-coupon recovery relative to the full-coupon recovery model; 
misspecification_SD is the average of the issuer-day misspecification error standard deviation.  



Figure 5: No-coupon recovery model outperformance outside of 2020 (Model 1) 

 
Note: Model 1 weekly averages: outperformance is the difference in volume-weighted absolute 
pricing errors (in dollars) of the no-coupon recovery relative to the full-coupon recovery model; 
misspecification_SD is the average of the issuer-day misspecification error standard deviation.  

 
Figure 6: Probability of default (historically-estimated), leverage and volatility over time 

 

Note: Monthly averages of: historically-estimated annual default probabilities (averaged across 
maturities), book leverage (total assets divided by total liabilities), and stock return volatility 
(SIGMA). Data provided by Kamakura Risk Information Services (KRIS). 
 



Figure 7: Model illiquidity and Aaa-Treasury spread 

 

Note: Weekly averages of: illiquidity estimated from Model 3 and the Aaa – Treasury spread 
from FRED. 

 
Figure 8: Illiquidity across credit rating groups 

 
Note: Monthly averages of: illiquidity estimated from Model 3, calculated across rating groups: 
AA and above, A, BBB, and BB and below.  

 
 



Figure 9: Average recovery rate over time 

 

Note: Weekly average recovery rate estimated from Model 3.  
 

 

Figure 10: Recovery rate and Illiquidity in 2020 

 

Note: Weekly averages of:  illiquitidy and recovery rate estimated from Model 3. 



maturity recovery
default 

probability 
(annual)

coupon
misspec.

error (in dollars) 

2 0.5 1% 2.51% 0.03
2 0.5 2% 3.03% 0.07
5 0.5 1% 2.51% 0.16
5 0.5 2% 3.03% 0.39

10 0.5 1% 2.51% 0.60
10 0.5 2% 3.03% 1.39
30 0.5 1% 2.51% 4.33
30 0.5 2% 3.03% 9.62

Table 1: Misspecification error determinants
In this table we calculate prices based on the no-coupon recovery and the full coupon
recovery models. We assume a flat risk-free term structure of 2%, a flat default probability
term structure and different maturities. Coupons are chosen so that bonds (based on the
no-coupon recovery model price) trade at par ($100). We report the misspecification error
(in dollars) resulting from using the full-coupon recovery instead of the no-coupon recovery
model (column five, missspec. error).



Def prob 1% 1% 2% 2%
Recovery 0.5 0.5 0.5 0.5
Illiquidity 0 -0.5% 0 -0.5%
Maturity

1 0.50% 1.01% 1.01% 1.51%
3 0.49% 0.99% 0.98% 1.48%
5 0.48% 0.98% 0.94% 1.44%

10 0.44% 0.93% 0.86% 1.34%

1 1.02% 1.52% 2.04% 2.55%
3 1.02% 1.52% 2.04% 2.55%
5 1.02% 1.52% 2.04% 2.55%

10 1.02% 1.52% 2.04% 2.55%

Table 2: Coupon and principal spreads
This table reports spreads (in percent) appropriate for discounting coupons and principal (C
and P) for various maturities (see equation (5) in the text), annual default probabilities, and
illiquidity values. As in the previous table, we assume a flat risk-free term structure of 2% and
a flat default probability term structure. Panel A reports spreads appropriate for disounting
principal, Panel B reports spreads appropriate for discounting coupons.

Panel A: Principal spreads

Panel B: Coupon spreads



Coupon Maturity
Spread 
(bps)

Maturity 
range

Maturity SD
No. of 
obs.

Rating

Mean 3.07 3.1 81 3.9 1.8 5 A-
SD 1.26 2.3 185 2.3 1.0 3 2
p5 1.25 0.3 14 0.9 0.5 2 AA-
p50 2.85 2.6 58 3.5 1.6 4 A-
p95 5.45 8.2 215 8.6 3.5 11 BB+
No. of obs 168,285     168,285     168,285     35,635 35,635 35,635 35,635

TLTA SIGMA
Spread 
(bps)

TLTA SIGMA
Spread 
(bps)

No of obs
AA, above 0.89 0.24 46 0.11 0.16 35 5,650
A 0.89 0.30 58 0.12 0.17 56 17,297
BBB 0.86 0.41 101 0.12 0.26 328 9,981
BB, below 0.84 0.46 210 0.13 0.22 292 2,707

Averages Standard deviations

Issuer-day level stats

Table 3: Summary statistics
This table reports detailed summary statistics for the main sample of bond prices (the sample which we use to
perform our empirical analysis). Panel A reports bond characteristics and overall ratings. We report both
observation- and issuer-day-level statistics. Panel B contains issuer-day level statistics by rating group. Spread,
reported in basis points (bps) is the bond-specific credit spread (standard definition); maturity range is the
difference for each issuer-day between the maximum and minimum maturity; maturity SD is the issuer day
maturity standard deviation; number of observations counts how many bond prices are in the data set each
issuer day (we require a minimum of two), Rating is the S&P issuer credit rating, TLTA is the ratio of
COMPUSTAT book value of total liabilities divided by book value of total assets, SIGMA is the stock return
standard deviation. To be included in the sample, the spread, coupon, and maturity must be positive, and the
maturity range (if there are only two observations) must be at least 0.5. The restrictions, which result in only a
small share of the data being dropped, are discussed further in the text.

Panel A: Bond characteristics

Panel B: Firm characteristics across ratings

Bond-level stats



Mean abs error 
(MAE, in dollars)

MAE difference 
(full-coupon 

relative to no-
coupon rec)

Avg Miss error 
(in dollars)

Def Prob (no-
coupon rec)

Def Prob (full 
coupon rec)

Mean 0.35 0.07 0.30 1.8% 2.0%
p5 0.02 0.00 0.01 0.4% 0.4%
p50 0.26 0.02 0.13 1.3% 1.4%
p95 0.98 0.27 1.02 4.4% 5.1%
Number of issuer days: 35,635

Top quartile miss SD 0.66 0.22 0.85 3.3% 3.9%
AA, above 0.25 0.03 0.10 1.1% 1.2%
A 0.30 0.05 0.19 1.3% 1.4%
BBB 0.45 0.10 0.42 2.2% 2.5%
BB, below 0.53 0.23 0.94 4.5% 5.2%

Mean abs error 
(MAE, in dollars)

MAE difference 
(full-coupon 

relative to no-
coupon rec)

Avg Miss error 
(in dollars)

Def Prob (no-
coupon rec)

Recovery rate

Mean 0.32 0.03 0.52 2.6% 0.51
p5 0.01 0.00 0.00 0.4% 0.10
p50 0.24 0.01 0.11 1.8% 0.79
p95 0.90 0.14 2.18 7.7% 0.80
Number of issuer days: 35,635

Top quartile miss SD 0.46 0.10 1.71 5.7% 0.78
AA, above 0.23 0.01 0.19 1.6% 0.50
A 0.28 0.02 0.34 1.9% 0.49
BBB 0.40 0.05 0.71 3.3% 0.54
BB, below 0.44 0.08 1.72 6.7% 0.56

Subsamples: high misspecification error standard deviation, rating groups

Subsamples: high misspecification error standard deviation, rating groups

Panel B: Model 2 (variable recovery rate and default probability)

Table 4: No-coupon recovery model outperformance statistics and parameters
This table reports summary statistics of model fit. Panel A reports statistics for a model where recovery
rate is set equal to 0.5 (Model 1), Panel B reports results when allowing for a variable recovery rate
between 0.1 and 0.8 (Model 2). Both models restrict default probability to lie above 0.1%. Estimation is
done at the issuer-day level minimizing the volume-weighted squared pricing error. All data are reported at
the issuer-day level. Mean absolute error (MAE) is the no-coupon recovery volume-weighted error (in
dollars) for a given issuer day. MAE difference is the difference between the full-coupon recovery and the
no-coupon recovery model MAE (in dollars). Avg miss error is the average misspecification error (in
dollars), Def prob is the annual fitted default probability, which is reported first for the no-coupon recovery
model and next when estimated using the full-coupon recovery model. In each panel we also report model
fit statistics for a subsample of issuer-day observations in the top 25 percent of within issuer-day
misspecification error standard deviation, as well as for four rating groups. 

Panel A: Model 1 (fixed recovery rate, variable default proability)



Sample full
PD 

top quartile
Miss error

top quartile
Miss err SD
top quartile

PD 
top decile

Miss error
top decile

Miss err SD
top decile

Average 0.072*** 0.191*** 0.218*** 0.224*** 0.295*** 0.354*** 0.373***
(0.014) (0.038) (0.038) (0.037) (0.088) (0.080) (0.077)

Average 0.032*** 0.091*** 0.100*** 0.100*** 0.126*** 0.162*** 0.160***
(0.005) (0.014) (0.014) (0.014) (0.029) (0.028) (0.029)

Issuer days 35,635 8,909 8,909 8,909 3,563 3,564 3,564

Maturity 0.031*** -0.011 0.015*** 0.003
(0.005) (0.009) (0.002) (0.003)

Coupon 0.009 -0.021** 0.013** 0.006***
(0.008) (0.009) (0.006) (0.002)

Def Prob 6.378*** 1.658 0.309 -0.634**
(1.867) (1.028) (0.197) (0.282)

Recovery 0.069*** 0.032**
(0.011) (0.015)

Miss error 0.050* -0.007
(0.028) (0.018)

Miss err SD 0.312*** 0.373*** 0.068*** 0.057***
(0.050) (0.047) (0.025) (0.013)

R-square 0.371 0.606 0.584 0.187 0.415 0.382
Issuer days 35,635 35,635 35,635 35,635 35,635 35,635

This table reports statistics of model outperformance, the volume-weighted average absolute error
difference (in dollars) when comparing the full-coupon recovery model and the no-coupon recovery
model. Panel A reports averages for different samples; Panel B reports results from regressions of model
outperformance (i.e. volume-weighted MAE difference) on different sets of explanatory variables. We
report results for both Model 1 (fixed recovery rate, variable default probability) and Model 2 (variable
recovery rate and default probability). PD is default probability, Miss error is the average within issuer-
day misspecification error and Miss error SD is its standard deviation. Recovery rate is from the no-
coupon recovery model; coupon and maturity are averaged at the issuer-day level; Def prob is the fitted
default proability. Standard errors, reported below coefficients, are robust and clustered by issuer and
date; *** denotes significant at the 1% level, ** at the 5% level and * at the 10% level.

Table 5: Determinants of model outperformance

Panel A: No-coupon recovery model outperformance -- full and subsamples

Panel B: Determinants of variation in outperformance (no-coupon relative to full-coupon recovery)
Model 1 Model 2

Model 1 (fixed recovery rate, variable PD) outperformance (in dollars)

Model 2 (variable recovery rate and PD) outperformance (in dollars)



Mean abs 
error (MAE, 
in dollars)

MAE 
difference (in 

dollars)

Avg Miss 
error (in 
dollars)

Default 
Probability

Illiquidity Recovery rate

Mean 0.29 0.02 0.21 1.3% -0.42% 0.49
p5 0.00 -0.03 0.00 0.1% -1.50% 0.10
p50 0.15 0.00 0.05 0.7% -0.26% 0.54
p95 1.01 0.15 0.97 4.2% 0.00% 0.80
Number of issuer days: 35,635

Top quartile miss SD 0.60 0.07 0.70 3.1% -0.65% 0.70
AA, above 0.17 0.01 0.06 0.6% -0.27% 0.48
A 0.24 0.02 0.18 1.0% -0.29% 0.49
BBB 0.42 0.02 0.29 2.0% -0.48% 0.51
BB, below 0.43 0.02 0.43 2.1% -1.37% 0.49

Table 6: Fit and parameters when using historically-estimated default proability as an input
This table reports results when using historically-estimated default probability as an input and there is an
illiquidity effect on all cash flows (see text for additional detail). As before, recovery rate is constrainted to lie
between 0.1 and 0.8; the effect of illiquidity lies between 0 and ‐5%. Estimation is done minimizing the
volume‐weighted squared pricing error. All data are reported at the issuer-day level. Mean absolute error
(MAE) is the no-coupon recovery volume‐weighted error (in dollars) for a given issuer day. MAE diff is the
difference between the full-coupon recovery and the no-coupon recovery model MAE. Avg miss error is the
average misspecification error, Default probability (annual) is the maturity-weighted historically-estimated
default probability (from Kamakura Risk Information Services division of SAS Institute), Illiquidity and
Recovery rate are both fitted. In Panel B we report model fit statistics for a subsample of issuer‐day
observations for the subsample with the top 25 percent of within issuer‐day misspecification error standard
deviation, as well as for four rating groups.

Panel A: Model 3 (fitted recovery rate and illiquidity, historically-estimated PD)

Panel B: Subsamples -- high misspecification error standard deviation, rating groups



Sample full
High Miss 
error SD

full
High Miss 
error SD

full
High Miss 
error SD

Mean 0.09 0.24 0.02 0.05 0.04 0.14
median 0.04 0.18 0.01 0.03 0.01 0.10
SD 0.23 0.43 0.14 0.27 0.17 0.31
No. of issuer days 18,708 4,677 18,708 4,677 18,708 4,677

Sample full
High Miss 
error SD

full
High Miss 
error SD

full
High Miss 
error SD

0.087*** 0.236*** 0.023*** 0.045** 0.043*** 0.143***
(0.016) (0.038) (0.006) (0.019) (0.015) (0.036)

AA, above
A
BBB
BB, below 0.30

0.01 0.02
0.01 0.05
0.03 0.04
0.10 0.06

0.10

Model 1 Model 2 Model 3
0.04
0.08

Panel C: Average out-of-sample outperformance (in dollars) across rating subsamples

Model 1 Model 2 Model 3

Table 7: Model outperformance based on out-of-sample fitting
This table reports results when the three models are fit out-of-sample. Each issuer day, we choose one half of
the observations (based on maturity rank) for estimation and calculate out-of-sample prices for the other
half. The exercise is then repeated using the other half of the observations so that each issuer-day has a full
set of out-of-sample prices, i.e. model prices that are calculated from a sample of observations not including
the one for which we compare model to actual price. We require a minimum of four observations for each
issuer day ensuring that parameters are calculated based on a minimum of two prices. Panel A reports
summary statistics for the full sample and for the top quartile of misspecification error standard deviation.
Panel B reports means and standard errors when regressing no-coupon recovery model outperformance (i.e.
differences in volume weighted mean absolute errors) on a constant, using standard errors that are robust
and double clustered by issuer and date (same as in Table 5). Panel C reports average outperformance across
four rating groups.

Panel A: Out-of-sample outperformance (in dollars) of no-coupon recovery model

Panel B: Statistical significance of average outperformance (in dollars, full and subsample)

Model 1 Model 2 Model 3



Online Appendix to “The Valuation of Corporate

Coupon Bonds”

A. Internet Appendix

1. The Bond Valuation Formula

This appendix formalizes the pricing model in Section 3. We consider a continuous trading

model on a finite horizon [0, T ∗]. The uncertainty in the model is characterized by a complete

filtered probability space (Ω,F , (Ft)t∈[0,T ∗],P) where the filtration (Ft)t∈[0,T ∗] satisfies the

usual hypotheses and F = FT ∗ . See Protter (2005) for the definitions of these various terms.

Here P is the statistical probability measure.

The default-free money market account earns interest continuously at the default-free spot

rate of interest, rt, which is adapted to (Ft)t∈[0,T ∗]. As in the text, money market account’s

time t value is

Bt = e
∫ t
0 rsds.

Of course, we assume the necessary measurability and integrability such that the following

expression is well-defined. The default-free zero-coupon bond, denoted by p(t, T ) > 0, is

adapted to (Ft)t∈[0,T ∗].

We consider a firm that issues a bond with a coupon of C dollars, a face value equal

to L dollars, and a maturity date T . The bond pays the C dollar coupons at intermediate

dates {t1, ..., tm = T}, but only up to the default time τ . For notational convenience, let the

current time t = t0. If default happens in the time interval (tk−1, tk], then the bond pays a

stochastic recovery rate of δtk ∈ [0, 1] at time tk on the notional of L dollars. It is important

to note that default can happen anytime within this interval, but the payment only occurs

at the end. If default does not happen, the face value of L dollars is repaid at time T .
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Let Γt = (Γ1(t), . . . ,Γn(t))
′ ∈ Rn be a collection of stochastic processes characterizing the

state of the firm and the market at time t with FΓ
t representing the filtration generated by

the state variables Γt up to and including time t ≥ 0. We assume that these state variables

are adapted to Ft, which implies that FΓ
t ⊂ Ft. We assume that rt is FΓ

t - measurable.

Let λ : [0, T ∗] × Rn −→ [0,∞), denoted λt = λt(Γt) ≥ 0, be jointly Borel measurable

with
∫ T ∗

0
λt(Γt)dt < ∞ a.s. P, and let Nt ∈ {0, 1, 2, · · · } with N0 = 0 be a Cox process

conditioned on FΓ
T with λt(Γt) its intensity process (see Lando (1998)). Finally, let the

default time τ ∈ [0, T ∗] be the stopping time adapted to the filtration Ft defined by

τ ≡ inf {t > 0 : Nt = 1} .

The function λt(Γt) is the firm’s default intensity. A Cox process is a point process which,

conditional upon the information set generated by the state variables process Γt over the

entire trading horizon [0, T ∗] behaves like a standard Poisson process. In particular,

P(τ > T
∣∣FΓ

T ∗ ∨ Ft ) = e−
∫ T
t λudu

and

P(τ > T |Ft ) = EP
[
e−

∫ T
t λudu |Ft

]
.

We assume that the markets are arbitrage-free.

Assumption. (Existence of an Equivalent Martingale Measure)

There exists an equivalent probability measure Q such that

p(t, T )

Bt

for all T ∈ [0, T ∗] and
vt
Bt

are Q martingales.

It is well known that this assumption implies that the market is arbitrage-free. See Jarrow
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and Protter (2008). Given an equivalent martingale measure Q, define λ̃t ≡ λtκt to be the

intensity process of the Cox process under Q where κt(ω) ≥ 0 is a predictable process with∫ T ∗

0
λt(Γt)κtdt < ∞ a.s. P (see Bremaud (1980), p. 167). The process κt(ω) represents a

default jump risk premium.

We add the following assumption to simplify the analytic formulas.

Assumption. (Conditional Independence)

The default-free spot rate rt, the default time τ , and the recovery rate process δt are

independent under Q given the filtration Ft for all t.

Denote the time t ≤ t1 value of the coupon bond as vt, then using risk neutral valuation

yields

vt =
∑m

k=1 CEQ
[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
+ LEQ

[
1{τ>T}e

−
∫ T
t rudu |Ft

]
+
∑m

k=1 LE
Q
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

]
where Q denotes the risk-neutral probabilities.

Using the independence assumption, this implies

EQ
[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
= EQ [

1{τ>tk} |Ft

]
EQ

[
e−

∫ tk
t rudu |Ft

]

and

EQ
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

]
= EQ [

1{tk−1<τ≤tk≤T} |Ft

]
EQ [δtk |Ft ]E

Q
[
e−

∫ tk
t rudu |Ft

]
.

Thus, the previous equation simplifies to

vt = Lp(t, T ) [1−Q(t, T )] + (C − Ldt)
∑m

k=1 p(t, tk) [1−Q(t, tk)]

+Ldt
∑m

k=1 p(t, tk) [1−Q(t, tk−1)]
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where

dt = EQ [δτ |Ft ]

Proof. The only difficult term is EQ
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

]
. We have by conditional

independence that

EQ
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

]
= EQ [

1{tk−1<τ≤tk≤T} |Ft

]
EQ [δtk |Ft ]E

Q
[
e−

∫ tk
t rudu |Ft

]
.

Using the definition of dt and p(t, tk) gives

vt =
∑m

k=1 Cp(t, tk)E
Q
[
1{τ>tk} |Ft

]
+ Lp(t, T )EQ

[
1{τ>T} |Ft

]
+
∑m

k=1 Lp(t, tk)dtE
Q
[
1{tk−1<τ≤tk≤T} |Ft

]
.

To simplify expression (??), we introduce two simple credit derivatives: a survival and

default digital. These building blocks were first discussed in the literature by Madan and

Udal (1998).

At time t, consider the time interval [tk−1, tk] for k = 0, . . . ,m. Note that when k = m,

tm = T . We define a survival and a default digital as follows

• (A Survival Digital) This security pays $1 at time tk only if default occurs after tk. The

value of this security at time t < tk is

z(t, tk) = EQ
[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
.

• (A Default Digital) This security pays $1 at time tk if default occurs within (tk−1, tk].

The value of this security at time t < tk is

x(t, tk) = EQ
[
1{tk−1<τ≤tk}e

−
∫ tk
s rudu |Ft

]
.
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Using the conditional independence assumption, we can write these as

z(t, tk) = p(t, tk)[1−Q(t, tk)]

and

x(t, tk) = p(t, tk)[Q(t, tk+1)−Q(t, tk)].

The identity 1{tk−1<τ} = 1{tk−1<τ≤tk} + 1{τ>tk} implies

EQ
[
1{tk−1<τ}e

−
∫ tk
s rudu |Ft

]
= EQ

[
1{τ≤tk}e

−
∫ tk
s rudu |Ft

]

+EQ
[
1{τ>tk}e

−
∫ tk
s rudu |Ft

]
,

which simplifies to the given expression:

p(t, tk)[1−Q(t, tk−1)] = x(t, tk) + z(t, tk).

The left side represents the present value of the tk maturity zero-coupon bond at time t,

which is received only if there is no default before or at time tk−1. The right side is the

present value of the default digital for the interval (tk−1, tk] and the survival digital with

maturity tk.

Using these two digitals, the valuation expression can be written as

vt =
∑m

k=1Cz(t, tk) + Lz(t, T )

+Ldt
∑m

k=1 x(t, tk).

This expression shows that a risky coupon bond can always be decomposed into a portfolio

of survival and default digitals.
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2. The Recovery Rate Futures Price

This section explains why dt can be interpreted as a futures price. Define

dt := EQ [δT ∗ |Ft ]

for t ∈ [0, T ∗] where δT ∗ corresponds to the recovery rate if default happens at time T ∗. That

this can be interpreted as a futures price follows from the commodities pricing literature (for

example see Jarrow (2021), chapter 6). Since dt is a Q− martingale, the recovery rate futures

price is equal to

dt = EQ [δτ |Ft ] ,

which is the risk adjusted expected value of the recovery rate at the default time τ . The

relation between the recovery rate process δt and the futures price dt is given by the following

expression

δt = dtE
Q
[
Bt

Bτ

|Ft

]
.

Proof.

Define the recovery rate process δt on [0, T ∗] as the liquidation value of the firm at time t.

Using the notation in the text, the following time line documents relevant dates.

0 · · · t · · · tk τ · · · tk+1 · · · τ ∗ · · · T ∗

default payment

(d0, δ0) (dt, δt) (dτ , δτ ) (dτ∗ , δτ∗) (dT ∗ = δT ∗)

Both τ and τ ∗ are stopping times with τ ∗ > τ . τ is the firm’s default time. Due to cross-

defaulting provisions, if one liability defaults, all default at the same time. τ ∗ corresponds

to the date the payments on all of the firm’s liabilities are paid, after liquidation or financial

restructuring. It occurs, as indicated, after the default date. Time T ∗ is when the model
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ends. The arbitrage free value of the recovery rate payment at time t ∈ [0, T ∗] is

δt = EQ
[
δT ∗

BT ∗
|Ft

]
Bt.

Using iterated expectations, we obtain

δt = EQ
[
δτ
Bτ

|Ft

]
Bt.

Under the conditional independence of δt and rt, we can rewrite this as

δt = EQ
[
EQ [δτ |Ft ∨ τ ]EQ

[
Bt

Bτ

|Ft ∨ τ

]
|Ft

]

=
M∑
i=1

EQ [δti |Ft; ti−1 < τ ≤ ti ]E
Q
[
Bti

Bτ

|Ft; ti−1 < τ ≤ ti

]
ProbQ [ti−1 < τ ≤ ti |Ft ]

=
M∑
i=1

EQ [δti |Ft; ti−1 < τ ≤ ti ]E
Q
[
Bti

Bτ

|Ft; ti−1 < τ ≤ ti

]
[Q(t, ti)−Q(t, ti−1)]

where tM = T ∗ and Q(t, ti) = EQ [1τ≤ti |Ft ] = ProbQ [τ ≤ ti |Ft ].

Recall that all payments occur at the next payment date after default.

Using the conditional independence of δt and rt from τ , we can rewrite this as

δt =
M∑
i=1

EQ [δti |Ft ]E
Q
[
Bt

Bti

|Ft

]
[Q(t, ti)−Q(t, ti−1)] .

Last, using the definition of dt and noting that EQ
[

Bt

Bti
|Ft

]
= p(t, ti) we get

δt = dt

M∑
i=1

p(t, ti) [Q(t, ti)−Q(t, ti−1)] .
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We note that this implies

δt = dtE
Q
[
Bt

Bτ

|Ft

]
.

End of proof.

Given this expression, it is easily seen that the recovery rate futures price is strictly greater

than the recovery rate δt since EQ
[
Bt

Bτ
|Ft

]
< 1. This difference is expected to be small since

interest rates are small over our sample period.

3. Misspecification Error Approximation

In the event of default, the present value of the payoff for the first coupon is equal to the

discounted value of the product of the coupon rate, the recovery value, and the probability

of default, i.e. Cdtp(t, t1)Q(t, t1). For the second coupon, default can occur either in the first

or in the second period. The present value of the payoff in period one is the same as for

the first coupon. The conditional expectation at time one of the payoff in period two is also

the same as for the first coupon. However, this payment still needs to be discounted back

to time zero and adjusted to take into account that the firm must have survived to period

one. For longer time periods, a similar logic applies. This implies that the misspecification

error is exactly proportional to the product of the coupon payment and the recovery value.

In contrast, the total misspecification error is only approximately proportional to the error

resulting from the first coupon. The reason is that the probability of survival depends on

the default probability and because payments farther into the future will be discounted by a

larger amount.

Next we consider the effect of the bond’s maturity or, equivalently, the number of coupon

payments. Ignoring discounting and the adjustment for the probability of survival, the ex-

pected recovery payment from the second coupon is twice as large as for the first coupon.

The reason is that default on the second coupon can happen either in the first or the second

period. For a bond receiving m coupon payments the factor is therefore m(m + 1)/2. This
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means that the approximate total error is equal to Cdtp(t, t1)Q(t, t1)m(m+ 1)/2.

4. Robustness Tests

This section provides several robustness tests of the model’s outperformance.

1. Errors and Biased Parameter Estimates in the Full-Coupon Recovery model:

A Quasi-Simulation

Another way to check that our results are due to the misspecified assumptions underlying

the full-coupon recovery model is to calculate pricing errors using a simulation. We do this

using the actual data as the basis for a quasi-simulation. Specifically, we assume that the

no-coupon recovery model’s parameters are unbiased and calculate market prices based on

that model. We then use the full-coupon recovery model to price these bonds. This enables

us to trace out the effects of using the full-coupon recovery model’s misspecified assumptions

on model prices and parameters.

We find that the expected biases appear. The misspecification error’s standard deviation

is closely related to the pricing error. Thus, whenever the full-coupon recovery model has

more difficulty using the parameters to fit the data, the no-coupon recovery model’s outper-

formance is larger, just as we observed in the main sample. We also find that the full-coupon

recovery parameter estimates are indeed biased relative to the no-coupon recovery model’s

parameters, which in this exercise are assumed to be the actual underlying parameters.

In Model 1 the default probability has a downward bias; the effect is similar to what we

see in the main sample. In Model 3 the recovery rate has a downward bias, as we would

expect. The full-coupon recovery model’s estimated recovery rate is 3% lower for the full

sample and 4.5% lower for the subsample with the highest quartile of the misspecification

error’s standard deviation. For the illiquidity parameter the effect is much smaller. For

the full sample, the bias is equal to 0.02% (full-coupon model-implied illiquidity is more

negative), while it is 0.06% for the top 25% of the misspecification error’s standard deviation
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subsample. In short, the patterns we find in the data are directly driven by the full-coupon

model’s assumptions.

For Model 2, the biases are larger. The recovery rate is 28% too large, while the default

probabilities are on average 1.4% too large. This model’s instability underscores the need for

more restricted models, namely Model 1 (restricted recovery rate) and Model 3 (historically-

estimated default probabilities).

2. Daily Observation Cutoffs

In our estimation, we group bonds each issuer day and then fit the two pricing models. We

require a minimum of two bond price observations for each issuer day. Another possibility is

to choose minimum observation cutoffs, for example requiring at least five or ten observations

for each issuer day. Such a restriction has the benefit of reducing noise but shrinks the sample

size. We have checked that our results are robust to increasing the minimum required number

of observations.1

3. Monthly Observations

An alternative way to reduce noise is to pool observations each issuer month rather than

each issuer day. This approach significantly increases the number of observations in each

group. It also has the benefit of not reducing the overall sample size. Our results are robust

to this change too. In particular, we see a similar level of outperformance of the no-coupon

recovery model, though both models fit less well since there is now less parameter flexibility.

Our findings suggest that outperformance is not directly linked to sample size. This result

is consistent with our findings that the misspecification error’s variance explains well the

variation in model outperformance.

4. Alternative Recovery Rate Estimation Bounds
1In the case of Model 3, the no-coupon recovery model outperformance increases substantially when

restricting attention to the sub-sample of issuer days with ten or more observations; however it cuts the
number of issuers to only 18.
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As pointed out, our data set contains a lot of financial institutions, partly because they

issue a lot of debt, which is then actively traded in the secondary market. Regulated financial

institutions may have higher recovery rates than other firms since the regulator may close or

seize the bank before losses increase. It is therefore possible that, for at least a subset of the

data, recovery rates lie above the 80% cutoff we impose. We have checked what happens if

we increase the upper bound on recovery rate to 95%. This increased flexibility may or may

not be useful for Model 2, which, as we have discussed, is quite flexible already. However, we

may see an effect for Model 3, and that is indeed what we find. No-coupon recovery model

outperformance is higher for both models. This evidence suggests that for a subsample of

the data issuers have high expected levels of recovery rates. When using this less restrictive

estimation for the out-of-sample estimation, Model 2 outperformance drops while Model 3

outperformance increases. This evidence supports our conjecture that Model 2 is somewhat

unstable, while it supports the use of restrictions (Models 1 and 3).
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