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Abstract

We propose CTREND, a new trend factor for cryptocurrency returns, which aggregates

price and volume information across different time horizons. Using data on more than

3,000 coins, we employ machine learning methods to exploit information from various

technical indicators. The resulting signal reliably predicts cryptocurrency returns. The

effect cannot be subsumed by known factors and remains robust across different

subperiods, market states, and alternative research designs. Moreover, it survives the

impact of transaction costs and persists in big and liquid coins. Finally, an asset pricing

model that incorporates CTREND outperforms competing factor models—providing a

superior explanation of cryptocurrency returns.
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I. Introduction

Investing in cryptocurrencies is not a walk in the park. Traders lack a single widely

accepted valuation model, and voices claiming that crypto assets are worthless are not

uncommon (Christopher, 2014; Taleb, 2021). The lack of fundamental data forces investors

to rely largely on market prices and infer information about cryptocurrency adoption and

valuation from their movements (Cong et al., 2021; Sockin and Xiong, 2023). This, in turn,

can link price fluctuations to investor demand—leading to the emergence of the trend-like

behavior of cryptocurrency markets (Hackethal et al., 2022; Kogan et al., 2023; Weber

et al., 2023).

Cross-sectional studies of the cryptocurrency market generally agree that past

returns help predict future performance (e.g., Liu and Tsyvinski, 2021; Cong et al., 2022;

Liu et al., 2022; Borri et al., 2022). However, the information content of past prices can be

much richer. Numerous studies of stocks, bonds, commodities, and exchange rates

document the predictive abilities of technical signals (e.g., Park and Irwin, 2007; Neely

et al., 2014; Han et al., 2016b; Avramov et al., 2021). Techniques using oscillators, moving

averages, or even past volume or volatility effectively predict future payoffs (Sweeney, 1986;

Shynkevich, 2016; Han and Kong, 2022). Given the dearth of fundamental data, their

information content may be essential for explaining the cross-section of cryptocurrency

returns. Ignoring them can lead to an incomplete understanding of the mechanisms that

drive price dynamics in cryptocurrency markets.

In this study, we propose CTREND, a new cryptocurrency trend factor, which

captures information on past prices and volume over different time horizons. Using data on
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more than 3,000 coins over the period from 2015 to 2022, we compute 28 popular technical

signals, including momentum oscillators, moving averages, volume-based indicators, and

volatility measures. Next, we employ machine learning methods to extract an aggregate

signal that captures the unique information from different indicators. Rather than

arbitrarily selecting specific predictors, our agnostic approach lets the data speak and

automatically extracts information from multiple features. The resulting signal is a reliable

predictor of the cross-section of cryptocurrency returns.

Figure 1 illustrates the key findings. A long-short strategy that buys a

value-weighted quintile of coins with the highest expected returns and sells those with the

lowest returns earns 3.87% per week, clearly beating other prominent cryptocurrency

factors. The abnormal returns cannot be subsumed by popular asset pricing models, such

as the cryptocurrency capital asset pricing model (CCAPM) or the Liu et al. (2022) (LTW

hereafter) three-factor model. Furthermore, the relationship between CTREND and future

returns is confirmed by bivariate portfolio sorts and cross-sectional regressions, and other

popular return predictors fail to explain it. Finally, it does not derive from a single

technical indicator, but rather aggregates information across multiple technical signals.

[Insert Figure 1 about here]

The CTREND effect is remarkably robust. It holds across various subperiods and

remains largely unaffected by different market states. Moreover, it survives several changes

in research designs. In a separate experiment, we examine 53,920 implementations,

considering alternative sample preparation methods, data cleaning procedures, forecast

estimations, and portfolio designs. The CTREND delivers robust performance under most
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of them, consistently generating impressive risk-return profiles that dwarf other factors.

Notably, the significance of the CTREND signal goes beyond simply delivering

impressive portfolio returns. A cross-sectional CTREND factor proves effective in pricing

cryptocurrency returns. It renders the momentum effect insignificant while at the same

time not being subsumed by any other factors. Furthermore, it explains the abnormal

returns of well-known anomalies and trading strategies far better than other prevailing

models. In particular, a three-factor model that includes the CMKT, CSMB, and

CTREND factors significantly outperforms the distinctive model proposed by LTW; it

produces lower pricing errors, explains anomalies more accurately, and reduces abnormal

returns more effectively. Its superiority is also confirmed by the well-known Gibbons et al.

(1989) test. As a result, the CTREND factor emerges as a strong contender for a new

benchmark in asset pricing that is specifically tailored for cryptocurrency research.

Finally, we explore the practical implications of the CTREND effect from an

investment perspective. The predictive power of this technical signal is not limited to some

obscure segments of the cryptocurrency market; on the contrary, it is ubiquitous in even

the largest and most liquid coins. Despite the short-term nature of the CTREND trading

signal and significant portfolio turnover, the profits generated are resilient to transaction

costs. Moreover, abnormal returns remain significant over longer holding periods—up to

four weeks. Consequently, the CTREND effect can be translated into an effective trading

strategy.

Our study contributes to three main strands of asset pricing research. First, we add

to the rapidly growing body of evidence on the cross-sectional predictability of

cryptocurrency returns (Liu et al., 2021; Liu and Tsyvinski, 2021; Borri and Shakhnov,
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2022; Liu et al., 2022; Zhang et al., 2021; Babiak and Erdis, 2022; Bianchi et al., 2022;

Borri et al., 2022). In particular, our paper closely connects with studies proposing sparse

factor pricing models to explain the cross-section of cryptocurrency returns (e.g., Liu et al.,

2022; Bianchi and Babiak, 2021; Cong et al., 2022). In the context of cryptocurrency

pricing, our findings are consistent with models suggesting that crypto investors infer

information about adoption and valuation from price behavior. Kogan et al. (2023) offer a

model in which past price movements contain information about future adoption,

consistent with the perspectives in Cong et al. (2021) and Sockin and Xiong (2023). With

this in mind, we offer a new signal called CTREND that effectively captures the

cross-sectional return variation in cryptocurrency markets and outperforms established

cryptocurrency factor pricing models.

Second, we extend the long-standing debate on the effectiveness of technical analysis

and its implications for market efficiency. Schwager (1993, 2012) and Menkhoff (2010) show

that technical indicators are frequently exploited by investors and hedge fund managers,

and Avramov et al. (2018) argue that analysts’ recommendations based on technical

analysis typically beat those that rely on fundamental information. The extant literature

confirms the profitability of technical signals (Lo et al., 2000; Park and Irwin, 2007; Zhu

and Zhou, 2009; Hung and Lai, 2022; Brogaard and Zareei, 2023). For example, Brock

et al. (1992) demonstrate the effectiveness of moving averages, and Kwon and Kish (2002)

broaden the evidence to volume-based indicators. Neely et al. (2014) show that technical

indicators successfully predict the market risk premium. Further analyses in Shynkevich

(2016) and Sweeney (1986) document similar patterns in bond and foreign exchange

markets. Although most studies consider technical analysis in a time-series context, its
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signals also help explain cross-sectional returns. As shown by Han et al. (2013), moving

averages predict characteristic-sorted portfolios, and later Han et al. (2016a) and Han and

Kong (2022) confirm their findings for an extended sample period and commodity markets.

Avramov et al. (2021) find that the moving average distance is priced in the cross-section

of stock returns. Finally, our paper is most closely related to Han et al. (2016b) and Liu

et al. (2024), who aggregate information from various moving averages to predict the

cross-section of stock returns in the United States and China. To our knowledge, none of

the studies have scrutinized the cross-section of cryptocurrency returns.

Lastly, we add to the emerging literature on technical analysis applications in the

cryptocurrency market. In contrast to the efficient market hypothesis (Fama, 1970),

previous studies show that technical indicators effectively predict the returns of major

cryptocurrencies (Corbet et al., 2019; Hudson and Urquhart, 2021; Ahmed et al., 2020;

Gerritsen et al., 2020; Goutte et al., 2023; Grobys et al., 2020; Anghel, 2021; Detzel et al.,

2021; Svogun and Bazán-Palomino, 2022; Bazán-Palomino and Svogun, 2023; Tan and Tao,

2023; Wei et al., 2023). Nevertheless, those studies explore the time-series predictability of

a handful of cryptocurrencies, typically with several pre-selected indicators. On the

contrary, our study concentrates on cross-sectional returns and aggregates information

from various trading signals; thus, our study provides a test of the efficient market

hypothesis in the cross-section of cryptocurrency returns.

The remainder of the paper proceeds as follows. Section II outlines our theoretical

framework. Section III discusses the data and methods. Section IV presents the baseline

findings. Section V provides additional insights and robustness checks. Section VI focuses

on asset pricing tests. Section VII considers the practical investor perspective. Finally,
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Section VIII concludes.

II. Theoretical Framework

The asset pricing literature offers multiple theories linking past price and volume

data to future price movements. Many of them consider links between momentum effects

and investor behavior. De Long et al. (1990) state that noise traders who participate in

positive feedback trading contribute to return continuations. Barberis et al. (1998) argue

that prices may trend slowly when investors underestimate the importance of new

information in making decisions. The seminal work of Hong and Stein (1999) investigates

the effects of information-based trading and suggests that the delayed adjustment of stock

prices to private information creates momentum effects. Price trends may arise from a

range of behavioral biases, although several models can justify expected trends in rational

equilibriums; Chan et al. (1996), Grinblatt and Han (2005), and Daniel et al. (2023) are

examples of studies that examine behavioral biases. For instance, Cespa and Vives (2012)

demonstrate that the existence of liquidity traders and uncertain asset payoff leads to

logical price trends in the markets.

Building on Wang (1993), Han et al. (2016b) and Liu et al. (2024) present

theoretical models that link signals derived from past price and volume information to

future stock returns. They distinguish between two classes of market participants: informed

investors and uninformed traders. While the first group has access to fundamental

information about the dividend process and economic conditions, uninformed traders do

not. Therefore, they infer the long-term dividend growth rate from past price changes. In

short, rising price trends suggest a solid dividend growth rate and, conversely, falling prices
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signal a poor financial outlook. Based on this reasoning, uninformed investors may

rationally follow the trend, thus promoting predictable price patterns in the stock market.

The proposed model considers the availability of fundamental information. If

fundamental information were scarce, investors would naturally be driven to technical

signals as the only source of rational inference. Notably, the cryptocurrency market can be

considered unique in this context. To begin with, access to relevant fundamental

information is more limited than in the equity universe. While some fundamental valuation

approaches have been proposed (Hayes, 2017; Biais et al., 2023; Pagnotta and Buraschi,

2018; Sockin and Xiong, 2023), they are not yet as widespread or broadly accepted as

equity dividend or cash flow-based models. Some voices from both academia and the

industry even argue that cryptocurrencies may have no fundamental value at all

(Christopher, 2014; Taleb, 2021). In addition, the nature of cryptocurrency valuation

models tends to be structurally different from their stock market counterparts—relying on

mining costs or currency characteristics rather than discounting future earnings. Moreover,

unlike equities, crypto investors lack periodic cash flow information (Kogan et al., 2023),

which allows them to reassess their beliefs about the asset’s value (Luo et al., 2020). As a

result, cryptocurrency traders are likely to base their investment decisions on past prices

and technical indicators. In line with this view, this asset class is commonly referred to as

“speculative investments” (Yermack, 2015), prone to speculative bubbles (Cheah and Fry,

2015; Cagli, 2019) and characterized by a high degree of herding behavior (Bouri et al.,

2019; Almeida and Gonçalves, 2023).

Notably, a growing body of evidence suggests that the scarcity of fundamental

information and, consequently, the reliance on price data is reflected in the behavior of

7



cryptocurrency traders. Investor characteristics in this asset class have been studied by

Pursiainen and Toczynski (2022), Di Maggio et al. (2022), and Auer et al. (2023), to name

a few. Hackethal et al. (2022), who examine data from a German online bank that caters to

crypto traders, find that they are more risk-taking and even more biased than stock traders.

Kogan et al. (2023), who examine a dataset of 200,000 retail traders from eToro, show that

crypto investors are more prone to momentum-like strategies than their stock market

counterparts. They explain this with a model where past price changes contain information

about future adoption, which indirectly affects intrinsic value—consistent with Cong et al.

(2021), and Sockin and Xiong (2023). The uniqueness of cryptocurrency traders and their

reliance on past prices is reflected in numerous studies. For example, Weber et al. (2023)

show that information about historical returns leads individuals to increase their desired

crypto holdings and makes them more likely to subsequently purchase cryptocurrencies.

Hackethal et al. (2022) show that cryptocurrency investors are much more likely to buy

stocks with strong performance and lottery-like characteristics than investors in the stock

market, consistent with naive trend following (Kumar and Dhar, 2001; Sapp and Tiwari,

2004; Barber and Odean, 2008) and certain forms of gambling in financial markets (Kumar,

2009). In summary, due to the lack of easily accessible fundamental information, investors

use different models when forming beliefs about cryptocurrencies compared to stocks.

In conclusion, the limited availability of fundamental data highlights the role of past

price and volume information in determining expected returns. As a result, the trend-based

factors—such as those of Han et al. (2016b) and Liu et al. (2024), which aggregate past

price information—may prove crucial in predicting and explaining the cross-section of

returns. Moreover, not only moving averages but also other technical indicators—such as
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momentum oscillators and volatility indicators—suggest trend-following behavior in the

cross-section of cryptocurrencies. We test these hypotheses in the empirical sections of this

paper.

III. Data and Methods

In this section, we introduce our data and methodology, starting with the

presentation of our data sample. Next, we continue with a discussion of the technical

indicators considered in the study and an exploratory examination of their information

content for future cryptocurrency returns. Finally, we describe how we calculate the

aggregate CTREND signal.

A. Data Sources and Preparation

We collect price, volume, and market capitalization data from Coinmarketcap.com,

where price information contains high, open, low, and closing prices. Following Liu et al.

(2022), for an observation to be valid, we require non-missing observations for the closing

price, volume, and market capitalization. We remove all the cases for which the market

capitalization exceeds that of Bitcoin, as this indicates erroneous observations.1 As is

common in the literature, we limit our sample to cryptocurrencies with a minimum market

capitalization of USD 1 million (Liu and Tsyvinski, 2021; Liu et al., 2022; Garfinkel et al.,

2023). We further control for extreme outliers in returns by removing the 1% most extreme

observations by truncating the returns at the 0.5% and 99.5% percentiles. Our sample

period starts in April 2015 and ends in May 2022, yielding a total 423 weekly observations.

1Note that this filter eliminates a total of ten daily observations across the entire study period and cross-
section.
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Table 1 illustrates our filtered sample over time. The number of available

cryptocurrencies varies from below 100 in 2015 to over 2,000 in 2021, with the overall

number of unique coins being 3,244. The mean market capitalization ranges from USD 135

million (2015) to USD 1,38 billion (2021), markedly surpassing the median values. This

demonstrates the strongly concentrated cryptocurrency market with few names accounting

for most of the market capitalization. Liquidity, measured by the aggregate trading

volume, exhibits similar patterns.

[Insert Table 1 about here]

B. Technical Indicators

While the stock market literature shows that investors commonly employ moving

average-based strategies beyond fundamental analysis (Schwager, 1993; Lo et al., 2000), no

fundamental data are available to cryptocurrency investors. As a result, they are likely to

employ a diverse set of technical indicators beyond moving averages. Therefore, we

consider a vast list of a) momentum oscillators, b) moving averages, c) volume, and d)

volatility indicators, previously studied in the literature and popular among market

practitioners. In total, we calculate 28 signals that we use as inputs to construct an

aggregate trend characteristic. Notably, we make two assumptions regarding the selection

of technical indicators. First, we only consider indicators that allow the formation of a

straightforward cross-sectional signal. Second, we calculate the indicators using the

common estimation horizons suggested in the literature to avoid a data-snooping bias.

Although the calculation of all technical indicators is comprehensively described in Online

Appendix A, we briefly characterize them here.
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2. Sample Selection

The first group of indicators contains momentum oscillators, widely embraced by

market practitioners (see, e.g., Ciana, 2011). To begin with, the relative strength index

(rsi) quantifies the ratio of average gains to average losses over the preceding fourteen

days. Next, the fast and slow stochastic oscillators stochK and stochD compare the price of

an asset to a range of prices over a 14-day period, with stochD being a three-day moving

average of stochK. The stochRSI is defined as the difference between an asset’s current rsi

and its lowest rsi over a 14-day period, scaled by the range of rsi values. Lastly, the

commodity channel index (cci) compares the average deviation of the current price to a

moving average.

The second category includes signals based on price moving averages. Han et al.

(2013) and Han et al. (2016b) provide theoretical and empirical support for using simple

moving averages (SMAs). We account for seven SMAs of different lengths (denoted by

sma ∗d, where ∗ denotes the number of days). Specifically, we consider the 3-, 5-, 10-, 20-,

50-, 100-, and 200-day SMAs (Brock et al., 1992; Han et al., 2016b; Liu et al., 2024).2

Following Han et al. (2016b), we scale the SMAs by the cryptocurrencies’ closing prices at

the end of each week to ensure their stationarity and mitigate the impact of high-priced

cryptocurrencies. We augment the set of moving average indicators by including the

average convergence/divergence (macd) indicator and the difference of macd to a signal

line (macd diff signal), both widely used by practitioners and discussed in the literature

(see, e.g., Ciana, 2011; Neely et al., 2014). The macd measures the difference between a

2Note that we omit longer SMAs such as the 400-, 600-, 800-, or 1,000-day SMAs studied in Han et al.
(2016b) because the time-series of cryptocurrency data is relatively short.
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slow (26-day) and a fast (12-day) exponential moving average (EMA) of daily closing

prices. To mitigate the influence of size effects, we express the difference in the slow and

fast EMAs as a percentage of the fast EMA.3 The macd diff signal is the difference of macd

and a nine-day EMA of the macd.

The third class comprises volume indicators. Liu et al. (2024) show that SMAs of

past trading volume help to predict stock returns in China. We include the 3-, 5-, 10-, 20-,

50-, 100-, and 200-day SMAs of dollar trading volume (volsma ∗d) and normalize them by

the current trading volume (Liu et al., 2024). Analogous to the macd defined above, we

define volmacd as the difference between two EMAs of the past dollar trading volume. We

again express this difference as the percentage of the fast EMA.4 We also include the

difference of volmacd to the signal line (volmacd diff signal). Another popular volume

indicator is the Chaikin money flow (chaikin) indicator, which measures the money flow

volume over time. A high positive value of chaikin indicates buying pressure, while a high

negative value indicates selling pressure.

The last group of technical signals consists of volatility-based indicators. This

category comprises the lower (boll low), middle (boll mid), and upper (boll high) Bollinger

band. The lower and upper Bollinger bands are calculated by adding (subtracting) two

standard deviations of the previous closing prices to (from) the middle Bollinger band,

defined as the 20-day moving average of past closing prices. Again, we scale the Bollinger

bands by the current closing price to control for the impact of high-priced cryptocurrencies.

Finally, we include the Bollinger bandwidth (boll width), which is the difference between

3This normalization makes the macd equivalent to the percentage price oscillator (PPO).
4This indicator is also known as the percentage volume oscillator (PVO).
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the upper and lower bands, scaled by the middle Bollinger band. A small bandwidth

indicates low volatility, while a high spread indicates high volatility.

2. Performance of Technical Indicators

Table 2 briefly overviews the information content of our technical indicators.

Following the common practice in the cryptocurrency literature, we sort cryptocurrencies

into quintiles based on the cross-sectional rank of the respective technical indicator and

form value-weighted weekly-rebalanced portfolios (Liu et al., 2022). Furthermore, we

report the performance of long-short strategies buying (selling) the quintile of

cryptocurrencies with the highest (lowest) technical indicator ranks, which offer an acid

test for a monotonic relationship in the cross-section of returns.

[Insert Table 2 about here]

To disentangle the exposure to common risk factors, we supplement the average

returns with multifactor alphas. Specifically, we calculate them using the one-factor

CCAPM:

rp,t = α + βCMKTCMKTt + ϵt (1)

and the LTW three-factor model:5

rp,t = α + βCMKTCMKTt + βCSMBCSMBt + βCMOMCMOMt + ϵt (2)

rp,t in the equations above is the excess return on an examined portfolio p at time t and

CMKTt, CSMBt, and CMOMt denote the returns on market, size, and momentum

5The factors are available from Yukun Liu’s dropbox:
https://www.dropbox.com/s/ziyh9pjooroxali/LTW 3factor.xlsx?dl=0
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factors of LTW at time t. The regression coefficients βCMKT , βCSMB, and βCMOM measure

the factor exposures, α is the intercept (alpha), and ϵt is the residual return. For details on

factor properties, see Table B.2 in the Online Appendix.

As seen in Table 2, more than a half of the indicators generates reliable mean

returns on the long-short portfolios, which are significant at the 5% level. Furthermore, in

fourteen cases, these profits cannot be fully captured by the CCAPM; in eight of them,

even the three-factor model cannot explain their performance. In other words, the return

predictability by technical indicators is not simply the cryptocurrency size or momentum

effect in disguise.

Significant alphas are concentrated mainly in the momentum oscillator group, where

four indicators generate significant abnormal returns. Significant average returns and

CCAPM alphas are also visible for the moving average indicators. Still, in this case, most

of them are subsumed by the three-factor model, which incorporates the momentum factor.

Finally, abnormal returns in the volume and volatility categories are less prevalent.6

6Interestingly, the sign of abnormal returns on long-short cryptocurrency portfolios do not always align
with the patterns known from the time-series literature in the equity universe. For example, the long-short
strategy based on the rsi, which is supposed to be a reversal indicator, generates a significant positive
abnormal return. That is, coins that are considered ”overbought”, following classical technical analysis,
continue to generate large positive returns. Thus, the rsi—as well as all other oscillators—indicate a trend
continuation rather than a reversal. Similarly, price moving averages also signal trend-following behavior.
Note that Han et al. (2016b) show that moving averages indicate a trend-following or reversal depending on
the fraction of technicians in the markets: a large fraction of technical analysts leads to the occurrence of
trend-following patterns, while a low presence results in reversals. Because cryptocurrencies are a relatively
new asset class commonly referred to as “speculative investments” (Yermack, 2015), they may be prone
to speculative bubbles (Cheah and Fry, 2015; Cagli, 2019) and characterized by a high degree of herding
behavior (Bouri et al., 2019; Almeida and Gonçalves, 2023). Consequently, cryptocurrency investors are
likely to follow strong trends so that the trends will be further fueled, and technical indicators are associated
with trend continuation.
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C. The CTREND Factor

A single technical indicator may represent a noisy predictor of future market

movements; because of this, technical analysts frequently enhance the quality of their

forecasts by combining multiple signals. The construction of our trend factor follows the

same philosophy: We integrate all variables seen in Table 2 into a single trend measure,

regardless of whether an indicator significantly predicts future cryptocurrency returns.

Therefore, instead of sorting cryptocurrencies into portfolios based on a single technical

indicator—which may be a noisy predictor of cryptocurrency returns—we follow the

approach in Han et al. (2016b) and generate an aggregate measure of future returns using

cross-sectional regressions. Specifically, the authors use cross-sectional regressions to

summarize the information in moving averages of various lengths and create a trend factor

based on their aggregate trend measure.

Although the approach of Han et al. (2016b) generates impressive results in the U.S.

market, two problems may arise. First, it may be subject to data snooping issues as the

forecasts are based on an arbitrary pre-selection of technical indicators. Even though

moving averages are common indicators used by practitioners, the information content of

past market data may be much richer, and other indicators are used complementarily

(Ciana, 2011; Neely et al., 2014). Second, some signals may be uninformative or highly

correlated with other signals, leading to inefficient forecasts from multivariate regressions.

To overcome these problems and formulate predictions in a data-driven way, we build on

the combined elastic net (C-ENet) as proposed in Dong et al. (2022), which combines the

benefits of shrinkage and forecast combination. Specifically, we employ the cross-sectional

combined elastic net estimator (CS-C-ENet) of Han et al. (2023).
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Let ri,t denote the excess return of cryptocurrency i at time t and zi,j,t−1 the j-th

technical indicator, with j = 1, . . . , J being the number of technical indicators available.

Han et al. (2016b) propose estimating the following cross-sectional multivariate regression

over a sequence of M periods:

ri,t = αt +
J∑

j=1

zi,j,t−1βj,t + ui,t ∀t (3)

Using the Fama and MacBeth (1973) technique, the coefficients are smoothed over M

periods, i.e.:

ᾱt =
1

M

M−1∑
m=0

α̂t−m (4)

β̄j,t =
1

M

M−1∑
m=0

β̂j,t−m (5)

Smoothing the coefficients over time increases the efficiency of the estimation by stabilizing

the coefficients, which yields more accurate estimates in noisy datasets. The t+ 1

out-of-sample forecast is obtained as follows:

r̂i,t+1 = ᾱt +
J∑

j=1

β̄j,tzi,j,t (6)

The predictive regression in equation (3) may be inefficient in noisy and

high-dimensional data sets, such as cryptocurrency returns. Based on insights from

time-series analyses (see, e.g., Rapach et al., 2010), Han et al. (2023) argue that the simple

forecast combination of univariate return estimates often outperforms its multivariate

counterpart because the forecast combination approach has a strong shrinkage effect (i.e.,

it shrinks the magnitude of each slope by 1/J) and improves the estimation efficiency. As a

result, the forecast combination approach is less likely to be subject to overfitting, resulting
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in improved out-of-sample performance.

The combined Fama-MacBeth approach begins with estimating J univariate

Fama-MacBeth regressions over a sequence of M periods as described in equation (7):

ri,t = αj,t + zi,j,t−1βj,t + ui,t ∀j, t (7)

For each technical indicator j, a t+ 1 return forecast is computed as

r̂ji,t+1 = ᾱj,t + β̄j,tzi,j,t (8)

with ᾱj,t and β̄j,t being the average coefficients from univariate Fama-MacBeth regressions

analogous to equations (4) and (5), respectively. Note that in Han et al. (2023), the

coefficients are not smoothed over time to adapt more quickly to changing characteristic

rewards. However, as mentioned above, the Fama-MacBeth technique works particularly

well in noisy datasets. Because cryptocurrency returns are extremely noisy, we smooth the

coefficients over time to stabilize the coefficient estimates (Haugen and Baker, 1996;

Lewellen, 2015; Han et al., 2023).

A naive combined forecast for the t+ 1 return is computed as the equally weighted

average of the J forecasts:

r̂i,t+1 =
1

J

J∑
j=1

r̂ji,t+1 (9)

Although the equally weighted combined forecast in equation (9) is theoretically

suboptimal—because not all technical indicators provide relevant and independent

information for cryptocurrency returns—empirical studies report good performance of the

equally weighted forecast combination (Clemen, 1989; Diebold, 1989; Rapach and Zhou,

2013). However, by simply averaging over J forecasts as in equation (9), noisy forecasts
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receive the same weight as informative forecasts. We follow Dong et al. (2022) and Han

et al. (2023) and refine the simple forecast combination approach by using a machine

learning technique—the elastic net—to select the most informative forecasts. Specifically,

we run the following pooled multivariate regression (Granger and Ramanathan, 1984):

ri,t = ξ +
J∑

j=1

θj r̂
j
i,t + ηt (10)

using the elastic net estimator that employs L1 and L2 shrinkage.7 In equation (10), ξ

denotes an intercept and θj denotes the optimal weight of forecast j. Estimating equation

(10) through the use of the elastic net results in coefficient estimates for which θj ̸= 0 or

θj = 0, allowing to “select” the most informative forecasts, while shrinking the contribution

of others to zero. Diebold and Shin (2019) show that selecting the relevant forecasts as

described in equation (10) and simply averaging over the surviving forecasts significantly

improves the out-of-sample accuracy of the combined forecast. Dong et al. (2022) and Han

et al. (2023) build on this insight and obtain the return forecast by averaging all univariate

forecasts with θj > 0, instead of weighting the forecasts with θj to an aggregate forecast.

Note that the economic restriction θj > 0 implies that a return forecast should be

positively correlated with the actual return. Thus, the t+ 1 forecast of the cross-sectional

combined elastic net (CS-C-ENet) is obtained by calculating

: ri,t+1 =
1

ȷ

∑
j∈ȷ

r̂ji,t+1 (11)

with ȷ denoting the set of forecasts obtained from univariate Fama-MacBeth regressions as

7Following Dong et al. (2022) and Han et al. (2023), we set the parameter that controls the trade off
between L1 and L2 regularization to 0.5 and optimize the regularization strength λ according to the corrected
akaike information criterion (AIC).
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in equation (8) with θj > 0 (equation (10)). In the remainder of this paper, we refer to the

predictions from equation (11) as the cryptocurrency trend signal, called CTREND.

However, in Section B, we also report the results when using alternative estimation

methods, such as multivariate Fama-MacBeth or pooled regressions.

Before estimating the model, we mitigate the influence of potential outliers in

technical indicators by transforming them into their cross-sectional ranks and mapping the

ranks into the interval [-0.5, 0.5] (Kelly et al., 2019; Gu et al., 2020). All regressions are

estimated by minimizing the value-weighted sum of squared residuals to mitigate the

influence of micro-cap coins with minor economic significance (Hou et al., 2020; Han et al.,

2023). The model parameters are estimated using a fixed rolling window of 52 weeks, and

these parameters are then used to predict returns for the following week. We test the

robustness of the results regarding these settings in Section B.

IV. Baseline Findings

We begin our empirical analysis by evaluating the return predictability of the

CTREND signal using portfolio sorts. Next, we continue with cross-sectional regressions.

A. Univariate Portfolio Sorts

To assess the predictability of the aggregate CTREND signal, we employ quintile

portfolios similar to those in Table 2. At the beginning of each week, we rank

cryptocurrencies on the CTREND signal and group cryptocurrencies into five portfolios.

The portfolios are value-weighted and rebalanced weekly. We construct the CTREND

factor as a long-short strategy buying (selling) the baskets with the highest (lowest)

expected return. Table 3 reports the results of this exercise.
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[Insert Table 3 about here]

Sorting cryptocurrencies on CTREND reveals a clear pattern in portfolio payoffs:

the high-CTREND quintiles markedly outperform the low ones. The return increases

monotonically from the bottom to the top portfolio, and the spread between the extreme

quintiles equals 3.87% (t-stat = 5.19). Furthermore, the annualized Sharpe ratio on the

long-short strategy reaches 1.94, suggesting a remarkable risk-return profile.

The subsequent columns illustrate the risk exposures of the quintile portfolios. The

spread portfolio does not exhibit major market or size exposure, and the respective betas

are close to zero. However, the momentum beta is sizeable and significant, equaling 0.79;

this indicates that the CTREND effect correlates closely with momentum. Nevertheless,

despite its substantial exposure to CMOM, the long-short portfolio exhibits an impressive

weekly alpha of 2.62% (t-stat = 4.22) against the LTW three-factor model. In other words,

while the momentum effect matters, it is far from fully capturing the CTREND alphas.8

Whilst CTREND relates to certain cryptocurrency characteristics, such as

momentum, it extracts information beyond. To illustrate this further, we perform an

additional variable importance analysis, reported in Online Appendix C. The CTREND

factor does not rely on a sparse set of features, but rather extracts predictability from a

wide range of different technical indicators, with the boll mid, cci, and macd scoring

highest.

The rightmost section of Table 3 displays additional portfolio characteristics such as

8While we use factor data obtained directly from LTW to ensure the comparability of our study, our
results remain consistent for factors constructed using our dataset. As seen in Online Appendix B, Table
B.7, in this convention, the CTREND factor earns a weekly LTW alpha of 2.61%, remaining statistically
significant at the 1% level.
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the average market capitalization (mcap), the Amihud (2002) illiquidity measure (illiq), or

idiosyncratic risk (idiovol). Table B.1 in Online Appendix B provides a detailed

explanation of these characteristics. These characteristics signal that abnormal returns do

not simply stem from some dusty corner of the cryptocurrency market, populated by small

and illiquid coins. On the contrary, the CTREND premium may be effectively harvested

via portfolio sorts, even in liquid and large coins. Section A takes a closer look at this

potential concern.

To sum up, the trend pattern in the returns is evident. However, its source is yet

uncertain. Theoretically, rather than representing an independent asset pricing

phenomenon, the CTREND effect could be another anomaly in disguise, such as

momentum. Hence, in an additional robustness check, we supplement our analyses with

bivariate portfolio sorts. Specifically, we sort the cryptocurrencies into halves based on

different control variables and terciles of the CTREND signal. The selection of control

variables includes popular predictors from the cryptocurrency literature, including market

beta (beta), market capitalization (mcap), Amihud (2002) illiquidity ratio (illiq),

idiosyncratic risk (idiovol), and momentum measures calculated over various horizons,

ranging from one to four weeks of trailing data (ret * 0 ).9,10 Then, we calculate the average

returns of portfolios with a consistent level of the control characteristics and different levels

of the CTREND variable. The resulting portfolios capture the incremental effect of

9Table B.1 in Online Appendix B provides a detailed explanation of all these control variables.
10Notably, certain cryptocurrency studies also advocate other return predictors, which could potentially

be used as control variables. These include, e.g., trading volume (Bianchi et al., 2022), downside risk (Zhang
et al., 2021), volatility (Bouri et al., 2022), and lottery demand (Grobys and Junttila, 2021). However, these
variables prove insignificant within our sample, demonstrating no return predictability over cryptocurrency
returns (see Table B.5 in the Online Appendix).
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CTREND after controlling for other predictors. For the sake of conciseness, we report the

results in Table B.3 in Online Appendix B.

The results confirm our initial findings. The mean returns on the long-short

CTREND portfolios remain positive and significant in all cases, ranging from 1.42% to

3.10%. In other words, while other predictors capture between 20% and 63% of the

abnormal returns, they cannot subsume them further. Importantly, this also applies to the

double-sorts on momentum, which could be an ostensibly similar phenomenon. The

abnormal returns on long-short bivariate portfolios also endure after accounting for factor

exposure with the CCAPM and LTW factors.

Noteworthily, the largest drop in raw and abnormal returns is observed for the

Amihud (2002) ratio. The mean return of the long-short portfolio and αCCAPM are still

significant, exceeding 1.4%, but αLTW shrinks to 0.62%, remaining significant only at the

10% level. This suggests a certain relationship between liquidity and CTREND profits,

which we will examine further in Sections B and A.

B. Cross-Sectional Regressions

While bivariate portfolios are powerful in disentangling the impact of two features

without imposing a linear functional form, they also face two shortcomings. First, they can

only accommodate controlling for up to two or three variables since finer triple or

quadruple sorts are typically infeasible. Second, grouping coins into portfolios may lead to

information loss. Therefore, we supplement our analyses with cross-sectional predictive

regressions in the spirit of Fama and MacBeth (1973). Specifically, we examine whether the

aggregate trend indicator predicts the cross-section of next week’s cryptocurrency returns

after controlling for other variables. Importantly, following Hou et al. (2020), we estimate
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the regressions using weighted least squares (WLS), with weights tied to cryptocurrency

market capitalizations, rather than ordinary least squares (OLS). This framework allows us

to reduce the impact of tiny and illiquid cryptocurrencies whose economic importance is

negligible, and thus aligns more closely with trading practice.

Table 4 presents the results of this analysis. Essentially, the cross-sectional

regressions confirm the robust predictive ability of technical analysis. Observe first the

univariate regressions seem in column 1. The average CTREND coefficient equals 2.36 and

is strongly significant, with a t-statistic of five. The subsequent regressions incorporate

different control variables from the same set as in the bivariate portfolio sorts.

Specifications 2 to 7 also account for various combinations of the impacts of beta, market

size, illiquidity, and idiosyncratic volatility. In all these cases, the CTREND effect remains

strong and significant. Notably, despite the earlier evidence from Section B, even the

Amihud ratio cannot capture the CTREND effect. In columns 8 to 11, we report

regressions with CTREND and various momentum measures. None of these variables

subsumes the CTREND signal; on the contrary, the CTREND variable typically renders

most momentum signals insignificant—except two-week momentum, which remains

significant at the 1% level. Finally, specification 12 pursues a “kitchen-sink” approach,

jointly controlling for all individual control variables. The CTREND effect remains robust,

asserting that even a combination of commonly known factors does not suffice to subsume

it.

[Insert Table 4 about here]

To conclude, cross-sectional regressions corroborate the predictive abilities of the
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CTREND variable. The aggregated technical signal provides reliable and incremental

information about future cryptocurrency returns, which is not contained in other popular

return predictors for the cryptocurrency market.

V. Further Insights and Robustness Checks

This section provides additional insights and robustness checks. First, we examine

the CTREND performance in different subperiods and market states. Second, we

investigate the role of non-standard errors in our findings.11

A. Subperiod Analysis

In the equity universe, numerous studies suggest that return predictability is not

time-invariant. Notably, this also applies to technical analysis and momentum signals. For

example, whether due to investor learning or improving market efficiency (Schwert, 2003;

Chordia et al., 2014; Hanson and Sunderam, 2014; McLean and Pontiff, 2016; Zaremba

et al., 2020), the return predictability has been found to decline over time in certain

markets.12 Fieberg et al. (2024) notice that a similar trend also haunts many

cryptocurrency anomalies. Furthermore, the magnitude of mispricing fluctuates along with

market sentiment and uncertainty and increases in times of high illiquidity or idiosyncratic

risk, strengthening limits to arbitrage (Nagel, 2012; Stambaugh et al., 2012; Jacobs, 2015;

11Lastly, we also differentiate between cryptocurrency types by dividing them into coins and tokens. For
example, Ma et al. (2023) shows that coins and tokens differ in their characteristics and, in particular,
in their probability of default. Cong and Xiao (2021) propose an even more refined distinction between
cryptocurrency types (i.e., general payment, platform tokens, product tokens, and security tokens), but this
reduces the cross section for some groups excessively, making portfolio sorting no longer feasible. We report
the results for the coin/token split in Table B.4 in Appendix B and note that the results are qualitatively
unchanged from our main results in Table 3.

12Notably, Jacobs (2016) and Jacobs and Müller (2020) observe no similar tendency of profitability decrease
driven by investor learning in international markets.
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Avramov et al., 2019). Do similar patterns also hold for the cryptocurrency CTREND

factor?

Overall, the performance of the long-short CTREND portfolio is remarkably stable,

even over periods when classical momentum strategies disappoint, such as post-2017 (see

Figure B.2 in Online Appendix B). However, for a more formal look at return dynamics

over time, Table 5 reports the performance of the CTREND factor in subperiods.

Specifically, we first divide the sample into two roughly equal subperiods: from April 2015

to the first week of November 2018 and November 2018 to May 2022. Second, we

categorize the sample into periods of high and low market volatility and uncertainty, where

market volatility is measured via the value-weighted average of the standard deviation of

daily returns over the previous week, and uncertainty is proxied by the cryptocurrency

uncertainty index (Lucey et al., 2022). In both cases, we use the time-series median to

differentiate between “high” and “low” market states (Avramov et al., 2023; Fieberg et al.,

2024). Lastly, we assess the returns in bear and bull markets, defined as the weeks in which

the 12-month trailing return on the cryptocurrency market portfolio is below or above the

sample median.

[Insert Table 5 about here]

The CTREND anomaly generally does not depend on any particular market state,

remaining significant during high and low volatility and uncertainty periods (Panels B and

C). In particular, abnormal returns do not originate solely from risky market phases. In

fact, the returns are noticeably higher during stable market periods (5.46%) rather than

volatile ones (2.27%). Furthermore, unlike the momentum effect in—for example—stocks,
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CTREND does not originate only from bullish markets. Although CTREND generates

higher returns in bullish markets (4.49%), it also generates a high average weekly return of

3.25% in bearish markets. Lastly, although an inevitable decline in profitability over time

is visible (Panel A), this trend is not critical. Even in recent years, the average long-short

portfolio return remains sizeable and significant, amounting to 3.26% per week. Though

the raw returns are lower in the second half, the alphas against the LTW three-factor

model are almost unchanged.

B. Accounting for Non-Standard Errors

The construction of trend factor portfolios in the previous analyses relies on certain

assumptions regarding data and methodology, closely following the proposed design in

LTW. However, no research design is carved in stone, and various studies may resort to

alternative approaches. Even seemingly irrelevant methodological choices may lead to

vastly differing conclusions—in the stock (Menkveld et al., 2024; Walter et al., 2023;

Soebhag et al., 2024) and cryptocurrency (Fieberg et al., 2023) markets alike. Menkveld

et al. (2024) christen this problem non-standard errors.

To analyze the role of non-standard errors, we compute long-short CTREND

portfolios using a variety of alternative research designs. First, we consider different

algorithms for deriving the predictive signal of CTREND. While the CS-C-ENet approach

used in our main analyses combines both forecast combination and forecast selection, we

now test the multivariate Fama-MacBeth (FM) approach as described in equation (6) and

used in Han et al. (2016b), and the combined Fama-MacBeth (CFM) approach as

described in equation (9). In addition, we test equivalents that use pooled instead of

cross-sectional regressions, i.e., we test the pooled ordinary least squares regression
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(POLS), the combined pooled ordinary least squares regression (CPOLS), and the

combined elastic net (C-ENet) as proposed in Dong et al. (2022).13,14

In addition to the above, we examine a number of other methodological choices that

can be grouped into three broad categories, all of which are listed in the two leftmost

columns of Table 6. These include dataset preparation (Panel A), trend factor construction

(Panel B), and CS-C-ENet estimation (Panel C). All standard settings used in the primary

analyses are shown in bold. In total, our experiment includes 53,920 combinations.

The design choices in the first category—dataset preparation (Panel A)—include

the treatment of outliers (truncation or winsorization and the threshold for each), the

exclusion of stablecoins, and the size and price filters. Trend factor-specific design choices

(Panel B) include portfolio construction issues, i.e., the choice of weighting scheme and

breakpoints for selecting the upper and lower quantiles. We also consider the type of

estimation window (rolling or expanding) and, in the latter case, the number of in-sample

estimates required (26, 52, 78, 104). Moreover, Le Pennec et al. (2021) and Cong et al.

(2023) raise awareness about the use of volume data from cryptocurrency platforms. The

data may be biased due to wash volume; therefore, we additionally consider a research

design that excludes all volume-based indicators from our analyses.

Lastly, we account for an implementation lag between the calculation of the

CTREND signal and portfolio construction. Typical cryptocurrency research assumes that

the portfolio is created immediately after the signal is calculated. As a result, data from

13See Dong et al. (2022) for a detailed description of these estimators.
14Note that we subtract the cross-sectional mean from the returns to ensure that the aggregate measure of

expected returns best extracts the cross-sectional information from technical indicators. This is equivalent
to controlling for time-invariant effects (Bali and Cakici, 2010). This step is essential when pooling time
series and cross-sectional observations.
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days up to t− 1 are used to predict returns on day t. In practice, such an immediate

implementation is not always feasible. To mitigate this problem, certain studies assume a

one-day implementation lag, meaning that they compute the trading signal on day t− 1,

construct the portfolio on day t, and measure its performance starting on day t+ 1

(Bianchi and Babiak, 2021; Bianchi et al., 2022; Fieberg et al., 2023). Accordingly, we

compute the CTREND returns with and without the one-day implementation lag.

Finally, Panel C reports two design choices specific to the CS-C-ENet. When

creating the aggregate forecast described in Section C, we perform parameter estimation

and forecast selection using in-sample data. However, the forecast selection may not hold

out-of-sample; therefore, we consider a research design in which we split the in-sample

observations into a training and validation set. While the training data is used for

estimating the parameters, the validation set covering the most recent 12 weeks of data is

only used for forecast selection, as described in equation 10. Our second design choice

regarding the estimation of the CS-C-ENet addresses the weighting of the individual

forecasts. While we follow the recommended approach in the literature and use the equally

weighted average of all selected forecasts (Clemen, 1989; Diebold, 1989; Rapach and Zhou,

2013; Dong et al., 2022; Han et al., 2023), we could alternatively use the θ parameters as

weights.

[Insert Table 6 about here]

Panel A of Figure 2 presents the distribution of Sharpe ratios of the CTREND

factor across all 53,920 possible research design choices. Most of the specifications generate

remarkably high risk-return profiles, with most Sharpe ratios varying between 0.5 and 2.5.
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The Sharpe ratio of the CTREND factor in the baseline setting, marked as the dashed

vertical line, is at the upper edge of the distribution, but there are settings that produce

much higher Sharpe ratios. Interestingly, we observe a long right tail of exceptionally high

Sharpe ratios, originating from certain research designs emphasizing small and volatile

coins, where return outliers—both positive and negative alike—are more common. To

mitigate their impact—and for robustness—Figure B.1 in Online Appendix B reports

analogous results for value-weighted portfolios only. This approach allows us to minimize

the influence of the tiniest cryptocurrencies. The results remain consistent and most of the

specifications are in the Sharpe ratio range of 0.5 to 2. Although many design choices

introduce stress into the CTREND construction, for example, by reducing the cross-section

or using inefficient methods, we find that using the Lo (2002) Sharpe ratio test, the

CTREND factor achieves a significant positive Sharpe ratio (5% level) in 79% of all

combinations. In other words, the CTREND performance is robust to various

modifications in portfolio implementation.

[Insert Figure 2 about here]

Panels B and C show the respective probability density plots for the CSMB and

CMOM factors. The Sharpe ratios for both CSMB and CMOM are also located on the

right side of the distribution. However, CMOM has a long left tail, which results in high

negative Sharpe ratios. Furthermore, CMOM rarely reaches Sharpe ratios of 2, confirming

the superiority of CTREND. Using the Lo (2002) Sharpe ratio test, the Sharpe ratio of

CSMB is positive and significant in 56% of all research designs—meanwhile, CMOM is only

significant in 49% of all combinations.
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Panel D of Figure 2 zooms into the question of non-standard errors by displaying

the plots for different CTREND estimation methods. In general, the results seem similar

across different models. However, the performance of the simple FM approach appears

noticeably worse, showing a higher dispersion of potential outcomes. This highlights the

risk of overfitting in the estimation process and the benefits of applying more advanced

methods. Variable selection and penalized regressions prove superior in this regard.

The annualized Sharpe ratios for our baseline methodology—CS-C-ENet—range

from -1.45 to 10.92—with the median Sharpe ratio being 1.34. Notably, again, the

distributions encompass a certain number of extreme Sharpe ratios resulting from certain

combinations that emphasize small and illiquid cryptocurrencies. In particular, the

combination of equal-weighting and turning off the market capitalization filter of 1 million

USD yields extreme Sharpe ratios as high as 10.92.

Although both CSMB and CMOM typically exhibit worse risk-adjusted

performance, they also show a lower spread of the results. The CSMB factor attains a

maximum Sharpe ratio of 4.60, and the median is 0.94. The maximum Sharpe ratio of the

CMOM factor is 2.30, and the minimum is -4.47. The median Sharpe ratio of CMOM is

only 0.83—thus considerably lower than that of CTREND.

How do specific design choices affect the performance of cryptocurrency factors?

Table 6 reports the median annualized Sharpe ratios of the CTREND, CSMB, and CMOM

factors under alternative research designs. For the CTREND factor estimated using the

CS-C-ENet as in our primary analyses, the Sharpe ratio increases on average for higher

levels of truncation or winsorization; however, the actual choice of whether to use

truncation or winsorization does not substantially affect the performance. Including or
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excluding stablecoins does not change the results. Similarly, the research design choices

that do not affect the results are the type of estimation window (i.e., rolling or expanding

window), the number of in-sample observations, and the breakpoints used to create the

factor. Likewise, excluding all volume-based indicators from our analysis does not

considerably affect the CTREND performance. Applying a price filter of 1 USD decreases

the median Sharpe ratio of the CTREND factor from 1.64 to 1.13, while the performance

of the CSMB and CMOM factors also decreases. However, this filter drastically reduces the

size of the cross-section. Lastly, adding an implementation lag of one trading day also

decreases the profitability of the CTREND factor, but not for the CSMB and CMOM

factors. However, regardless of the specific design choice considered, the median Sharpe

ratio of CTREND is higher than that of the CMOM factor. Looking at the design choices

for estimating the CS-C-ENet, we find that adding a validation sample reduces the median

Sharpe ratio from 1.47 to 1.19. In contrast, the forecast weights play a minor role in this

regard, although the equally weighted forecast aggregation has slightly higher Sharpe

ratios—supporting the findings in the previous literature (Clemen, 1989; Diebold, 1989;

Rapach and Zhou, 2013).

To conclude, our analysis reveals that the relative performance of the CTREND

factor, compared to other cryptocurrency factors, is robust across various research design

choices.

VI. Asset Pricing Tests

In this section, we explore the ability of the CTREND factor to price other

anomalies and factors in the cryptocurrency market. First, we embark on spanning tests,
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comparing the CTREND factor with other prominent cryptocurrency factors. Next, we

extend our examinations to other anomalies.

A. CTREND Versus Other Factors

To begin with, we juxtapose the CTREND factor with the most established factors

from the cryptocurrency literature, i.e., CMKT, CSMB, and CMOM. We aim to find out

to what extent different factors (and models) span the efficient frontier, rendering each

other redundant.

Following the argument in Barillas and Shanken (2018), an asset pricing model can

be considered as mean-variance efficient—and thus as having the best asset pricing

capabilities—if the Sharpe ratio of its tangency portfolio is larger than that of competing

asset pricing models. Building on this, we perform a mean-variance frontier expansion test,

which evaluates the pricing ability of a model without relying on specific test assets. As

outlined in Novy-Marx and Velikov (2016) and Soebhag et al. (2024), if a factor captures

incremental information about average returns, it will improve the efficient frontier’s span

when added to the model. Denote MV PM0,t as the return of the tangency portfolio

obtained from the factor set M0 and MV PM1∪M0,t as the return of the tangency portfolio

holding both factor sets M1 and M0. If the factor set M1 adds information to M0,

MV PM1∪M0,t will outperform MV PM0,t; therefore the factor set M0 is not mean-variance

efficient and thus the additional factors M1 are relevant. Statistically, we run the following

time-series regression:

MV PM1∪M0,t = α + βMV PM0,t + ϵt (12)
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with α and β being regression coefficients and ϵt being regression residuals.15 If the alpha

of this regression is positive and statistically significant, the factors M1 improve the span of

the efficient frontier of factor set M0. We focus on out-of-sample mean-variance portfolios

to mitigate potential overfitting. Specifically, we estimate the portfolio weights using data

over the previous 52 weeks, calculate the realized portfolio return, and re-estimate the

weights. To ensure comparability, we rescale the portfolio weights to target weekly

volatility of 10%, which approximately equals the volatility of the cryptocurrency market

over the sample period.

Table 7 reports the results of this experiment. In general, they emphasize the

superiority of the asset pricing models incorporating the CTREND factor. To begin with,

consider the first column, which shows the alphas of an MVP that includes CTREND and

one of the LTW factors against the CTREND factor alone. Adding the market factor to

CTREND significantly boosts the return of the mean-variance portfolio by 0.91% (t-stat =

2.07), suggesting that both the market and the CTREND factor are relevant for spanning

the mean-variance frontier. When adding the CSMB factor to the CMKT and CTREND

model, the alpha is 1.50% and statistically significant at the 1% level (t-stat = 2.93).

However, the CMOM factor is never significant. When added to the three-factor model

consisting of CMKT, CSMB, and CTREND, the alpha is only 0.37% and insignificant

(t-stat = 1.02), suggesting that the CMOM does not improve the model further. In the last

15Specifically, we estimate unrestricted maximum Sharpe ratio portfolios with weights w obtained by
solving

w =
Σ−1µ

1′Σ−1µ

with w denoting the K× 1 vector of factor weights, Σ being the K×K variance-covariance matrix of factor
returns, and µ being the K × 1 vector of factor means. 1 is a K × 1 vector of ones.
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column, we test whether adding the CTREND factor to the three-factor LTW model

improves its performance. The alpha is 2.77% (t-stat = 3.80), suggesting that the

CTREND factor does indeed contain information not captured by the LTW factors. To

conclude, we find that CTREND expands the efficient frontier, while the CMOM factor

does not. This suggests that CMOM should be replaced by CTREND in the model.

[Insert Table 7 about here]

B. Pricing Cryptocurrency Anomalies

Having concluded that the CMOM factor is redundant and should be replaced by

CTREND, we now extend the examinations to other patterns in cryptocurrency returns.

Specifically, we verify the ability of CTREND-augmented models to price known

cryptocurrency anomalies. To this end, in the first step, we form a sample of

cryptocurrency characteristic-sorted portfolios. To be precise, we form two separate sets.

The first group contains well-known anomalies in the cross-section of cryptocurrency

returns that were studied in LTW. Specifically, we create long-short quintile portfolios from

one-way sorts on market capitalization (mcap), price (prc), maximum daily price over the

past week (maxdprc), one-week (ret 1 0 ), two-week (ret 2 0 ), three-week (ret 3 0 ),

four-week (ret 4 0 ) momentum, four-week momentum skipping the most recent week

(ret 4 1 ), price volume (prcvol), volume scaled by market capitalization (volscaled), and

volatility of price volume (stdprcvol).16 The portfolios are value weighted, held for one

week, and then rebalanced. Table B.8 in the Online Appendix summarizes the performance

16LTW test further anomalies and the cryptocurrency literature provides a battery of additional patterns
in the cross-section of cryptocurrency returns. However, we do not find that other strategies generate a
significant spread in cryptocurrency returns. The results can be found in Table B.5 in Online Appendix B.
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of anomaly portfolios. Consistent with LTW, all portfolios generate significant return

spreads.

The second group comprises all long-short portfolios based on individual technical

indicators that are outlined in Table 2. Finally, we analyze the strategies in both groups

pooled together. With these anomalies at hand, we examine their average returns with

three different asset pricing models: the CCAPM, the three-factor model of LTW, and the

three-factor model that replaces the LTW momentum factor with the CTREND factor:

rp,t = α + βCMKTCMKTt + βCSMBCSMBt + βCTRENDCTRENDt + ϵt (13)

For simplicity, we name the last model the TREND model.

Figure 3 presents the results of this analysis. While the upper sections offer a

bird’s-eye overview of the model performance, comparing the average rates of returns on all

characteristic-sorted portfolios with the alphas from different asset pricing models, the

bottom part offers a more formal analysis. Specifically, it reports several simple statistics

that capture the performance of the model: average absolute alphas and t-statistics,

weighted pricing errors ∆,17 and p-values from the GRS tests of Gibbons et al. (1989). The

GRS test verifies the hypothesis that all alphas of a set of portfolios are equal to zero.

In general, all tests point to the superiority of the TREND model. To begin with,

the CCAPM clearly fails to cope well with abnormal returns (Panel A). The anomaly

alphas are close to the 45-degree line, indicating that the abnormal returns increase

consistently with the average raw returns and that the model can hardly explain their

17Following Shanken (1992) and Liu et al. (2024), weighted pricing errors are defined as ∆ = α
′
Σ−1α,

with Σ denoting the covariance matrix of regression residuals.
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payoffs. Furthermore, many alphas remain statistically significant. The alphas are

significant for as many as 20 anomalies (in the full set), and the average absolute alpha is

2.69%. The hypotheses of the GRS tests are clearly rejected—not only for the full sample of

all characteristics, but also for its subsamples of LTW anomalies and technical indicators.

[Insert Figure 3 about here]

The three-factor model of LTW (Panel B) seems to do a better job, but its

performance is far from perfect. Overall, the alphas rise steadily with average returns, and

many are still significantly different from zero. Yet, we still observe 11 unexplained

significant alphas, and the average absolute abnormal return is 1.44%. The GRS tests

continue to reject the hypothesis of zero alphas. The model struggles particularly with

technical indicators, where the average absolute alpha is 1.51%.

Finally, Panel C shows the application of the TREND model, which seems to be the

most effective. The abnormal returns, if any, are scattered almost randomly around the

horizontal axis. There is no longer any relationship between the average returns and the

alphas. This suggests that the model does a good job of explaining the known patterns in

the cross-section of cryptocurrency returns. Finally, only two portfolios continue to

generate abnormal returns that are still significantly different from zero. Table B.9 in

Online Appendix B, which provides an insight into the alphas of individual portfolios,

helps to identify these two exceptions: mcap and stockK, where stochK is borderline

significant with a t-statistic of 1.98. Apart from these two portfolios, no other portfolios

have significant alphas after taking the TREND model factors into account. Interestingly,

although the TREND model does not include a momentum factor, it successfully explains
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all the returns of the momentum-sorted portfolios. Meanwhile, as can be seen in Table B.8

in the Online Appendix and Table 2, the LTW model fails to explain the size effect and the

two- and three-week momentum returns, as well as that of eight technical indicators.

Further details in the lower part of Panel C show that the average absolute alpha

shrinks to only 0.68%, and the associated t-statistic is 1.13. More importantly, the average

price error ∆ decreases significantly when the CTREND factor is added, falling to 0.112.

Finally, the p-values from the GRS test indicate that only the TREND model can explain

the abnormal returns of the characteristic-sorted portfolios. The p-values for both the

CCAPM and the LTW models are below 1%, indicating that the abnormal returns are

significantly different from zero. Meanwhile, the p-value for the TREND model is 8.02%,

indicating that it captures the known patterns in the cross-section of coin returns relatively

well.

Finally, it is also worth noting that no model passes the GRS test for the LTW

anomalies. This finding is due to the CSMB factor—constructed from tercile

portfolios—which fails to capture the returns of the mcap quintile portfolios, which

produce a larger return spread than tercile portfolios. However, the explanatory power of

the CTREND factor beats other approaches by producing lower pricing errors and absolute

alphas.

To sum up, a three-factor model that incorporates the CMKT, CSMB, and

CTREND factors captures the cross-section of cryptocurrency returns well and

significantly outperforms other prominent approaches in the literature.
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VII. Practical Investment Considerations

Our analyses so far document a robust cross-sectional pattern in cryptocurrency

returns. However, to what extent can it be harvested in practice? To shed light on the

real-life implementability of a CTREND investment strategy, we explore three questions.

First, we verify that the strategy does not originate solely from difficult-to-trade coins.

Second, we consider the impact of transaction costs. Third, we look at more extended

holding periods.

A. Controlling for Difficult-to-Arbitrage Cryptocurrencies

Numerous stock market anomalies derive predictability from illiquid micro caps,

which are hardly tradeable in practice (Hou et al., 2020). Likewise, certain prominent

cryptocurrency patterns, such as size or liquidity, tend to concentrate in the smallest

cryptocurrencies with marginal economic significance (Fieberg et al., 2024). Should the

CTREND factor stem from a similar environment, its practical implication would be

limited.

To scrutinize this issue, we examine the performance of the CTREND strategy

within the subsets of the largest and most liquid assets. Specifically, each week, we remove

between 50% and 90% of the cryptocurrencies with the lowest market capitalization or

liquidity, as measured by the Amihud (2002) ratio. Additionally, based on these measures,

we create two subsets—including the 100 largest and most liquid cryptocurrencies,

respectively. Next, within each of these subsets, we apply the standard quintile sorts on

CTREND to examine the magnitude of return predictability associated with this

phenomenon. Table 8 summarizes the findings.
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[Insert Table 8 about here]

The CTREND effect does not come from some shady corner of the cryptocurrency

market. On the contrary, the return predictability remains robust in more liquid and larger

assets. For example, the average weekly hedge portfolio return in the sample encompassing

50% of the biggest cryptocurrencies (Panel A) equals 3.84%, resembling the result for the

total sample (see Table 3). Similarly, considering only the 10% largest cryptocurrencies

each week, the average return is 2.51%, the alphas against the CCAPM and LTW model

exceed 2%, and are statistically significant at the 1% level. Panel B reveals a similar

pattern for the most liquid cryptocurrencies. The mean long-short portfolio return in the

top 50% of the sample reaches 4.36%, and in the 10% most liquid coins, the mean return is

still large and statistically significant. To sum up, the CTREND effect originates mainly

from the biggest and most liquid cryptocurrencies. In consequence, the premium remains

strong in tradeable cryptocurrencies, making it a good candidate for practical portfolio

implementation.

B. Transaction Costs

Novy-Marx and Velikov (2016) show that many equity anomalies are associated

with substantial portfolio turnover, which prevents them from being forged into profitable

investment strategies. In particular, momentum and technical analysis signals typically

lead the ranking of trade-intensive signals. Not surprisingly, our aggregate measure, which

combines many technical indicators, may also require a high level of portfolio turnover. In

order to scrutinize the practical consequences, we assess the CTREND profits net of

trading costs. To this end, we first calculate the turnover of each portfolio p following the
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definition of Gu et al. (2020):

TOp,t =
1

2

∑
i∈L

|wi,t −
wi,t−1 (1 + ri,t)∑
i wi,t−1 (1 + ri,t)

|+ 1

2

∑
j∈S

|wj,t −
wj,t−1 (1 + rj,t)∑
j wj,t−1 (1 + rj,t)

| (14)

where i ∈ L and j ∈ S indicate that a coin belongs to the long or short legs, respectively.

We report the turnover for the long-short portfolios as the average of the long and short

legs, thus representing the proportion of the portfolio that needs to be replaced each week.

To estimate profits adjusted for the trading costs, we follow Bianchi et al. (2022) and use a

conservative transaction cost rate of 30 basis points (bpts) for the long and 40bpts for the

short leg. We calculate the net anomaly return rnetp,t of strategy p at time t as:

rnetp,t =

(∑
i∈L

wi,tri,t −
∑
j∈S

wj,trj,t

)
−

(
tcl
∑
i∈L

|wi,t − wi,t−1|+ tcs
∑
j∈S

|wj,t − wj,t−1|

)
(15)

with tcl and tcs denoting the transaction cost rate for trading a long and short positions,

respectively. However, the assumed transaction cost rates of 30 and 40bpts may be

conservative. Bianchi et al. (2022) use data from CryptoCompare, which tends to cover

larger cryptocurrencies, while our sample additionally includes many small coins. As a

robustness check, we adopt two additional transaction cost rates, each of which is 10bpts

higher. We also report two types of breakeven transaction cost (BETC) rates, i.e., a BETC

rate that sets the return to exactly zero and a BETC rate for which the net return is no

longer statistically significant at the 5% level (BETC 5%) (Grundy and Martin, 2001; Han

et al., 2016b).

Panel A of Table 9 summarizes the impact of trading costs on the CTREND

strategies. Overall, their performance seems relatively robust. Admittedly, the portfolio

turnover is substantial, reaching 68% per week, indicating that an investor must replace a
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considerable fraction weekly. However, the gross portfolio returns exceed these

implementation costs, and the net payoffs on the long-short CTREND strategy range

between 2.90% (t-stat = 3.89) and 2.35% (t-stat = 3.16)—depending on the assumed

transaction cost rate. Furthermore, the BETC rate, at which the mean net return is erased

to zero, equals 1.41%. Even if the fee was as high as 0.88%, the strategy’s profit would

remain significant at the 5% level. The results shown in Panel B once more support the

finding that the CTREND effect is not driven by small hard-to-trade cryptocurrencies. A

CTREND factor based on the largest 100 cryptocurrencies earns between 2.45% and 1.90%

per week—all statistically significant. Although the CTREND strategy requires intense

trading and frequent portfolio rebalancing, it remains resilient despite high transaction

costs.

[Insert Table 9 about here]

One common way to mitigate trading costs is to extend the portfolio holding period,

thereby reducing portfolio turnover and transaction costs through less frequent

rebalancing. Table B.10 in the Online Appendix sheds light on how longer holding periods

affect the CTREND portfolios. Overall, reducing the rebalancing frequency markedly

affects performance. Even with two-week rebalancing, the average weekly returns drop by

1.5 percentage points to reach 2.34%. The mean returns remain significant at the 5% level

as long as the holding periods do not exceed four weeks. In other words, while the

CTREND strategy requires high turnover, it continues to generate high payoffs if it is

rebalanced no more than roughly once a month.

Interestingly, while the CTREND signal may seem short-lived, it is more persistent
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than most momentum signals in the market, as seen in Table B.10. Most cryptocurrency

momentum strategies no longer produce significant profits at a three- or even two-week

horizon. Moreover, the CTREND strategy beats all other momentum strategies within up

to two-week horizons. Consequently, while seemingly trading-intensive, CTREND still fares

favorably against the background of comparable trading signals in the cryptocurrency

world.

VIII. Conclusion

Our study comprehensively examines the cross-sectional return predictability in

cryptocurrency markets using technical analysis signals. Using data on more than 3,000

coins from 2015 to 2022, we show that many signals capture information for future

cryptocurrency returns that cannot be captured by prevailing cryptocurrency asset pricing

models. By utilizing machine learning techniques, we extract the incremental information

content of the signals and aggregate them into CTREND, an overall measure of trends in

the cross-section of cryptocurrencies. CTREND turns out to be an effective predictor of

cryptocurrency returns.

A long-short strategy that buys the quintile of cryptocurrencies with the highest

predicted return and shorts those with the lowest earns 3.87% per week. These returns

cannot be captured by common factor models, such as the CCAPM or the three-factor

model, nor subsumed by popular predictors of cryptocurrency returns. The impact of

CTREND is notably stable. The phenomenon holds across various subperiods and remains

robust to fluctuations in market conditions. Additionally, its resilience is confirmed

through a multitude of research design modifications. We examine 53,920 distinct
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implementations that consider alternative methods for sample preparation, data

preprocessing, forecasting models, and portfolio configurations. CTREND delivers excellent

performance in most scenarios and offers a remarkable risk/return profile.

Lastly, we explore the practical implications of the CTREND effect. The outcomes

are promising from an investor perspective. The return predictability of the aggregate

technical signal does not come from difficult-to-arbitrage coins but remains strong in the

market’s biggest and most liquid coins. Furthermore, despite the short-term nature of the

trading signal and substantial portfolio turnover, portfolio profits withstand the impact of

transaction costs. Finally, they remain significant for longer holding periods of up to four

weeks. In a nutshell, the CTREND effect could be potentially forged into an effective

trading strategy.

One limitation of our study is the reliance on a number of preselected technical

features. Jiang et al. (2023) and Kaczmarek and Pukthuanthong (2023) take an alternative

approach and extract information directly from past prices and their graphical

representations. Subsequent research could extend our analysis in this direction.

Furthermore, future studies of the topics discussed in this paper should focus on exploring

the nature and sources of the CTREND effect. While the asset pricing literature offers

several mechanisms contributing to the development of various price patterns, their

examination in the cryptocurrency universe has been limited thus far. Scrutinizing them

would assist in better understanding the origins of return patterns in this novel asset class.
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Figure 1: Comparison of Cryptocurrency Factors

The figure shows average returns (a) and annualized Sharpe ratios (b) for cryptocurrency
factors, encompassing the cryptocurrency market factor (CMKT), size factor (CSMB), mo-
mentum factor (CMOM), and trend factor (CTREND). The sample spans the period from
April 2015 to May 2022.
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Table 1: Research Sample

The table reports the number of cryptocurrencies in the sample, as well as their mean and
median market capitalization and dollar trading volume by year. The number of cryp-
tocurrencies refers to the total number of cryptocurrencies that have at least one weekly
observation available within a given year. The statistics for the market capitalization and
volume are pooled averages or medians within a year. The study period runs from April
2015 to May 2022.

Market Cap ($ mil.) Volume ($ thous.)

Year Number Mean Median Mean Median

2015 74 135.12 2.53 1,197.87 9.75
2016 147 161.76 3.09 1,834.47 21.68
2017 773 437.21 9.10 18,770.45 126.91
2018 1,479 371.43 9.03 21,726.40 120.83
2019 1,236 268.98 5.31 69,181.28 143.07
2020 1,385 397.35 6.23 143,615.44 232.83
2021 2,214 1,381.08 13.74 187,405.60 570.81
2022 1,685 1,214.06 12.95 113,429.29 539.74

Full 3,244 746.21 8.49 107,310.18 245.17
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Table 2: Technical Indicator Strategy Returns

The table reports the average weekly portfolio returns (in %) and t-statistics of quintile
portfolios based on cryptocurrency technical indicators. Quintile portfolios are constructed
by ranking cryptocurrencies by their technical indicators (from low to high) and assigning
them into portfolios based on the quintile distribution. The portfolios are value-weighted and
re-balanced weekly. A zero-investment portfolio takes a short position in cryptocurrencies in
the low and a long position in cryptocurrencies in the high portfolio. The table also reports
the risk-adjusted return against the CCAPM and the three-factor model proposed in Liu
et al. (2022). Statistical significance at the 5% level is indicated by bold numbers. The
study period is from April 2015 to May 2022.

L 2 3 4 H H - L αCCAPM αLTW

Momentum Oscillators

rsi
0.00
(0.00)

0.75
(1.16)

1.75
(2.38)

2.42
(3.45)

3.52
(4.76)

3.52
(5.41)

3.16
(4.85)

2.09
(3.87)

stochRSI
0.17
(0.22)

1.52
(1.67)

1.85
(2.02)

2.11
(2.55)

1.47
(1.77)

1.30
(1.78)

1.40
(1.91)

0.95
(1.25)

stochK
-0.24
(-0.39)

1.25
(1.70)

1.37
(2.08)

2.45
(3.37)

3.72
(4.77)

3.96
(5.73)

3.71
(5.32)

2.56
(4.13)

stochD
0.39
(0.53)

0.85
(1.21)

1.29
(1.99)

2.18
(3.06)

3.29
(4.46)

2.89
(4.06)

2.90
(4.00)

1.92
(2.99)

cci
-0.09
(-0.15)

1.10
(1.46)

1.58
(2.25)

2.68
(3.65)

3.70
(4.49)

3.80
(5.03)

3.48
(4.57)

2.35
(3.40)

Moving Average Indicators

sma 3d
1.68
(2.07)

3.06
(3.72)

2.33
(3.48)

0.73
(1.09)

0.80
(1.00)

-0.89
(-1.11)

-0.85
(-1.04)

-0.67
(-0.80)

sma 5d
3.25
(3.57)

3.26
(3.85)

1.98
(2.88)

0.79
(1.24)

0.35
(0.47)

-2.90
(-3.35)

-2.93
(-3.34)

-2.28
(-2.59)

sma 10d
2.83
(3.13)

3.02
(4.26)

2.09
(2.97)

0.67
(0.99)

0.46
(0.62)

-2.37
(-2.90)

-2.31
(-2.78)

-1.00
(-1.32)

sma 20d
3.18
(3.61)

3.14
(4.12)

1.78
(2.59)

0.65
(0.86)

0.05
(0.06)

-3.13
(-3.80)

-2.99
(-3.58)

-1.62
(-2.26)

sma 50d
3.64
(4.00)

2.69
(3.50)

1.38
(2.10)

1.30
(1.67)

1.15
(1.56)

-2.49
(-2.88)

-2.46
(-2.80)

-1.11
(-1.55)

sma 100d
3.00
(3.34)

2.48
(3.50)

2.14
(3.07)

1.32
(1.74)

2.04
(2.68)

-0.96
(-1.12)

-0.84
(-0.97)

0.23
(0.31)

sma 200d
2.48
(2.97)

2.54
(3.26)

1.92
(2.84)

1.74
(2.19)

2.52
(3.02)

0.04
(0.05)

0.09
(0.11)

0.82
(1.07)

macd
1.02
(1.39)

1.42
(1.79)

1.53
(2.28)

3.01
(3.78)

3.18
(3.56)

2.16
(2.50)

2.12
(2.42)

0.85
(1.17)

macd diff signal
0.56
(0.68)

1.07
(1.43)

2.71
(3.69)

2.89
(4.11)

2.81
(3.03)

2.25
(2.46)

2.41
(2.60)

0.54
(0.63)
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Table 2: Technical Indicator Strategy Returns (Continued)

L 2 3 4 H H - L αCCAPM αLTW

Volume Indicators

volsma 3d
1.72
(2.25)

2.24
(3.00)

1.79
(2.77)

2.91
(3.46)

1.50
(1.96)

-0.21
(-0.34)

-0.34
(-0.52)

-0.42
(-0.63)

volsma 5d
1.99
(2.61)

2.01
(2.89)

2.49
(3.40)

2.40
(2.99)

1.33
(1.80)

-0.66
(-1.09)

-0.68
(-1.10)

-0.85
(-1.33)

volsma 10d
2.00
(2.62)

2.44
(3.30)

2.38
(3.23)

1.40
(2.00)

1.84
(2.14)

-0.16
(-0.21)

-0.54
(-0.72)

-1.05
(-1.37)

volsma 20d
2.42
(2.85)

2.45
(3.44)

1.96
(2.72)

1.57
(2.12)

1.61
(2.03)

-0.81
(-1.03)

-0.84
(-1.04)

-0.61
(-0.74)

volsma 50d
2.65
(3.14)

2.04
(2.98)

2.21
(2.93)

1.91
(2.55)

1.07
(1.49)

-1.58
(-2.20)

-1.49
(-2.05)

-0.88
(-1.26)

volsma 100d
2.76
(3.02)

2.46
(3.68)

1.86
(2.61)

1.69
(2.28)

1.09
(1.62)

-1.68
(-2.12)

-1.52
(-1.90)

-1.04
(-1.35)

volsma 200d
2.76
(3.07)

2.66
(3.74)

1.79
(2.56)

2.19
(2.99)

1.21
(1.83)

-1.54
(-2.03)

-1.30
(-1.70)

-0.82
(-1.13)

volmacd
1.37
(1.82)

1.74
(2.37)

1.43
(2.08)

2.46
(3.62)

3.37
(3.46)

2.01
(2.38)

1.87
(2.19)

0.72
(0.94)

volmacd diff signal
1.91
(2.29)

1.79
(2.45)

1.67
(2.61)

2.66
(3.44)

2.30
(2.67)

0.39
(0.46)

0.61
(0.71)

0.58
(0.65)

chaikin
1.30
(1.69)

0.98
(1.51)

1.86
(2.35)

2.81
(3.71)

2.42
(3.44)

1.12
(1.68)

1.02
(1.50)

0.58
(0.86)

Volatility Indicators

boll low
3.22
(3.19)

2.32
(2.72)

2.53
(3.36)

1.92
(2.95)

1.13
(1.92)

-2.08
(-2.28)

-1.49
(-1.64)

-0.54
(-0.62)

boll mid
3.34
(3.86)

2.83
(3.71)

1.81
(2.66)

0.48
(0.69)

-0.16
(-0.22)

-3.50
(-4.25)

-3.40
(-4.08)

-1.88
(-2.73)

boll high
3.19
(4.59)

2.43
(3.17)

1.91
(2.38)

0.50
(0.67)

0.78
(0.89)

-2.41
(-3.01)

-2.59
(-3.19)

-1.82
(-2.36)

boll width
1.90
(3.12)

2.46
(3.39)

1.52
(1.89)

2.07
(2.38)

2.57
(2.45)

0.67
(0.72)

0.26
(0.28)

-0.63
(-0.67)
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Table 5: Performance in Subperiods and Different Market States

The table reports the average weekly returns and abnormal returns of value-weighted
CTREND quintile portfolios in subperiods by splitting the sample period into equal halves
(Panel A), high and low cryptocurrency market volatility periods (Panel B), high and low
cryptocurrency uncertainty periods (Panel C), and bull and bear markets (Panel D). The
statistical significance of the average returns and alphas at the 5% level is indicated in bold
font. All mean returns and alphas are reported in percentage terms. The study period is
from April 2015 to May 2022.

L 2 3 4 H H-L αCCAPM αLTW

Panel A: Changes Over Time

First half
0.94
(0.89)

1.94
(1.66)

1.72
(1.77)

3.87
(3.03)

5.41
(3.81)

4.47
(3.50)

4.23
(3.24)

2.66
(2.48)

Second half
-0.72
(-0.74)

-0.09
(-0.11)

0.50
(0.65)

1.56
(1.93)

2.55
(3.01)

3.26
(4.25)

3.32
(4.29)

2.38
(3.79)

Panel B: Market Volatility

Low volatility
-0.52
(-0.68)

0.52
(0.68)

1.21
(1.70)

3.02
(2.96)

4.94
(4.13)

5.46
(5.08)

4.76
(4.40)

2.85
(3.01)

High volatility
0.75
(0.62)

1.33
(1.13)

1.02
(1.00)

2.42
(2.15)

3.02
(2.63)

2.27
(2.22)

2.48
(2.42)

2.20
(2.72)

Panel C: Cryptocurrency Market Uncertainty

Low uncertainty
1.92
(1.85)

2.25
(2.18)

2.37
(2.85)

4.17
(3.47)

6.14
(4.33)

4.22
(3.04)

4.24
(2.91)

2.42
(2.05)

High uncertainty
-1.29
(-1.31)

-0.11
(-0.11)

0.13
(0.15)

1.58
(1.64)

2.29
(2.37)

3.59
(4.71)

3.54
(4.63)

2.89
(4.47)

Panel D: Past Market Performance

Bear market
-0.81
(-0.97)

0.02
(0.02)

0.23
(0.31)

1.12
(1.49)

2.44
(2.47)

3.25
(3.36)

3.36
(3.46)

2.17
(3.09)

Bull market
1.05
(0.89)

1.84
(1.59)

2.01
(2.02)

4.33
(3.30)

5.53
(4.17)

4.49
(3.95)

4.19
(3.61)

3.14
(2.99)
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Table 7: Frontier Expansion Test

The table reports generalized alphas (in %) and t-statistics in parentheses from a regression
of the returns of the tangency portfolio MV PM1∪M0 on the tangency portfolio return series
MV PM0 , where M0 denotes a factor set (shown in the columns) and M1 denotes another set
of factors (shown in the rows). Newey and West (1987) adjusted standard errors are used
to calculate the t-statistics and p-values. Alphas that are statistically significant at the 5%
level are marked in bold. A significant positive alpha indicates that the span of the efficient
frontier of the MVE portfolio MVEM0 can be improved by adding the factors in the rows,
meaning that the factors shown in the columns are not mean-variance efficient. All results
are based on out-of-sample estimates over the period from April 2016 to May 2022.

CTREND CMKT + CTREND CMKT + CSMB + CTREND LTW

CMKT
0.91
(2.07)

CSMB
1.70
(2.60)

1.50
(2.93)

CMOM
0.20
(0.55)

0.23
(0.63)

0.37
(1.02)

CTREND
2.77
(3.80)
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Table 8: The CTREND Factor Performance in Big and Liquid Cryptocurrencies

The table reports the performance of quintile trend portfolios for the 50%, 30%, 20%, and
10% largest (Panel A) and most liquid (Panel B) cryptocurrencies. The last column of each
panel reports the quintile portfolio returns for the 100 largest and most liquid cryptocurren-
cies, respectively. Specifically, at the beginning of each week t, cryptocurrencies are included
in the portfolios only if their market capitalization (Amihud (2002) illiquidity measure) is
above (below) the p-th percentile in week t− 1. The table reports the average weekly return
and t-statistics in parenthesis for the quintile portfolios as well as the average return of the
hedge portfolio and the abnormal returns against the CCAPM and LTW three-factor model.
Statistical significance at the 5% level is indicated by bold numbers. The study period is
from April 2015 to May 2022.

Panel A: Market Capitalization Panel B: Liquidity

50% 30% 20% 10% Top100 50% 30% 20% 10% Top100

L
-0.03
(-0.04)

0.33
(0.36)

0.50
(0.46)

-0.06
(-0.07)

0.39
(0.54)

-0.23
(-0.30)

0.09
(0.09)

0.31
(0.28)

-0.04
(-0.04)

0.39
(0.52)

2
1.33
(1.68)

1.21
(1.43)

1.01
(1.21)

0.55
(0.67)

0.86
(1.30)

1.25
(1.54)

1.70
(1.91)

1.92
(2.06)

0.82
(0.96)

1.20
(1.70)

3
0.76
(1.08)

1.36
(1.65)

1.39
(1.67)

1.55
(1.68)

1.58
(2.45)

0.49
(0.74)

0.61
(0.81)

1.03
(1.30)

0.85
(1.02)

1.36
(2.12)

4
3.36
(3.88)

3.59
(3.73)

3.14
(3.41)

2.24
(2.57)

2.96
(3.73)

3.21
(3.57)

3.86
(3.62)

3.29
(3.33)

2.19
(2.46)

3.20
(3.85)

H
3.80
(4.26)

3.79
(3.88)

3.24
(3.37)

2.44
(2.59)

3.79
(4.44)

4.13
(4.69)

3.74
(3.92)

3.13
(3.28)

2.16
(2.57)

3.68
(4.45)

H-L
3.84
(5.00)

3.46
(4.17)

2.74
(2.94)

2.51
(3.01)

3.39
(4.49)

4.36
(5.62)

3.65
(4.21)

2.83
(2.87)

2.20
(2.76)

3.30
(4.36)

αCCAPM 3.70
(4.76)

3.36
(3.99)

2.81
(2.97)

2.52
(2.99)

3.30
(4.31)

4.27
(5.42)

3.58
(4.06)

2.97
(2.98)

2.34
(2.94)

3.29
(4.27)

αLTW 2.64
(4.19)

2.70
(4.04)

2.85
(3.61)

2.02
(3.18)

2.19
(3.53)

3.31
(5.07)

3.29
(4.32)

3.08
(3.50)

1.97
(3.18)

2.28
(3.62)
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Table 9: CTREND Portfolios and Transaction Costs

The table reports the average gross (Avggross) and net (Avgnet) returns and t-statistics in
parentheses of trend quintile portfolios assuming fixed costs of (I) 40bps for the short and
30bps for the long leg (Bianchi et al., 2022), (II) 50bps for the short and 40bps for the long
leg, and (III) 60bps for the short and 50bps for the long leg. The table also reports the
required portfolio turnover (in %) (Gu et al., 2020), breakeven transaction costs (in %) that
set the net return to exactly zero (BETC), and the breakeven transaction cost rate for which
the net return is not statistically significant at the 5% level (BETC 5%). Panel A reports
the results for the full sample of cryptocurrencies, while Panel B shows the statistics for only
the largest 100 cryptocurrencies per week. Statistical significance at the 5% level is indicated
by bold numbers. The study period is from April 2015 to May 2022.

Avggross Avgnet (I) Avgnet (II) Avgnet (III) TO BETC BETC 5%

Panel A: All Cryptocurrencies

L
0.12
(0.16)

-0.33
(-0.45)

-0.47
(-0.66)

-0.62
(-0.86)

74.09 0.08 0.00

2
0.93
(1.32)

0.45
(0.64)

0.29
(0.41)

0.13
(0.18)

79.89 0.58 0.00

3
1.12
(1.79)

0.65
(1.05)

0.50
(0.80)

0.34
(0.55)

77.30 0.72 0.00

4
2.72
(3.59)

2.27
(2.99)

2.12
(2.80)

1.97
(2.60)

75.21 1.80 0.82

H
3.98
(4.80)

3.61
(4.34)

3.48
(4.19)

3.36
(4.03)

62.84 3.17 1.86

H-L
3.87
(5.19)

2.90
(3.89)

2.62
(3.53)

2.35
(3.16)

68.46 1.41 0.88

Panel B: Largest 100 Cryptocurrencies

L
0.38
(0.52)

-0.04
(-0.06)

-0.18
(-0.25)

-0.32
(-0.44)

69.68 0.27 0.00

2
0.83
(1.26)

0.35
(0.54)

0.19
(0.30)

0.04
(0.06)

79.11 0.52 0.00

3
1.59
(2.46)

1.11
(1.73)

0.96
(1.48)

0.80
(1.24)

78.70 1.01 0.20

4
2.91
(3.68)

2.47
(3.12)

2.32
(2.94)

2.17
(2.75)

74.22 1.95 0.91

H
3.78
(4.41)

3.38
(3.94)

3.24
(3.79)

3.11
(3.63)

66.74 2.83 1.56

H-L
3.40
(4.48)

2.45
(3.22)

2.17
(2.86)

1.90
(2.50)

68.21 1.25 0.70
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Online Appendices for ”A Trend Factor for the

Cross-Section of Cryptocurrency Returns”

[FOR ONLINE PUBLICATION ONLY]

Content

Appendix A provides a description of the characteristics and technical indicators analyzed

in the study.

Appendix B reports additional figures and tables from the study. Figure B.1 illustrates

the distribution of Sharpe ratios under alternative research designs based on value-weighted

portfolios only. Figure B.2 plots the cumulative returns on factor portfolios. Table B.1

details the calculation of cryptocurrency characteristics. Table B.2 reports the return char-

acteristics of factor returns. Table B.3 reports the results of bivariate portfolio sorts. Table

B.4 analyzes the CTREND performance for different types of cryptocurrencies. Table B.5

shows the performance of insignificant anomalies. Table B.6 documents the impact of re-

search design choices on value-weighted anomaly portfolios. Table B.7 reports the univariate

sorts evaluated using asset pricing factors from alternative sources. Table B.8 presents the

performance of anomaly portfolios used in asset pricing tests. Table B.9 displays abnormal

returns on various long-short portfolios unexplained by the TREND model.

Finally, Appendix C reports the variable importance for the CTREND signal.
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Appendix A. Technical Signals

This appendix describes the calculation of technical indicators. Except for scaling,

which we employ to avoid size effects, we use only the standard definitions and default

settings that can be found in numerous textbooks on technical analysis (e.g., Murphy, 1999;

Ciana, 2011).

A. Helper Functions

• Simple moving average: We define the simple moving average of variable X as

SMAt (X,L) =
1

L− 1

L∑
l=0

= Xt−l (A.1)

with L denoting the lag length.

• Exponential moving average: We define the exponential moving average of variable X

as

EMAt (X,L) = αPt + (1− α)EMAt−1 (A.2)

with L denoting the lag length and α denoting a smoothing parameter, which we set

to 1/(1 + L). If no EMAt−1 is available, we initialize the calculation with the closing

price at time t− 1.

B. Momentum Oscillators

• rsi : The relative strength index is defined based on the ratio of the average gains to

the average losses over a 14-day period. Define a gain as

Gt =

Pt − Pt−1 if Pt > Pt−1

0 otherwise

(A.3)

and a loss as

Lt =

Pt−1 − Pt if Pt < Pt−1

0 otherwise

(A.4)
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Thus, the rsi is defined as:

rsit = 100− 100

1 + Ḡt

L̄t

(A.5)

with Ḡt and L̄t denoting the average gains and losses over the 14-day period.

• stochRSI : The stochastic relative strength index is defined as the difference between

the current rsit and the lowest rsit over the previous 14 days divided by the RSI range:

stochRSIt =
rsit − Lt

Ht − Lt

(A.6)

with Lt and Ht denoting the lowest and highest rsi over a 14-day period.

• stochK : The stochastic %K is defined as the difference between the current closing

price Pt and the lowest price over the previous 14 days divided by the price range:

stochKt =
Pt − LLt

HHt − LLt

(A.7)

with LLt and HHt denoting the lowest low and highest high prices over the 14-day

period.

• stochD : The stochastic %D is defined as the 3-day moving average of stochK, i.e.,

stochDt = SMA (stochK, 3) (A.8)

• cci : The commodity channel index is derived as follows: First, we calculate the “typical

price”, which is the average of closing price Pt, high price Ht, and low price Lt, i.e.,

Xt = (Pt +Ht + Lt) /3. (A.9)

We then compute an SMA of X of length L = 20 and calculate the average absolute

deviation of the typical price from the moving average within the 20-day period

AvgDevt =
L−1∑
l=0

|Xt−l − SMA(X, 20)t| (A.10)
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Finally, we calculate the cci as the deviation of the current typical price from its moving

average divided by the average deviation:

ccit =
Xt − SMA(X, 20)t

0.015AvgDevt
(A.11)

with 0.015 being a scaling constant.

C. Moving Average Indicators

• sma ∗d : We define the simple moving average (SMA) of the daily closing prices P

of lag length ∗ as SMA(P, ∗), following the definition of SMA in equation (A.1). To

mitigate scaling issues and to ensure stationarity of the SMAs, we scale the SMA(P, ∗)t
by the current closing price, i.e., sma ∗d = SMA(P, ∗)t/Pt.

• macd : We define the moving average convergence/divergence as the difference of a

12-day exponential moving average (EMA) of daily closing prices and a 26-day EMA,

scaled by the 12-day EMA:

macdt =
EMA (P, 12)− EMA (P, 26)

EMA (P, 12)
(A.12)

• macd diff signal : We define the difference of the macd to its signal line as:

macd diff signalt = macdt − EMA (macd, 9) (A.13)

D. Volume Indicators

• volsma ∗d : We define the simple moving average (SMA) of the daily dollar trading

volume V of lag length ∗ as SMA(V, ∗), following the definition of SMA as in equation

(A.1). To mitigate scaling issues and to ensure stationarity of the SMAs, we scale the

SMA(V, ∗)t by the current trading volume, i.e., volsma ∗d = SMA(V, ∗)t/Vt.

• volmacd : We define the volume moving average convergence/divergence as the differ-

ence of a 12-day exponential moving average (EMA) of the daily dollar trading volume
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and a 26-day EMA, scaled by the 12-day moving average:

volmacdt =
EMA (V, 12)− EMA (V, 26)

EMA (V, 12)
(A.14)

• volmacd diff signal : We define the difference of the volmacd to its signal line as:

volmacd diff signalt = volmacdt − EMA (volmacd, 9) (A.15)

• chaikin: We define the Chaikin money flow indicator as follows: First, we calculate

the accumulation distribution value for each period t:

ADt =
(Pt − Lt)− (Ht − Pt)

Ht − Lt

Vt (A.16)

with Pt, Lt, and Ht denoting the closing, low, and high price of each day t, respectively,

and Vt being the dollar trading volume on day t. Then, chaikin is the sum of the ADt

values over the previous L = 21 days divided by the sum of the dollar trading volume

over the same period

chaikint =

∑L−1
l=0 ADt−l∑L−1
l=0 Vt−l

(A.17)

E. Volatility Indicators

• boll low : The lower Bollinger band is defined as the (unscaled) middle Bollinger band

boll mid minus two standard deviations of daily closing prices. To mitigate scaling

issues and to ensure stationarity, we scale the lower Bollinger band by the current

closing price:

boll lowt =
boll midt − 2σ

Pt

(A.18)

with σ denoting the 20-day standard deviation of daily closing prices.

• boll mid : The middle Bollinger band is defined as the 20-day SMA of daily closing

prices P scaled by the current closing price, i.e.,

boll midt =
SMA(P, 20)t

Pt

(A.19)
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• boll high: The upper Bollinger band is defined as the (unscaled) middle Bollinger band

boll mid plus two standard deviations of daily closing prices. To mitigate scaling issues

and to ensure stationarity, we scale the upper Bollinger band by the current closing

price:

boll hight =
boll midt + 2σ

Pt

(A.20)

with σ denoting the 20-day standard deviation of daily closing prices.

• boll width: The Bollinger band width is defined as the difference between the upper

and lower Bollinger bands, divided by the middle Bollinger band:

boll widtht =
boll hight − boll lowt

boll midt
(A.21)
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Appendix B. Additional Figures and Tables

Figure B.1: Distribution of Sharpe Ratios Under Alternative Research Designs
(Value-Weighted Portfolios Only)

The figure shows the distribution of Sharpe ratios under alternative research designs.
Specifically, (a) shows the density plot of the Sharpe ratios for the CTREND factor for
26,960 combinations, (b) shows the density plot of the CSMB factor, (c) shows the density
plot of the CMOM factor, and (d) compares the performance of the CTREND factor
estimated with CS-C-ENet with alternative estimation methods and the CSMB and CMOM
factors under 3,072 alternative research designs.

(a) Density Function CTREND (b) Density Function CSMB

(c) Density Function CMOM (d) Comparison With Other Factors
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Figure B.2: Comparison of Cumulative Factor Returns

The figure shows the cumulative factor returns of the CMKT, CSMB, CMOM, and CTREND
factors over the period from April 2015 to May 2022. All values are expressed in percentage
terms.
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Table B.2: Descriptive Statistics of Asset Pricing Factor Returns

Panel A of the table reports the average weekly return (in %), the weekly standard devi-
ation (in %), the annualized Sharpe ratio, skewness, and excess kurtosis for the CTREND
factor and the factors proposed in Liu et al. (2022). The numbers in parentheses are t-
statistics. Panel B reports the Pearson-product moment pairwise correlation coefficients of
factor returns. The sample period runs from April 2015 to May 2022.

Panel A: Performance Panel B: Correlations

Avg Std Shp Skew Kurt CMKT CSMB CMOM CTREND

CMKT
1.89
(3.29)

11.06 1.23 0.23 1.42 0.11 0.07 0.02

CSMB
3.18
(4.78)

12.81 1.79 3.59 18.68 0.11 -0.01

CMOM
1.98
(3.40)

11.26 1.27 1.10 3.16 0.61
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Table B.3: Bivariate Portfolio Sorts

The table reports the average weekly returns (in %) and t-statistics in parentheses of value-
weighted CTREND portfolios from two-way independent sorts. Cryptocurrencies are sorted
into two groups based on the control variables indicated in the first column and three
CTREND subsets. The intersection forms portfolios from independent double sorts. We
report average returns on portfolios with a consistent level of the control variables but dif-
ferent levels CTREND. The table also presents alphas for the CCAPM and LTW models.
Values that are significantly different from zero at the 5% level are in bold font. The study
period is from April 2015 to May 2022.

Trend Forecasts Abnormal Returns

Low Mid High High-Low αCCAPM αLTW

beta
0.81
(1.15)

1.12
(1.91)

3.85
(4.91)

3.04
(4.61)

2.96
(5.00)

1.96
(3.64)

mcap
1.50
(2.26)

1.86
(2.90)

3.52
(4.67)

2.02
(3.81)

2.02
(3.78)

0.85
(2.49)

illiq
1.45
(2.26)

1.56
(2.51)

2.87
(4.25)

1.42
(2.90)

1.43
(2.81)

0.62
(1.67)

ivol
0.86
(1.22)

1.75
(2.48)

3.09
(3.72)

2.23
(3.17)

2.23
(3.55)

1.31
(2.19)

ret 1 0
0.77
(1.11)

1.55
(2.42)

3.87
(4.63)

3.10
(4.87)

2.99
(4.96)

2.39
(4.76)

ret 2 0
0.46
(0.67)

1.49
(2.34)

2.69
(3.46)

2.22
(3.82)

2.14
(4.24)

1.62
(3.45)

ret 3 0
0.15
(0.23)

1.47
(2.34)

2.06
(3.05)

1.90
(3.80)

1.83
(3.95)

1.28
(2.80)

ret 4 0
0.27
(0.40)

1.48
(2.37)

2.50
(3.47)

2.23
(4.13)

2.09
(4.34)

1.38
(3.06)
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Table B.4: CTREND Performance Depending on Cryptocurrency Type

The table reports the performance of quintile trend portfolios constructed from the full
sample of cryptocurrencies and for subsets of coins and tokens, respectively. The table
reports the average weekly return and t-statistics in parenthesis for the quintile portfolios
as well as the average return of the hedge portfolio and the abnormal returns against the
CCAPM and LTW three-factor model. The study period is from April 2015 to May 2022.

Full Coins Tokens

Low
0.12
(0.16)

0.56
(0.78)

-0.28
(-0.28)

2
0.93
(1.32)

0.97
(1.27)

-0.06
(-0.07)

3
1.12
(1.79)

1.09
(1.66)

1.72
(1.36)

4
2.72
(3.59)

3.08
(3.91)

1.54
(1.47)

High
3.98
(4.80)

3.86
(4.41)

2.88
(2.72)

H-L
3.87
(5.19)

3.31
(4.31)

3.16
(2.93)

αCCAPM 3.80
(5.03)

3.16
(4.06)

3.23
(2.97)

αLTW 2.62
(4.22)

1.91
(2.95)

3.13
(3.23)
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Table B.5: Insignificant Anomaly Strategy Returns

The table reports the average weekly portfolio returns (in %) and t-statistics of quintile
portfolios based on cryptocurrency characteristics. Quintile portfolios are constructed by
ranking cryptocurrencies by their characteristics (from low to high) and assigning them
into portfolios based on the quintile distribution. The portfolios are value-weighted and re-
balanced weekly. A zero-investment portfolio takes a short position in cryptocurrencies in
the low and a long position in cryptocurrencies in the high portfolio. The sample period is
from April 2015 to May 2022.

Char L 2 3 4 H H - L

age
1.99
(2.09)

1.65
(2.01)

2.48
(3.41)

1.94
(2.73)

1.88
(3.28)

-0.11
(-0.13)

ret 8 0
2.16
(2.49)

1.73
(2.81)

2.03
(2.90)

2.57
(3.42)

3.02
(3.24)

0.85
(0.91)

ret 16 0
2.31
(3.12)

2.11
(3.13)

1.78
(2.61)

2.19
(2.90)

2.85
(3.09)

0.54
(0.61)

ret 50 0
1.61
(2.47)

2.11
(2.83)

2.37
(2.87)

2.06
(2.62)

1.84
(2.24)

0.23
(0.33)

ret 100 0
2.47
(3.29)

1.61
(2.32)

2.13
(2.53)

1.92
(2.35)

1.70
(2.03)

-0.77
(-0.90)

volume
2.14
(3.18)

2.15
(3.06)

2.06
(3.03)

1.64
(2.39)

1.90
(3.30)

-0.25
(-0.50)

illiq
1.89
(3.30)

2.00
(2.74)

2.00
(2.84)

2.15
(2.88)

1.93
(2.83)

0.04
(0.07)

beta
1.89
(2.37)

2.27
(3.36)

3.00
(3.78)

2.21
(2.76)

1.41
(1.80)

-0.48
(-0.56)

beta2
1.91
(2.40)

2.29
(3.37)

2.99
(3.77)

2.23
(2.78)

1.41
(1.80)

-0.50
(-0.58)

ivol
1.91
(3.30)

2.60
(3.11)

2.41
(2.74)

0.64
(0.78)

1.83
(1.82)

-0.08
(-0.09)

iskew
1.97
(3.25)

2.67
(3.36)

1.75
(2.11)

2.45
(2.84)

1.98
(2.20)

0.01
(0.01)

retvol
2.00
(3.26)

2.47
(3.22)

2.86
(3.13)

1.65
(2.00)

1.22
(1.27)

-0.78
(-0.89)

skew1
1.11
(1.86)

1.00
(1.64)

3.13
(3.71)

2.53
(3.17)

2.42
(2.83)

1.32
(1.91)

skew2
2.01
(3.46)

2.58
(3.33)

1.16
(1.55)

2.23
(2.52)

2.03
(2.20)

0.02
(0.03)

maxret
1.50
(2.58)

2.43
(3.22)

2.73
(3.38)

2.65
(2.96)

1.27
(1.29)

-0.23
(-0.26)

delay
2.14
(3.09)

2.00
(2.43)

1.98
(2.46)

2.29
(2.35)

1.28
(2.33)

-0.86
(-1.55)

var90d
1.33
(1.41)

1.40
(1.65)

1.31
(1.53)

2.59
(3.16)

1.89
(3.35)

0.56
(0.76)

es90d
1.89
(3.37)

2.57
(2.90)

2.41
(2.55)

1.61
(1.71)

0.60
(0.60)

-1.28
(-1.55)

ppt
2.39
(2.73)

3.33
(3.89)

1.77
(2.12)

1.76
(2.66)

1.90
(2.66)

-0.48
(-0.65)

stv
0.74
(1.10)

2.00
(3.27)

2.60
(3.82)

3.17
(3.55)

1.60
(1.67)

0.86
(1.02)
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Table B.8: Anomaly Strategy Returns

The table reports the average weekly portfolio returns (in %) and t-statistics of quintile
portfolios based on cryptocurrency characteristics. Quintile portfolios are constructed by
ranking cryptocurrencies by their characteristics (from low to high) and assigning them
to portfolios based on the quintile distribution. The portfolios are value-weighted and re-
balanced weekly. A zero-investment portfolio takes a short position in cryptocurrencies in
the low and a long position in cryptocurrencies in the high portfolio. The table also reports
the risk-adjusted return against the CCAPM and the three-factor model proposed in Liu
et al. (2022). Statistical significance at the 5% level is indicated by bold numbers. The
sample period is from April 2015 to May 2022.

Char L 2 3 4 H H - L αCCAPM αLTW

Size Strategy Returns

mcap
5.29
(6.56)

2.36
(3.10)

1.85
(2.58)

1.64
(2.36)

1.89
(3.29)

-3.40
(-5.98)

-3.39
(-5.86)

-1.46
(-3.29)

prc
4.68
(3.59)

2.25
(2.45)

2.19
(2.64)

1.96
(2.39)

1.86
(3.30)

-2.81
(-2.57)

-1.95
(-1.80)

0.18
(0.17)

maxdprc
4.65
(3.56)

2.14
(2.34)

2.02
(2.44)

2.14
(2.57)

1.86
(3.29)

-2.79
(-2.55)

-1.89
(-1.76)

0.23
(0.22)

Momentum Strategy Returns

ret 1 0
0.84
(1.13)

1.01
(1.39)

1.79
(2.70)

3.12
(4.46)

2.86
(3.18)

2.02
(2.35)

2.03
(2.33)

0.88
(1.09)

ret 2 0
0.19
(0.25)

1.21
(1.64)

1.40
(2.11)

2.77
(3.81)

3.79
(4.21)

3.60
(4.09)

3.40
(3.81)

1.83
(2.47)

ret 3 0
0.73
(1.00)

1.07
(1.45)

2.19
(3.05)

2.15
(3.03)

3.88
(4.19)

3.15
(3.56)

3.14
(3.49)

1.35
(1.99)

ret 4 0
0.86
(1.18)

0.93
(1.28)

1.92
(2.94)

2.70
(3.67)

2.99
(3.26)

2.13
(2.53)

2.03
(2.37)

0.62
(0.89)

ret 4 1
0.91
(1.25)

1.03
(1.49)

2.97
(3.80)

2.09
(3.05)

2.38
(2.65)

1.47
(1.82)

1.26
(1.55)

0.18
(0.27)

Volume Strategy Returns

prcvol
4.19
(3.30)

2.59
(3.04)

2.69
(3.03)

2.14
(2.43)

1.88
(3.29)

-2.31
(-2.15)

-1.85
(-1.71)

0.96
(0.98)

volscaled
4.23
(3.65)

2.78
(2.60)

1.87
(2.30)

2.64
(3.01)

1.83
(3.27)

-2.41
(-2.44)

-1.93
(-1.95)

-0.13
(-0.14)

stdprcvol
3.58
(3.66)

2.79
(2.90)

2.55
(2.95)

2.50
(2.73)

1.88
(3.29)

-1.71
(-2.16)

-1.61
(-2.00)

0.55
(0.77)
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Table B.9: TREND Model Alphas

The table reports alphas (in %) and t-statistics in parentheses from a regression of hedge
portfolio returns on a three-factor model that includes the CMKT, CSMB, and CTREND
factors. The study period is from April 2015 to May 2022.

αTREND αTREND αTREND

Panel A: Anomaly Alphas
Size Anomalies Momentum Anomalies Volume Anomalies

mcap
-1.57
(-3.38)

ret 1 0
-1.08
(-1.59)

prcvol
1.47
(1.47)

prc
0.58
(0.55)

ret 2 0
0.22
(0.32)

volscaled
0.35
(0.36)

maxdprc
0.71
(0.68)

ret 3 0
-0.44
(-0.69)

stdprcvol
0.58
(0.77)

ret 4 0
-1.07
(-1.67)

ret 4 1
-1.01
(-1.43)

Panel B: Technical Indicator Alphas

Momentum Oscillators sma 50d
0.82
(1.32)

volsma 100d
0.62
(0.91)

rsi
0.97
(1.85)

sma 100d
1.22
(1.84)

volsma 200d
0.67
(1.03)

stochRSI
0.38
(0.51)

sma 200d
1.35
(1.91)

volmacd
-0.53
(-0.71)

stochK
1.06
(1.98)

macd
-0.87
(-1.31)

volmacd diff signal
-0.29
(-0.32)

stochD
0.61
(1.02)

macd diff signal
-0.58
(-0.68)

chaikin
-0.14
(-0.21)

cci
0.82
(1.34)

Volume Indicators Volatility Indicators

Moving Averages volsma 3d
-0.34
(-0.50)

boll low
0.48
(0.55)

sma 3d
0.31
(0.37)

volsma 5d
-0.36
(-0.55)

boll mid
0.14
(0.27)

sma 5d
-0.33
(-0.43)

volsma 10d
-0.07
(-0.09)

boll high
-0.45
(-0.62)

sma 10d
1.06
(1.77)

volsma 20d
0.13
(0.16)

boll width
-1.32
(-1.38)

sma 20d
0.41
(0.72)

volsma 50d
0.06
(0.09)
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Table B.10: Extended Portfolio Holding Periods

The table reports average weekly returns (in %) and t-statistics in parentheses of zero-
investment portfolios for holding periods ranging from one to six weeks. The portfolios buy
(sell) the quintile of cryptocurrencies with the highest (lowest) expected return, as implied
by the variable in the first column. The study period is from April 2015 to May 2022.

1 2 3 4 5 6

CTREND
3.87
(5.19)

2.34
(3.08)

2.35
(3.03)

1.55
(2.10)

0.03
(0.05)

-0.53
(-0.67)

ret 1 0
2.02
(2.35)

1.56
(1.82)

1.37
(1.60)

0.08
(0.09)

0.57
(0.76)

-0.58
(-0.75)

ret 2 0
3.60
(4.09)

2.17
(2.64)

1.97
(2.21)

1.75
(2.27)

0.26
(0.31)

-0.81
(-0.95)

ret 3 0
3.15
(3.56)

1.88
(2.25)

1.63
(2.01)

0.80
(1.01)

-0.49
(-0.61)

0.16
(0.20)

ret 4 0
2.13
(2.53)

1.53
(1.71)

0.61
(0.88)

0.57
(0.72)

-0.57
(-0.76)

0.36
(0.53)
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Appendix C. Variable Importance

The CTREND variable aggregates multiple technical signals into one aggregate trend

measure. However, does it extract the information from all of them? Or does the predictive

performance depend on a handful of crucial variables? To shed light on this issue, we assess

the contribution of particular technical indicators using partial dependence plots (PDPs).

Our method follows the approach suggested by Greenwell et al. (2018) and Han et al.

(2023). The partial dependence value (PDV) f̂j,t+1 of a technical indicator j at time t + 1

is calculated following Greenwell et al. (2018). Denote Kj,t+1 as the number of unique

observations for which the technical indicator j at time t and the return at time t+1 are not

missing, and Nj,t+1 is the number of assets for which the j-th technical indicator at time t and

the return at time t + 1 are observed. Note that, generally, Kj,t+1 = Nj,t+1 for continuous

variables. For each unique observation k = 1, . . . , Kj,t+1, the actual observations of the

technical indicator zi,j,t ∀i = 1, . . . , Nj,t+1 are replaced by observation zk,j,t. Then, the slopes

obtained from the estimation using the actual data are used to obtain an Nt+1 × 1 vector

of return estimates at time t+ 1, i.e., f̂j,t+1. Repeating this for each unique observation, we

obtain an Nt+1×Kj,t+1 matrix of PDVs. We then calculate the cross-sectional average of the

PDVs and obtain the standard deviation of the PDVs, which we denote as σj,t+1. According

to Greenwell et al. (2018), a higher standard deviation indicates that the predicted returns

fluctuate more in response to the j-th technical indicator, suggesting a greater contribution

of the indicator to the aggregate trend characteristic. If the indicator is not important at

all, σj,t+1 equals zero, which is also the value we assign if the elastic net does not select

a technical indicator. Finally, we average over the series of σj,t+1 and obtain the average

importance score σ̄j of the j-th technical indicator (Han et al., 2023).

Figure C.3 depicts the importance ranking. By far the most important technical

indicators are boll mid, cci, and macd ; however, other indicators such as macd diff signal,

sma 5d, boll high, sma 3d, or volmacd also have high importance scores. The findings reveal

that the aggregate trend characteristic extracts information from the entire spectrum of

technical indicators: momentum oscillators, moving averages, as well as price, volume, and

volatility indicators.
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Figure C.3: Average Variable Importance

The figure shows the importance ranking for all 28 technical indicators within the aggregate
CTREND signal. Importance is gauged according to Greenwell et al. (2018) and Han et al.
(2023). Indicators are ranked in descending order from the most to the least important
indicator. The sample period is from April 2015 to May 2022.
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Next, we analyze which predictors are selected by the CS-C-ENet over time to see

if the selected set of predictors is persistent and if the aggregate trend prediction is sparse

in only a few indicators. Figure C.4 shows the selection of the CS-C-ENet over time and

reports the proportion in which a particular indicator was selected. The findings generally

align with the variable importance measures reported above. The four most important

indicators, boll mid, cci, macd, and macd diff signal, are selected in more than 70% of all

weeks, with the macd indicator being selected in more than 90% of all weeks. Overall, most

indicators are picked in more than 50% of all weeks, suggesting that the set of predictors in

the aggregate trend characteristic is highly persistent. Interestingly, the average number of

indicators selected per week is 15, indicating that the CTREND factor is not sparse, i.e., it

captures information from many technical indicators.
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Figure C.4: Indicator Selection Over Time

The figure shows the predictor selection of the CS-C-ENet over time. The black shades
indicates that a technical indicator was selected by the CS-C-ENet in a particular week,
while the white shades means that the indicator was not selected. The right y-axis shows
the proportion (in %) of weeks in which an indicator was selected. Technical indicators are
sorted according to the importance ranking shown in Figure C.4. The sample period is from
April 2015 to May 2022.
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