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ABSTRACT 

We characterize optimal mutual fund risk-taking strategies in competitive multi-period 

tournaments among multiple players. With multiple competitors, every player begins by taking 

maximum risk. In the final period, all players continue to take maximum risk except the leading 

player, who employs a “lock-in” strategy that depends on the magnitude of the lead. Our theory 

predicts the leader should strategically lock in advantage by reducing risk-taking if and only if 

the lead is great enough, rather than an increase in risk-taking by the trailers to try to catch up. 

Empirical evidence from style-adjusted mutual fund tournaments provides strong and robust 

support. 
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I. Introduction 

An economic tournament is said to exist whenever there is a contest among economic agents and 

the outcome results in a single winner whose prize is greater than that of others. In financial 

economics, interest in tournaments has often centered around the example of mutual funds, 

where new investments tend to flow to the mutual fund with the highest relative performance 

within a calendar year. As a consequence of the empirical observation that fund flows are convex 

with respect to performance rankings (Chevalier & Ellison, 1997; Sirri & Tufano, 1998), the 

seminal paper by Brown, Harlow, and Starks (1996) argues that mutual fund managers who are 

trailing have an incentive to increase risk in the second half of the year in an attempt to catch up. 

Consistent with this hypothesis, they empirically find that trailing funds increase risk.  

One limitation of the subsequent literature is its incomplete characterization of tournament 

behavior in this setting. Much of this literature follows the original work (Brown, Harlow, & 

Starks, 1996) and asserts that trailing funds would want to increase risk. However, the literature 

has not considered the strategic reactions of the leading funds. The implicit assumption is that 

leaders would simply stand pat. However, if trailing funds increase risk, leading funds might also 

strategically change their risk-taking behavior. In addition, the magnitude of the leads and the 

number of competitors might also influence the strategy of the leaders.   

We reexamine tournament models with 𝑁	players engaging in strategic behavior, where 

competitors can change behavior after an initial stage. Our goal is to understand optimal strategy 

in tournament settings better by using only a minor deviation from the basic model setup and 

introducing more than two competitors (𝑁 > 2). Contrary to the assumed behavior in the 

literature, we find that all strategic behavior should be done by the leader. In a two-period model, 

when 𝑁 > 2, all funds start by taking maximum risks in equilibrium. In the final period, we 
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obtain a lock-in equilibrium where, the interim leader attempts to lock in her lead by taking 

minimal risk, but only if the lead is large enough. With a smaller lead, the leader optimally does 

not reduce risk. It is only in the special case with 𝑁 = 2, when the decision to lock in does not 

depend on the magnitude of the lead. The derivation of this multi-player equilibrium and the 

empirical implication that the leader’s lock-in decision depends on the size of the lead are new to 

the literature. 

The benefit of locking in decreases when the leader faces more than one rival. We show that 

whether or not the leader reduces risk depends on the size of the lead relative to the distribution 

of the maximum of other players’ performances. With multiple rivals, the distribution of the 

maximum is skewed because there is a greater chance that one rival gets a lucky break. As 𝑁 

increases, the leader requires a larger lead to reduce risk. Folding back to the initial period, all 

players compete aggressively by taking maximal risk because the interim leader gains this 

valuable option to lock in. Although our model has simplifying assumptions for tractability, we 

explore various extensions and find that this lock-in equilibrium is remarkably robust. 

Our main testable implications are (1) only the leader reacts strategically in the interim and (2) 

her decision to reduce risk depends on the magnitude of the lead. We use mutual fund 

tournament data to test our theory, but our results apply more broadly to other multi-player 

tournament settings where competitors can react to interim rankings. We test our theory using a 

large sample of mutual funds from 1999-2022 in a panel of annual style-adjusted tournaments. 

We first show that funds above the 80th percentile of style-adjusted performance experience 

markedly larger inflows, and as a result, we define these funds to be the leading group and 

concentrate our analysis on them. While prior studies usually use monthly data, ours is one of the 

first large-scale studies of mutual fund tournaments to use daily frequency data. Higher 
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frequency data allows us to better estimate the amount of risk taken by mutual fund managers 

within short windows of time and conduct a more powerful empirical analysis. Our empirical 

investigation could also potentially explain the differences between Brown, Harlow, and Starks’ 

(1996) results for different time periods, as well as the difference between their results and 

Busse’s (2001) who finds no evidence of increased risk-taking.  

Consistent with our theory, we find strong evidence that funds in the leading group in interim-

year (end-of-June) performance reduce risk relative to funds in the middle by annualized 

volatility of 0.421%. Surprisingly, we also find that funds in the trailing group reduce risk by an 

annualized volatility of 0.337%. The finding that trailers also reduce risk is not explained by our 

model nor by traditional explanations but could be explained by managerial career concerns 

where underperforming managers risk termination.  Risk reduction by leaders relative to trailers 

is also consistent with Brown, Harlow, and Starks (1996) and others, who find that leading funds 

take less risk than trailing funds in the latter part of the year. Their interpretation is that trailers 

increase risk relative to leaders, whereas ours is the reverse.  

We can differentiate between the two explanations because our theory implies that funds with the 

largest leads ought to reduce risk the most. We define a fund’s lead as the difference between its 

interim performance and the performance of the 80th percentile fund. A fund that outperforms 

this 80th percentile fund by 10% at the interim date reduces volatility by 6.31%. Since there is 

less time for trailers to catch up later in the year, our theory predicts that funds in the top group 

with similar-sized leads ought to lock in more aggressively. Indeed, when the interim date is later 

(e.g., November rather than July), the volatility reduction for the top group is greater. 



4 
 

The study of tournaments in economics has a long and storied history. Seminal works, such as 

Lazear and Rosen (1981) and Nalebuff and Stiglitz (1983), investigate the impact of 

dichotomous reward structures on individual effort and competitive behavior, rather than on risk-

taking. Typical questions deal with whether the contest can be optimally designed to elicit effort 

or to efficiently separate types in an adverse selection context (Bhattacharya & Guasch, 1988). 

The major contribution of the theoretical literature in agency tournaments has been the optimal 

design of reward incentives (Akerlof & Holden, 2012). Empirical work has concentrated mainly 

in the context of labor markets, such as in O’Keefe, Viscusi, and Zeckhauser (1984) and 

Boganno (2001), or competitive sporting events, such as with golf in Ehrenberg and Boganno 

(1990) and Brown (2011) or weightlifting in Genakos and Pagliero (2012). Within financial 

economics, Kale, Reis, and Venkateswaran (2009) examine how competition for promotion to 

CEO elicits effort, while Kini and Williams (2012) and Coles, Li, and Wang (2017) examine the 

link between CEO compensation and firm risk. 

Most theoretical models of tournament behavior involve just two competitors and focus on the 

costly choice of effort rather than the choice of risk. Lazear and Rosen (1981) find that when 

players choose effort, results of two-player tournaments generalize to multi-player tournaments 

and are unaffected by risk. Nalebuff and Stiglitz (1983) also allow for multiple players but focus 

on the choice of effort. Stein (2002) and Brown (2011) focus on the choice of costly effort where 

one player is a “superstar”, whose presence reduces others’ incentives to exert effort. When it 

comes to the choice of risk, Bronars (1987) is the first to note that in a two-player setting where 

competitors can react mid-tournament, the leader has an incentive to reduce risk while the 

follower has an incentive to increase it. Hvide (2002) and Coles, Li, and Wang (2020) examine 

the simultaneous choice of costless risk-taking and costly effort and find that leaders take a low-
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risk strategy, and the trailer takes a high-risk strategy while all competitors exert the same 

amount of effort. Overall, however, theoretical work has not addressed the effects of multiple 

competitors on risk-taking. 

Meanwhile, theoretical work examining tournament behavior among mutual funds has focused 

instead on the choice of risk rather than on effort but continues to remain in a two-player setting. 

For instance, Taylor (2003) analyzes a game with two funds and two binary strategies (either a 

risky or riskless alternative) and finds results opposite to the standard tournament theory where 

higher-performing funds take more systematic risk than lower-performing funds – a reverse 

tournament effect. Goriaev, Palomino, and Prat (2003) also examine the dynamics of risk-taking 

in a model with two funds and find that the magnitude of the lead matters when changing risk-

taking is costly. We show that in a costless environment, it is the presence of a third fund that 

makes the size of the lead relevant. Lóránth & Sciubba (2006) consider a two-fund tournament in 

which a third fund can enter at an interim date by paying a fee. In their equilibrium, the leading 

fund reduces risk, and they interpret this result as funds initially maximizing risk to minimize the 

threat of a new entrant. In contrast, our paper demonstrates that it is not the threat of a new 

entrant that drives the equilibrium but the very existence of a third fund. 

Other theoretical works investigate the implications of tournaments on other aspects of 

competitor behavior.  Bhattacharya and Pfleiderer (1985) considers the nonlinearity in reward 

schemes created by tournaments while Stoughton (1993) explores the resulting moral hazard 

issues. Optimal contract design in a multi-period game in which performance in one period 

would result in implications for fund flows in subsequent periods has also been considered 

(Heinkel & Stoughton, 1994). Basak and Makarov (2014) considers two-player tournaments with 

transparent informational environment in which managers have a relative performance 
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component to their utility functions and find a multiplicity of equilibria in which there can be 

either returns chasing behavior or contrarian strategies.1 

Empirically, the idea that new mutual fund flows chase past returns and create convex payoffs 

and tournament behavior has been well established. For instance, there are substantially greater 

fund flows into those mutual funds that are classified in the highest Morningstar five-star 

category relative to funds in the second-highest category (Reuter & Zitzewitz, 2021). Also, 

mutual funds that garner media attention by becoming the top performers in their investment 

category attract significantly greater fund flow (Kaniel & Parham, 2017). Kempf and Ruenzi 

(2008) documents that convex payoffs and tournament behavior also exist among mutual fund 

managers within the same mutual fund family. The empirical study of mutual funds is ideal for 

testing risk-taking in tournament models because performance and risk are readily observable. 

Some recent empirical papers find that tournament effects appear in some years and reverse 

tournament effects in others (Qiu, 2003). One contribution of our paper is to show that this kind 

of dichotomy can be consistent with tournament behavior since we predict that behavior should 

depend on the magnitude of the lead, not just whether a fund is leading. 

The rest of the paper is organized as follows. We develop our model in Section 2, where we 

review the two-player model. The main part of the theory appears in Section 3, where we study a 

model in which a third player is introduced. Section 4 examines the robustness of our predictions 

 
1 A related literature also investigates the impact of mutual fund manager behavior in the presence of compensation 
contracts with benchmarking to an index. The tournament setting is different because managers are evaluated with 
respect to active competitors who might react strategically, rather than with respect to a passive benchmark that does 
not react at all. Basak, Pavlova and Shapiro (2007) find outperforming funds decrease tracking error risk relative to 
a benchmark, but not when the manager is very far ahead of the benchmark. Chen and Pennachi (2009) find that 
although trailing funds increase tracking error, they do not necessarily increase total level risk. Cuoco and Kaniel 
(2011) include an option payoff component in the compensation and find that risk-averse managers sufficiently 
above the benchmark will also lock in gains. 
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in more general settings. Empirical results are presented in Section 5, and conclusions are 

presented in Section 6. Proofs and model extensions are collected in the Appendix.  

II. Base-Case Model Setup 

Consider a tournament between 𝑁 ≥ 2 competitors. A three player setting (𝑁 = 3) is general 

enough to illustrate our main results. The tournament is divided into two periods. Initially there 

is a performance formation period when interim rankings among the mutual fund managers are 

established. We refer to the fund with the highest performance in the first period as the ‘leader’ 

and all other funds as the ‘trailers’. There is an endgame where managers compete for a ‘winner 

take all’ prize given at the end of the second period, based on the final rankings among all funds. 

In this setting, there is only a single winner and there is no difference in payoffs among any of 

the trailing funds. In reality, mutual fund managers are typically compensated by a proportionate 

fee schedule based on assets under management at the end of the year, as well as an implicit 

compensation through an expected increase in fund flows based on relative performance. To 

keep our model parsimonious and to focus specifically on the tournament aspect, we do not 

consider the linear part of the compensation schedule and focus only on the competition to be the 

winner. We also do not consider differential fund flows or termination outcomes for managers of 

the trailing funds. Therefore, the tournament payoff structure we investigate is an approximation 

of the well-known `convexity’ of fund flows. Evidence (Kim, 2019) shows that the convexity in 

fund flows as a function of end of year rankings is the most prominent.  

We specify fund return distributions for each period, 𝑡	 ∈ {1,2}, as 𝑅!" = 𝜎!"𝜖!" , where manager 𝑖 

selects a risk level 𝜎!" ∈ [0, 𝜎4] bounded above by 𝜎4, and 𝜖!" is zero mean, unit variance, 

independent normally distributed random. This specification is general enough to allow for 
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performance benchmarking, in which case 𝜖!" is benchmark-adjusted idiosyncratic shocks. 

Although some of our proofs rely on the normality assumption, this can be generalized to some 

extent. Sufficient for our analysis is that return distributions are symmetric, continuous and 

unimodal, which is the same assumption Hvide (2002) uses. 

In our basic specification, all managers have equal abilities and relative performances are due 

entirely to their risk choices and the resolution of uncertainty. Since our specification is based on 

idiosyncratic returns, expected excess return in each period is zero and there no risk premium. 

We also assume that there exists a costless risk-taking technology that is available to all 

managers. This is realistic because methods of adding risk, such as holding futures contracts, are 

available to all managers and require lower capital than investing in equities themselves.2 In the 

Appendix, we discuss extensions of our base-case setup that account for additional features. 

Denote the first period performance of each fund as 𝑎! = 𝜎!#𝜖!#. The total return, without 

adjusting for compounding, is given by 𝑅! = 𝑎! + 𝜎!$𝜖!$. The tournament structure is a Nash 

equilibrium embodied in the following payoff for manager 𝑖, who chooses her risk level while 

taking other managers’ choices as given: 

 𝑈!:𝑅!|𝜎)!(< = =
1	if	𝑎! + 𝜎!$𝜖!$ ≥ Max	𝑎' + 𝜎'$𝜖'$; 𝑗 ≠ 𝑖
0	if	𝑎! + 𝜎!$𝜖!$ < Max	𝑎' + 𝜎'$𝜖'$; 𝑗 ≠ 𝑖 

(1) 

where 𝜎)!( denotes the vector of risk choices for managers other than 𝑖. Each manager maximizes 

her expected utility, 𝐸(𝑈!): 

 Max(!𝐸(𝑈!) = Prob(𝑅! ≥ max
')!

H𝑅'I). (2) 

 
2 For instance, the May 6, 2010 `flash crash’ is alleged to have been caused by one mutual fund selling a large 
number of futures contracts (SEC, 2010).  
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II.A Two-Player Tournaments with No Risk Limits 

To build intuition, we begin with a simple, albeit unrealistic, case where 𝑁 = 2	and there is no 

limit to risk-taking, 𝜎4 = ∞. Consider the final period risk choice of the fund managers. Let 

manager 1 have an interim lead over manager 2, i.e., 𝑎# > 𝑎$. Suppose that manager 1 is 

currently choosing finite risk so that 𝜎# < ∞ (we neglect the time subscript). If manager 2 also 

chooses finite risk, her probability of winning would be less than half. By selecting 𝜎$ = ∞, 

manager 2 can maximize her probability of winning at one-half, and manager 1’s win probability 

is unaffected by her risk choice. Hence all equilibria feature 𝜎$ = ∞ but 𝜎# can be anything: 

𝜎# ≤ ∞. The usual interpretation of this effect in the literature is that the trailing manager takes 

on as much risk as possible to maximize the probability of catching up.  

Now consider fund manager actions in the performance formation period. Our result above 

implies that the interim lead does not matter because both managers are equally likely to win. 

Therefore, there risk taking in period 1 is irrelevant, and any level of risk in the first period can 

be a Nash equilibrium.  Therefore, allowing for infinite risk leads to no prediction on respective 

risk-taking in the performance formation period.  

II.B Two-Player Tournaments with Finite Risk Limits 

Since taking infinite risk is unrealistic and has little testable content, we bound the maximum risk 

each manager can take to a finite 𝜎4 < ∞. Consider first the final period. Again, suppose that 

manager 1 leads with 𝑎# > 𝑎$. Now, manager 1’s expected total benchmark-adjusted return 

exceeds that of manager 2’s: 𝐸[𝑅#] > 𝐸[𝑅$]. Because 𝜎$ must be finite, by choosing 𝜎# = 0, 

manager 1 wins with probability greater than one-half. Adding symmetrically distributed risk 

reduces this probability regardless of manager 2’s actions. Conversely player 2 always increases 

her probability of winning by adding risk. There is now a unique Nash equilibrium where 𝜎# =
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0, which we call “locking in” and 𝜎$ = 𝜎4. Manager 1 wins with probability greater than one-half 

and manager 2 wins with probability less than one-half. 

We formally prove this second period equilibrium in Appendix I as our first Proposition: 

Proposition 1. In a two-player tournament where manager returns are symmetrically 

distributed, continuous, and unimodal, the leader always locks in and the follower always 

maximizes risk taking. 

 
Figure 1: By locking in, the leading player 1 wins with the area below the trailing player 2’s probability 
density function to the left of 𝒂𝟏, which is the expected final period return of player 1. By increasing risk, 
player 1 gains the probability of winning in the blue shaded area above 𝒂𝟏, but loses in the red shaded area 
below 𝒂𝟏. The former, however, has lower probability mass than the latter. Hence player 1 should never 
increase risk above zero when player 2 has a finite risk limit.  

For the case with normal distributions, Figure 1 illustrates the equilibrium described in 

Proposition 1. With 𝜎4 < ∞, there is an advantage to be the interim leader. If each fund begins the 

tournament without a head start, then no matter what initial risk strategy is employed, each fund 

will be in the lead with probability one-half at the interim stage. This means that in the first 

period, once again, taking any amount of risk is a Nash equilibrium. Bounding the risk limit 
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leads to a sharper prediction than with unbounded risk limits, but only regarding the second 

period behavior. In the second period, the leading (trailing) manager takes zero (maximal) risk, 

but anything is still possible during in the initial period. We might expect leading funds to reduce 

risk and trailing funds to increase risk in the second period, but we cannot make any definitive 

statement about risk-taking behavior in the first period. A definitive prediction about first-period 

risk-taking requires considering richer cases, such as cases with more than just two funds. 

III. Multiplayer Tournaments 

We now consider a tournament with three managers. This one change to the model produces 

sharper results with and more interesting testable predictions. It will be apparent that what 

matters for our results is that each competitor faces multiple rivals. 

We begin by characterizing the objective function for the final period of the tournament. For 

fund 𝑖 to win the tournament, funds, 𝑗 and 𝑘 must have lower realized returns. Let 𝐹!(𝑅!) be the 

cumulative distribution function (cdf) for fund 𝑖′𝑠 return, given chosen risk level, 𝜎!. The 

probability that fund 𝑖 wins with return 𝑅! is 𝐹'(𝑅!)𝐹*(𝑅!), which is the cdf of the maximum of 

the returns of the other two funds, evaluated at fund 𝑖′𝑠 realized return, 𝑅!. This expression is the 

cdf of the maximum order statistic of the other two funds. The event that manager 𝑖 wins is 

equivalent to the event that manager 𝑖’s return exceeds that of the maximum order statistic of the 

other two fund returns. Hence the objective function can be written as 

 𝐸(𝑈!) = P 𝐹'(𝑅!)𝐹*(𝑅!)𝑓!(𝑅!)𝑑𝑅!

+

,+

, (3) 
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where 𝑓!(𝑅!) is the probability density function (pdf) of fund i’s return. For illustrative purposes, 

consider the case where 𝑓!(𝑅!) is normally distributed with 𝑓!(𝑅!) = #

$%&'!
%
	𝑒

()*!(+!,
%

%'!
%  as the pdf. 

To analyze the impact of changes in the level of risk, one can differentiate equation (3) with 

respect to 𝜎!. Simplifying yields: 

 
𝑑𝐸(𝑈!)
𝑑𝜎!

= P T−
1
𝜎!
+
(𝑅! − 𝑎!)$

𝜎!-
V𝐹'(𝑅!)𝐹*(𝑅!)𝑓!(𝑅!)𝑑𝑅!

+

,+

. (4) 

This expression reveals that there are two resulting effects when a fund manager increases the 

risk level. The first is negative and occurs when returns are near their initial (expected) values 

and the level of risk is low. The second is positive and occurs when returns deviate from their 

initial (expected) values. Which effect dominates depends on the relative interim position of the 

fund and the potential for risk increases. We now analyze the various cases. 

III.A Multi-Player Tournaments with Finite Risk Limits 

Since the infinite risk limit case is uninteresting, we begin by considering a finite risk limit, 𝜎4 <

∞. Proposition 2 provides the essential properties we require for the distribution of the maximum 

order statistic in the case where fund returns are normally distributed. The proof of the following 

Proposition applies some properties of maximum order statistics derived by Nadarajah and Kotz 

(2008) and is presented in Appendix I. 

Proposition 2. The distribution of the maximum order statistic for two independent normal 

random variables is unimodal and positively skewed. 

Given these characteristics regarding the distribution of fund manager returns, we begin by 

considering the second-period best response strategies of the trailing managers. 
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Proposition 3. Suppose all managers’ risk choices are restricted to a finite risk limit, σ. ≤ σX <

∞	, ∀i. Then during the second period of the tournament, trailing managers always maximize 

risk-taking. 

 

 

Figure 2: This figure depicts the situation of player 3 whose mean return distribution lies below the mode of 
the maximal order statistic distribution between players 1 and 2. If player 3 increases risk, her distribution 
slightly the area of the shaded region above 𝒂𝟑 increases by more than the shaded region below if risk is 
symmetric. This argument can be extended to all possible values of 𝝈𝟑. 

The intuition behind Proposition 3 is to suppose that manager 3 takes additional mean-preserving 

risk as depicted in Figure 2. This increases the probability of winning if the area of the additional 

partial distribution gained to the right (shaded in blue) is greater than the area of the partial 

distribution lost to the left (shaded in red). With symmetrically distributed returns, this is always 

the case if the manager’s expected return is less than the mode of the maximum of the other 

managers’ returns. If competing funds’ returns are symmetrically distributed, then, for either 
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trailing manager, the mode of the maximum is always greater than the expected return and the 

distribution of the maximum is positively skewed. 

Proposition 3 implies that the two trailing managers take as much risk as possible. We now show 

that the leader might not choose to increase risk to the maximum. If the trailers are limited to 

finite risk, manager 1’s lead still might not be safe enough for her to reduce risk. Consider what 

happens when manager 1 has only a slight lead over managers 2 and 3. 

Proposition 4. Suppose that the initial return for fund manager 1, a#, is less than the mode of the 

maximal order statistic density between managers 2 and 3. Then, increasing risk increases 

player 1’s probability of winning. Hence the optimal response is to set σ# = σX.  

Our proof in Appendix I reveals that when 𝑁 > 2, it is not the symmetry of competitor returns 

that drives the results, but the extent of the leader’s lead relative to the mode of the maximal 

order statistic of the competitions’ returns. The intuition for this result lies in the skewed 

distribution of the maximum order statistic. This result implies the following corollary. 

Corollary 1. If manager 1s’ lead is sufficiently small and lies below the mode of the maximum 

order statistic density of managers 2 and 3, then the unique Nash equilibrium in the single 

period tournament is for each manager to choose maximal variance, σ# = σ$ = σ- = σX. 

This result with three managers is different from that with two managers, where the leader 

always sits on a lead, no matter how small. With	N = 3, if the lead is not greater than the mode 

of the maximal order statistic, the leader maximizes risk. With two other managers rather than 

just one to worry about, it is more likely that a trailing competitor will achieve a high outcome 

from a high-risk strategy. As a result, the leader must also continue to take maximal risk.  
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However, if manager 1 has a large lead, then there is an asymmetric equilibrium in which the 

leader minimizes risk.3 This is depicted in Figure 3 and described in the following Proposition. 

Proposition 5. Suppose that the leading manager return, a#, lies above the mode and the median 

of the maximal order statistic density of competing fund returns. Then the optimal strategy is 

always to lock in. If a# is below the median but greater than the mode, there exists some critical 

value, a#\ , above which the optimal strategy is to lock in but to take maximal risk otherwise. The 

critical value depends on the magnitude of maximal risk, σX. 

 

Figure 3: The leader finds it counterproductive to add some amount of risk. The density, 𝒇𝟐𝟑max(𝑹), is the 
maximum order statistic of the two trailing funds. With zero risk, the probability that fund 1 wins is the area 
to the left of 𝒂𝟏. With risk-taking, the density, 𝒇𝟏(𝑹), is that of the leader causes a higher probability in red of 
losing versus a lower probability in blue of winning.  

The following corollary characterizes the equilibrium in the final period. 

 
3 In particular, the lead has to be greater than the median of the maximal order statistic, rather than the mode, to 
guarantee that locking in is the dominant strategy. To see why being above the mode is not sufficient, consider the 
situation where the lead is greater than the mode but less than the median. If the leader locks in, her probability of 
winning is less than half, by the definition of the median. If she maximizes risk-taking, her probability of winning 
approaches one half as her risk limit becomes infinite.  
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Corollary 2. If manager 1’s returns to date, a#, exceed the mode of the maximal order statistic 

density between managers 2 and 3, then there exists a unique Nash equilibrium in which either: 

(1) manager 1 chooses zero risk and managers 2 and 3 choose maximum risk; or (2) all 

managers choose the highest permissible levels of risk. The determination of which equilibrium 

prevails depends on the level of a# and the magnitude of the risk limit. 

We have therefore identified when the leader sits optimally on a lead in the final period. It 

involves the joint determination of the relative interim position of the leader vis-a-vis the likely 

values of the maximal order statistic of the other trailing funds. When the lead is slim the leader 

optimally maximizes risk. However, with a sufficient lead and finite risk-taking, the leader 

optimally minimizes risk.4 

This result shows how the multi-player case differs from the two-player case. With two players, 

the distribution of the maximum order statistic is just the distribution of a single competitor’s 

return. Hence, the leader takes zero risk and the trailer maximizes risk because the mode and the 

median of the maximum are equal to each other when returns are unimodal and symmetrically 

distributed. With N ≥ 2	, the distribution of the maximum does not equal that of any single fund 

return. For tournaments with N>3, this intuition regarding the distribution of the maximum of the 

competing funds carries forward, and generally implies that the lead of the leader must be greater 

to observe the lock-in strategy. 

 
4 We have numerically analyzed the case when a/ is above the mode but below the median of the maximum order 
statistic and found there exists a cut-off point where the leader switches from maximizing risk to locking in with no 
interior optimal level of risk-taking. 
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III.B Value of the Lock-in Option 

The possibility to lock in a lead after the initial period has implications for first period risk 

taking. We have demonstrated that if the interim leader has a sufficient lead, she will minimize 

risk; otherwise, it will be optimal to increase risk to the maximum. Because a leader only reduces 

risk when her lead is safe, we can define the value of this option to be the difference between the 

probability of winning by reducing risk to zero and the probability of winning by taking 

maximum level of risk. The probability that both the middle and bottom players lose if manager 

1 takes no risk is 𝐹$(𝑎#)𝐹-(𝑎#). On the other hand, if manager 1 takes maximum risk, the 

probability of winning is ∫ 𝐹$(𝑅)𝐹-(𝑅)𝑓#(𝑅)𝑑𝑅
+
,+ , where 𝑓#denotes the pdf of the leader with 

mean 𝑎# and standard deviation σX. This means that the option value of locking in is  

Lock-in Option Value = max T𝐹$(𝑎#)𝐹-(𝑎#) − P 𝐹$(𝑅)𝐹-(𝑅)𝑓#(𝑅)𝑑𝑅, 0
+

,+
V. (5) 

 

Figure 4: The value of the lock-in option in terms of increased probability of winning for fixed realization of 
the bottom two funds. This simulation is calibrated using the parameters 𝒂𝟑 = 𝟎, 𝒂𝟐 = 𝟏, and 𝝈+ = 𝝈𝟐 = 𝝈𝟑 =
𝟏. The value 𝒂𝟏 represents the first periods outcome of the highest-ranking fund. 
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Figure 4 illustrates the value of this lock-in option under normal distributions. As illustrated, 

unless the lead is sufficiently large, the value of the lock-in option is zero. However, the lock-in 

option is ‘in the money’ once the lead is big enough. The value of the lock-in option has a 

maximum which is where the leader gains greatest advantage over taking risks in the second 

period. As is indicated by Figure 4, this relative advantage is maximized at an interior point. If 

the top player’s lead is huge, there is a positive but small advantage of locking in a lead, because 

the leader is likely to win regardless of her actions. 

III.C Dynamics of Optimal Risk Taking in Multi-Player Tournaments 

We now discuss the effects of introducing multiple (𝑁 > 2) funds and the lock-in option on the 

dynamics of risk-taking behavior in tournaments. With only two players, any amount of initial 

risk taken by either player would be a Nash equilibrium. Therefore, tournaments among two 

players with equal abilities yield no predictions regarding optimal risk-taking during the initial 

period. As a result, we could observe either the leader reducing risk or keeping risk constant 

while the trailer keeps risk constant or increases risk. Considering 𝑁 > 2 players now yields a 

sharper prediction for the initial risk-taking and the dynamics of risk-taking for all players. 

Note that the optimal strategies of all players in the multiperiod game are equivalent to playing a 

reduced form single period game without an interim reaction period. Consider the following 

single-period baseline tournament. The ex-ante identical players select a single level of risk up to 

a finite maximum level, σX/ = σX0 + σX, where σX0 is the risk limit during the initial period of the 

multiperiod game. Here, there is no possibility to depart from this maximum risk strategy at an 

interim date. Since performance in the multiperiod game is independent across sub-periods, this 

baseline game is a single-period tournament which we have already analyzed with a finite risk 

limit. Applying Proposition 4, the optimal strategy is 𝜎! = 𝜎41 , ∀𝑖 = {1, … 3}. 
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The multiperiod tournament is equivalent to taking the above baseline tournament and appending 

a sub-tournament in which players compete to win the lock-in option. Incorporating interim 

information and strategic reaction is equivalent to granting the interim leader with the lock-in 

option to reduce risk over the continuation period. The benefit of being the interim leader is that 

only the leader earns the lock-in option. The question is whether this additional option gives 

anyone an incentive to deviate from the baseline equilibrium of taking maximum risk 

throughout. Since only the interim leader earns the lock-in option, this is also a single period 

tournament in the same form as before, where players start out the tournament with equal initial 

positions. We have already seen above that maximum risk-taking is the unique equilibrium of 

such a tournament.  

Therefore, the multiperiod tournament is the combination of the baseline tournament with this 

additional sub-tournament for the lock-in option. Both tournaments are single period, and both 

tournaments involve maximum initial risk-taking as the unique equilibrium. The decision 

regarding risk-taking is whether to reduce risk or to maintain the maximum level of risk at the 

interim period. The only time it might pay to reduce risk is as a reaction to interim information. 

Taking less than maximal risk initially is sub-optimal. In Proposition 6, we summarize the 

implication of this result for first-period risk-taking.  

Proposition 6. Suppose funds have equal fund managerial abilities and identical starting 

positions. Let the upper bound on first period risk,	σX0, be finite. Then there exists a unique 

symmetric equilibrium in which each manager selects an identical level of risk σ# = σ$ = σ- =

σX0 in the first period.  
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By putting together our analysis of the first-period equilibrium and the final-period equilibrium, 

we have the following corollary summarizing the equilibrium in a multi-period case. 

Corollary 3. In a tournament with multiple players (N>2) where managers have equal abilities 

and can choose finite maximum risk, there exists a unique Nash equilibrium in which every 

manager begins the tournament choosing maximal risk. In the final period, all managers 

continue to take maximum risk except the leading player who may reduce risk-taking to zero if 

the lead manager’s returns to date exceeds the mode of the maximal order statistic density 

among the other managers. 

This corollary implies our main testable empirical prediction: it should be the case that it is the 

leading manager, rather than the trailing managers, who strategically alter risk-taking behavior, 

but if and only if the magnitude of the lead is great enough. 

IV. Generalizations of the Tournament Model 

Before we analyze if empirically observed behavior is consistent with our theoretical predictions, 

we first consider how various generalizations of our model that brings it closer to implementable 

empirical design might affect our predictions. 

In our model, we analyzed a three-fund tournament with a single winner. One question is: what 

happens if there are more than three competitors? Moreover, our empirical analysis considers the 

case where funds compete to be among the top group, rather than to be the very top fund. Hence, 

it is natural to consider how our predictions change if there were more than three competitors and 

if funds competed simply to be among the top group of funds. 

It turns out in these cases, our model’s qualitative results would go through. However, with more 

rivals, the leader must have an even larger lead to be safe. This follows because adding 
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additional competitors unambiguously increases the mode of the maximal order statistic 

distribution among the remaining N-1 funds. But our proof remains largely unchanged because 

maximal order statistic is always unimodal and skewed. Furthermore, if our tournament pay-off 

went to being in the top group of funds, rather than just to the single top fund, then our results 

remain unchanged once again. Here, rather than comparing a fund’s return to the distribution of 

the maximal order statistic, one would need to compare a fund’s return to the distribution of the 

corresponding central order statistic, which is also unimodal and skewed when the underlying 

distribution is normally distributed. For example, if the payoff went evenly to all funds in the top 

20%-tile ranking, the relevant distribution is the upper 20%-tile central order statistic, which is 

unimodal and skewed if the underlying returns are normally distributed. Given these 

distributional properties, our proof would follow as before. 

We can also consider the case where fund managers can choose to take systematic risk or 

idiosyncratic risk. We provide more complete analysis of the case where fund managers may 

take non-negative systematic risk in Appendix II. From the point of view of the trailing funds, 

taking systematic risk rather than idiosyncratic risk has no advantage. If anything, if a trailing 

fund were to take systematic risk, it would provide an additional way in which the competing 

leading fund can lock in her lead by taking on identical correlated systematic risk. Hence, in 

equilibrium, when fund managers take risk, they take only idiosyncratic risk to maximize the 

chance of realizing an outcome different from those of other competitors. Therefore, it remains 

true that the leading fund will lock in her lead if the lead is sufficiently large. 

A potential criticism of our model, and of the literature on mutual fund tournaments in general, is 

that given the common knowledge about abilities in our core model, there is no reason why new 

assets should flow to the highest performers in the first place. If investors were aware that 
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managers were all unskilled, there should not be a tournament pay-off to begin with. In general, 

the mutual fund tournament literature assumes that pay-off are exogenously determined. If we 

generalize our model slightly so that funds have differential ability, then on average, the funds 

with highest performance will have more able managers, and new assets flow towards high 

performing funds because it signals ability. Generating a convex fund flow relation with 

optimizing investors is beyond the scope of this paper. However, it can be shown that if 

managers have different abilities, investors will optimally infer that high returns are associated 

with more skilled managers. In Appendix III, we illustrate this in a simplified version of the 

environment of Berk and Green (2004) and Jiang, Starks and Sun (2021). 

V. Empirical Study 

We now examine whether the behavior of mutual fund managers is consistent with our 

predictions. Specifically, we investigate whether leaders rather than trailing funds change their 

risk-taking by examining whether the magnitude of the lead affects their response. 

V.A Data Description and General Mutual Fund Characteristics 

Our data comes from the CRSP Mutual Fund Database. We use data on equity mutual funds 

starting in 1999 when fund performance data first became available at the daily frequency for an 

entire calendar year. While most prior research on tournament effects in mutual funds use 

monthly data, this would not allow us to reliably investigate changes in risk-taking behavior 

across time within a calendar year because of the lack of data points. This is particularly 

important when we focus on risk-taking changes during the last couple of months of a calendar 

year. Using daily data also allows us to more accurately control for factor risk exposures and 

better distinguish idiosyncratic risk from total risk-taking. For each mutual fund, we collect daily 

fund returns net of fees and expenses. We also collect each fund’s Lipper style category. We then 
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merge our data with the MFLINKS database (Wermers, 2000) to eliminate redundant mutual 

fund share classes. We end our sample in 2022, which provides us with 24 years of data.5 Our 

approach is to compare how mutual funds change their risk-taking behavior in the later months 

relative to earlier months of a calendar year. This is akin to using fixed effects for each mutual 

fund and accounts for fund characteristics that do not vary within the year. 

Table 1 shows the distribution of mutual funds used in our study. We limit our sample to funds 

in one of twelve Lipper equity fund categories, which are the intersections of four size categories 

(Large-Cap, Mid-Cap, Small-Cap, and Multi-Cap) and three value categories (Value, Core, and 

Growth).6 Overall, we have 58,419 fund-year observations over 24 separate years in 12 fund 

style categories. Each category is well-represented and ranges from an average of 79.8 funds per 

year (Mid-Cap Value) to an average of 332.8 funds per year (Large-Cap Core). For our analysis, 

we consider each tournament spanning a single calendar year ending in December within each of 

the 12 Lipper classifications. As mentioned earlier, we believe it is most realistic to define the 

end of a calendar year as the conclusion of the tournament and the beginning of the calendar year 

as the start (Kim, 2019). Thus, in our sample, we have 288 distinct tournaments. 

We assume that the tournament winners are based on cumulative raw returns because recent 

literature has found that fund flows respond more to unadjusted performance (or CAPM-adjusted 

performance) than to multi-factor adjusted performance (Berk & van Binsbergen, 2016; Barber, 

Huang, & Odean, 2016). Moreover, because we rank fund returns within a style category, 

comparisons using raw returns are effectively comparisons using benchmark-adjusted returns. 

 
5 Our sample does include the financial crisis period of 2008, but our results are robust to removing this period.  
6 This categorization is reasonable since some practitioner publications (e.g., Barron’s) rank funds based on Lipper 
rather than Morningstar categories.  
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Finally, unlike in our model, where there is a single winner, empirically, funds flow toward a 

group of top performers. Hence, we examine in our empirical study whether a fund ends up 

among a group of top performers (defined in various ways), rather than the absolute top fund. 

 

Figure 5: The relation between returns in year 𝒕 and fund flows over different portions of year 𝒕 + 𝟏. Mutual 
funds are ranked into 20 demi-decile groups within each style and year according to their annual returns in 
year 𝒕. Subsequent fund flows are represented on the vertical axis as the average percentage increases in the 
size of the funds in each demi-decile not accounted for by returns.  

We first establish that empirically, there exists a tournament pay-off in our sample. The most 

visible way in which tournament incentives arise is the relation between fund flows and past 

performance. Figure 5 illustrates the empirical relation between returns in year 𝑡 and fund flows 

over subsequent periods. Funds are divided into 20 demi-decile groups within each style and 

year by year-𝑡 annual returns. Within each demi-decile, we compute following period fund flows 

starting in January of next year. Moreover, there may be additional benefits to producing 
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superior performance, such as promotion of fund managers within a fund family and spill-over 

effects to other funds of having a star manager in a fund family. 

Next, for empirical work, we define which funds are leaders and which are trailers. Consistent 

with a tournament effect and prior literature, the relation between past performance and future 

fund flows is convex. For example, there is nearly 12% growth in fund size over the subsequent 

year for the top five percent performing funds. The increase in fund flow is most pronounced for 

the top 20% funds. Based on this observation, we classify that a fund is a leader if its 

performance is in the top fifth of funds within a category. This definition is the same one used by 

Morningstar for their five-star (top) funds, albeit using their categories rather than Lipper’s. 

Similarly, we define trailers as funds in the bottom 20th percentile in terms of performance.  

The measure of risk-taking in our model is idiosyncratic volatility, which must be measured net 

of systematic risk. Following the standard approaches (Fama & French, 1993; Carhart, 1997), we 

consider up to four potential systematic risk factors: the market factor (𝑟2 − 𝑟3), size factor 

(SMB), value factor (HML), and momentum factor (UMD). Mutual fund returns are calculated 

in excess of the risk-free rate, as residuals of CAPM (market factor only), as residuals of a 3-

factor model (market, SMB, and HML), and as residuals of a 4-factor model (3-factors plus 

UMD). Within each fund-year, we compute the residuals by regressing daily mutual fund returns 

on daily factor returns each month. We measure risk-taking using the annualized standard 

deviation of these residuals over different periods within a calendar year. 

Table 2 reports the summary statistics of mutual fund risk-taking measures for each of the four 

metrics used. Risk-taking measures reported here are measured over the entire calendar year. The 

average (median) total volatility of mutual fund returns in our sample is 20.0% (17.0%). Total 
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return volatility at the 5th percentile is 9.8% and at the 95th percentile it is 39.0%, suggesting 

considerable heterogeneity in risk-taking. As we adjust for systematic risk, average idiosyncratic 

volatility falls. Nevertheless, idiosyncratic volatility relative to a 4-factor model is 1.7% at the 5th 

percentile but a much larger 9.9% at the 95th, indicating that heterogeneity in risk-taking remains 

substantial even after accounting for risk-factors. 

V.B Second Half Tournament Effect 

The main objective of our investigation is to see how these risk-taking measures change within 

each tournament year for the funds in the leading group relative to others. Following prior 

literature beginning with Brown, Harlow and Starks (1996), we first compare risk-taking over 

the last half of the year to the first half of the year. We measure changes in risk-taking behavior 

in two ways. One is the ratio of annualized return volatility over the second half of the year 

divided by the volatility over the first half (VOL_RATIO). This measure is commonly used in 

the literature, but because VOL_RATIO is hard to interpret when the denominator is small, we 

prefer to use VOL_DIFF, the difference between annualized return volatility in the second half 

and the first half of the calendar year. Prior researchers have also used this measure (Koski & 

Pontiff, 1999), but we also use VOL_RATIO as a robustness check. 

According to our theory, a fund’s relative interim performance ranking should affect how funds 

alter their risk-taking. We employ two types of ranking measures. Within each category and each 

year, we rank funds by cumulative percentage returns over the first half of the calendar year 

(January to June). This six-month period is a proxy for the period 1 in our model. The first 

ranking type is a leading indicator set to one if performance is in the top 20%, a middle indicator 

if performance is in one of the three middle quintiles, and a trailing indicator if performance is in 
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the bottom 20%. We omit the middle indicator so the coefficients on the other indicators can be 

interpreted as changes in fund risk-taking for a group relative to the changes in the middle group. 

Since only some of the leading funds have sufficiently large leads, we also employ a second type 

of measure of lead. This measure interacts the leading and trailing group indicators with the 

absolute difference between a fund’s cumulative past return and that of the fund at the top or 

bottom quintile breakpoints (distance). For leading funds, this measures how far ahead they are 

from the breakpoint. For the funds in the trailing group, it measures how far behind the fund is 

from the breakpoint. The median fund in the leading group is ahead of the 80th percentile fund 

by a mid-year return of 1.53% in the middle of the year, while the 95th percentile fund is ahead 

by 3.35%. Among the trailing group, the median fund is behind the 20th percentile fund by 

1.52% in the middle of the year, while the 95th percentile fund is behind by 3.19%. 

Table 3 shows results from our base-case specification, where we treat the initial period to be 

January to June of each calendar year and assess the changes in risk-taking over July to 

December. Our basic regression specification is a pooled-panel regression of changes in risk-

taking on measures of where a fund stands relative to its peers in July. We include fixed effects 

for each fund category by year, which absorb common volatility changes within each fund 

category and calendar year. We also include a separate indicator (Crisis Period) for the 2008 

Financial Crisis to distinguish its effects on overall volatility. Standard errors are clustered by 

fund to control for seasonal patterns experienced by funds across years. 

Panel A of Table 3 revisits the basic tournament effect without considering any distance 

measures for leading or trailing funds. We make no adjustments for risk factors in the first 

column. The coefficients on the indicators can be interpreted as the average increase in 
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percentage volatility by the funds in the leading group (-0.421) and the trailing group (-0.337) 

relative to the decrease in volatility by the funds in the middle group (-1.981). That is, a typical 

leader decreases volatility by a statistically significant 0.421% relative to what a typical mutual 

fund in the middle group does. However, a typical mutual fund in the trailing group decreases 

volatility by 0.337% as well. As with Busse (2001), we also find that it is difficult to find an 

asymmetry in risk reduction without accounting for the magnitude of the lead. The intercept term 

of -1.981% can be interpreted as the decrease in volatility by funds in the middle group. During a 

typical year, we find that funds reduced risk during the latter half of the year. The coefficient on 

the Crisis Period indicator implies an exceptional increase of 32.439% in total volatility for a 

typical fund during the 2008 Financial Crisis. We also include controls for factor risk exposures 

as we move across columns. The regression 𝑅$ statistics fall as risk factors are added because the 

variation in idiosyncratic volatility also falls.  

To illustrate the effects of the magnitude of the lead, Panel B of Table 3 shows results when we 

interact our indicator functions with our distance metric. This allows us to examine how much 

funds are leading or lagging change risk levels. To make our results easier to interpret, we de-

mean our distance metric so that the indicator variables are unaffected. As with the earlier 

specification, the coefficients on the indicators can still be interpreted as the increase in 

percentage volatility by the average fund in that group. We are most interested in the coefficient 

on leader distance. Across all specifications, we find that funds with even greater leads reduce 

risk more. In the first column, without any factor risk adjustments, we find a statistically 

significant coefficient of -0.631. This implies that a fund that is ahead by 10% as of June, 

reduces volatility by 0.631 × 	10% = 6.31% more than other funds in the leading group. Since 

the cross-sectional standard deviation across all funds is 11.6%, this is a small but not 
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insignificant change. We consider changes in risk-taking with factor risk adjustments in other 

columns. Overall, the results are similar, which suggests that when funds change risk, they are 

not doing so by changing only their factor risk exposures. 

Table 3 also reveals that extreme trailers also reduce risk. As discussed above, Panel A shows 

that funds in the trailing group decrease risk relative to the middle group. Their decrease is less 

than that of the leading funds, which is still consistent with the findings of Brown, Harlow, and 

Starks (1996), who found that trailers take more risk than leading funds. Panel B of Table 3 

includes the coefficient on trailer distance. Across all factor risk adjustments, the coefficient on 

the distance below the trailer cut-off is negative and statistically significant. Hence, trailers 

reduce risk more when they are trailing by more. The magnitude is less than for the leaders, but 

trailers reduce risk nonetheless. This is contrary to the predictions of our model, where trailers 

should continue to take maximum risk in a tournament without cost or effort. Clearly, our model 

is incomplete, and the evidence suggests there are additional mechanisms; perhaps it is costly for 

managers to exert effort or take risks, or there are disincentives against poor performance. We 

leave the consideration of additional mechanisms for future research.  

One potential concern is that risk-taking may mean-revert for exogenous reasons and funds that 

take high risk in the initial period tend to exhibit lower risk in the later period. This would induce 

a sorting bias if high-risk funds appeared more often in the leading group than in the trailing 

group (Schwartz, 2012). However, once we account for systematic risk exposures and, therefore, 

also account for risk premia, there is no ex-ante reason why we would expect to see more risk-

takers in one group than another. We further investigate this possibility by comparing the 

coefficients on the trailing and leading distances. Across all models in Tables 3, the coefficients 

for extreme trailers are noticeably smaller than for extreme leaders. This suggests asymmetric 



30 
 

behavior across the leading group and trailing group: the magnitude of the lead matters much 

more for leaders then trailers. The asymmetry indicates that there are some deliberate choices 

being made in risk-taking and this choice differs more for extreme leaders than trailers. 

As a robustness check, we also use VOL_RATIO as an alternative measure of changes in risk-

taking. It is important to recognize that using ratios can skew results when the denominator is 

close to zero, but it is still important to demonstrate consistency of our results with prior 

literature, such as Brown, Harlow and Starks (1996). Table 4 reports these results where we use 

only indicator functions in Panel A and add our distance metric in Panel B. In both 

specifications, results are consistent with those in Tables 3. Based on the coefficients on the 

top/bottom 20% indicator functions, we generally find that both leading group and trailing funds 

decrease risk. The coefficients on the interaction term with distance show that risk reduction for 

the leading group is a function of the magnitude of the lead. Once again, we find that extreme 

leaders reduce the most risk, but less so for the extreme trailers. 

V.C Changes in Mutual Fund Risk-Taking Behavior Across Time 

By changing the length of the continuation period, we can investigate the effects of changing the 

level of maximal risk, σX. Empirically, we interpret risk in terms of risk per unit of time, such as 

with annualized volatility. This way, the total amount of idiosyncratic volatility is proportional to 

the square root of period length. Hence, the shorter the second period, the lower σX becomes. This 

implies that the value of the lock-in option increases as the length of the second period falls. 

Intuitively, it is easier to hold on to a lead in the second period, and even a smaller lead in the 

second period is safer. 
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We now investigate how tournament behavior changes by measuring fund risk-taking and fund 

leads at different points in time. Rather than just comparing volatilities over January to June with 

those over July to December, we also compare the same January to June volatility with the 

volatility between months starting in July, August, September, October, November, and 

December to the end of the year. We use annualized volatility so that the risk measures are 

comparable across units of time. Funds are ranked according to cumulative returns ending the 

day before each starting month.  

The results are presented in Table 5 with factor risk adjustments using different models and 

using different measures of leads. In Panel A, we regress volatilities of excess returns across time 

and on our distance measures as before. The coefficient on distance among the top 20%-tile 

group is consistently negative and statistically significant. Furthermore, the coefficient on being 

in the top 20%-tile group is also negative and these point estimates generally increase in 

magnitude over time. For instance, in Panel A for the December column, the point estimate 

of -0.821 for the top 20%-tile group indicates that a typical top 20%-tile fund reduces risk by 

0.821% in terms of annualized volatility as compared to the risk-taking behavior of funds in the 

middle group. In contrast, this point estimate was about half when evaluated in July with a point 

estimate of -0.421. This indicates that as the tournament approaches the final evaluation point 

later in the calendar year, leading funds tend to lock in their leads more aggressively. 

Furthermore, the coefficient on being in the bottom 20%-tile group become statistically 

indistinguishable from zero later in the calendar year. This suggests that there is less evidence 

that trailing funds also tend to decrease their risk-taking later in the calendar year. This is 

particularly true in Panel B when we control for factor risk exposures. 
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We take this logic further in Figure 6 and illustrate the increasing marginal impact by plotting the 

cumulative effects for the leading group. For each starting month, rather using our distance 

measures, we estimate a series of panel regressions with nested indicator functions. We replace 

the interaction term with two indicator functions, one for being in the top 10%-tile and another 

being in the top 5%-tile. We then plot the indicator functions for top 20%-tile to show risk-

changing by a typical top 20%-tile (but not in the top 10%-tile) fund. We then plot the sums of 

the indicator functions for the top 10%-tile and the top 20%-tile to show the risk-changing 

behavior by a typical top 10%-tile (but not in the top 5%-tile) fund. Finally, we plot the sums of 

all three indicator functions to illustrate the risk-changing behavior of funds in top 5%-tile. 

Panel A of Figure 6 shows the results when risk is measured using excess returns, and we find 

results that are consistent the predictions of our tournament model. At any point, funds with the 

largest leads, such as those in the top 5% tile, reduce risk more than funds with smaller leaders, 

such as those in the top 10%-tile. Moreover, as time goes on, the most leading funds reduce risk 

even more. Finally, the extent to which funds with larger leads (in the top 10%-tile and top 5%-

tile) reduce risk increases further closer to the end of the calendar year. 

We investigate risk-changing across time with adjustments for factor risk exposures in the 

remaining panels of Table 5 and Figure 6. The results are consistent whether we account for 

factor risk exposures using the CAPM, the 3-Factor Model or the 4-Factor Model. Overall, 

leading funds reduce risk while the funds with the largest leads reduce risk the most. With 

controls for factor risk, the effects are consistent, and risk-reduction increases with lead size and 

become stronger later in the year. The coefficient estimates on the intersection term in Panel B of 

Table 5 are all consistent and statistically significant. Looking at Figure 6, we see consistent risk 

reduction by the largest leaders later and the effects get stronger later in the year. 
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Figure 6: Leader Lock-in Effect across Time 

This figure plots pooled-panel regression estimates of changes in mutual fund volatility on rankings of mutual fund performance. The dependent 
variable is VOL_DIFF, which is the annualized percentage volatility of daily mutual fund returns over starting month to December of each year minus 
volatility of mutual fund returns over January to June of the same year. We vary the starting month. Mutual fund returns are calculated in excess of 
the risk-free rate, residuals of CAPM, residuals of 3-Factor Model, and residuals of 4-Factor Model. We plot the sums of the point estimates associated 
with indicator functions that equal one if a mutual fund is within the top 20%, top 10%, and top 5% rankings among its peers in the same Lipper 
classification category according to its cumulative returns over January to the end of the month before. The sample is from 1999 to 2022 with 58,419 
fund-year observations. All regressions include fixed-effects for each fund category by year. 
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0.00% 0.02% 0.11% 0.08% 0.08% -0.02%-0.12% -0.28% -0.34% -0.43% -0.48% -0.68%

-2.28% -2.32% -2.35% -2.40% -2.51% -2.72%

Jul Aug Sep Oct Nov Dec

80th %-tile 90th %-tile 95th %-tile

0.00% 0.00% 0.07% 0.07% 0.04% -0.04%-0.13% -0.29% -0.38% -0.43% -0.50% -0.67%

-2.30% -2.32% -2.34% -2.36% -2.48% -2.70%

Jul Aug Sep Oct Nov Dec

80th %-tile 90th %-tile 95th %-tile

0.02% 0.02% 0.08% 0.07% 0.04% -0.03%-0.10% -0.28% -0.38% -0.46% -0.53% -0.65%

-2.18% -2.19% -2.20% -2.20% -2.33% -2.51%

Jul Aug Sep Oct Nov Dec

80th %-tile 90th %-tile 95th %-tile



 
 
 

Overall, these empirical results support the predictions of our theoretical analysis of the 

tournament model. We find it is the leading funds, rather than the trailing funds, that respond by 

reducing risk. Moreover, funds with the largest leads reduce risk the most. Finally, as the time 

length to the end of the tournament becomes shorter near the end of the calendar year, leading 

funds reduce risk more aggressively. These results are robust to controlling for various factor 

risk exposures, using various measures of lead, various measures of risk-changes and are not due 

to a mechanical bias. 

VI. Conclusion 

Tournament behavior has important implications for mutual funds and the way in which they are 

managed. We have extended the literature both theoretically and empirically. Theoretically, we 

have shown that in a multi-player setting, risk-taking strategies interim tournament leaders can 

be very different depending on the magnitude of their leads relative other competitors, and the 

amount of time left to compete for the top prize. In the context of mutual funds, in the final 

period of the tournament, all fund managers should maximize the amount of risk that they take, 

except for those the fund with the highest returns to date. It is optimal for this manager to reduce 

risk if and only if the fund’s lead is sufficiently, where a sufficient lead must be larger when the 

time until the end of the tournament is smaller. In contrast, prior literature has mostly assumed 

that trailing funds, rather than the leading fund, increase risk-taking.  

Empirically, we analyze tournaments with heterogeneous characteristics, and the main 

predictions of our model are borne out. Our results are consistent with our theoretical predictions 

and we find that changes in risk are greatest among leaders rather than trailers and the degree of 

risk reduction depends on the magnitude of the lead. These results are robust to using different 

ways of controlling for systematic risk exposures, alternate measures of lead, and different 
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measures of risk changes. Interestingly, our empirical results also show that trailing funds, 

particularly those trailing others by a larger margin, also reduce risk. This latter finding suggests 

that our model is incomplete, leading future work to consider other extensions. 

Of course, managers are affected by various forms of explicit and implicit contract arrangements 

in addition to tournament incentives. Among these is the desire not to finish last in the 

tournament, i.e. a reverse tournament. Adding a reverse tournament to our core model would 

cause managers who are not in last place but are sufficiently unlikely to win to reduce risk later 

in the year. Another complication would occur when the manager’s compensation contract is not 

linear, although adding a linear contract to a tournament would not affect tournament incentives. 

Furthermore, fund managers may possess ex-ante known degrees of ability or risk-taking may be 

costly, either of which can affect the optimal dynamic strategy of risk-taking. Finally, fund 

managers may need to exert costly effort to perform well, while simultaneously deciding how 

much risk to take. We leave these various extensions for future research.  
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Appendix I: Proofs 

Proof of Proposition 1: If the leader (manager 1) takes zero risk, her expected utility is 

 𝐸(𝑈#) = 𝑃𝑟𝑜𝑏(𝑅# > 𝑅$) = ∫ 𝑓$
4#
,+ (𝑅)𝑑𝑅, 

where 𝑓!(𝑅) denotes the probability density function of manager i’s return at the end of the 

second period. In contrast, if manager 1 takes any amount of risk, her expected utility is now 

 𝐸(𝑈#) = 𝑃𝑟𝑜𝑏(𝑅# > 𝑅$) = ∫ [1 − 𝐹#(𝑅)]𝑓$(𝑅)
+
,+ 𝑑𝑅, 

where 𝐹#(𝑅) is the cumulative distribution function of manager 1’s return at the end of the 

second period. To understand this probability, note that we integrate across the possible 

outcomes of manager 2’s return, 𝑓$(𝑅), the probability that manager 1’s return is above that of 

manager 2’s return. When manager 1 takes zero risk, this is a step-function that equals one below 

𝑎# and zero otherwise. 

Therefore, the increase in manager 1’s expected utility from risk-taking equals 

 ∆𝐸(𝑈#) = ∫ [1 − 𝐹#(𝑅)]𝑓$
+
,+ (𝑅)𝑑𝑅 − ∫ 𝑓$

4#
,+ (𝑅)𝑑𝑅, 

which can be rewritten as 

 ∆𝐸(𝑈#) = −∫ 𝐹#(𝑅)𝑓$
4#
,+ (𝑅)𝑑𝑅 + ∫ [1 − 𝐹#(𝑅)]𝑓$

+
4#

(𝑅)𝑑𝑅. 

The first term corresponds the red shared area in Figure 1 of the main text, which is the 

probability that manager 2 catches up to manager 1 because manager 1 took risk and fell behind. 

This measures the expected loss due to risk-taking. The second term corresponds to the blue 

shaded area in Figure 1, which is the probability that manager 2 would have caught up to 

manager 1, but because manager 1 took risk that paid-off and she maintained her lead. This 

measures the expected gains due to risk-taking. 

To see if expected utility gain is positive or negative, it is useful to redefine returns relative to 

manager 1’s first period return 𝑎#. That is, let 𝑅5 = 𝑅 − 𝑎#. Then, the expected utility gain can 

be written as 
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 ∆𝐸(𝑈#) = −∫ 𝐹#(𝑅′)𝑓$
0
,+ (𝑅5 + 𝑎#)𝑑𝑅′ + ∫ [1 − 𝐹#(𝑅′)]𝑓$

+
0 (𝑅′ + 𝑎#)𝑑𝑅′. 

Since 𝑓#(𝑥) is symmetric around 𝑎#, 𝐹#(−𝑥)=1 − 𝐹#(𝑥). Therefore, since a symmetric 

continuous unimodal distribution has the property that 𝑓$(𝑎 + 𝑥) ≤ 𝑓$(𝑎 − 𝑥)∀𝑥 > 0 whenever 

𝑎 is greater than the mode of the distribution, we have that 

 ∆𝐸(𝑈#) < 0. 

Hence manager 1 would not choose to take any risk, since that would result in a lower expected 

utility. 

Conversely, for trailing manager 2, where 𝑎$ < 𝑎#, if the leader locks in, manager 2’s expected 

utility is simply 

 𝐸(𝑈$) = 𝑃𝑟𝑜𝑏(𝑅$ > 𝑎#) = ∫ 𝑓$
+
4#

(𝑅)𝑑𝑅. 

Since 𝑓$ is symmetric, continuous and unimodal, manager 2 maximizes this probability by taking 

as much risk as possible. More generally, suppose the leader takes any action, which may 

possibly be sub-optimal, with distribution 𝑓#(𝑥) which is symmetric around 𝑎# and unimodal. 

Since 𝑓#(𝑎 + 𝑥) > 𝑓#(𝑎 − 𝑥)	∀𝑥 > 0 and manager 2 can only take actions with symmetric 

distributions, manager 2 is always better off taking a mean-preserving spread. □ 

Alternative Proof of Proposition 1: To help develop intuition for subsequent propositions, we 

can also integrate across the leader’s (manager 1’s) outcomes rather than integrate across the 

competition’s outcomes. From this point of view, manager 1’s expected utility if she takes zero 

risk is simply 

 𝐸(𝑈#) = 𝐹$(𝑎#), 

where 𝐹$(𝑅) is the cumulative distribution function of the competition’s return at the end of the 

second period. If manager 1 chooses to take risk, then the expected utility is now 

 𝐸(𝑈#) = ∫ 𝐹$(𝑅)𝑓#
+
,+ (𝑅)𝑑𝑅. 

Since 𝐹$(𝑎#) is a constant and ∫ 𝑓#(𝑅)
+
,+ 𝑑𝑅 = 1 by definition, the utility gain from taking risk 

is 
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 ∆𝐸(𝑈#) = ∫ [𝐹$(𝑅) − 𝐹$(𝑎#)]𝑓#
+
,+ (𝑅)𝑑𝑅. 

Since 𝑓#(𝑥) is a symmetric distribution around 𝑎#, it suffices to show that  

 [𝐹$(𝑎# + 𝑥) − 𝐹$(𝑎#)] ≤ [𝐹$(𝑎#) − 𝐹$(𝑎# − 𝑥)]	∀(𝑥 > 0). 

This is true when  

 𝑓$(𝑎 + 𝑥) ≤ 𝑓$(𝑎 − 𝑥)	∀(𝑥 > 0), 

which is true for symmetric continuous unimodal distribution whenever 𝑎 is greater than the 

mode of the distribution. □ 

Proof of Proposition 2: Suppose X#and	X$ are two independent normal random variables with 

means µ#and	µ$, identical variances σ#=σ$=	σ, and zero correlation ρ=0. Denote ϕ(z) =

#
√$7

e8
,9%

$: ; and Φ(z) as the pdf and the cdf of a standard normal distribution, respectively. It is 

known, for example in Nadarajah and Kotz (2008), that the maximum of these two random 

variables, M=max(X#,	X$), have the pdf 

 f(x) = 	 #
<
ϕq=,>#

<
rΦ q=,>%

<
r +	 #

<
ϕq=,>%

<
rΦq=,>#

<
r. 

Figure A depicts this pdf across varying means. Note that ∂ϕ(z)
∂z

= −z	ϕ(z) and ∂Φ(z)
∂z

= 	ϕ(z). 

Therefore, if we differentiate f(x), 

 f 5(x) = −1

σ2
qx−µ1

σ
rϕ qx−µ1

σ
rΦ qx−µ2

σ
r + 2

σ2
ϕ qx−µ1

σ
rϕ qx−µ2

σ
r + −1

σ2
qx−µ2

σ
rϕ qx−µ2

σ
rΦ qx−µ1

σ
r . 

To show that M = max(X#,	X$) is unimodal, it suffices to show that the derivative of its pdf has a 

unique solution to f 5(x) = 0. 



43 
 

 

Figure A: This figure illustrates the probability density functions of 𝐌=max(𝐗𝟏,	𝐗𝟐), where 𝐗𝟏and	𝐗𝟐 are two 

independent normal random variables with means 𝛍𝟏 = 𝛍 and	𝛍𝟐 = 𝟎, identical unit variances 𝛔𝟏=𝛔𝟐=	𝟏, and zero 

correlation 𝛒=0. We vary one of the means,	𝛍, through the range 0.0 to 2.0. 

In the special case where the two distributions have identical means, µ#=µ$=	µ, we have f 5(x) =
2

σ2
ϕ qx−µ

σ
r sϕ qx−µ

σ
r − qx−µ

σ
rΦ qx−µ

σ
rt. Since z and Φ(z) are both strictly increasing, zΦ(z)	is also 

strictly increasing. Letting z=%'()
*
&, we see that since ϕ(z) = zΦ(z) has a unique solution, 

f 5(x) = 0 also has a unique solution. Therefore, M=max(X#,	X$) is unimodal in this case. 

In another special case where the two means are maximally separated, µ$=	−∞, we see that the 

distribution of one of the two random variables becomes irrelevant. In this case, f(x) =

	#
<
ϕq=,>#

<
r, which is a normal distribution and is also unimodal. We show numerically in Figure 

A that, in all intermediate cases, that the maximum order statistic remains unimodal. 
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To compute the moments of the maximum order statistic, we set σ	= 1 without any loss of 

generality. It is also known (Nadarajah & Kotz, 2008) that M=max(X#,	X$), have the moment 

generating function of m(t) = m#(t) + m$(t), where  

 m#(t) = exp qtµ# +
?%

$
r 	Φ q>#,>%@?

√$
r and m$(t) = exp qtµ$ +

?%

$
r 	Φ q>%,>#@?

√$
r. 

By differentiating each term, we obtain  

 m#
5 (t) = (µ# + t)m#(t) + q

#
√$
r exp qtµ# +

?%

$
r 	ϕ q>#,>%@?

√$
r and  

 m$
5 (t) = (µ$ + t)m$(t) + q

#
√$
r exp qtµ$ +

?%

$
r 	ϕ q>%,>#@?

√$
r. 

Note that the mean of M=max(X#,	X$) is E[M]=	m5(0) = m#
5 (0) + m$

5 (0). Hence, 

 E[M] = µ#	Φ q
>#,>%
√$

r + √2ϕq>#,>%
√$

r + µ$	Φ q
>%,>#
√$

r. 

For example, if both means are equal to zero, µ#=µ$=	0, and with unit variances, the expected 

maximum is #
√7

. By differentiating once again, we obtain 

 m#
" (t) = m#(t) + (µ# + t)m#

5 (t) + q #
√$
r q-

$
µ# −

#
$
µ$ +

-
$
tr exp qtµ# +

?%

$
r 	ϕ q>#,>%@?

√$
r 

and  

 m$
" (t) = m$(t) + (µ$ + t)m$

5 (t) + q #
√$
r q-

$
µ$ −

#
$
µ# +

-
$
tr exp qtµ$ +

?%

$
r 	ϕ q>%,>#@?

√$
r. 

Hence,  

 E[M$] = m"(0) = 	 (1 + µ#$)Φ q
>#,>%
√$

r + √2(µ# + µ$)ϕ q
>#,>%
√$

r + (1 + µ$$)Φq
>%,>#
√$

r. 

For example, with zero means and unit variances, E[M$]=1 and variance of the maximum equals 

E[M$] − (E[M])$ = 7,#
7

. By differentiating a third time, 

m#
(-)(t) = 2m#

5 (t) + (µ# + t)m#
" (t) + #

√$
y-
$
+ q-

$
µ# −

#
$
µ$ +

-
$
tr
$
z exp qtµ# +

?%

$
r 	ϕ q>#,>%@?

√$
r  
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and 

m$
(-)(t) = 2m$

5 (t) + (µ$ + t)m$
" (t) + #

√$
y-
$
+ q-

$
µ$ −

#
$
µ# +

-
$
tr
$
z exp qtµ$ +

?%

$
r 	ϕ q>%,>#@?

√$
r. 

Hence, 

 E[M-] = m(-)(0) = 2m#
5 (t) + 2m$

5 (t) + µ#m#
" (0) + µ$m$

" (0) 

                              + #
√$
y3 + q-

$
µ# −

#
$
µ$r

$
+ q-

$
µ$ −

#
$
µ#r

$
z 	ϕ q>#,>%

√$
r, 

which can be expanded out to 

 E[M-] = (3µ# + µ#-)Φ q
>#,>%
√$

r + (3µ$ + µ$-)Φ q
>%,>#
√$

r  

                                 + #
√$
[7 + 6µ#$ − 4µ#µ$ + 6µ$$]	ϕ q

>#,>%
√$

r . 

To compute the skewness of M=max(X#,	X$), consider the case where µ# > 0 and µ$ = 0, 

without any loss of generality, which helps with the notations. Then letting u = >#
√$

, we have 

 E[M-] = Φ(u)µ#- + 3√2ϕ(u)µ#$ + 3Φ(u)µ# +
B
√$
	ϕ(u) . 

Since, E[M] = µ#	Φ(u) + √2ϕ(u), 

 ~E[M]�- =	 [Φ(u)]-µ#- + 3√2	[Φ(u)]$ϕ(u)µ#$ + 6	Φ(u)[ϕ(u)]$µ# +
C
√$
[ϕ(u)]-. 

By comparing each term of µ#D, and recognizing that µ# > 0, Φ(u) < 1, and ϕ(u) < #
$7

, we see 

that E[M-] > ~E[M]�-, hence skewness of M=max(X#,	X$), E[M-] − ~E[M]�-, is positive. □ 

Proof of Proposition 3: Consider any manager, i, with 𝑎! less than the mode of the maximum of 

the other managers’ returns. Figure 2 illustrates the situation of such manager selecting a risk 

level strictly less than 𝜎4. Let the derivative of the pdf of maximum be 𝑓24E5 (𝑥). Since 𝑎! is below 

the mode, 𝑓24E5 (𝑎!) > 0. Moreover, note that the distribution of the maximum order statistic, 

𝑓24E, satisfies the property 𝑓24E(𝑎! + 𝑦) > 𝑓24E	(𝑎! − 𝑦) for all 𝑦 > 0 whenever 𝑎! is less than 

the mode of the maximum and the underlying distribution, 𝑓, is symmetric, continuous unimodal 
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distribution. Intuitively, this is because the distribution of the maximum, 𝑓24E, takes the 

underlying distribution and shifts the mass to the right. Hence, manager i is better off taking a 

symmetric mean-preserving spread. Since the trailing managers can only take symmetric risk, 

this means that any increase in risk is beneficial. □ 

Proof of Proposition 4: The same argument used above for Proposition 3 applies here for the 

leading manager as well as for the trailing managers. Increasing risk always adds more 

probability mass for managers below the mode of the distribution of the maximum if the 

underlying distributions are symmetric, continuous and unimodal. □ 

Proof of Proposition 5: The case when the value 𝑎# lies above the mode of the density of the 

order statistic, 𝑓24E, is illustrated in Figure 3. In this case, increasing risk by a small amount 

starting from zero risk is counterproductive at first. This is because the shaded area to the left of 

𝑎# is locally greater than the shaded area to the right. However, because of the positive skewness 

of the maximum order statistic density, this argument cannot be extended to the case of global 

optimality. This is because there are values, 𝑦 > 0, sufficiently large such that for the density in 

the right tail, 𝑓24E(𝑎# + 𝑦) > 	𝑓24E(𝑎# − 𝑦). Therefore, for a large enough risk-taking, the 

marginal benefit of increasing risk can eventually become positive and remain positive. 

Suppose 𝑎# is not only above the mode, but also lies above the median. Even at the upper risk 

bound, the probability of winning cannot exceed 0.5 as risk is increased. Therefore, if 𝑎# lies 

above the median of the maximum order statistic, the optimal strategy for the leader is to lock in. 

By locking in, the probability of winning is greater than 0.5 by the definition of the median, 

which is greater than any other amount of risk-taking. 

If 𝑎# lies below the median of the maximum order statistic, as the manager increases risk-taking 

the probability of winning approaches 0.5 if there is no upper bound. Therefore, if the upper 

bound, 𝜎4, is sufficiently high, then the global optimum will be to take maximal risk, 𝜎4. If the risk 

limit is sufficiently low it is possible that even if the leading manager’s first period return is 

below the median, she might not be able to increase the probability of winning to 0.5 and 

therefore will lock in. Therefore, there exists some critical value, 𝑎#� , such that if the leading 

manager’s position is higher, she would lock in. Otherwise she takes maximum risk. The leading 
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manager would never take an intermediate level of risk, 0 < 𝜎 < 𝜎4, because once the manager 

surpasses the initial cost of risk-taking, the marginal benefit to increasing risk is positive. □ 

Appendix II: Extension to Systematic and Idiosyncratic Risks 

We can also adapt our model to the case where funds can take systematic or idiosyncratic risks 

up to a finite maximum level of total variance. Consider the case where returns in each period are 

𝑅&' = (1 − 𝑥&)𝜎&'𝜖&' + 𝑥&𝜖(, 

where the variance of ϵF, systematic risk, is equal to σF$ , and x. ∈ [0,1], represents the amount 

of non-negative systematic risk taken in the fund’s portfolio. The idiosyncratic risk, ϵ., is 

uncorrelated with the idiosyncratic risk of another fund, ϵG, as well as being uncorrelated with the 

systematic risk, ϵF. The total variance of the portfolio is therefore Var(R.?) = (1 − x.?)$σ.?$ +

x.$σF$ ≤ σ$444, which is bounded above by a risk limit. For simplicity, let us further assume that the 

systematic risk is normalized so that σF = σX . The strategic choices for each fund in each period 

are now both level of systematic risk, x.?, and the level of idiosyncratic risk, σ.?. The fund is 

allowed to set total risk equal to zero with x.? = 0 and σ.? = 0, or to choose maximal 

idiosyncratic risk with x.? = 0 and σ.? = σX, or to choose maximal systematic risk with x.? = 1.7 

For tractability, we assume that systematic risk level is bounded below at zero, and furthermore, 

we remove risk premia from the analysis by assuming E(ϵ.?) = E(ϵF) = 0. This is equivalent to 

fund managers not being rewarded by investors for taking systematic risk. However, systematic 

risks are perfectly correlated across funds, and we focus our analysis on the impact of taking this 

correlated risk on the strategic equilibrium. 

Analysis of the Lock-in Equilibrium 

Suppose we consider the lock-in equilibrium as before where the leading fund has sufficient lead 

as to choose zero risk, while the two trailing funds choose maximal risk level. If these risks are 

idiosyncratic, the equilibrium is preserved. If the two trailing funds are taking maximal 

idiosyncratic risk, then clearly there is no reason for the top fund to switch to taking either 

idiosyncratic or systematic risk. This follows from our previous proof as increasing any risk 

increases the probability of losing. Since taking on systematic risk is uncorrelated with the risk 

 
7 The cases of interior levels of risk are off-equilibrium, as in the case with only idiosyncratic risk. 
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taken by other two players, it doesn’t matter whether the off-equilibrium strategy is systematic or 

idiosyncratic.  

Now consider whether it pays for the second place fund to switch to taking systematic risk. The 

second place fund knows that the last fund is taking idiosyncratic risk. So, the probability of 

beating the last fund is the same no matter whether the risk taking is systematic or idiosyncratic. 

The leading fund is locking in, so once again there is no gain in the probability of beating the 

leading fund whether the risk taken by the second place fund is systematic or idiosyncratic. 

Hence the equilibrium strategy of maximal idiosyncratic risk is a weak best response. The last 

fund also has similar behavior: if she switches to systematic risk, it still does not improve her 

chances against either of the other two funds which are taking idiosyncratic risks and zero risk, 

respectively. Hence, we have shown that the lock-in equilibrium with idiosyncratic risks is 

robust. 

We can also see that there cannot be an equilibrium in which both trailing funds take maximal 

systematic risk while the leading fund locks in with zero risk. In this case, the bottom fund will 

want to switch to maximal idiosyncratic risk because taking on systematic risk that is perfectly 

correlated with the second fund will guarantee a loss. However, it can be the case that the bottom 

fund takes maximal idiosyncratic risk while the middle fund takes maximal systematic risk. 

Clearly both funds have no incentive to switch their types of risk-taking. The distribution of the 

maximum between these two funds is identical to that when they are both taking idiosyncratic 

risks. However, it is possible the top fund may want to switch to systematic risk now because by 

doing so it guarantees a victory against the second fund. With perfectly correlated systematic 

risk, mimicking the action of the trailing fund becomes the better response than simply going to 

zero risk. Therefore, the only way to support the lock-in form of equilibrium is when the lead of 

the top fund is very large and the third fund is sufficiently far below the interim performance of 

the second fund.  

Analysis of the equilibrium where all funds take maximal idiosyncratic risks 

Now we consider the second period symmetric equilibrium in which all funds take maximal 

idiosyncratic risks. Clearly this is also an equilibrium since it is a weak best response to not 
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switch to systematic risks and since the leading fund’s lead was insufficient to warrant a lock-in 

strategy. Therefore, this equilibrium is robust in the second period.  

Clearly there cannot be an equilibrium in which either of the bottom two funds take systematic 

risk while the top fund takes idiosyncratic risk, since there is no benefit to taking on systematic 

risk when there are no rewards for taking systematic risk. If anything, if the leading fund takes 

on systematic risk, the leader beats any trailing fund that takes on systematic risk and does not 

decrease her probability of winning against the other. Hence the trailing funds take maximal 

idiosyncratic risk and the top fund can take either idiosyncratic risk or systematic risk. 

The First Period Equilibrium 

We have shown that both the lock-in equilibrium and the maximal idiosyncratic risk-taking 

equilibrium are robust to adding the possibility of systematic risk-taking in the second period. As 

before the lock-in option is valuable. Hence, if there is no disadvantage to portfolio revisions at 

the interim date, the best way for each fund to gain an advantage in the second period is 

maximum risk-taking in the first period. It is never an equilibrium for more than one fund to take 

systematic risk in the first period. Otherwise, one of the funds taking systematic risk would 

achieve a higher probability of taking a lead into the second by switching to idiosyncratic risk. 

The asymmetric equilibrium in which only one fund takes systematic risk is isomorphic in terms 

of risk dynamics to the one where all firms take idiosyncratic risk. Hence the overall predictions 

of risk changing in our model is robust to allowing for both non-negative systematic and 

idiosyncratic risks, with virtually identical empirical predictions. 

Appendix III: Endogenous Pay-Performance Sensitivity 

Here we demonstrate how expected managerial ability is increasing in returns using a simplified 

version of Jiang, Starks and Sun’s (2021) model. The purpose of this extension is to show that 

fund flows in a learning model based on Bayesian updating can be consistent with the 

equilibrium behavior we have derived in our two period, three fund model.  

Suppose that 𝑅" = 𝜇! + 𝜎H𝜖" where, 𝜖" ∼ 𝑁(0,1), 𝑡 ∈ {1,2}, for each fund manager 𝑖, and 𝜇! 

denotes each manager’s unknown ability. Following the literature (Berk & Green, 2004; Jiang, 

Starks, & Sun, 2021), assume that managers do not know their own ability, and that their prior 
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expectation of their own ability is that they have none, 𝜇 = 0. We assume that the initial prior 

about manager ability is normally distributed with variance 𝜎0$ . Managers and investors are 

symmetrically informed, and they simultaneously learn manager ability by observing returns 

conditional on equilibrium strategies.  

First Period Case: Recall that equilibrium behavior is for each manager to take maximum risk. 

Suppose all managers add normally distributed risk with variance 𝜎H$.  Then, the posterior 

distribution for 𝜇,	is a function of 𝑅#:	𝐸[𝜇|𝑅#] =
(0%

(0%@(1%
𝑅# =

(0%

(0%@(1%
(𝜇! + 𝜖#) and var[𝜇|𝑅#] ≡

𝜎I$ = s #
(0%
+ #

(1%
t
,#

. Hence, managerial ability is increasing in returns, and, in the usual way, end 

of period variance is identical across managers no matter what the first period return is. 

Second Period Case: There are now two types of equilibria: the first type where all funds 

continue to take maximum risk, and the second lock-in equilibrium type where the leading fund 

in the first period takes zero risk. Consider the first type of equilibrium and define 𝑅4 = q#
$
r𝑅# +

q#
$
r𝑅$ to be the average return over the two periods. Given this observation and the specification 

above, the posterior distribution of managerial ability is normally distributed with mean 

𝐸(𝜇|𝑅4) = (0%

J'1
%

% K@(0
%
𝑅4, and variance 𝜎I$ = s #

(0%
+ $

(1%
t
,#

. Again, expected managerial ability is 

increasing in the average period returns of each manager with identical variance. Hence the 

posterior distribution of the top two-period fund manager will stochastically dominate the other 

two managers and investors will optimally invest everything in the top manager, leading to the 

tournament reward we have postulated in the specific form of our model. 

Now consider the second type of equilibrium with the leading fund locks in. Since there is no 

additional uncertainty during the second period in the return of a leading fund that locks in, her 

expected ability will be the same as it was at the end of the first period: 𝐸[𝜇#|𝑅#] =
(0%

(0%@(1%
𝑅#, 

where we use 𝜇# to denote the ability of the leading fund. As before the posterior variance is 

𝜎I$ = s #
(0%
+ #

(1%
t
,#

. 
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There are now two cases to consider: (1) the leading manager from the first period finishes below 

another fund and does not finish as the top fund; and (2) the leading manager from the first 

period remains on top at the end of the second period. In case (1), the winning fund must have 

taken risk in both periods and its expected ability is greater than that of the leading manager from 

the first period, 𝐸(𝜇|𝑅4) = (0%

J'1
%

% K@(0
%
𝑅4 > 𝐸(𝜇#|𝑅#). Furthermore, since more returns were 

observed, its posterior variance is also tighter than that of the first period leader. Hence it will be 

rational for all investors to invest with the top overall fund once again after two periods. 

In case (2) where the first period leader does win the tournament by locking in, the situation is 

more complicated because locking in also reduces the amount of signal available regarding the 

leader’s ability. Since,	𝑅# > 𝑅4, in most cases we would expect, 𝐸(𝜇#|𝑅#) > 𝐸(𝜇|𝑅4) =
(0%

J'1
%

% K@(0
%
𝑅4, so that expected ability is higher for the top overall fund. However, we can no longer 

make a stochastic dominance argument because the posterior variance of the winning fund is 

higher than that of the losing fund. Indeed, there is an anomalous mechanism where even though 

for the second highest fund has a lower overall return than the top fund from the first period, 𝑅4 <

𝑅#, because this fund took additional risk it’s return history is more informative. In other words, 

it is possible for the leading manager in the first period to have simply gotten lucky in the first 

period, and by locking in, she is unable to prove that it was simply due to luck. Hence, it is still 

possible that 𝐸(𝜇|𝑅4) = (0%

J'1
%

% K@(0
%
𝑅4 > 𝐸(𝜇#|𝑅#), and investors would flock to the second highest 

fund, rather than the highest fund that locked in. Because of this possibility, the leader would 

adjust her lock-in strategy such that she waits longer to lock in her lead. □ 



 
 
 

Table 1: Distribution of Mutual Funds 
 
This table reports the distribution of mutual funds in our sample. Mutual funds are divided into categories according 
to their Lipper classifications. The sample is from 1999 to 2022 with 58,419 fund-year observations. 
 

Lipper Classification Average Number of  
Funds per Year 

Percentage  
of Total 

Large-Cap Value 159.6 6.6% 
Large-Cap Core 332.8 13.7% 
Large-Cap Growth 271.8 11.2% 
Mid-Cap Value 79.8 3.3% 
Mid-Cap Core 146.8 6.0% 
Mid-Cap Growth 163.9 6.7% 
Small-Cap Value 115.8 4.8% 
Small-Cap Core 290.3 11.9% 
Small-Cap Growth 203.7 8.4% 
Multi-Cap Value 170.5 7.0% 
Multi-Cap Core 309.8 12.7% 
Multi-Cap Growth 189.5 7.8% 
Total 2434.4 100% 

 
 

  
Table 2: Mutual Fund Risk-Taking 

 
This table reports the summary statistics of mutual fund risk-taking behavior. For each mutual fund, we compute the 
annualized volatility of daily mutual fund returns for each year in our sample. Mutual fund returns are calculated in 
excess of the risk-free rate, residuals of CAPM, residuals of 3-Factor Model, and residuals of 4-Factor Model. The 
sample is from 1999 to 2022 with 58,419 fund-year observations. 
 

Risk Measures Average Std Dev 5%-tile Median 95%-tile 
Excess Ret 20.0% 11.6% 9.8% 17.0% 39.0% 
CAPM 6.6% 8.5% 2.1% 5.6% 14.1% 
3-Factor 4.9% 8.0% 1.7% 4.1% 10.3% 
4-Factor 4.7% 8.0% 1.7% 3.9% 9.9% 
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Table 3: Second Half Tournament Effect 
 
This table reports pooled-panel regression estimates of changes in mutual fund volatility on rankings of mutual fund 
performance. The dependent variable is VOL_DIFF, which is the annualized percentage volatility of daily mutual 
fund returns over July to December of each year minus volatility of mutual fund returns over January to June of the 
same year. Mutual fund returns are calculated in excess of the risk-free rate, residuals of CAPM, residuals of 3-Factor 
Model, and residuals of 4-Factor Model. The independent variables are indicator functions that equal one if a mutual 
fund is within the top 20% or bottom 20% rankings among its peers in the same Lipper classification category 
according to its cumulative returns over January to June of a year. Crisis Period is an indicator variable for year 2008. 
In Panel B, we interact the indicator functions with the de-meaned absolute value of the difference between a fund’s 
cumulative returns and the 20th (or 80th) percentile breakpoint. The sample is from 1999 to 2022 with 58,419 fund-
year observations. All regressions include fixed-effects for each fund category by year. Standard errors are clustered 
by fund and are shown in parenthesis. Significance is indicated by ** at the 1% level, by * at the 5% level, and by + 
at the 10% level. 
 
Panel A: Without distance 
 

Risk Measures: Excess Ret. CAPM 3-Factor 4-Factor 
Ind(top 20%) -0.421* -0.599** -0.604** -0.560** 
 (0.201) (0.199) (0.196) (0.194) 
Ind(bottom 20%) -0.337** -0.120** -0.100* -0.120** 
 (0.048) (0.043) (0.042) (0.041) 
Crisis Period 32.439** 5.246** 3.081** 3.196** 
 (0.115) (0.081) (0.066) (0.064) 
Intercept -1.981** -0.210** -0.128** -0.132** 
 (0.044) (0.021) (0.019) (0.019) 
R-squared 0.548 0.043 0.020 0.019 

 
Panel B: Base case 
 

Risk Measures: Excess Ret. CAPM 3-Factor 4-Factor 
Ind(top 20%) -0.421** -0.599** -0.604** -0.560** 
 (0.150) (0.147) (0.145) (0.144) 
Ind(top20%)* -0.631* -0.632* -0.627* -0.620* 
 distance above cut-off (0.264) (0.262) (0.260) (0.258) 
Ind(bottom 20%) -0.337** -0.120** -0.100* -0.121** 
 (0.047) (0.043) (0.042) (0.042) 
Ind(bottom20%)* -0.200* -0.206* -0.211* -0.218* 
 distance below cut-off (0.087) (0.096) (0.096) (0.096) 
Crisis Period 32.439** 5.246** 3.082** 3.196** 
 (0.114) (0.077) (0.061) (0.060) 
Intercept -1.981** -0.210** -0.128** -0.132** 
 (0.044) (0.021) (0.019) (0.019) 
R-squared 0.726 0.437 0.429 0.427 
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Table 4: Alternative Volatility Measure 
 
This table reports pooled-panel regression estimates of changes in mutual fund volatility on rankings of mutual fund 
performance. The dependent variable is VOL_RATIO, which is the annualized volatility of daily mutual fund returns 
over July to December of each year divided by volatility of mutual fund returns over January to June of the same year. 
Mutual fund returns are calculated in excess of the risk-free rate, residuals of CAPM, residuals of 3-Factor Model, 
and residuals of 4-Factor Model. The independent variables are indicator functions that equal one if a mutual fund is 
within the top 20% or bottom 20% rankings among its peers in the same Lipper classification category according to 
its cumulative returns over January to June of a year. Crisis Period is an indicator variable for year 2008. In Panel B, 
we interact the indicator functions with the de-meaned absolute value of the difference between a fund’s cumulative 
returns and the 20th (or 80th) percentile breakpoint. The sample is from 1999 to 2022 with 58,419 fund-year 
observations. All regressions include fixed-effects for each fund category by year. Standard errors are clustered by 
fund and are shown in parenthesis. Significance is indicated by ** at the 1% level, by * at the 5% level, and by + at 
the 10% level. 
 
Panel A: Without distance 
 

Risk Measures: Excess Ret. CAPM 3-Factor 4-Factor 
Ind(top 20%) -0.015** -0.015** -0.017** -0.013* 
 (0.004) (0.005) (0.005) (0.005) 
Ind(bottom 20%) -0.007* -0.005 -0.004 -0.004 
 (0.003) (0.005) (0.005) (0.005) 
Crisis Period 1.379** 0.693** 0.514** 0.547** 
 (0.005) (0.008) (0.008) (0.008) 
Intercept 1.002** 1.025** 1.012** 1.008** 
 (0.002) (0.002) (0.002) (0.002) 
R-squared 0.877 0.409 0.277 0.276 
     

Panel B: Base case 
 

Risk Measures: Excess Ret. CAPM 3-Factor 4-Factor 
Ind(top 20%) -0.017** -0.017** -0.015** -0.010** 
 (0.004) (0.004) (0.004) (0.004) 
Ind(top20%)* -0.011* -0.010* -0.011** -0.013** 
 distance above cut-off (0.005) (0.004) (0.004) (0.004) 
Ind(bottom 20%) -0.001+ -0.001+ -0.001+ -0.001+ 
 (0.000) (0.000) (0.000) (0.000) 
Ind(bottom20%)* -0.003* -0.003* -0.003* -0.003** 
 distance below cut-off (0.001) (0.001) (0.001) (0.001) 
Crisis Period 1.379** 0.693** 0.514** 0.547** 
 (0.005) (0.008) (0.008) (0.008) 
Intercept 1.002** 1.025** 1.012** 1.008** 
 (0.002) (0.002) (0.002) (0.002) 
R-squared 0.275 0.126 0.073 0.089 
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Table 5: Tournament Effect across Time 
 
This table reports pooled-panel regression estimates of changes in mutual fund volatility on rankings of mutual fund 
performance. The dependent variable is VOL_DIFF, which is the annualized percentage volatility of daily mutual 
fund returns over the starting month to December of each year minus volatility of mutual fund returns over January to 
June of the same year. We vary the starting month across specifications. Mutual fund returns are calculated in excess 
of the risk-free rate and residuals of 4-Factor Model. The independent variables are indicator functions that equal one 
if a mutual fund is within the top 20% or bottom 20% rankings among its peers in the same Lipper classification 
category according to its cumulative percentage returns over January to the end of the month before. Crisis Period is 
an indicator variable for year 2008. We interact the indicator functions with the de-meaned absolute value of the 
difference between a fund’s cumulative returns and the 20th (or 80th) percentile breakpoint. The sample is from 1999 
to 2022 with 58,419 fund-year observations. All regressions include fixed-effects for each fund category by year. 
Standard errors are clustered by fund and are shown in parenthesis. Significance is indicated by ** at the 1% level, by 
* at the 5% level, and by + at the 10% level. 
 
Panel A: With Distance Measure; Excess Return 
 

Risk Measures: July August September October November December 
Ind(top 20%) -0.421** -0.526** -0.523** -0.722** -0.774** -0.821** 
 (0.150) (0.147) (0.148) (0.150) (0.150) (0.149) 
Ind(top20%)* -0.631* -0.621* -0.602* -0.584* -0.562* -0.551** 
 distance above cut-off (0.264) (0.250) (0.242) (0.236) (0.226) (0.213) 
Ind(bottom 20%) -0.337** -0.231** -0.109* 0.059 0.196** 0.093+ 
 (0.047) (0.050) (0.054) (0.054) (0.059) (0.049) 
Ind(bottom20%)* -0.200* -0.154* -0.11 -0.103* -0.104* -0.085* 
 distance below cut-off (0.087) (0.077) (0.081) (0.051) (0.048) (0.043) 
Crisis Period 32.439** 36.360** 42.430** 46.377** 41.485** 33.229** 
 (0.114) (0.121) (0.137) (0.146) (0.151) (0.152) 
Intercept -1.981** -1.873** -2.136** -2.274** -3.174** -4.406** 
 (0.044) (0.043) (0.042) (0.042) (0.039) (0.046) 
R-squared 0.726 0.752 0.748 0.761 0.755 0.760 

 
Panel B: With Distance Measure; Residuals of 4-Factor Model 
 

Risk Measures: July August September October November December 
Ind(top 20%) -0.560** -0.588** -0.556** -0.556** -0.599** -0.678** 
 (0.144) (0.140) (0.142) (0.144) (0.144) (0.144) 
Ind(top20%)* -0.620* -0.613* -0.594* -0.576* -0.556* -0.542** 
 distance above cut-off (0.258) (0.244) (0.236) (0.230) (0.220) (0.209) 
Ind(bottom 20%) -0.121** -0.095* -0.034 -0.01 -0.003 -0.036 
 (0.042) (0.044) (0.048) (0.047) (0.051) (0.036) 
Ind(bottom20%)* -0.218* -0.176* -0.136 -0.150** -0.145** -0.123** 
 distance below cut-off (0.096) (0.084) (0.087) (0.056) (0.050) (0.044) 
Crisis Period 3.196** 3.550** 4.156** 4.386** 3.527** 2.699** 
 (0.060) (0.062) (0.068) (0.073) (0.076) (0.073) 
Intercept -0.132** -0.160** -0.119** -0.103** -0.240** -0.434** 
 (0.019) (0.017) (0.019) (0.019) (0.014) (0.018) 
R-squared 0.427 0.438 0.424 0.414 0.417 0.421 

 


