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Abstract

This paper presents a New Keynesian model to capture the linkages between macro

fundamentals and the nominal yield curve. The model explains bond yields with a low level

of news in expected inflation and plausible term premia. This implies that the slope of the

yield curve predicts future bond yields, and that risk-adjusted historical bond yields satisfy

the expectations hypothesis. The model also explains the spanning puzzle, matches key

moments for real bond yields, captures the evolution of the price-dividend ratio, and implies

that the slope of the yield curve and the price-dividend ratio forecast excess equity returns.
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I Introduction

The New Keynesian model is one of the most prominent models in macroeconomics to

understand the dynamics of economic activity, inflation, and the monetary policy rate. The

model has also implications for prices on financial assets, although these prices often are ignored.

The market for nominal government bonds is of particular interest, because bond yields contain

information about expected future policy rates and term premia, where the latter is determined

by consumption and inflation risk. But, it is well-known that the model struggles to explain

bond yields, mainly because term premia are too low and too stable (see, e.g., Rudebusch and

Swanson (2008)). This is obviously a concern, because prices are the key device that ensure

equilibrium in the model, as emphasized by Cochrane (2007).

Much work has therefore been devoted to improve the New Keynesian model along this

dimension.1 The inclusion of recursive preferences by Rudebusch and Swanson (2012) is crucial

in this context, because these preferences allow an otherwise standard New Keynesian model to

generate plausible term premia without distorting macro fundamentals. In this model news

about expected inflation is a key driver of bond yields. However, Duffee (2018) shows that this

implication is not consistent with data for the United States (U.S.), and this finding therefore

challenges the current specification of bond yields and inflation dynamics in the New Keynesian

model.

This paper modifies the New Keynesian model to explain macro fundamentals and bond

yields with a low level of news in expected inflation. The proposed model generates realistic term

premia that have the same level and variability as in reduced-form dynamic term structure

models (DTSMs). In addition, the model satisfies the two requirements in Dai and Singleton

(2002) for a correct specification of term premia, which serve as useful diagnostic tests given that

term premia are unobserved. The first requirement is that the difference between long- and

short-term bond yields (i.e., the yield spread) predicts future bond yields as in Campbell and

Shiller (1991). This property of bond yields is evaluated using a long simulated sample and is

1See for instance Hordahl, Tristani, and Vestin (2008), Graeve, Emiris, and Wouters (2009), Bekaert, Cho, and
Moreno (2010), Dew-Becker (2014), Kung (2015), Bretscher, Hsu, and Tamoni (2020), and Meyer-Gohde and Kliem
(2022) among others.
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therefore an unconditional test of term premia. The second requirement is that historical bond

yields satisfy the expectations hypothesis once adjusted for term premia using the proposed

model. This second requirement is therefore a conditional test of term premia, in the sense that

it requires reliable state and term premia estimates for historical bond yields. We also show that

the nonlinear structure of the model generates variation in key macro variables that is not

explained in linear regressions of these macro variables on bond yields. That is, the model

endogenously produces unspanned variation in macro variables as observed in U.S. data, and it

therefore goes a long way in avoiding the critique of macro-finance term structure models raised

in Joslin, Priebsch, and Singleton (2014). The model also provides a close fit to real bond yields,

although they are not included when estimating the model. Taking the analysis beyond bond

yields, we finally show that the model captures the overall evolution in the price-dividend ratio,

and that excess equity returns are predictable based on the yield spread and the price-dividend

ratio, as documented by Fama and French (1989). Here, and throughout we restrict relative risk

aversion to 10, meaning that we do not rely on extreme levels of risk aversion to explain asset

prices from macro fundamentals.

Two features of our model are essential to obtain these results. First, we use the flexible

formulation of recursive preferences in Andreasen and Jørgensen (2020) to separate the

intertemporal elasticity of substitution (IES), the relative risk aversion (RRA), and the timing

attitude. In contrast, the standard formulation of recursive preferences only separates the IES

and the RRA, while the timing attitude follows directly from the IES and RRA. With this

flexible formulation of recursive preferences, demand shocks is found to be a key driver of bond

yields, their embedded term premia, and key macro variables, but not of inflation. This is

different from the standard formulation of recursive preferences, where bond yields and term

premia are mainly determined by productivity shocks, as shown in Rudebusch and Swanson

(2012). However, productivity shocks have a sizable effect on inflation and hence explain bond

yield dynamics with too much variation in expected inflation, as emphasized by Duffee (2018).

Second, the New Keynesian model is typically solved using a third-order perturbation

approximation, because it allows for time-varying term premia unlike the standard log-linear
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approximation widely used in macroeconomics. The perturbation approximation and its

risk-adjustment for the variables of interest yt are obtained at the deterministic steady state yss,

but the approximation is applied around the unconditional mean E [yt]. This extrapolation

typically works well when yss is reasonably close to E [yt]. However, we generally find that this

difference is large with recursive preferences estimated to match U.S. bond yields, and that this

leads to poor performance of the perturbation approximation, even when considering expansions

up to fifth order. We address this previously unnoticed shortcoming of the perturbation

approximation by instead using the projection method of Judd (1992), which is computed on a

grid around E [yt]. To greatly improve its computational effi ciency, we note that for a given

stochastic discount factor the solution to all bond prices is given in closed form by ordinary least

squares (OLS) and hence obtained instantaneously. The same holds for expected future short

rates and hence for term premia. These closed form solutions represent a new methodological

contribution to the projection literature and apply to many popular choices of basis functions

and to any approximation order. We show that the estimates for several parameters in the New

Keynesian model change substantially when using the projection approximation instead of the

less accurate but widely used third-order perturbation approximation.

The remainder of this paper is organized as follows. Section II presents the New

Keynesian model, while our estimation approach is described in Section III. The main empirical

results are provided in Section IV, with various sensitivity results provided in Section V.

Additional model implications are discussed in Section VI and Section VII concludes.

II A New Keynesian Model

A The Households

We consider an infinitely lived representative household with recursive preferences as in

Epstein and Zin (1989) and Weil (1990). Using the formulation in Rudebusch and Swanson
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(2012), the value function Vt is given by

(1) Vt = ut + β
(
Et[V 1−α

t+1 ]
)1/(1−α)

when the utility function ut > 0 for all t.2 The subjective discount factor β ∈ (0, 1) and Et [·]

denotes the conditional expectation in period t. The main purpose of α ∈ R \ {1} is to endow

the household with preferences for when uncertainty is resolved, unless α = 0 and equation (1)

reduces to expected utility. It follows from Kreps and Porteus (1978) that equation (1) implies

preferences for early (late) resolution of uncertainty if α > 0 (α < 0) for ut > 0, whereas the

opposite sign restrictions apply when ut < 0. Andreasen and Jørgensen (2020) further argue that

the size of this timing attitude is proportional to α, meaning that numerically larger values of α

generate stronger preferences for early (late) resolution of uncertainty.

The utility function ut ≡ u (ct, lt) is assumed to depend on the number of consumption

units ct bought in the goods market and the provided labor supply lt to firms. Following

Andreasen and Jørgensen (2020), we also include a constant u0 in the utility function to account

for utility from goods and services that are not acquired in the goods market. This could be

utility from government spending or utility from goods produced and consumed within the

household. As shown in Andreasen and Jørgensen (2020), the reason for introducing u0 is to

separately control the level of the utility function to disentangle the timing attitude α from

relative risk aversion (RRA), which otherwise are tightly linked in the standard formulation of

recursive preferences. Using a power specification to quantify the utility from market

consumption ct and similarly for leisure 1− lt, we let

(2) u (ct, lt) =
dt

1−χ (ct − bct−1)1−χ + z1−χ
t

(
dtntϕ0

(1− lt)1− 1
ϕ

1− 1
ϕ

+ u0

)
.

The parameter b ≥ 0 accommodates external consumption habits, which are included to capture

autocorrelation in consumption growth. The variable dt introduces shocks to the utility function

to temporally increase or decrease the utility from a given level of ct and lt, implying that dt

2When ut < 0, Vt = ut − βEt[(−Vt+1)1−α]
1

1−α as in Rudebusch and Swanson (2012).
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operates as a demand shock.3 The variable nt is also exogenous and temporally shifts the

household’s incentive between ct and lt, meaning that nt may be interpreted as a labor supply

shock. Market consumption grows with the rate of the productivity level zt, and it is therefore

necessary to scale the utility from leisure and nonmarket consumption by z1−χ
t to ensure that

these terms do not diminish relative to 1
1−χ (ct − bct−1)1−χ along the balanced growth path. This

scaling is discussed and motivated further in Rudebusch and Swanson (2012) and Andreasen and

Jørgensen (2020).

The parameter χ > 0 and the degree of habit formation b determine the steady state

intertemporal elasticity of substitution (IES) as
(
1− bµ−1

z,ss

)
/χ, which measures the percentage

change in market consumption growth for a one percent change in the real interest rate when

ignoring uncertainty. The endogenous labor supply gives the household an additional margin to

absorb shocks and this modifies existing expressions for RRA. Using the results in Swanson

(2018), it follows that RRA in the steady state is

RRA =
χ(

1− b
µz,ss

)
+ χϕ w̃ss(1−lss)

c̃ss

+
α (1− χ)

(1− χ)u0c̃
χ−1
ss

(
1− b

µz,ss

)χ
+
(

1− b
µz,ss

)
+ 1−χ

1− 1
ϕ

w̃∗ss(1−lss)
c̃ss

where c̃ss = ct/zt|ss and w̃∗ss = w∗t /zt|ss refer to the steady state (ss) of market consumption and

the real frictionless wage w∗t relative to the productivity level. Given that the IES is determined

by χ, and α controls the strength of the timing attitude, the level of the utility function u0 is the

key parameter for determining RRA.

The real budget constraint is ct + Et
[
Mt,t+1x

real
t+1

]
= xrealt /πt + w∗t lt +Divt + Tt. That is,

resources are spent on market consumption goods ct and nominal state-contingent claims Xt+1,

where xrealt+1 ≡ Xt+1/Pt denotes the real value of these claims that are priced using the nominal

stochastic discount factor Mt,t+1. The household’s income is given by the real value of

3In the endowment models of Albuquerque, Eichenbaum, Luo, and Rebelo (2016) and Gomez-Cram and Yaron
(2021), shocks to the utility function affect only asset prices and are therefore referred to as capturing valuation
risk. In production-based equilibrium models, shocks to dt generate also endogenous variation in consumption,
inflation, etc., and this explains why these shocks are referred to as demand shocks within these models.
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state-contingent claims bought in the previous period xrealt /πt, the real wage income w∗t lt, real

dividend payments from firms Divt, and real lump-sum transfers Tt. Here, πt denotes the gross

inflation rate.

The first-order conditions for the utility maximizing household are

(3) Et [Mt,t+1Rt] = 1

(4) z1−χ
t ntϕ0 (1− lt)−

1
ϕ = (ct − bct−1)−χw∗t ,

where Rt is gross one-period nominal interest rate. Equation (3) is the well-known consumption

Euler-equation, while equation (4) is the optimality condition for the labor supply.

To incorporate wage stickiness, we follow Blanchard and Gali (2005), Rudebusch and

Swanson (2008), among others and introduce a simple wage bargaining friction in the labor

market. Specifically, we assume that the real market wage wt is given by

(5) wt = κw (w̃sszt) + (1− κw)w∗t ,

where κw ∈ [0, 1) captures wage stickiness by smoothing the frictionless wage w∗t in relation to

the long-term wage along the balanced growth path w̃sszt. Although this simple wage rule does

not explicitly introduce Nash bargaining between workers and firms, Blanchard and Gali (2005)

argue that it is a parsimonious way to capture the essential features of real wage bargaining.

B The Firms

Output yt is produced by a competitive representative firm, which combines differentiated

intermediate goods yt (i) using yt =
(∫ 1

0
yt (i)

η−1
η di

) η
η−1

with η > 1. The demand for the ith

good is given by yt (i) =
(
Pt(i)
Pt

)−η
yt, where Pt ≡

(∫ 1

0
Pt (i)1−η di

) 1
1−η

denotes the aggregate price

level and Pt (i) is the price of the ith good.

Intermediate firms produce slightly differentiated goods using the production function
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yt (i) = ztatk
θ
sslt (i)1−θ, where kss and lt (i) denote capital and labor services at the ith firm,

respectively. The variables at and zt capture transitory and permanent productivity shocks,

respectively. Each intermediate firm can freely adjust its labor demand at the given market wage

wt. Price stickiness is introduced as in Rotemberg (1982), where ξ ≥ 0 controls the size of firms’

real cost ξ
2

(Pt (i) / (Pt−1 (i) πss)− 1)2 yt when changing Pt (i). As in Rudebusch and Swanson

(2012), each firm uses δksszt units of output for investment to maintain a constant capital stock

along the balanced growth path. The first-order conditions for profit maximization are

(6) wt = mct (1− θ) ztatkθssl−θt

(7) yt (1− η) + Et
[
ξMt,t+1πt+1

(
πt+1

πss
− 1

)
πt+1

πss
yt+1

]
+mctytη = ξ

(
πt
πss
− 1

)
yt
πt
πss

,

where mct denotes marginal costs. Equation (6) determines labor demand, and equation (7)

implies an aggregate supply relation between output and inflation.

The aggregate resource constraint reads ct + ztδkss =

(
1− ξ

2

(
πt
πss
− 1
)2
)
yt, where

ξ
2

(
πt
πss
− 1
)2

yt is the output loss from price stickiness.4

C The Central Bank

The policy rate for the Federal Reserve is the short (one-period) nominal rate Rt. It is set

according to the forward-looking Taylor-rule

(8) Rt = RssEt
[
exp

{
φπ log

(
πt+1

πssπ∗t+1

)
+ φ∆c (∆ct+1 −∆css)

}]
,

based on a desire to stabilize future inflation πt+1 and future economic activity as measured by

consumption growth ∆ct+1. To accommodate the large variation in inflation in post-war U.S.

data, we follow the existing literature and introduce an exogenous inflation target π∗t around the

steady state inflation rate πss.

4Here we abstract from any costs linked to wage stickiness by setting the household transfers Tt = ltwt− ltw∗t =
κwlt ((w̃sszt)− w∗t ) to ensure that the wage bill wtlt paid by the firms is also the wage bill received by the household.
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D Bond Pricing and Structural Shocks

The price in period t of a default-free zero-coupon bond B(k)
t maturing in k periods with a

face value of one dollar is B(k)
t = Et

[
Mt,t+1B

(k−1)
t+1

]
for k = 1, ..., nb with B

(0)
t = 1. Using

continuos compounding, the yield to maturity is r(k)
t = − 1

k
b

(k)
t with b(k)

t ≡ logB
(k)
t . Bond prices

are therefore determined by the nominal stochastic discount factor, which reads

(9) Mt,t+1 = β
dt+1

dt

(
ct+1 − bct
ct − bct−1

)−χ(Et [V 1−α
t+1

]) 1
1−α

Vt+1

α

1

πt+1

when ut > 0 for all t. The term premium TP
(k)
t is defined as the difference between r(k)

t and the

expected future path of the short rate, i.e., TP (k)
t = r

(k)
t −

∑k−1
i=0 Et [rt+i] with rt ≡ logRt.

Finally, we use a standard specification for the five structural shocks by letting

log log
(
µz,t+1/µz,ss

)
= ρµz log

(
µz,t/µz,ss

)
+ σµzεµz ,t+1(10)

log dt+1 = ρd log dt + σdεd,t+1

log nt+1 = ρn log nt + σnεn,t+1

log π∗t+1 = ρπ∗ log π∗t + σπ∗επ∗,t+1

log at+1 = ρa log at + σaεa,t+1

with µz,t ≡ zt/zt−1, where εµz ,t+1, εd,t+1, εn,t+1, επ∗,t+1, and εa,t+1 are standard normally

distributed and independent across time, denoted NID (0, 1), and mutually uncorrelated.

III Estimation Methodology

This section outlines how we estimate the New Keynesian model. We describe the

considered data in Section III.A and present our solution method in Section III.B. The adopted

estimation routine is discussed in Section III.C.
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A Data

The model is estimated using quarterly U.S. data from 1961Q2 to 2019Q3, where we end

the sample before the start of the COVID-19 pandemic. The dynamics of the macro economy is

measured by i) detrended labor supply l̂t, ii) the detrended real wage ŵt iii) consumption growth

∆ct, and iv) inflation πt.5 The nominal yield curve is represented by the 3-month, 1-, 3-, 5-, 7-,

and 10-year bond yields. These yields are taken from Gürkaynak, Sack, and Wright (2007),

except at the 3-month maturity where we use the implied rate on a 3-month Treasury Bill.

Taylor-rules as the one considered in equation (8) are obviously an approximation to the

historical policy decisions taken by the Federal Reserve. In particular, the rule ignores the

’monetarist experiment’from 1979Q4 to 1982Q4 and the policy rate being constrained by the

zero lower bound (ZLB) after 2008. We account for both of these deviations from the adopted

interest rule in the following way.

First, during the monetarist experiment, the Federal Reserve targeted monetary

aggregates and its policy decisions were therefore not well summarized by the interest rule in

equation (8). To avoid that the highly volatile short rate in this period distorts the estimation,

we greatly downweight the importance of the 3-month interest rate from 1979Q4 to 1982Q4 in

the estimation. As explained below in Section III.C, the model is estimated using nonlinear

filtering techniques, and we implement this downweighting by increasing the standard deviation

of the measurement errors for the 3-month interest rate to 100 basis points from 1979Q4 to

1982Q4.

Second, the interest rule in equation (8) does not enforce the ZLB. A possible concern is

therefore that the model may generate a short rate during the estimation that is clearly below

zero although the empirical short rate is always positive. We guard against this possibility by

lowering the standard deviation of the measurement in the 3-month rate to just 5 basis points at

the ZLB. This also ensures that the signal-to-noise ratio for the 3-month rate remains reasonable

5The labor supply is measured by the total number of employees for total nonfarm payrolls, while the real wage
is measured by the seasonally adjusted real hourly compensation in the nonfarm business sector. Both variables are
detrended using the procedure in Hamilton (2018). The consumption growth rate is calculated from real per capita
nondurables and service expenditures. Inflation is measured by the year-on-year growth rate in the consumer price
index (CPI) excluding food and energy prices for all urban consumers.
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at the ZLB, where the variability in the short rate is greatly reduced. We define the ZLB as

spells where the 3-month interest rate is below 50 basis points.

In total, the estimation uses 10 variables, which we collect in the vector yobst and express

in annualized terms except for l̂t and ŵt.

B Model Solution

The state variables for the model appear in the vector xt = [ log
(
ct−1
zt−1

)
log µz,t log dt

log nt log π∗t log at ]′, where consumption is scaled by the productivity level zt to ensure

stationarity. All the remaining variables appear in the vector yt with dimensions ny × 1. The

exact solution is

(11)
yt = g (xt;θ)

xt+1 = h (xt;θ) + ηεt+1

with εt = [ εµz ,t εd,t εn,t επ∗,t εa,t ]′ and all structural coeffi cients collected in θ. The law of

motions for the exogenous states are provided in equation (10), and the dynamics of log
(
ct−1
zt−1

)
is

identical to the one for consumption scaled by zt in g (xt;θ). As a result, we only need to

approximate the g-function.

The solution to the New Keynesian model with asset prices is typically obtained using a

third-order perturbation approximation, because it allows for non-zero and time-varying risk

premia. Although this approximation is often found to be very accurate as shown in Aruoba,

Fernandez-Villaverde, and Rubio-Ramirez (2006) and Caldara, Fernandez-Villaverde,

Rubio-Ramirez, and Yao (2012), the inclusion of recursive preferences generates a large

risk-adjustment that may reduce the accuracy of the approximation. The reason is that the

risk-adjustment to capture term premia in the perturbation approximation is computed around

the deterministic steady state of yt, denoted yss, but applied around the unconditional mean of

yt, denoted E [yt]. This extrapolation typically works well when yss is reasonably close to E [yt].

However, we generally find that this difference is large with recursive preferences estimated to

match U.S. bond yields, and this leads to poor performance of the perturbation approximation.
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For instance, in our baseline specification of the New Keynesian model, the annualized short rate

has a determinist steady state of 18.50%, but an unconditional mean of just 4.80%.6

Based on this observation, we instead solve the model by the projection method of Judd

(1992) using a second-order polynomial for the g-function. Feasibility obviously dictates this

relative low approximation order with nx = 6 states, ny = 45 control variables, and nε = 5

structural shocks in the model. Nevertheless, as we show below in Section V.B, the global nature

of this solution provides a more accurate approximation when compared to even a fifth order

perturbation solution - in part because the risk correction in the projection approximation is

computed on a grid around E [yt] and not around yss. That is, we let

(12) yt = g0 + gxxt + gxxvech (xtx
′
t) ,

where the unknown loadings for this projection approximation appear in g0, gx, and gxx with

dimensions ny × 1, ny × nx, and ny × nx (nx + 1) /2, respectively. We consider N grid points

X = {xi}Ni=1 for the states and determine these unknown loadings by minimizing the model’s

Euler-equation errors on this grid. Details on the construction of the grid X , evaluation of the

conditional expectations in the Euler-equations, and the construction of the objective function

are standard and provided in Appendix A.

For an effi cient implementation, consider the partition yt =

[
(yat )

′ (ybt)′ (bzct )′
]′
,

where yat = [ log
(
ct
zt

)
log πt log evft ]′ contains the three macro variables required to solve the

model without any bond yields, with evft = Et
[(
Vt/z

1−χ
t

)1−α
]
being an auxiliary variable used

to capture the recursive preferences. The vector ybt = [ log lt log
(
wt
zt

)
]′ represents additional

macro variables used in the estimation, while all log-transformed zero-coupon bond prices appear

in bzct = [ b
(1)
t b

(2)
t ... b

(40)
t

]′. As shown in Appendix A, only the optimization step with

respect to the unknown loadings related to yat is nonlinear. Given the solution for yat , the

projection loadings for ybt and bzct are given in closed form by ordinary least squares (OLS) and

hence obtained instantaneously. We also show that the same holds for expected future short

6The main problem appears to be that the perturbation method struggles to accurately approximate Vt and
Et
[
V 1−α
t+1

]
, which then spills over into large approximations errors for bond yields.
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rates and hence for term premia. These closed form solutions for bond prices bzct and expected

short rates represent a new methodological contribution to the projection literature for models

with a yield curve and extends to other basis functions than the one applied in equation (12) and

to any approximation order. As a result, we are able to obtain a second-order projection

approximation in just about 6 seconds on a standard desktop computer using a single CPU.7

Exploiting this new computational trick is absolutely essential for making a formal estimation of

our medium-sized New Keynesian model computational feasible with a global solution routine.

C Robustified Inference with Nonlinear Filtering

The approximated state space representation of the model includes nonlinear terms with

the unobserved states xt, implying that the Kalman filter cannot be used to estimate the model.

Instead, we rely on the central difference Kalman filter (CDKF) developed by Norgaard,

Poulsen, and Ravn (2000), which is a nonlinear extension of the Kalman filter. The CDKF

accommodates measurement errors in yobst , which in practice also include potential modelling

errors. We specify these errors vt to be uncorrelated Gaussian white noise, as typically assumed

when estimating structural macroeconomic models and reduced-form DTSMs. That is,

vt ∼ NID (0,Rv) where Rv is a diagonal covariance matrix, implying that yobst = Syt + vt for

an appropriate selection matrix S.8

A likelihood function can be derived from the CDKF under the assumption that the

prediction errors for yobst are Gaussian. However, this distributional specification does not hold

exactly due to the nonlinear terms in the model solution. The CDKF therefore only provides a

quasi log-likelihood function 1
T

∑T
t=1 Lt (θ), which can be used for a quasi maximum likelihood

(QML) estimation, as suggested in Andreasen (2013).

A possible limitation of any QML approach (as with standard maximum likelihood) is its

7The processor is an AMD Ryzen 7 PRO 7840U. We reserve the use of multi-processing for the estimation of
the structural parameters using the evolutionary optimization routine of Andreasen (2010) applied to the objective
function described below in Section III.C.

8Unlike the more accurate particle filter proposed in Fernández-Villaverde and Rubio-Ramírez (2007), the up-
dating rule for the states in the CDKF is linear, implying that the recursive filtering equations only depend on first
and second moments. The CDKF approximates these moments by a deterministic sampling procedure, and this
makes the CDKF computationally much faster than any particle filter and generally also more accurate than the
well-known extended Kalman filter.
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lack of robustness to model misspecifications other than the distributional assumption of the

prediction errors for yobst . A possible source of misspecification in the New Keynesian model is

that the same structural parameters in θ determine the g- and the h-function. In contrast, the

widely used reduced-form Gaussian DTSM basically allows these two functions to be determined

by separate parameters, which in these models is essential to generate term premia dynamics

that are not rejected by historical data (see Dai and Singleton (2002)).9 In the context of the

New Keynesian model, the g-function is likely to prefer large and persistent shocks, because this

helps the model to generate variation in term premia and hence fit medium- and long-term bond

yields. On the other hand, small and less persistent shocks are typically needed in the h-function

to fit the state dynamics and ensure sensible unconditional properties of yobst . Given the

inclusion of several bond yields with small measurement errors in the estimation, our experience

is that the g-function dominates the QML estimates of the New Keynesian model. This typically

implies a tight in-sample fit to yobst , but it comes at the expense of unconditional variances for

yobst that are too large compared to U.S. data.

Thus, a robustified version of the standard QML estimator is required to obtain reliable

estimates of our New Keynesian model. The solution we propose is to shrink the QML estimator

to the unconditional first and second moments of yobst , because this is a simple and transparent

way to increase the weight assigned to the h-function in the estimation. We denote the shrinkage

moments by 1
T

∑T
t=1 mt in the sample and by E [m (θ)] in the model. The applied estimator is

given by

(13) θ̂ =arg max
θ∈Θ

1

T

∑T
t=1 Lt (θ)− λf1:T (θ)′Wf1:T (θ) ,

where Θ is the feasible domain of θ, f1:T (θ) ≡ 1
T

∑T
t=1 ft (θ) with ft (θ) ≡mt−E [m (θ)], and W

is a diagonal weighting matrix containing the inverse of the standard errors for the shrinkage

moments.10

9The only link between the g- and h-functions in the reduced-form Gaussian DTSM is the conditional covariance
matrix of the states, but the effect of this covariance matrix on the g-function is typically very small.
10Another possibility is to use the optimal weigthing matrix, but this version of equation (13) is not considered to

avoid well-known small-sample distortions from estimating large covariance matrices in moment-based estimators.
In our application, we estimate the diagonal elements inW using the Newey-West estimator with three lags.
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The nature of the estimator in equation (13) is determined by λ ≥ 0, which controls the

weight assigned to the shrinkage moments relative to the sample average of Lt (θ). We obviously

recover the standard QML estimator when λ = 0, while θ̂ converges to the generalized method of

moments (GMM) estimator of Hansen (1982) when λ becomes suffi ciently large. We consider a

small amount of shrinkage by letting λ = T , which in our setting implies that shrinkage

constitutes a small part of the objective function. Our results are not particularly sensitive to

increasing the degree of shrinkage further, although we do find notable effects of shrinkage when

compared to the standard QML estimator.11

To obtain closed-form expressions for the model-implied shrinkage moments, we apply the

pruning scheme of Andreasen, Fernandez-Villaverde, and Rubio-Ramirez (2018) when setting up

the state space system for the approximated version of the model.12 This implies that the

estimator in equation (13) can be implemented without resorting to simulation and belongs to

the general class of extremum estimators. Its asymptotic properties are therefore easily derived

in the Online Appendix.

We use two classes of shrinkage moments. The first class contains first and second

unconditional moments of yobst , except for the mean of detrended labor supply and the real wage

that are zero. These moments help to robustify the QML estimates, which we illustrate in a

Monte Carlo study in the Online Appendix. Here we show that shrinkage towards these

moments give smaller parameter biases than standard QML when the model is misspecified with

the g- and h-functions determined by different structural parameters. On the other hand,

without any model misspecification, we unexpectedly find no benefit of shrinkage, which mainly

reduces the effi ciency of the standard QML estimator that is nearly unbiased in this case. We

benchmark these results to using an extreme degree of shrinkage with λ = 106, which

corresponds to estimating the structural parameters by GMM and obtaining the states

11Note also that equation (13) belongs to the class of Laplace type or quasi-Bayesian estimators of Chernozhukov
and Hong (2003), where a potentially misspecified log-likelihood function (as considered in our case) may be used
within a Bayesian setting. When this estimator is combined with the endogenours prior specification in Christiano,
Trabandt, and Walentin (2011) using a pre-sample of length T ∗, we obtain the objective function in equation (13)
with λ = T ∗/2, as shown in the Online Appendix.
12The pruning scheme is not essential in our case, because the proposed model has only one endogenous state

(i.e., log (ct−1/zt−1)), and partly for this reason appears to be stable when simulated without pruning. Details
related to the pruned state space system and the derivations of its moments are provided in the Online Appendix.
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afterwards by the CDKF. The Monte Carlo study shows that these GMM estimates of θ display

notable biases in finite samples and are clearly less effi cient compared to the standard QML

estimator (λ = 0) and the proposed estimator (with λ = T ), both with and without model

misspecification. These imprecise GMM estimates of the structural parameters also imply less

accurate state estimates when compared to the proposed estimator with λ = T .

The second class of moments we include contain information about term premia as

captured by the regression of Campbell and Shiller (1991). That is,

(14) r
(k−m)
t+m − r(k)

t = αk + βk
m

k −m

(
r

(k)
t − r

(m)
t

)
+ ut+m,k,

where ut+m,k is an error term and m = 4 to obtain annual changes in bond yields for our

quarterly sample. The expectations hypothesis implies βk = 1, but empirical estimates of the

slope coeffi cients βk are negative and decreasing with maturity, which is evidence of time-varying

term premia. This implies that bond returns are predictable, because equation (14) is equivalent

to the forecast regression rx(k)
t+m = α̃k + β̃k

(
r

(k)
t − r

(m)
t

)
+ εt+m,k, where rx

(k)
t+m is excess bond

returns and β̃k ≡ m
4

(1− βk). We consider βk at the 2-, 3-, ..., 10-year maturity to assign more

weight to the evidence against the expectations hypothesis than implied by the considered panel

of bond yields used to compute the quasi log-likelihood function. These slope coeffi cients are

represented in the shrinkage moments by including Cov(r
(k−m)
t+m − r(k)

t , r
(k)
t − r

(m)
t ) and

V ar(r
(k)
t − r

(m)
t ) related to βk at the included maturities.

IV Estimation Results

This section presents the main results for the proposed model. We proceed by discussing

the estimated parameters in Section IV.A and the model fit in Sections IV.B to IV.D. The

following three subsections explore how well the model matches key moments of bond yields that

are not included in the estimation. The key mechanisms in the model are finally explained in

Section IV.H.
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A Estimated Parameters

Not all parameters in the New Keynesian model are well-identified from our set of

observables, and these parameters are therefore determined by standard calibration arguments.

Hence, we let δ = 0.025, lss = 0.33, and θ = 0.4 as typically assumed for the U.S. economy. We

also set the ratio of capital to output in the steady state to 2.5 as in Rudebusch and Swanson

(2012). The value of µz,ss is set to match the mean of consumption growth, implying that

µz,ss = 1.0055. Finally, we set the constant u0 in the utility function to get a steady state RRA

of 10 as considered in Bansal and Yaron (2004).

Given the large number of variables included in the estimation, we set the size of the

measurement errors in yobst using reasonable assumptions. The standard deviation for the

measurement errors in all bond yields is set to 25 basis points, corresponding to 8.3% of the

average standard deviations in the six considered yields. Similarly, we assume that 20% of the

variation in labor supply, the real wage, and consumption growth is due to measurement errors,

implying standard deviations of 58, 44, and 35 basis points, respectively. Inflation displays very

similar dynamics to short-term bond yields, and we therefore set its measurement errors to 10%

of its variation, as it gives a standard deviation of 24 basis points.

The first column in Table 1 reports the estimated parameters in the preferred version of

the model. This baseline model is denotedMM,CS, where the superscripts indicate that

shrinkage is applied based on the considered first and second unconditional moments of yobst (by

"M") and the selected Campbell-Shiller moments (by "CS"). The results for the other versions

of the model will be discussed below in Section V. For our preferred modelMM,CS we find

β̂ = 0.991 and a moderate degree of habit formation with b̂ = 0.65. For consumption growth,

this implies autocorrelations of 0.65, 0.42, 0.27, and 0.17 at the first four lags, which are

reasonably close to the responding sample moments of 0.47, 0.37, 0.39, and 0.18, respectively.

For the curvature parameter in the utility function, we get χ̂ = 5.83, which together with our

estimate of b imply an IES of 0.06. This relatively low IES is consistent with Hall (1988) and

Yogo (2004), who estimate the IES to between zero and 0.2.

The degree of substitutability among the intermediate goods is η = 8.85, giving a low and
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Table 1: The Structural Parameters

This table shows the estimated parameters using quarterly data from 1961 to 2019, with asymptotic standard errors
provided in parentheses. The first four observations are used to initialize the CDKF. The use of shrinkage is denoted
on the model object by using the superscipts "M" for the unconditional moments and "CS" for the Campbell-Shiller
moments. The subscript on the model object indicates that the standard specification of recursive preferences (EZ)
is used in column 4 and that a third-order perturbation approximation (3th) to the model solution is used in column
5. No standard errors are provided for β, η, and φ∆c when they are at their upper bounds of 0.999, 10, and 10,
respectively. The timing premium is evaluated at the steady state and computed as in Andreasen and Jørgensen
(2020).

MM,CS MM M MM,CS
EZ MM,CS

3th
1 2 3 4 5

α −11.460
(6.214)

−9.029
(1.664)

−9.032
(0.630)

−16.488
(3.788)

−14.250
(2.367)

β 0.991
(0.011)

0.999
−

0.988
(0.000)

0.993
(0.003)

0.948
(0.057)

b 0.653
(0.077)

0.574
(0.007)

0.841
(0.010)

0.866
(0.116)

0.625
(0.268)

ϕ 0.098
(0.065)

0.092
(0.003)

0.156
(0.003)

0.209
(0.045)

0.169
(0.347)

χ 5.828
(1.101)

7.104
(0.309)

5.042
(0.630)

1.948
(0.550)

15.633
(13.174)

ξCalvo 0.438
(0.086)

0.309
(0.003)

0.497
(0.026)

0.772
(0.008)

0.396
(0.230)

κw 0.917
(0.016)

0.909
(0.020)

0.834
(0.001)

0.867
(0.045)

0.945
(0.017)

η 8.848
(11.414)

10.000
−

10.000
−

8.208
(2.166)

9.774
(0.763)

φπ 3.957
(2.321)

3.691
(0.880)

4.764
(1.558)

2.982
(0.830)

10.000
−

φ∆c 1.096
(0.442)

0.658
(0.563)

4.572
(1.532)

2.344
(2.600)

2.940
(0.799)

ρµz 0.491
(0.128)

0.373
(0.075)

0.540
(0.000)

0.770
(0.046)

0.218
(0.272)

ρd 0.984
(0.001)

0.985
(0.000)

0.968
(0.005)

0.978
(0.002)

0.998
(0.010)

ρn 0.986
(0.008)

0.985
(0.005)

0.984
(0.004)

0.967
(0.041)

0.980
(0.026)

ρπ∗ 0.995
(0.011)

0.989
(0.000)

0.985
(0.009)

0.997
(0.003)

0.987
(0.015)

ρa 0.983
(0.008)

0.981
(0.004)

0.984
(0.000)

0.990
(0.001)

0.996
(0.027)

πss 1.021
(0.012)

1.021
(0.004)

1.034
(0.002)

1.018
(0.003)

1.024
(0.007)

σµz × 100 0.330
(0.013)

0.378
(0.072)

0.403
(0.039)

0.297
(0.003)

0.609
(0.342)

σd 0.127
(0.058)

0.122
(0.008)

0.152
(0.006)

0.033
(0.010)

0.053
(0.114)

σn 0.044
(0.017)

0.064
(0.010)

0.087
(0.007)

0.035
(0.002)

0.108
(0.111)

σπ∗ × 100 0.043
(0.036)

0.060
(0.016)

0.247
(0.042)

0.083
(0.001)

0.086
(0.075)

σa × 100 0.236
(0.129)

0.218
(0.043)

0.677
(0.039)

0.395
(0.021)

0.148
(0.509)

Additional Info
Timing Premium 2.81% 2.77% 4.65% 7.33% 1.13%
IES 0.06 0.06 0.03 0.07 0.02
RRA 10 10 10 34.70 10
u0 -459 -273 -5,945 0 -913,824

plausible average price markup of 13%. To aid the interpretation of the price adjustment

parameter ξ, Table 1 reports the corresponding Calvo parameter ξ̂Calvo that gives the same slope
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of the aggregate supply relation as ξ̂ when linearizing this relation.13 We find ξ̂Calvo = 0.44, which

corresponds to an average price duration of just 1.8 quarters, showing that our New Keynesian

model does not impose a strong degree of price stickiness. Instead, the model relies more on real

wage stickiness with κ̂w = 0.92, which is similar to the finding in Smets and Wouters (2007).

In relation to the labor supply, we find ϕ̂ = 0.10 and therefore a Frisch elasticity of

ϕ (1/lss − 1) = 0.20 in the steady state with lss = 0.33. Most micro estimates of the Frisch labor

supply elasticity for males are in the range from 0.10 to 0.40 according to Keane (2011), showing

that our low estimate of φ is consistent with micro evidence. With φ̂ and χ̂ well below and above

one, respectively, the utility function in equation (2) is negative. Hence, the estimate α̂ = −11.46

implies preferences for early resolution of uncertainty and a realistic timing premium of 2.81%.

As discussed in Epstein, Farhi, and Strzalecki (2014), this means that the household is willing to

give up 2.81% of total lifetime consumption to have all uncertainty resolved in the following

period. Given these estimates, we obtain the required relative risk aversion of 10 when the utility

constant is u0 = −459. To interpret the magnitude of this constant, we compute the periodic

utility u (ct, lt) with and without a constant in a simulated sample to find the fraction of utility

from consumption and leisure, i.e., u (ct, lt)|u0=0 /u (ct, lt). This fraction has an average of 12%,

but displays considerable variation over the business cycle with a 5th percentile of 3% and a 95th

percentile of 26%. As a result, the constant u0 ensures a high and therefore also more stable

utility level relative to its mean when compared to the standard specification with u0 = 0. As

argued by Andreasen and Jørgensen (2020), this helps to keep the household’s risk aversion at a

low and plausible level.

The forward-looking central bank assigns more weight to stabilizing future inflation than

economic activity with φ̂π = 3.96 and φ̂∆c = 1.10, which is a common finding in the literature.

For the structural shocks, we find that permanent productivity shocks display low persistence

with ρ̂µz = 0.49, showing that the model does not rely on a strong long-run risk component. In

contrast, the inflation target is highly persistent with ρ̂π∗ = 0.995 and it has low volatility with

σ̂π∗ = 0.00043, implying that this shock captures long-run nominal risk. Finally, the preference

13The mapping between ξ and ξCalvo is ξ = (1−θ+ηθ)(η−1)ξCalvo
(1−ξCalvo)(1−θ)(1−ξCalvoβµ

1−χ
z,ss)

.
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shock, the labor supply shock, and the stationary productivity shock are also highly persistent

with first-order autocorrelation functions of about 0.98.

Overall, the estimated structural parameters appear reasonable and consistent with micro

evidence as well as previous findings for the New Keynesian model.

B Model Fit

Figure 1 plots the data and the model-implied values (the thick line) for the 10 variables

included in the estimation. The model captures the overall evolution in the labor supply l̂t and

the real wage ŵt remarkably well despite our parsimonious specification of the labor market.

This is also evident from the correlation between the data series and the model-implied series as

denoted by τ in the figure, which is 0.87 for the labor supply and 0.85 for the real wage. The

model provides an even closer fit to consumption growth ∆ct and inflation πt with τ = 0.98. For

the short rate rt, we see an outlier around 1980, which is expected due to our choice of

downweighting the importance of the short rate in the estimation during the monetary policy

experiment. We also find that the model fits the short rate closely at the zero lower bound as

desired, and that all remaining bond yields are well matched by the model.

Accordingly, the proposed model with just five structural shocks provides a good

in-sample fit to the 10 variables in yobst . To benchmark this result to the literature, recall that

the New Keynesian model is typically estimated using as many shocks as observables. However,

the dynamics of the yield curve is well captured by the first two principal components, implying

that six structural shocks should be needed in our case. The fact that the proposed model

matches the observed data using just five shocks is therefore very satisfying.

C Unconditional Stylized Moments

Table 2 explores the ability ofMM,CS to match the unconditional means and standard

deviations in yobst as included when estimatingMM,CS. The first column in Table 2 shows U.S.

sample moments and their bootstrapped 95% confidence bands, while the second column shows

the corresponding population moments inMM,CS. We first note thatMM,CS reproduces the
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Figure 1: Model Fit
This figure shows the observables in the data along with the model-implied values at the state estimates from the
CDKF for the baseline modelMM,CS , estimated on quarterly data from 1961 to 2019. The value of τ denotes the
correlation between the empirical series and the model-implied series.
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mean of inflation and the mean of all bond yields. For instance, the level of the 3-month yield is

4.80% vs. 4.58% in the data, and the level of the 10-year bond yield is 6.42% vs. 6.13% in the

data. This implies that the average yield spread is 162 basis points inMM,CS compared to 155

basis points in U.S. data.

The model is also successful in matching the standard deviation of the labor supply

(2.78% vs. 2.88% in the data), the real wage (1.99% vs. 2.20% in the data), consumption growth

(1.60% vs. 1.74% in the data), and inflation (2.58% vs. 2.43% in the data). The standard

deviations of all bond yields are also well matched.14

Accordingly,MM,CS explains the overall level and variability of the data. This shows that

the satisfying in-sample fit in Figure 1 does not come at the expense of distorted unconditional

14Following the work of Piazzesi and Schneider (2007), the correlation between πt and ∆ct has attracted some
attention in the literature. We find corr(πt,∆ct) = −0.16 inMM,CS and corr(πt,∆ct) = −0.11 in our quarterly
sample from 1961 to 2019.
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Table 2: Unconditional First and Second Moments

The data moments are for the U.S. from 1961 to 2019 with 95% confidence bands stated below. These bands are
computed using a block bootstrap with 10,000 bootstrap samples using blocks of 60 observations. The model-
implied moments are computed in closed form using the procedure in Andreasen et al. (2018). The version of the
model is denoted by the superscipts "M" for applying shrinkage to the unconditional moments and "CS" to the
Campbell-Shiller moments. The subscript on the model object indicates that the standard specification of recursive
preferences (EZ) is used in column 5 and that a third-order perturbation approximation (3th) to the model solution
is used in column 6. All means and standard deviations are stated in annualized percent, except for the standard
deviation of l̂t and ŵt which are not annualized.

Data MM,CS MM M MM,CS
EZ MM,CS

3th
1 2 3 4 5 6

Means
∆ct 1.91

(1.39,2.44)
1.91 1.91 1.91 1.91 1.91

πt 3.67
(1.93,5.41)

3.67 3.64 7.14 3.72 3.71

rt 4.58
(2.21,6.96)

4.80 4.74 -1.92 4.78 4.54

r
(4)
t 5.04

(2.50,7.59)
4.93 4.97 -1.27 4.96 4.73

r
(12)
t 5.43

(2.91,7.95)
5.26 5.33 -0.26 5.44 5.25

r
(20)
t 5.70

(3.27,8.14)
5.58 5.61 0.26 5.79 5.64

r
(28)
t 5.91

(3.56,8.26)
5.91 5.88 0.66 6.04 5.97

r
(40)
t 6.13

(3.87,8.39)
6.42 6.29 1.24 6.29 6.38

Stds
l̂t 2.88

(2.42,3.34)
2.78 2.91 6.49 2.91 2.36

ŵt 2.20
(1.65,2.75)

1.99 2.09 6.51 1.93 1.81

∆ct 1.74
(1.49,1.98)

1.60 1.75 2.16 1.70 1.68

πt 2.43
(1.18,3.67)

2.58 2.48 6.09 2.76 2.34

rt 3.19
(2.07,4.32)

3.11 3.30 7.97 3.07 3.76

r
(4)
t 3.31

(2.16,4.46)
3.13 3.24 7.71 3.02 3.67

r
(12)
t 3.17

(2.02,4.32)
3.13 3.10 7.09 2.89 3.46

r
(20)
t 3.02

(1.89,4.15)
3.10 2.97 6.47 2.80 3.25

r
(28)
t 2.90

(1.78,4.01)
3.06 2.86 5.91 2.74 3.05

r
(40)
t 2.78

(1.68,3.88)
3.02 2.72 5.19 2.68 2.79

model dynamics. This indicates that the estimated state innovations ε̂t+1 evolve according to the

assumed laws of motion in equation (10) and hence do not show evidence of overfitting. We draw

the same conclusion from an inspection of ε̂t+1, which are basically uncorrelated as desired. For

instance, the average of the absolute correlations between the five innovations is just 0.12, and
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the highest and lowest correlations are just 0.26 and −0.21, respectively.15

D Ordinary Campbell-Shiller Loadings

Another important question is whetherMM,CS can match the empirical pattern in the

ordinary Campbell-Shiller loadings βk from equation (14), which we include in the estimation.

The top panel in Table 3 reports these loadings in the sample along with their bootstrapped 95%

confidence bands. A very encouraging finding is thatMM,CS generates ordinary

Campbell-Shiller loadings that are negative and track the empirical loadings remarkably well

inside their 95% confidence bands, although the loadings in the model do not fall as much with

time to maturity as in the data. This shows that the model satisfies the first requirement for a

correct specification of term premia.

E Risk-Adjusted Campbell-Shiller Loadings

Next, we study moments that are not included in the estimation ofMM,CS. A correct

specification of term premia should imply that historical risk-adjusted bond yields satisfy the

expectations hypothesis. Dai and Singleton (2002) show that this corresponds to testing whether

the loading βAdjk is equal to one in the following version of the Campbell-Shiller regression

r
(k−m)
t+m − r(k)

t −
(
TP

(k−m)
t+m − TP (k−m)

t

)
+

m

k −mTP
fwd,(k−m)
t(15)

= αAdjk + βAdjk

m

k −m

(
r

(k)
t − r

(m)
t

)
+ uAdjt+m,k,

where term premia are subtracted from long-term yields. Here, the variable

TP
fwd,(k)
t = ft,k − Et [rt+k] is the term premium in the forward rate ft,k ≡ − log

(
B

(k+1)
t /B

(k)
t

)
and uAdjt+m,k is an error term. That is, we substract the estimated term premia by the New

Keynesian model from U.S. bond yields r(k−m)
t+m − r(k)

t and regress them on a constant and the

yield spread in the U.S.

The bottom panel in Table 3 uses term premia fromMM,CS to compute risk-adjusted

15The full correlation matrix for the structural innovations are reported in the Online Appendix.

22



Table 3: Ordinary and Risk-Adjusted Campbell-Shiller Loadings

The top panel shows the ordinary Campbell-Shiller regression loadings βk for m = 4. The empirical values
are computed using quarterly U.S. data from 1961 to 2019, with the 95 percent confidence interval provided in
parentheses, computed using a block bootstrap where the regressand and the regressor in equation (14) are sampled
jointly in blocks of 10 observations in 10,000 bootstrap samples. The model-implied Campbell-Shiller loadings are
computed in closed form. The bottom panel shows the risk-adjusted Campbell-Shiller regression loadings βAdjk

for m = 4 in quarterly U.S. data from 1961 to 2019 when using term premia from the particular version of the
model with the 95 percent confidence interval provided in parentheses, computed using a block bootstrap where the
regressand and the regressor in equation (15) are sampled jointly in blocks of 10 observations in 10,000 bootstrap
samples.

Data MM,CS MM M MM,CS
EZ MM,CS

3th
1 2 3 4 5 6

Ordinary
CS loadings
β12 −1.03

(−2.27,0.20)
−0.73 −0.28 0.49 −0.60 −0.72

β20 −1.53
(−2.92,−0.14)

−0.74 −0.29 0.31 −0.36 −0.65

β28 −1.93
(−3.43,−0.42)

−0.78 −0.30 0.20 −0.18 −0.64

β40 −2.39
(−4.09,−0.70)

−0.82 −0.29 0.10 −0.01 −0.62

Adjusted
CS loadings
βAdj12 − −0.50

(−1.57,0.99)
−0.33

(−1.41,1.21)
−0.57

(−1.78,1.35)
−0.90

(−1.93,0.57)
−0.04

(−1.73,1.65)

βAdj20 − −0.49
(−1.74,1.23)

−0.34
(−1.58,1.36)

−0.59
(−1.72,1.11)

−1.42
(−2.60,0.20)

0.16
(−1.74,2.07)

βAdj28 − −0.42
(−1.85,1.40)

−0.31
(−1.68,1.45)

−0.56
(−1.64,0.99)

−1.88
(−3.17,−0.15)

0.39
(−1.69,2.47)

βAdj40 − −0.27
(−2.08,1.74)

−0.21
(−1.86,1.70)

−0.42
(−1.47,1.01)

−2.40
(−3.92,−0.52)

0.77
(−1.61,3.14)

Campbell-Shiller loadings βAdjk and their 95% confidence bands on the historical sample from

1961 to 2019. We find that these risk-adjusted loadings βAdjk are notably larger than the

corresponding unadjusted loadings βk, and hence closer to the desired value of one. For instance,

at the 10-year maturity, the loading increases from β40 = −2.39 to βAdj40 = −0.27. At the other

maturities, we also find that the risk-adjusted Campbell-Shiller loadings are slightly below zero,

but that the desired value of one generally is within the 95% confidence bands for βAdjk . The only

exception is at the 1-year maturity, where the upper bound for the confidence interval is 0.99

and hence just below one. Subject to this minor qualification, term premia from the model are

not rejected by the data, implying thatMM,CS also passes the second requirement for a correct

specification of term premia.
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F Inflation News in Bond Yields

Duffee (2018) shows that the quarterly news in bond yields r̃(k)
t = r

(k)
t − Et−1

[
r

(k)
t

]
is

much more volatile than the quarterly news in expected inflation

η
(k)
π,t = Et

[
1
k

∑k
i=1 πt+i

]
− Et−1

[
1
k

∑k
i=1 πt+i

]
. The inflation variance ratio V R(k)

π = V[η
(k)
π,t ]/V[r̃

(k)
t ]

is therefore only around 0.15 in the U.S., whereas this ratio often exceeds one in various versions

of the New Keynesian model (see Duffee (2018)). However, the time series for r̃(k)
t and η(k)

π,t in the

U.S. display clear evidence of time-varying volatility, and Gomez-Cram and Yaron (2021)

therefore refine the estimates in Duffee (2018) by correcting for heteroskedasticity. This increases

V R
(k)
π to 0.23, 0.22, and 0.19 at the 1-, 3-, and 5-year maturity, as shown in Table 4.16

The proposed modelMM,CS implies that the standard deviation in news to expected

inflation is only 0.31 at the 1-year maturity, and falls steadily to 0.26 at the 5- and 10-year

maturities. The standard deviation in news to bond yields is substantially higher at 0.49 at the

1-year maturity and 0.46 at the 3- and 5-year maturities, and hence within the reported 90%

uncertainty bands for the corresponding data moments in Table 4. The model therefore implies

fairly low inflation variance ratios of 0.41, 0.35, and 0.33 at the 1-, 3-, and 5-year maturities,

respectively, which are just outside the reported 90% uncertainty bands. This shows that the

proposed New Keynesian model goes a long way in addressing the critique of Duffee (2018). As

with the risk-adjusted Campbell-Shiller loadings in Section IV.E, we emphasize that the model’s

ability to explain the inflation variance ratios is an out-of-sample test, in the sense that βAdjk and

V R
(k)
π are not included in the model estimation.

G Term Premia

The 10-year term premium implied byMM,CS is shown at the top left graph in Figure 2,

where the shaded bars denote NBER recessions. The graph reveals that the model generates the

same overall pattern for the 10-year nominal term premium as found in the flexible 5-factor

model of Adrian, Crump, and Moench (2013), which is a standard reduced-form Gaussian DTSM

without any economic structure. The correlation between the two measures of term premium is

16We are grateful to Roberto Gomez-Cram for sharing these data moments.
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Table 4: News to Inflation and Bond Yields

This table reports the annualized standard deviation of quarterly news in expected inflation η
(k)
π,t =

Et
[

1
k

∑k
i=1 πt+i

]
− Et−1

[
1
k

∑k
i=1 πt+i

]
in percent, the annualized standard deviation of quarterly news in bond

yields r̃(k)
t = r

(k)
t − Et−1

[
r

(k)
t

]
in percent, and the inflation variance ratio V R(k)

π = V[η
(k)
π,t ]/V[r̃

(k)
t ]. The data mo-

ments are from Gomez-Cram and Yaron (2021) (supported material provided by R. Gomez-Cram) with a correction
for heteroskedasticity. These estimates are from 1962Q1 to 2018Q4, where the standard deviations in bond yields
news use martingale forecasts, and the standard deviations in expected inflation news are obtained using the GDP
deflator and surveys on current-quarter inflation. Figures in parentheses denote the 90 percent credibility interval.
The corresponding model-implied moments are computed for the indicated versions of the New Keynesian model
using a simulated sample of 100,000 observations to obtain the reported moments.

Data MM,CS MM M MM,CS
EZ MM,CS

3th
1 2 3 4 5 6

Std of inflation news
1-year 0.22

[0.19,0.25]
0.31 0.39 0.94 0.27 0.37

3-year 0.21
[0.18,0.24]

0.27 0.35 0.88 0.27 0.34

5-year 0.20
[0.18,0.23]

0.26 0.34 0.85 0.27 0.32

10-year - 0.26 0.31 0.77 0.27 0.28

Std of yield news
1-year 0.46

[0.41,0.51]
0.49 0.62 1.86 0.48 0.45

3-year 0.44
[0.40,0.50]

0.46 0.56 1.39 0.43 0.44

5-year 0.46
[0.41,0.51]

0.46 0.53 1.24 0.39 0.43

10-year - 0.45 0.48 1.01 0.33 0.41

Inflation variance ratio
1-year 0.23

[0.16,0.32]
0.41 0.39 0.26 0.32 0.67

3-year 0.22
[0.16,0.32]

0.35 0.40 0.40 0.39 0.59

5-year 0.19
[0.14,0.27]

0.33 0.41 0.47 0.48 0.55

10-year - 0.33 0.42 0.58 0.69 0.48

0.73, with the similarities being particularly strong since the early 1980s. Note also that both

measures generally increase during NBER recessions and hence capture the counter-cyclical

nature of term premia, with the two recessions during the 1970s as the main exceptions for

MM,CS. The summary statistics for term premia are also very similar across the two models, as

the 10-year nominal term premium in the model of Adrian et al. (2013) has a mean of 163 basis

points and a standard deviation of 110 basis points, while the corresponding moments inMM,CS

are 151 and 100 basis points, respectively, in a simulated sample of 100, 000 observations.

To conduct a shock decomposition of the 10-year term premium, we condition on the
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Figure 2: The 10-year Term Premium
The first graph shows the 10-year term premium in MM,CS and in the model by Adrian et al. (2013). The
remaining graphs show how each of the structural shocks inMM,CS contribute to the variation in the 10-year term
premium. The percentage of the total variation in the term premium explained by each shock, denoted pct(∆TPt),
is computed using equation (16) based on the absolute variation in the series. The gray shaded bars denote NBER
recessions, and term premium is expressed in annualized basis points.
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nonlinear solution in equation (12) obtained using all five shocks and adopt the following

procedure. First, let TP (k),all denote the term premium computed using the nonlinear solution

and the estimated states x̂t from the CDKF using all shocks. Second, let TP (k),−i denote the

term premium when omitting variation in x̂t due to the ith shock. The contribution to term

premium by the ith shock is then ∆TP (k),i ≡ TP (k),all − TP (k),−i, which we plot in Figure 2 for

each of the five shocks. To quantify the variation explained by a given shock, we compute the

percentage of the total variation in the term premium explained by each shock as

(16) pct
(
TP (k),i

)
=

∑T
t=1

∣∣∣∆TP (k),i −∆TP
(k),i
∣∣∣∑nε

i=1

∑T
t=1

∣∣∣∆TP (k),i −∆TP
(k),i
∣∣∣ for i = {1, 2, ..., nε} ,
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where ∆TP
(k),i

denotes the sample average of ∆TP (k),i. We find that demand and labor supply

shocks are the two dominating forces, explaining 41% and 36%, respectively, of the variation in

the 10-year term premium. Stationary productivity shocks account for 21%, whereas shocks to

the inflation target π∗t and the growth rate µz,t have hardly any effect on the 10-year term

premium. The decomposition also shows that the elevated level of the term premium during the

two recessions in the early 1980s are due to demand and stationary productivity shocks. For the

1991 and the 2001 recessions, labor supply shocks and stationary productivity shocks are the

main drivers behind the term premium. More recently, we see that demand, labor supply, and

stationary productivity shocks all contribute to generate a high term premium during the

2007-2009 Great Recession.

H Understanding the Key Mechanisms in the Model

At this point, we have shown that the proposed model i) explains historical bond yields,

ii) matches unconditional properties of the data, iii) passes the two requirements for a correct

specification of term premia, and iv) goes a long way in matching the level of news in expected

inflation. Most of these features are also matched by reduced-form DTSMs, but these models

offer little insights into the economic mechanisms that determine bond yields and especially term

premia. The model we propose provides such a structural explanation, and this section analyzes

the key mechanisms inMM,CS that drive term premia. Our discussion is structured around

Table 5, which shows how unconditional moments and Campbell-Shiller loadings (both ordinary

and risk-adjusted) are affected when omitting one of the five shocks in the model.

We first note that permanent productivity shocks have a large impact on the level of

bond yields, as omitting variation in µz,t (i.e., σµz = 0) increases the average level of the yield

curve by about five percentage points. For instance, the mean of the 10-year yield increases from

6.42% with all five shocks to 11.60% when omitting permanent productivity shocks. This effect

arises from a precautionary saving motive, as omitting permanent productivity shocks make the

economy less risky and this reduces the negative precautionary saving correction in bond yields.

We also note that omitting permanent productivity shocks reduce the standard deviations in the
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Table 5: Decomposing the Effects of the Structural Shocks

This table reports unconditional moments forMM,CS when all structural shocks are present in column 1, and when
each of the structural shocks are omitted in columns 2 to 6. The model-implied moments are computed in closed
form using the procedure in Andreasen et al. (2018). All means and standard deviations are stated in annualized
percent, except for the standard deviation of l̂t and ŵt which are not annualized.

MM,CS σµz = 0 σd = 0 σn = 0 σπ∗ = 0 σa = 0
1 2 3 4 5 6

Means
∆ct 1.91 1.91 1.91 1.91 1.91 1.91
πt 3.67 4.70 7.00 3.76 3.67 3.66
rt 4.80 9.27 18.43 5.34 4.76 3.56
r

(4)
t 4.93 9.45 18.43 5.51 4.88 3.51
r

(12)
t 5.26 9.92 18.51 5.96 5.20 3.58
r

(20)
t 5.58 10.40 18.54 6.37 5.51 3.85
r

(28)
t 5.91 10.88 18.56 6.77 5.83 4.22
r

(40)
t 6.42 11.60 18.57 7.37 6.34 4.91

Stds
l̂t 2.78 1.82 1.81 1.51 2.78 4.47
ŵt 1.99 1.30 1.32 1.52 1.98 2.90
∆ct 1.60 0.80 1.42 1.44 1.60 1.88
πt 2.58 2.50 2.44 2.45 0.82 3.61
rt 3.11 3.49 2.66 2.84 1.77 5.16
r

(4)
t 3.13 3.45 2.60 2.97 1.85 3.97
r

(12)
t 3.13 3.41 2.51 3.07 1.93 3.33
r

(20)
t 3.10 3.39 2.45 3.08 1.93 3.24
r

(28)
t 3.06 3.37 2.39 3.07 1.94 3.25
r

(40)
t 3.02 3.36 2.30 3.05 1.96 3.34

Ordinary
CS loadings
β12 -0.73 -0.51 1.02 -0.87 -0.74 -0.62
β20 -0.74 -0.70 1.03 -1.07 -0.76 -0.55
β28 -0.78 -0.78 1.03 -1.24 -0.81 -0.57
β40 -0.82 -0.83 1.04 -1.40 -0.87 -0.62

Adjusted
CS loadings
βAdj12 -0.50 -0.63 -0.99 -0.93 -0.61 -0.29
βAdj20 -0.49 -0.76 -1.49 -1.59 -0.79 -0.13
βAdj28 -0.42 -0.76 -1.89 -2.15 -0.93 0.03
βAdj40 -0.27 -0.58 -2.35 -2.85 -1.07 0.26

three macro variables l̂t, ŵt, and ∆ct, whereas the variability in πt is almost unaffected. On the

other hand, the standard deviation in bond yields actually increase when imposing that σµz = 0.

This may at first seem counter-intuitive, but this effect arises because the nonlinear policy

function for bond yields changes with σµz = 0 such that they depend more strongly on the other
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structural shocks due to a sizable risk-adjustment in the model solution. The ordinary and

risk-adjusted Campbell-Shiller loadings are not materially affected by letting σµz = 0. This

suggests that permanent productivity shocks are not the key source for generating bond return

predictability and hence variability in term premia, consistent with the results in Figure 2.

Figure 3: Impulse Response Functions: A Permanent Productivity Shock
This figure shows the generalized impulse response functions (IRFs) for a positive one-standard deviation shock
to µz,t, where the various shadings cover the indicated fraction of the distribution for these IRFs obtained using
1,000 randomly generated initial states. The IRFs are computed in closed-form for the second order projection
solution using the approach in Andreasen et al. (2018), except for Mt,t+1 which is computed using Monte Carlo
integration with 1,000 draws. Except for the term premium TP

(40)
t and the nominal stochastic discount factor

Mt,t+1, all impulse response functions are expressed in percentage deviations (i.e., scaled by 100) from the steady
state or from the deterministic growth path (in the case of consumption and the wage level). All bond yields and
inflation are measured in annualized terms and the term premium TP

(40)
t is expressed in annualized basis points.
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To further analyze the effects a change in productivity, Figure 3 shows the generalized

impulse response functions (IRFs) following a positive one-standard deviation permanent

productivity shock. These IRFs depend on the initial state xt when the shock hits in period

t+ 1, and we therefore show fan charts for the distribution of these responses across 1,000

randomly generated initial states from a simulated sample of the model. Consistent with the
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results in Table 5, the 10-year term premium is basically unaffected by this shock. On the other

hand, consumption and the wage level increase strongly, whereas inflation shows a small

reduction. These findings are consistent with the empirical evidence provided in Altig,

Christiano, Eichenbaum, and Linde (2011) using quarterly U.S. data from 1982 to 2008.

However, the drop in the labor supply in Figure 3 is contrary to the finding in Altig et al. (2011),

but Fisher (2006) shows that the reponse in the labor supply is sensitive to the considered

sample, as it is negative when using data before 1982 but positive when using data after 1982.

Accordingly, the IRFs to a permanent productivity shock appear consistent with existing

empirical evidence. This suggests that the shock is well specified in the model, and that its

responses do not appear to be distorted by letting zt enter in the utility function in equation (2).

Our second observation is that demand shocks generate an upward sloping yield curve.

This is seen from the third column in Table 5, which shows an almost flat yield curve close to the

steady state of 18.50% when omitting demand shocks (i.e., σd = 0). In contrast, demand shocks

often generate a downward sloping yield curve in other versions of the New Keynesian model

(see, for instance, Nakata and Tanaka (2016)). To understand this implication ofMM,CS,

consider the IRFs in Figure 4 for a positive demand shock. We generally find that inflation πt

and the long-term bond yield r(40)
t increase, and hence that B(40)

t falls following a demand shock.

On the other hand, the responses of consumption, labor supply, and the real wage may be either

positive or negative. In contrast, when solving the model without accounting for risk (as

typically done in the macro literature), we find almost exclusively positive responses in

consumption, the labor supply, and the real wage to a demand shock, as shown in the Online

Appendix. This means that the sizable risk-adjusted required in the model to match bond yields

has notable macroeconomic effects. Despite these state-dependent responses, we see a large

increase in the nominal stochastic discount factor Mt.t+1 due to dt+1/dt > 1 and an increase in(
Et
[
V 1−α
t+1

]) α
1−α /V α

t+1. As shown in Rudebusch and Swanson (2012), such a negative comovement

between Mt,t+1 and the bond price B
(40)
t over the lifetime of the bond generates a positive term

premium. Thus, demand shocks make long-term bonds a risky investment for the household, and

this explains why they generate a strong increase in the 10-year term premium TP
(40)
t of about
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15 basis points and an upward sloping yield curve.

Figure 4: Impulse Response Functions: A Demand Shock
This figure shows the generalized impulse response functions (IRFs) for a positive one-standard deviation shock to
dt, where the various shadings cover the indicated fraction of the distribution for these IRFs obtained using 1,000
randomly generated initial states. The IRFs are computed in closed-form for the second order projection solution
using the approach in Andreasen et al. (2018), except for Mt,t+1 which is computed using Monte Carlo integration
with 1,000 draws. Except for the term premium TP

(40)
t and the nominal stochastic discount factor Mt,t+1, all

impulse response functions are expressed in percentage deviations (i.e., scaled by 100) from the steady state or
from the deterministic growth path (in the case of consumption and the wage level). All bond yields and inflation
are measured in annualized terms and the term premium TP

(40)
t is expressed in annualized basis points.
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Another important observation from Figure 4 is that demand shocks increase the yield

spread r(40)
t − r(4)

t and reduce the expected change in the long yield Et
[
r

(36)
t+4

]
− r(40)

t . Demand

shocks therefore also help to generate the desired negative estimates of β(k) in the ordinary

Campbell-Shiller regressions. Indeed, the ordinary Campbell-Shiller loadings are basically one

without demand shocks, and the model-implied risk-adjustment in U.S. bond yields is negligible

with risk-adjusted Campbell-Shiller loadings that almost coincide with the unadjusted slope

coeffi cients in the first column in Table 3. This shows that demand shocks are a key driver for

generating return predictability and variation in term premia in the model. Hence, when
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omitting these shocks we greatly reduce the variation in term premia and therefore also the

standard deviation in bond yields, as shown in the third column in Table 5. In contrast, the

standard deviation of inflation only drops slightly from 2.58% to 2.44% without demand shocks.

These shocks therefore help to explain the variation in bond yields without materially affecting

inflation, which is precisely what is required to match the low inflation variance ratios discussed

in Section IV.F. Indeed, the inflation variance ratio for the 10-year bond yield increases from

0.33 to 0.65 without demand shocks in the model.

Given the importance of the demand shock for the New Keynesian model to match bond

yields, we briefly explore how well this shock relates to the widely used consumer sentiment

index from the University of Michigan. This index is obtained by surveying a cross-section of the

population in the U.S. to capture their views about the current state of their own finances and

the U.S. economy in general. The index therefore responds to aggregate shocks hitting the U.S.

economy such as changes in productivity and government spendings, but also to variation within

the household that are unrelated to such external shocks, as discussed in Lagerborg, Pappa, and

Ravn (2023). This means that we should not expect a perfect correlation between this sentiment

index and our measure of the demand shock. A regression of the consumer sentiment index on a

constant and the estimated demand shock d̂t fromMM,CS shows a positive correlation of 0.42,

with a 95% confidence interval of (0.24, 0.59) obtained using Newey-West standard errors with

four lags. This shows that the demand shock is not simply some unobserved statistical factor

extracted to fit bond yields, but instead is well connected to the level of consumer sentiment in

the U.S. and hence has a clear economic interpretation.

The last columns in Table 5 show that i) labor supply shocks nt unsurprisingly explain

much of the variation in the labor supply, ii) shocks to π∗t control much of the variation in

inflation and bond yields, and that iii) stationary productivity shocks at mainly affect the level

of bond yields and the variation in the labor supply, the real wage, inflation, and short-term

bond yields.
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V Sensitivity Analysis

This section explores various aspects of the baseline modelMM,CS that are new to the

literature. We first examine the effects of the estimator with shrinkage in Section V.A, while

Section V.B applies the standard formulation of recursive preferences. Finally, we discuss the

accuracy of the projection solution in Section V.C and relate it to the standard perturbation

approximation.

A The Effects of Shrinkage

The results presented so far are obtained when shrinking the traditional QML estimates

of the structural parameters towards some stylized empirical moments for yobst . Given that this

estimator is new to the literature on the New Keynesian model, we next explore the effects of

gradually removing this form of shrinkage. We first re-estimate the model when only shrinking

the QML estimates to the first and second unconditional moments of yobst and not to the

ordinary Campbell-Shiller loadings. This version of the model is denotedMM . Table 1 shows

that this modification implies slightly higher curvature in the utility function (χ = 7.1 vs.

χ = 5.8), lower price stickiness (ξCalvo = 0.31 vs. ξCalvo = 0.44), and a lower weight on

consumption growth in the Taylor-rule (φ∆c = 0.66 vs. φ∆c = 1.10) when compared toMM,CS.

The unconditional means and standard deviations in Table 2 are basically unchanged, whereas

the standard deviations of news to inflation and bond yields in Table 4 increase and imply larger

inflation variance ratios inMM than inMM,CS. We further find thatMM generates bond

return predictability with ordinary Campbell-Shiller loadings around −0.3, which are somewhat

lower (in absolute terms) than inMM,CS and the data. The risk-adjusted Campbell-Shiller

loadings forMM increase slightly compared toMM,CS, with their 95% confidence bands

including the desired value of one, as seen from Table 3.

Another possibility is to abstract from any shrinkage and simply use QML for the

estimation. We refer to this version of the model asM. This modification gives somewhat larger

changes in the estimated structural parameters in Table 1, with stronger habit formation

(b = 0.84 vs. b = 0.65), less wage stickiness (κw = 0.83 vs. κw = 0.92), and a much larger weight
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on consumption growth in the Taylor-rule (φ∆c = 4.57 vs. φ∆c = 1.10) when compared to

MM,CS. In addition, the standard deviations for all five structural shocks increase inM

compared toMM,CS, which illustrates the tendency of QML to select large structural shocks in

the New Keynesian model, as discussed in Section III.C. By construction, these estimates forM

give a higher value of the log-likelihood function and therefore a closer in-sample fit than in both

MM andMM,CS that apply shrinkage. But Table 2 shows thatM completely misses the i)

mean of inflation, ii) the mean of bond yields, and iii) generates too much volatility in the

observables yobst , with all standard deviations exceeding their 95% confidence bands. This imply

that the standard deviations of news in expected inflation and bond yields are much larger than

in the data according to Table 4. Thus, the standard QML estimates display clear signs of

overfitting, as the improved value of the quasi log-likelihood function compared toMM,CS and

MM comes at the cost of distorting the fit to several unconditional properties of the model. This

also distorts estimates of term premia inM, as its ordinary Campbell-Shiller loadings are all

positive and outside of the 95% confidence bands for the corresponding sample moments

according to Table 3.

We therefore conclude that shrinking in the estimation of the structural parameters is

essential for the New Keynesian model to provide a satisfying in-sample fit and match several

unconditional aspects of bond yields and macroeconomic variables.

B Standard Formulation of Recursive Preferences

Our baseline modelMM,CS uses the flexible formulation of recursive preferences in

Andreasen and Jørgensen (2020) with the utility constant u0 to separate the IES, RRA, and the

timing attitude. We next re-estimate the model with u0 = 0 to recover the standard specification

of recursive preferences applied in Rudebusch and Swanson (2012), Binsbergen,

Fernandez-Villaverde, Koijen, and Rubio-Ramirez (2012), many among others. We refer to this

version of the model asMM,CS
EZ , which we estimate using the same shrinkage specification as in

our baseline model. Table 1 shows that this seemingly minor modification implies substantial

changes in the estimated structural parameters. In particular, we find stronger habit formation
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(b = 0.87 vs. b = 0.65), less curvature in the utility function (χ = 1.95 vs. χ = 5.83), much more

price stickiness (ξCalvo = 0.77 vs. ξCalvo = 0.44), a larger weight on consumption growth in the

Taylor-rule (φ∆c = 2.98 vs. φ∆c = 1.10), much smaller demand shocks (σd = 0.033 vs.

σd = 0.127), and larger stationary productivity shocks (σa = 0.0040 vs. σa = 0.0024) when

compared toMM,CS. As a result, we obtain a high RRA of 35 inMM,CS
EZ with α = −16.49, as

typically found when estimating the New Keynesian model with recursive preferences.

The unconditional means and standard deviations in Table 2 are almost perfectly

matched byMM,CS
EZ . However, Table 3 shows that the model is unable to reproduce the ordinary

Campbell-Shiller loadings at the 7- and 10-year maturities, and it misses completely the

risk-adjusted Campbell-Shiller loadings, which are far from the desired value of one. These

findings suggest that term premia are not appropriately specified in this version of the New

Keynesian model. Finally, Table 4 shows that the inflation variance ratios increase

monotonically with the time to maturity and clearly become too large. For instance, the

inflation variance ratio is 0.48 and 0.69 at the 5- and 10-year maturity inMM,CS
EZ but only 0.19

in US data at the 5-year maturity.

To conclude, the flexible formulation of recursive preferences in Andreasen and Jørgensen

(2020) is required to enable the New Keynesian model to appropriately capture the dynamics of

bond yields and their embedded term premia.

C Accuracy of the Model Solution

All versions of the New Keynesian model have so far been estimated using the

second-order projection solution outlined in Section III.B. Table 6 studies the accuracy of this

approximation on a grid of S = 10, 000 simulated states and compare its performance to the

standard perturbation approximation up to fifth order as made available by Levintal (2017). We

report accuracy separately for the nm = 9 equations defining the macro block of the model and
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the nb = 40 equations defining bond prices. This is done using the standard summary statistics

MAE = log 10

(
1

nS

∑S
s=1

∑n
i=1 |EEi,s|

)
(17)

RMSE = log 10

(
1

n

∑n
i=1

√
1

S

∑S
s=1EE

2
i,s

)

Max AE = log 10

(
1

n

∑n
i=1 max

(
{|EEi,s|}Ss=1

))

for n = nm and n = nb. Here, EEi,s is the ith unit-free Euler-equation error at state value xs,

with log 10 denoting the base 10 logarithm (e.g., log 10(0.01) = −2).

The top panel in Table 6 considers the macro block of the baseline modelMM,CS, where

the second-order perturbation approximation clearly does better than the certainty equivalent

first-order solution. But accuracy does surprisingly not improve monotonically when increasing

the approximaiton order for standard perturbation. Our second-order projection solution gives

marginally higher accuracy than even a fifth order perturbation solution for the MAE and the

RMSE (as indicated by the bold figures), whereas the second-order perturbation solution gives

the lowest maximum absolute error. For the bond equations, we see larger differences between

the two solution methods, where the second-order projection solution gives MAE= −2.74 and

RMSE= −2.34, whereas we find −1.97 and −1.75, respectively, for a fifth order perturbation

solution. Analogue to the macro block, we also note that the performance of standard

perturbation for bond prices does not improve monotonically when increasing the approximation

order.

The middle part of Table 6 considersMM,CS
EZ with the standard specification of recursive

preferences. The results show that the perturbation solution breaks down in this case, as the

Euler-errors are very large and increase with the approximation order. In contrast, our

second-order projection solution performs well also in this case.

To illustrate what drives this disappointing performance of the perturbation

approximation, consider a restricted version of the baseline model without demand shocks by

letting σd = 0. This parametrization is informative, because it implies that the deterministic

steady state is close to the unconditional mean (as shown for bond yields in Section IV.H), and
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Table 6: Accuracy of Model Solutions

This table shows the mean absolute errors (MAE), the root mean squared errors (RMSE), and the maximum
absolute errors (Max AE) as defined in equation (17) for the nine equations defining the macro block of the New
Keynesian model and for the 40 equations defining log-transformed bond prices for the 10-year yield curve. These
accurary measures are computed on a simulated grid of 10,000 observations obtained from the considered version
of the model using a second-order perturbation approximation. Conditional expectations in Euler-equations are
evaluated using Gauss-Hermite quadrature with five points for each of the five structural shocks, giving a total
of 55 integration points for a given state value. A bold figure indicates the best performing model along a given
accuracy measure for a given model.

Perturbation Projection
1st 2nd 3rd 4th 5th 2nd
1 2 3 4 5 6

MM,CS

Macro Eqs MAE −1.66 −2.59 −2.54 −2.78 −2.73 −2.76
RMSE −1.65 −2.48 −2.41 −2.46 −2.46 −2.51
Max AE −1.49 −1.75 −1.44 −1.26 −1.21 −1.47

Bond Eqs MAE −1.04 −2.12 −1.87 −2.09 −1.97 −2.74
RMSE −1.04 −2.00 −1.77 −1.79 −1.75 −2.34
Max AE −1.03 −1.27 −0.83 −0.61 −0.55 −1.21

MM,CS
EZ

Macro Eqs MAE −1.42 11.56 6.43 ±∞ ±∞ −2.40
RMSE −1.20 13.46 8.02 ±∞ ±∞ −1.89
Max AE −0.46 15.45 9.84 ±∞ ±∞ −0.79

Bond Eqs MAE −1.29 −1.07 −1.06 217.18 204.95 −2.63
RMSE −1.29 −0.46 −0.09 ±∞ ±∞ −2.00
Max AE −1.28 0.78 1.50 221.17 208.94 −0.89

MM,CS
σd=0

Macro Eqs MAE −1.75 −3.64 −3.60 −4.80 −4.94 −4.02
RMSE −1.75 −3.56 −3.57 −4.47 −4.53 −3.82
Max AE −1.63 −2.50 −2.58 −2.69 −2.72 −2.52

Bond Eqs MAE −1.12 −4.10 −3.17 −5.00 −5.08 −4.30
RMSE −1.12 −3.99 −3.17 −4.93 −5.02 −4.17
Max AE −1.12 −3.05 −3.10 −3.95 −4.44 −3.36

the perturbation approximation should therefore perform well in this case. This is confirmed in

the bottom part of Table 6, as the fifth-order perturbation solution delivers a very high degree of

accuracy in this case and clearly outperforms our second-order projection solution.

To show that the accuracy of the model solution has important consequences for the New

Keynesian model, we finally re-estimate the model using a third-order perturbation solution, as

widely applied in the literature (see Andreasen (2012), Rudebusch and Swanson (2012), among

many others). This version of the model is denotedMM,CS
3rd . We find that this model performs
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well in matching the unconditional means and standard deviations in Table 2 and the

Campbell-Shiller loadings in Table 3, but that the variance ratios in Table 4 are somewhat

higher than with the projection solution. However, the structural parameters in Table 1 differ

substantially from those obtained using the projection solution. For instance, with the

third-order perturbation approximation the subjective discount factor becomes very low

(β = 0.948 vs. β = 0.991) and the curvature in the utility function becomes very high (χ = 15.63

vs. χ = 5.83) when compared toMM,CS. Also, the weight on inflation in the Taylor-rule φπ

becomes implausible large and hits the imposed upper bound of 10.

Accordingly, the proposed second-order projection solution delivers high accuracy and

ensures sensible structural estimates, whereas the performance of standard perturbation

deteriorates when the deterministic steady state is too far from the unconditional mean.

VI Additional Model Implications

This section considers the baseline modelMM,CS and studies three additional aspects of

the model that are not included in the estimation, and hence can be considered as representing

over-identified restrictions. Joslin et al. (2014) criticize a wide class of macro-finance term

structure models because they are unable to address the so-called "spanning puzzle". We

summarize the arguments of Joslin et al. (2014) in Section VI.A and show thatMM,CS goes a

long way in addressing this puzzle. The model’s ability to capture the dynamics of real bond

yields are examined in Section VI.B, while Section VI.C studies its implications for the

price-dividend ratio and equity returns.

A The Yield Curve and Spanned Macro Variation

Many DTSMs with macro variables imply that bond yields are a linear combination of

latent factors and observed macro variables. This linear mapping can (up to knife-edge

restrictions) be inverted to express macro variables as a function of bond yields. All variation in

macro variables is therefore spanned (i.e., explained) by bond yields. However, this implication is
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heavily criticized by Joslin et al. (2014) because regressions of macro variables on linear

combination of bond yields such as the principal components typically generate R2 values

substantially below one. This constitutes the "spanning puzzle", which leads Joslin et al. (2014)

to challenge the usefulness of most equilibrium models - including the standard New Keynesian

model. The model we propose also implies that bond yields depend on macro variables, but this

relation is not linear. Thus, the nonlinear structure of our model may generate what may appear

to be unspanned variation in macro variables and hence resolve the spanning puzzle.

Table 7: Regression Evidence on the Spanning Hypothesis

This table shows the R2 in percent from the regression mt = α + β′pca
(K)
t + ut, where mt refers to a macro

variable and pca(K)
t of dimension K × 1 contains the first K principal components of bond yields. The R2s in

the data are provided in column 1 and computed on quarterly U.S. data from 1961 to 2019, with the 95 percent
confidence interval (shown below the estimate) computed using a block bootstrap, where the regressand and the
regressors are sampled jointly in blocks of 50 observations in 10,000 bootstrap samples. The corresponding R2s
implied by the New Keynesian modelMM,CS are computed using a simulated sample of 100,000 observations. The
simulated sample in column 2 is obtained using the nonlinear model solution (i.e., second-order projection) and
with measurement errors for macro variables and bond yields of the same size as considered in the estimation. The
same nonlinear model solution is used in column 3, but no measurement errors are added to the macro variables
and bond yields. The simulated sample in column 4 uses a simplified second-order projection solution, where all
terms that are quadratic in the states are omitted.

Data Nonlinear model & Nonlinear model Linear model
Measurement errors

1 2 3 4

K = 5

l̂t 26.23
(10.62,60.97)

32.39 51.58 88.92

ŵt 16.53
(4.32,41.36)

34.18 73.74 94.61

∆ct 30.40
(15.63,46.84)

3.44 18.76 74.06

πt 64.08
(40.48,80.05)

84.57 86.36 98.95

K = 6

l̂t 28.11
(11.42,63.42)

32.41 52.05 100.00

ŵt 17.31
(5.44,42.89)

34.21 79.64 100.00

∆ct 30.40
(16.53,47.02)

3.46 68.56 100.00

πt 64.34
(40.82,80.50)

84.57 90.85 100.00

We explore this possibility in Table 7 by regressing each of the four macro variables

included in the model estimation on the first K principal components of bond yields. The model

MM,CS has five structural shocks, suggesting that at least five principal components are required
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to span variation in the macro variables. The first column in Table 7 shows that U.S. bond

yields only explain a fairly small proportion of the variation in the labor supply l̂t (26.2%), the

real wage ŵt (16.5%), and consumption growth ∆ct (30.4%), whereas inflation πt displays some

evidence of spanning with an R2 of 64.1%. The results for the New Keynesian model are very

similar to these regressions according to the second column in Table 7, where the corresponding

values of the R2 are 32.4% for l̂t, 34.2% for ŵt, 3.4% for ∆ct, and 84.6% for πt. These figures are

computed using a simulated sample of 100, 000 observations that include the same measurement

errors vt as applied when estimatingMM,CS. Measurement errors help to generate unspanned

variation, as emphasized in Bauer and Rudebusch (2017), and we therefore omit these errors in

the third column in Table 7. The R2 values then increase to 51.6% for l̂t, 73.7% for ŵt, 18.8% for

∆ct, and 86.4% for πt

To evaluate the degree of unspanned variation that is generated by the nonlinear

structure of the New Keynesian model, the fourth column in Table 7 reports the R2 values when

omitting the quadratic terms in the second-order projection solution and the measurement

errors. The R2 values now increase to 88.9% for l̂t, 94.6% for ŵt, 74.1% for ∆ct, and 99.0% for

πt. We do not achieve perfect spanning (i.e., R2 = 1) in this case because consumption habits

introduce log (ct−1/zt−1) as an endogenous state variable. The last part of Table 7 shows that an

additional principal component with K = 6 allows us to capture the information in this

endogenous state and achieve perfect spanning.

Accordingly, the nonlinear structure of the New Keynesian model implies that the first

five principal components of bond yields explain a fairly small proportion of the variation in l̂t

and ∆ct but a much larger proportion of the variation in πt, which is consistent with U.S. data.

For the real wage, the nonlinearities in the model have a somewhat smaller effect, and

measurement errors are therefore needed to reduce the R2 to the level seen in U.S. data. This

shows that the proposed model goes a long way in resolving the spanning puzzle. This result

may also serve as a more theoretical motivation for imposing the restrictions in Joslin et al.

(2014), because these restrictions make their reduced-form DTSM more consistent with an

equilibrium model of the type proposed in this paper.
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B Real Bond Yields and Real Term Premia

Figure 5 shows selected real bond yields r(k)
real,t fromMM,CS, with the corresponding U.S.

yields provided by Gürkaynak, Sack, and Wright (2010) from 1999. We see that the model gives

a remarkable close fit to historical real yields across all maturities, with correlations between the

data and the model-implied series of 0.9 or higher. We also note that model-implied real yields

are generally slightly below historical yields. This finding is consistent with liquidity risk premia

in U.S. real yields, which make these yields higher than implied by a frictionless market (see

Abrahams, Adrian, Crump, Moench, and Yu (2016), D’Amico, Kim, and Wei (2018), Andreasen,

Christensen, and Riddell (2021), among others). These liquidity premia are generally estimated

to be large in the beginning of the 2000s and around the 2007-2009 Great Recession, which may

explain why we at these episodes see somewhat larger differences between our model and U.S.

real yields.

Table 8 summarizes key unconditional moments linked to real bond yields, with the

model-implied moments computed using a simulated sample of 100,000 observations. We find

that the mean and standard deviation of real bond yields inMM,CS match closely the

corresponding empirical moments. Note in particularly thatMM,CS has an upward sloping

average real yield curve of 1.89%− 1.13% = 0.76%, which is very similar to the corresponding

empirical slope of 1.59%− 0.78% = 0.81%. As for nominal bond yields, we compute real term

premia as TP (k)
real,t = r

(k)
real,t −

∑k−1
i=0 Et [rreal,t+i]. The fifth and sixth column in Table 8 show that

MM,CS generates real term premia, which on average are positive and very volatile. For

instance, at the 10-year maturity, the real term premium has a mean of 82 basis points and a

standard deviation of 57 basis points. Finally, the inflation risk premium is given by the

difference between nominal and real term premia, i.e., TP (k)
t − TP

(k)
real,t, and seen to be positive

on average and almost as volatile as real term premia.

To summarize, the proposed model provides a close fit to historical real bond yields and

their first and second unconditional moments, although none of these moments are included

when estimating the New Keynesian model.
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Figure 5: Real Bond Yields
This figure shows real bond yields in the U.S. as provided by Gürkaynak et al. (2010) and model-implied real yields
from MM,CS evaluated at the estimated states from the CDKF. The value of τ denotes the correlation between
the empirical series and the model-implied series. Shaded areas denote NBER recessions.
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Table 8: Moments Related to Real Bond Yields

This table shows first and second unconditional moments related to real yields in the U.S. from 1999 to 2019 and
in the modelMM,CS . The model-implied unconditional moments are computed using a simulated series of 100,000
observations. All bond yields are reported in percentages, while all risk premia are in annualized basis points.

U.S. Data (1999-2019) Model: MM,CS

Real yields Real yields Real term premia Inflation risk premia
Mean Std Mean Std Mean Std Mean Std
1 2 3 4 5 6 7 8

3-year 0.78 1.55 1.13 1.38 7.1 17.9 29.1 17.5
5-year 1.10 1.48 1.33 1.37 26.3 29.4 41.4 27.2
7-year 1.34 1.39 1.54 1.36 47.7 41.0 52.8 35.4
10-year 1.59 1.27 1.89 1.36 82.0 56.8 69.4 44.7

C Equity Returns

We define the equity return reqt as a claim on consumption which constitutes dividends.

The real equity price P eq
t is then given by Et

[
M real

t,t+1e
reqt+1

]
= 1, where er

eq
t+1 =

(
Ct+1 + P eq

t+1

)
/P eq

t
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and M real
t,t+1 = Mt,t+1πt+1. Figure 6 shows the log-transformed price-dividend ratio pdt in the

model when evaluated at the estimated states and the corresponding series in the U.S. obtained

from the Center for Research in Security and Prices (CRSP) with dividends reinvested in the

risk-free rate. The unconditional mean of pdt inMM,CS is 4.35 and hence somewhat higher than

the sample average of 3.61 for pdt in our U.S. sample, and we therefore plot the demeaned series

in the top graph in Figure 6 to facilitate the comparison. We find thatMM,CS fits the overall

evolution in the price-dividend ratio fairly well, particularly during the 1970s and after 1990.

The main exception relates to the 1980s, where the model either gives a too low or too high

value of pdt. The correlation between the data and the model-implied series is τ = 0.61. For the

considered sample, the model implies a standard deviation of 0.39 for pdt, which is nearly

identical to corresponding sample moment of 0.38 in the U.S.

Figure 6: The Price-Dividend Ratio and Excess Equity Returns
The top graph shows the log-transformed price-dividend ratio for the U.S. and inMM,CS . The bottom graph shows
the annualized realized excess equity returns in the U.S. and inMM,CS . The model-implied values are evaluated
at the estimated states from the CDKF and shaded areas denote NBER recessions.
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The bottom graph in Figure 6 considers the realized excess equity returns

rext ≡ reqt − r
(1)
real,t−1, where we plot annualized returns. We find thatMM,CS provides a

reasonable fit to U.S. excess equity returns from CRSP, although the model gives too volatile

returns during the 1980s. As a result, the model implies a standard deviation of 23.9% for excess

equity returns, whereas the corresponding sample moment is somewhat lower at 16.4%. The

overall correlation between the data and the model-implied series is τ = 0.33.

An important aspect of equity returns relate to their predictability. We explore this issue

for excess equity returns, where we regress the accumulated excess returns j periods ahead on

the current 10-year yield spread r(40)
t − r(4)

t and the price-dividend ratio pdt following the work of

Fama and French (1989). That is, we consider the forecast regression

j∑
i=1

rext+i = αj + βj

(
r

(40)
t − r(4)

t

)
+ δjpdt + υt+j.

Table 9 reports the slope coeffi cients in this regression at selected forecast horizons, with

bootstrapped 95% confidence bands provided in parentheses. To ease the comparison with the

model, we scale all variables in this regression to have zero mean and a unit variance. The

results show that excess returns in the U.S. are predictable by the 10-year yield spread at the 2-

and 3-year horizon and by the price-dividend ratio at the 3-year horizon. We obtain the

corresponding model-implied regression loadings inMM,CS from a simulated sample of 100,000

observations, which we split into samples of the same length T = 234 as in the empirical data to

account for well-known small-sample biases. The reported results are then the average across

these b100, 000/T c regressions, where bxc denotes the largest integer less than or equal to x. We

find that the model generates the desired positive slope coeffi cients for the yield spread, which

increase with the forecast horizon although less strongly when compared to the data. For the

price-dividend ratio, we find the desired negative slope coeffi cients, which closely match the value

in the data at all forecast horizons. As a result, the model generates R2 values of the same

magnitude as in empirical data.

To summarize, the proposed New Keynesian model matches several stylized properties of

equity prices and equity returns, although these moments are not included when estimating the
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Table 9: Equity Return Predictability

This table shows the regression coeffi cients and the R2 when regressing future excess equity returns on the slope
of the yield curve and the log-transformed price-dividend ratio. For the empirical data moments, these regressions
are computed on quarterly U.S. data from 1961 to 2019. Figures in parentheses for the data moments refer the 95
percent confidence bands obtained by resampling the regressant and the regressors jointly in blocks of 2× j using
10,000 samples of the same length T = 234 as in the empirical sample. The corresponding model-implied moments
forMM,CS are computed from a simulated sample of 100,000 observations, which are split into samples of length
T . The reported results are the average across these b100, 000/T c regressions. All variables in the regression are
demeaned and scaled to have a unit standard deviation.

U.S. Data Model: MM,CS

βj δj R2
j βj δj R2

j

1-year 0.59
(−0.24,1.51)

−0.56
(−1.50,0.33)

0.04
(0.00,0.21)

0.12 −0.37 0.04

2-year 1.40
(0.16,2.67)

−1.69
(−3.28,0.07)

0.14
(0.01,0.40)

0.35 −1.55 0.12

3-year 2.27
(0.74,3.46)

−2.53
(−3.88,−0.22)

0.25
(0.04,0.55)

0.52 −2.57 0.20

model.

VII Conclusion

This paper addresses a long-standing ambition in the literature by formulating a New

Keynesian model to provide a structural explanation for variation in bond yields and their term

premia. The model explains bond yields with a low level of news in expected inflation and

plausible term premia. This implies that the slope of the yield curve predicts future bond yields,

and that risk-adjusted historical bond yields satisfy the expectations hypothesis. The model goes

a long way in explaining the spanning puzzle and matches key moments for real bond yields.

Finally, the model also captures the overall evolution of the price-dividend ratio and excess

equity returns, and it implies that these returns can be forecasted based on slope of the yield

curve and the price-dividend ratio.
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A The Projection Approximation

Let c̃t = ct
zt
, Ṽt = Vt

z1−χt

, w̃t = wt
zt
, and ỹt = yt

zt
. The equilibrium conditions for a scaled

version of the New Keynesian model without trending variables are then easily shown to be

given by

EQ 0 evft = Et
[(
Ṽt+1µ

1−χ
z,t+1

)1−α
]

EQ 1 Ṽt = u0 + dt

[
1

1−χ

(
c̃t − bc̃t−1µ

−1
z,t

)1−χ
+ ntϕ0

(1−lt)1−
1
ϕ

1− 1
ϕ

]
+ βevf

1
1−α
t

EQ 2 w̃t = κww̃ss + (1− κw)
[
ntϕ0 (1− lt)−

1
ϕ
(
c̃t − bc̃t−1µ

−1
z,t

)χ]
EQ 3 Et [Mt,t+1]Rt = 1

EQ 4 w̃t = mct (1− θ) atkθssl−θt

EQ 5 −1
ηmct

(
ξ
(
πt
πss
− 1
)

πt
πss
− (1− η)− Et

[
ξMt,t+1πt+1

(
πt+1
πss
− 1
)
πt+1
πss

ỹt+1
ỹt
µz,t+1

])
= 1

EQ 6 Rt = RssEt
[
exp

{
φπ log

(
πt+1

πssπ∗t+1

)
+ φ∆c log

(
c̃t+1
c̃t

)
+ log µz,t+1 − log µz,ss

}]
EQ 7 c̃t + δkss =

(
1− ξ

2

(
πt
πss
− 1
)2
)
ỹt

EQ 8 ỹt = atk
θ
ssl

1−θ
t

where evft is an auxiliary variable, ∆css = log µz,ss, and

Mt,t+1 = β


[
Et
[(
Ṽt+1µ

(1−χ)
z,t+1

)1−α
]] 1

1−α

Ṽt+1µ
(1−χ)
z,t+1


α

dt+1

dt

(
c̃t+1 − bµ−1

z,t c̃t
)−χ(

c̃t − bµ−1
z,t−1c̃t−1

)−χµ−χz,t+1

1

πt+1

.

We first realize that it is suffi cient to solve for c̃t, πt, and evft. The reason is that given these

variables, EQ 7 implies ỹt = (c̃t + δkss) /

(
1− ξ

2

(
πt
πνss
− 1
)2
)
and EQ 8 gives lt =

(
ỹt

atkθss

) 1
1−θ
.

From EQ 2 we directly have w̃t, and mct = w̃t
(1−θ)atkθssl−θt

follows form EQ 4. Finally, EQ 1 gives Ṽt

and EQ 6 gives Rt after evaluating the conditional expectation. Accordingly, the model can be

condensly expressed by the three Euler-equations in EQ 0, EQ 3, and EQ 5. We evaluate

conditional expectations using the monomial (non-product) integration rule of Judd, Maliar, and

Maliar (2011) to obtain the Euler-equation errors r (xi) =

[
rEQ0 (xi) rEQ3 (xi) rEQ5 (xi)

]′
for each point xi in the grid X . The Euler-errors for EQ3 and EQ5 are expressed in unit-free
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terms. A similar scaling is not adopted for EQ 0, because preliminary results showed that the

level of evft then became badly identified and most often implausible large in the approximation.

As for the grid, we express xi in deviation from the deterministic steady state. The work of

Judd, Maliar, Maliar, and Valero (2014) is used to construct a multidimensional Smolyak grid of

order 2 for the hypercube
∏nx

i=1[µi − 1.5σi, µi + 1.5σi], where µi and σi are the unconditional

mean and standard deviation, respectively, of the i state variable. For the five shocks, the model

is expressed such that µi = 0 and we easily obtain σi from equation (10). For the last element

c̃t−1 in the state vector, we use a second-order perturbation approximation and the results in

Andreasen et al. (2018) to compute its unconditional mean µi in deviation from the deterministic

steady state, while we use a first-order perturbation approximation to get σi. Applying a

standard log-transformation to all variables, all loadings related to the three variables in yat are

then obtained by nonlinearly minimizing
∑N

i=1
r(xi)

′r(xi)

(1+x′ixi)
2 , where N = 85 is the number of grid

points for our configuration. The scaling 1/ (1 + x′ixi)
2 is introduced to assign less weight to

points far from the steady state to ensure that the approximation is very accurate close to the

steady state.

Given this solution for yat , we can compute the additional macro variables in yb (xi) for

all grid points and run the OLS regression

yb (xi) = gb0 + gbxxi + gbxxvech (xix
′
i) + ubi

to instantaneously get the loadings gb0, gbx, and gbxx with dimensions 2× 1, 2× nx, and

2× nx (nx + 1) /2, respectively.

To obtain all bond prices, for k = 1 we can compute B(1)
t (xi) = Et [Mt,t+1 (xi)] for all grid

points using the solution for yat and numerical integration. We then compute

b
(1)
t (xi) = logB

(1)
t (xi) and regress b

(1)
t (xi) on a constant, xi, and vech (xix

′
i) to get the loadings

for b(1)
t . For k = 2, we use the these loadings to compute B(2)

t = Et
[
Mt,t+1 (xi)B

(1)
t+1 (xi)

]
in a

similar manner. Then we compute b(2)
t (xi) = logB

(2)
t (xi) and regress b

(2)
t (xi) on a constant, xi,

and vech (xix
′
i) to get the loadings for b

(2)
t . We continue in this way until we have the entire

10-year yield curve.
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Finally, for expected short rates ret|k ≡ Et [rt+k], we first compute

ret|1 (xi) = Et
[
−b(1)

t+1 (xi)
]
for all grid points using the solution for b(1)

t and numerical integration.

Then we regress ret|1 (xi) on a constant, xi, and vech (xix
′
i) to get the loadings for r

e
t|1. We then

use these loadings and numerical integration to compute ret|2 (xi) = Et
[
ret+1|1 (xi)

]
for all grid

points, and the required loadings are obtained by regressing ret|2 (xi) on a constant, xi, and

vech (xix
′
i). We continue in this way until we have all the desired short rate expectations needed

to compute term premia at the desired horizon.
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1 The New Keynesian DSGE Model

1.1 Household

The objective of the representative household is to

maxEt
∞∑
i=0

βiU(ct+i − ht+i, lt+i)

subject to the real budget constraint

Et
[
Mt,t+1Xt+1

Pt

]
+ ct =

Xt

Pt
+ w∗t lt +Divt + Tt,

where ct is real consumption, ht is habit stock (taken to be exogenous to the household), lt is labor supply, w∗t is the real
frictionless wage, Pt is the price level, Divt is a real dividends from firms, and Tt denotes lump-sum transfers. Letting
xrealt+1 = Xt+1/Pt denote the real value of state contingent claims, this can be written as

Et
[
Mt,t+1x

real
t+1

]
+ ct =

Xt

Pt

Pt−1

Pt−1
+ w∗t lt +Divt + Tt,

m

Et
[
Mt,t+1x

real
t+1

]
+ ct =

xrealt

Pt

Pt−1

1
+ w∗t lt +Divt + Tt,

m

Et
[
Mt,t+1x

real
t+1

]
+ ct =

xrealt

πt
+ w∗t lt +Divt + Tt,

where πt = Pt+1/Pt is the gross inflation rate. Following Rudebusch & Swanson (2012), recursive Epstein-Zin-Weil prefer-
ences implies that the value function of the representative household is given by

Vt = U(ct − ht, lt) + β
(
Et
[
V 1−α
t+1

]) 1
1−α ,

whenever U(ct, lt) > 0 (The arguments are similar for the reverse case). The maximization problem can be formulated
as a Lagrangean, where the household chooses state-contingent plans for consumption, labor, and asset holdings, i.e.(
ct, lt, x

real
t+1

)
, to maximize V0 subject to the infinite sequence of state-contingent constraints. I.e.,

L = V0 + Et
∞∑
i=0

βiγt+i

[
U (ct+i − ht+i, lt+i) + β

(
Et+i

[
V 1−α
t+1+i

]) 1
1−α − Vt+i

]

+Et
∞∑
i=0

βiλt+i

[
xrealt+i

πt+i
+ lt+iw

∗
t+i +Divt+i + Tt+i − Et

[
Mt+i,t+i+1x

real
t+1+i

]
− ct+i

]
,

where γt and λt are lagrange multipliers. The first order conditions are then given by

∂L
∂ct

= γtUc (ct − ht, lt)− λt = 0 (1)

∂L
∂lt

= γtUl (ct − ht, lt) + λtw
∗
t = 0 (2)

∂L
∂xrealt+1

= P(s)

[
βλt+1 (s)

1

πt+1 (s)
− λtMt,t+1 (s)

]
= 0 (3)

∂L
∂Vt+1

= γtβEt
[
V 1−α
t+1

] α
1−α P(s)V −αt+1 − γt+1P(s)β = 0 (4)
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∂L
∂λt

=
xrealt

πt
+ ltwt +Divt − Et

[
Mt,t+1x

real
t+1

]
− ct = 0 (5)

∂L
∂γt

= U (ct − ht, lt) + β
(
Et
[
V 1−α
t+1

]) 1
1−α − Vt = 0, (6)

where s indexes the (discrete) states in period t+ 1 and P(s) denotes the attached probability. Rewriting (1) as

γtUc (ct − ht, lt) = λt

and substituting into (2) yields
γtUl (ct − ht, lt) + γtUc (ct − ht, lt)w∗t = 0

m
1

w∗t
= −Uc (ct − ht, lt)

Ul (ct − ht, lt)
, (7)

which can be interpreted as an intratemporal optimality condition, as it relates consumption and labor hours within a given
period t. Further, rewriting (3) as

β
λt+1 (s)

λt

1

πt+1 (s)
= Mt,t+1 (s) .

Inserting the expressions for λt (and λt+1) from (1) yields

Mt,t+1 ≡ β
γt+1

γt

Uc (ct+1 − ht+1, lt+1)

Uc (ct − ht, lt)
1

πt+1

for all states. Now, (4) implies that (
Et
[
V 1−α
t+1

]) α
1−α V −αt+1 =

γt+1

γt
.

Hence, we get

Mt,t+1 = β

(Et [V 1−α
t+1

]) 1
1−α

Vt+1

α

Uc (ct+1 − ht+1, lt+1)

Uc (ct − ht, lt)
1

πt+1
. (8)

Given the stochastic discount factor, we have
Et [Mt,t+1Rt] = 1 (9)

where Rt is the gross one-period risk-free short rate. From (6) we have that

Vt = U (ct − ht, lt) + β
(
Et
[
V 1−α
t+1

]) 1
1−α . (10)

1.1.1 Separable utility

The considered utility function is given by

U (ct − ht, lt) = u0z
(1−χ)(1−χ0)
t + dt

[
1

1−χ

(
ct − bct−1

(c̃sszt)
χ0

)1−χ
+ ud0 × z

(1−χ)(1−χ0)
t + z

(1−χ)(1−χ0)
t ntϕ0

(1− lt)1− 1
ϕ

1− 1
ϕ

]

using the external habits ht = bct−1. Here, dt denotes preference shocks, which we specify below, and c̃sszt is the level of
consumption along the balanced growth path. The variable nt is an exogenous labor supply shock. Hence, for χ0 = 0, we
get

U (ct − ht, lt) = u0z
1−χ
t + dt

[
1

1−χ (ct − bct−1)
1−χ

+ ud0z
1−χ
t + z1−χ

t ntϕ0

(1− lt)1− 1
ϕ

1− 1
ϕ

]
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as in Rudebusch & Swanson (2012), provided ud0, u0 = 0, and b = 0. For χ0 = 1, we get

U (ct − ht, lt) = u0 + dt

[
1

1−χ

(
ct − bct−1

c̃sszt

)1−χ
+ ud0 + ntϕ0

(1− lt)1− 1
ϕ

1− 1
ϕ

]

which is very similar to the specification in Andreasen, Fernandez-Villaverde & Rubio-Ramirez (2018). Note that we
throughout the present paper impose χ0 = 0 and ud0 = 0, although both parameters are incorporated in this Online
Appendix.

Hence, equation (7) is given by
1

w∗t
= −Uc (ct − ht, lt)

Ul (ct − ht, lt)
m

−Ul (ct − ht, lt) = Uc (ct − ht, lt)w∗t
m

z
(1−χ)(1−χ0)
t dtntϕ0 (1− lt)−

1
ϕ = dt

(
ct − bct−1

(c̃sszt)
χ0

)−χ
w∗t

(c̃sszt)
χ0

m

w∗t = z
(1−χ)(1−χ0)
t ntϕ0 (1− lt)−

1
ϕ

(
ct − bct−1

(c̃sszt)
χ0

)χ
(c̃sszt)

χ0

Equation (8) becomes

Mt,t+1 = β

(Et [V 1−α
t+1

]) 1
1−α

Vt+1

α

dt+1

dt

(
ct+1−bct

(c̃sszt+1)χ0

)−χ
z
−χ0
t+1(

ct−bct−1
(c̃sszt)

χ0

)−χ
z
−χ0
t

1

πt+1
.

Equation (9) is not changed and finally equation (10) is

Vt = u0z
(1−χ)(1−χ0)
t + dt

[
1

1−χ

(
ct − bct−1

(c̃sszt)
χ0

)1−χ
+ ud0 × z

(1−χ)(1−χ0)
t + z

(1−χ)(1−χ0)
t ntϕ0

(1− lt)1− 1
ϕ

1− 1
ϕ

]
+β
(
Et
[
V 1−α
t+1

]) 1
1−α .

1.2 Firms

Firms are modeled by a two-layer structure. The perfect competitive final good producer bundles together a continuum of
intermediates good yt(i) indexed by i ∈ [0, 1]. Taking prices as given, the final good producer maximizes profits, i.e., solves
the problem

max
yt(i)

Π = Ptyt −
∫ 1

0

Pt(i)yt(i)di,

subject to the production function yt =
(∫ 1

0
yt(i)

η−1
η di

) η
η−1
, where yt denotes final output and η > 1. The Lagrangian for

solving this problem reads

L = Ptyt −
∫ 1

0

Pt(i)yt(i)di+ Ψ

((∫ 1

0

yt(i)
η−1
η di

) η
η−1

− yt

)
.

5



First order conditions are

∂L
∂yt(i)

= −Pt(i) + Ψ
η

η − 1

(∫ 1

0

yt(i)
η−1
η di

) η
η−1−1

η − 1

η
yt(i)

η−1
η −1 = 0

∂L
∂Ψ

=

(∫ 1

0

yt(i)
η−1
η di

) η
η−1

− yt = 0.

From the first equation,

Pt(i) = Ψ

(∫ 1

0

yt(i)
η−1
η di

) 1
η−1

yt(i)
−1
η

m (
Pt(i)

Ψ

)η
=

(∫ 1

0

yt(i)
η−1
η di

) η
η−1

yt(i)
−1 = ytyt(i)

−1

m

yt(i) = yt

(
Pt(i)

Ψ

)−η
.

Substituting this into the second first order condition gives

yt =

(∫ 1

0

yt(i)
η−1
η di

) η
η−1

=

(∫ 1

0

(
yt

(
Pt(i)

Ψ

)−η)
η−1
η di

) η
η−1

= ytΨ
η

(∫ 1

0

Pt(i)
1−ηdi

) η
η−1

m

Ψ =

(∫ 1

0

Pt(i)
1−ηdi

) 1
1−η

≡ Pt,

where Pt is the overall price level. Hence, demand for the i’th intermediate good is

yt(i) = yt

(
Pt(i)

Pt

)−η
.

Intermediate goods producers maximize profits, i.e., the dividend transfers to households. We have for the ith interme-
diate firm that

Divt(i) =

(
Pt(i)

Pt

)
yt(i)− wtlt(i)−

ξ

2

(
Pt (i)

Pt−1 (i)

1

πνss
− 1

)2

yt − ztδkss

=

(
Pt(i)

Pt

)1−η
yt − wtlt(i)−

ξ

2

(
Pt (i)

Pt−1 (i)

1

πνss
− 1

)2

yt − ztδkss

where wt is the real wage payed by the firms to the workers. Intermediate producers have technology given by yt(i) =
ztatk

θ
sslt(i)

1−θ available, where zt and at are exogeneous technology processes presented below. Price stickiness is modeled
by the Rotemberg scheme. Hence, the ith intermediate firm solves

max
Lt(i),Pt(i)

Et
∞∑
k=0

M real
t,t+k

((
Pt+k(i)

Pt+k

)1−η
yt+k − wt+klt+k(i)− ξ

2

(
Pt+k (i)

Pt+k−1 (i)

1

πνss
− 1

)2

yt+k

)
− zt+kδkss,

subject to yt(i) = yt

(
Pt(i)
Pt

)−η
and yt(i) = ztatk

θ
sslt(i)

1−θ. Here, M real
t,t+k denotes the real stochastic discount factor. The

Lagrangian reads

L = Et
∞∑
k=0

M real
t,t+k

((
Pt(i)

Pt

)1−η
yt+k − wt+klt+k(i)− ξ

2

(
Pt+k (i)

Pt+k−1 (i)

1

πνss
− 1

)2

yt+k

)
− zt+kδkss+

6



+Et
∞∑
k=0

M real
t,t+kmct+k(i)

(
zt+kat+kk

θ
sslt+k(i)1−θ −

(
Pt+k(i)

Pt+k

)−η
yt+k

)
where mct(i) is the lagrange multiplier and can be interpreted as the marginal cost of production. The first order condition
is

∂L
∂lt(i)

= −wt +mct(i) (1− θ) ztatkθsslt(i)−θ = 0,

or simply
wt = mct(i) (1− θ) ztatkθsslt(i)−θ.

The first-order condition with respect to Pt(i) is

∂L
∂Pt(i)

= (1− η)

(
Pt(i)

Pt

)−η
1

Pt
yt − ξ

(
Pt (i)

Pt−1 (i)

1

πνss
− 1

)
yt

Pt−1 (i)

1

πνss

−Et

[
ξM real

t,t+1

(
Pt+1 (i)

Pt (i)

1

πνss
− 1

)(
−Pt+1 (i)

Pt (i)
2

)
1

πνss
yt+1

]

+ηmct (i)

(
Pt(i)

Pt

)−η−1
yt
Pt

= 0

m

(1− η)

(
Pt(i)

Pt

)−η
1

Pt
yt

+Et

[
ξM real

t,t+1

(
Pt+1 (i)

Pt (i)

1

πνss
− 1

)
Pt+1 (i)

Pt (i)
2

1

πνss
yt+1

]

+ηmct (i)

(
Pt(i)

Pt

)−η−1
yt
Pt

= ξ

(
Pt (i)

Pt−1 (i)

1

πνss
− 1

)
yt

Pt−1 (i)

1

πνss

All firms are identical, so we can drop the index i. Hence,

(1− η)

(
Pt
Pt

)−η
1

Pt
yt

+Et
[
ξM real

t,t+1

(
Pt+1

Pt

1

πνss
− 1

)
Pt+1

P 2
t

1

πνss
yt+1

]
+ηmct

(
Pt
Pt

)−η−1
yt
Pt

= ξ

(
Pt
Pt−1

1

πνss
− 1

)
yt
Pt−1

1

πνss

7



m

(1− η)
1

Pt
yt

+Et
[
ξM real

t,t+1

(
πt+1

πνss
− 1

)
πt+1

Pt

1

πνss
yt+1

]
+ηmct

yt
Pt

= ξ

(
πt
πνss
− 1

)
yt
Pt−1

1

πνss

m

(1− η) yt

+Et
[
ξM real

t,t+1

(
πt+1

πνss
− 1

)
πt+1

Pt

Pt
πνss

yt+1

]
+ηmct

yt
Pt
Pt

= ξ

(
πt
πνss
− 1

)
yt
Pt−1

1

πνss
Pt

m

(1− η) yt + Et
[
ξM real

t,t+1

(
πt+1

πνss
− 1

)
πt+1

πνss
yt+1

]
+ ηmctyt = ξ

(
πt
πνss
− 1

)
yt
πt
πνss

Or equivalently

(1− η) yt + Et

ξM real
t,t+1

πt+1

πt+1︸ ︷︷ ︸
1

(
πt+1

πνss
− 1

)
πt+1

πνss
yt+1

+ ηmctyt = ξ

(
πt
πνss
− 1

)
yt
πt
πνss

m

(1− η) yt + Et
[
ξMt,t+1πt+1

(
πt+1

πνss
− 1

)
πt+1

πνss
yt+1

]
+ ηmctyt = ξ

(
πt
πνss
− 1

)
yt
πt
πνss

Note, that without sticky prices, i.e. ξ = 0, we have (1− η) yt + ηmctyt = 0, or mct = (η − 1) /η. Thus, we have that the
markup is 1/mct.

1.3 Central Bank

We assume a Taylor rule of the form

Rt = RssEt
[
exp

{
φπ log

(
πt+1

πssπ∗t+1

)
+ φ∆c (∆ct+1 −∆css)

}]
.

1.4 Aggregation and Market Clearing

For the labor market, we follow Blanchard & Gali (2005), Rudebusch & Swanson (2008), among others and introduce a
simple wage bargaining friction in the labor market. Specifically, we assume that the real market wage faced by the firms
wt is given by

wt = κw (w̃sszt) + (1− κw)w∗t ,

8



where the parameter κw ∈ [0, 1) captures the notion of wage stickiness by smoothing the real frictionless wage w∗t in relation
to the long-term equilibrium real wage w̃sszt. Inserting for w∗t we get

wt = κw (wsszt) + (1− κw)

[
z

(1−χ)(1−χ0)
t ntϕ0 (1− lt)−

1
ϕ

(
ct − bct−1

(c̃sszt)
χ0

)χ
(c̃sszt)

χ0

]
Although this simple rule does not explicitly introduce Nash bargaining between workers and firms, Blanchard & Gali
(2005) argue that it is a simple way to capture the essential features of real wage bargaining.

From the household budget constraint, workers receive the frictionless wage w∗t and not the actual wage wt paid by the
firms. To eliminate any resource costs linked to wage stickiness, we let the real transfers to the household be

Tt = ltwt − lw∗t
= lt (wt − w∗t )

= lt (κw (w̃sszt) + (1− κw)w∗t − w∗t )

= lt (κw (w̃sszt)− κww∗t )

= κwlt ((w̃sszt)− w∗t ) ,

to ensure that the wage bill wtlt paid by the firm is also the wage bill received by the household. From the budget restriction
we have

Et
[
Mt,t+1x

real
t+1

]
+ ct =

xrealt

πt
+ w∗t lt +Divt + Tt

⇓
0 + ct = 0 + w∗t lt +Divt + ltwt − lw∗t

m
Divt = ct − wtlt

given that the amount of state contigent claims xt are in zero net supply. The expression for dividends is

Divt(i) =

(
Pt(i)

Pt

)1−η
yt − wtlt(i)−

ξ

2

(
Pt (i)

Pt−1 (i)

1

πνss
− 1

)2

yt − ztδkss

⇓

Divt = yt − wtlt −
ξ

2

(
πt
πνss
− 1

)2

yt − ztδkss

=

(
1− ξ

2

(
πt
πνss
− 1

)2
)
yt − wtlt − ztδkss

Combining the two expressions for dividends, we get

ct − wtlt =

(
1− ξ

2

(
πt
πνss
− 1

)2
)
yt − wtlt − ztδkss

m

ct + ztδkss =

(
1− ξ

2

(
πt
πνss
− 1

)2
)
yt.
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1.5 Exogeneous Shocks

The exogenous shocks are given by

log

(
µz,t+1

µz,ss

)
= ρµz log

(
µz,t
µz,ss

)
+ σµzεµz,t+1

log dt+1 = ρd log dt + σdεd,t+1

log nt+1 = ρn log nt + σnεn,t+1

log π∗t+1 = ρπ∗ log π∗t + σπ∗επ∗,t+1

log at+1 = ρa log at + σaεa,t+1

1.6 Model Equations

The equations for the baseline implementation are summarized in the table below.
Household

1 Vt = u0z
(1−χ)(1−χ0)
t + dt

[
1

1−χ

(
ct−bct−1
(c̃sszt)

χ0

)1−χ
+ ud0 × z

(1−χ)(1−χ0)
t + z

(1−χ)(1−χ0)
t ntϕ0

(1−lt)
1− 1

ϕ

1− 1
ϕ

]
+ β

(
Et
[
V 1−α
t+1

]) 1
1−α

2 wt = κw (w̃sszt) + (1− κw)
[
z

(1−χ)(1−χ0)
t ntϕ0 (1− lt)−

1
ϕ

(
ct−bct−1
(c̃sszt)

χ0

)χ
(c̃sszt)

χ0
]

3 Et [Mt,t+1Rt] = 1

Mt,t+1 = β

(
[Et[V 1−α

t+1 ]]
1

1−α

Vt+1

)α
dt+1
dt

(
ct+1−bct

(c̃sszt+1)χ0

)−χ
z
−χ0
t+1(

ct−bct−1
(c̃sszt)

χ0

)−χ
z
−χ0
t

1
πt+1

Firm
4 wt = mct (1− θ) ztatkθssl−θt
5 (1− η) yt + Et

[
ξM real

t,t+1

(
πt+1
πνss
− 1
)
πt+1
πνss

yt+1

]
+ ηmctyt = ξ

(
πt
πνss
− 1
)
yt

πt
πνss

Central bank
6 Rt = RssEt

[
exp

{
φπ log

(
πt+1

πssπ∗t+1

)
+ φ∆c (∆ct+1 −∆css)

}]
Aggregation

7 ct + ztδkss =

(
1− ξ

2

(
πt
πνss
− 1
)2
)
yt

8 yt = ztatk
θ
ssl

1−θ
t

Links
9 (ct−1)t+1 = ct
10- Shocks

To these equations, we add the recursive equations for bond prices, i.e. B(k)
t = Et

[
Mt,t+1B

(k−1)
t+1

]
.

1.7 Detrending

1.7.1 Separable case

Define the stationary variables c̃t = ct
zt
, Ṽt = Vt

z
(1−χ)(1−χ0)
t

, w̃t = wt
zt
, ỹt = yt

zt

EQ 1

Vt = u0z
(1−χ)(1−χ0)
t + dt

[
1

1−χ

(
ct−bct−1
(c̃sszt)

χ0

)1−χ
+ ud0 × z

(1−χ)(1−χ0)
t + z

(1−χ)(1−χ0)
t ntϕ0

(1−lt)
1− 1

ϕ

1− 1
ϕ

]
+ β

(
Et
[
V 1−α
t+1

]) 1
1−α

m
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Vt

z
(1−χ)(1−χ0)
t

= u0 + dt

[
1

1−χ

(
ct−bct−1
c̃
χ0
ss z

χ0
t

)1−χ
1

z
(1−χ)(1−χ0)
t

+ ud0 + ntϕ0
(1−lt)

1− 1
ϕ

1− 1
ϕ

]
+ 1

z
(1−χ)(1−χ0)
t

β
(
Et
[
V 1−α
t+1

]) 1
1−α

m
Vt

z
(1−χ)(1−χ0)
t

= u0 + dt

[
1

1−χ

(
ct−bct−1

c̃
χ0
ss z

χ0
t z

1−χ0
t

)1−χ
+ ud0 + ntϕ0

(1−lt)
1− 1

ϕ

1− 1
ϕ

]
+ 1

z
(1−χ)(1−χ0)
t

β
(
Et
[
V 1−α
t+1

]) 1
1−α

m
Vt

z
(1−χ)(1−χ0)
t

= u0 + dt

[
1

1−χ

(
ct−bct−1
c̃
χ0
ss zt

)1−χ
+ ud0 + ntϕ0

(1−lt)
1− 1

ϕ

1− 1
ϕ

]
+ 1

z
(1−χ)(1−χ0)
t

β
(
Et
[
V 1−α
t+1

]) 1
1−α

m

Ṽt = u0 + dt

[
1

1−χ

(
c̃t−bc̃t−1µ−1z,t

c̃
χ0
ss

)1−χ
+ ud0 + ntϕ0

(1−lt)
1− 1

ϕ

1− 1
ϕ

]
+ β

(
Et

[(
Vt+1

z
(1−χ)(1−χ0)
t+1

z
(1−χ)(1−χ0)
t+1

z
(1−χ)(1−χ0)
t

)1−α
]) 1

1−α

m

Ṽt = u0 + dt

[
1

1−χ

(
c̃t−bc̃t−1µ−1z,t

c̃
χ0
ss

)1−χ
+ ud0 + ntϕ0

(1−lt)
1− 1

ϕ

1− 1
ϕ

]
+ β

(
Et
[(
Ṽt+1µ

(1−χ)(1−χ0)
z,t+1

)1−α
]) 1

1−α

EQ 2

wt = κw (w̃sszt) + (1− κw)
[
z

(1−χ)(1−χ0)
t ntϕ0 (1− lt)−

1
ϕ

(
ct−bct−1
(c̃sszt)

χ0

)χ
(c̃sszt)

χ0
]

m
wt
zt

= κww̃ss + (1− κw)
[
z

(1−χ)(1−χ0)
t ntϕ0 (1− lt)−

1
ϕ

(
ct−bct−1
(c̃sszt)

χ0

)χ
(c̃sszt)

χ0 1
zt

]
m
wt
zt

= κww̃ss + (1− κw)
[
z

1−χ0−χ+χχ0−1+χ0−χχ0
t ntϕ0 (1− lt)−

1
ϕ

(
ct−bct−1
(c̃ss)

χ0

)χ
(c̃ss)

χ0
]

m
w̃t = κww̃ss + (1− κw)

[
z−χt ntϕ0 (1− lt)−

1
ϕ

(
ct−bct−1
(c̃ss)

χ0

)χ
(c̃ss)

χ0
]

m

w̃t = κww̃ss + (1− κw)

[
ntϕ0 (1− lt)−

1
ϕ

(
ct
zt
−b zt−1zt

ct−1
zt−1

(c̃ss)
χ0

)χ
(c̃ss)

χ0

]
m

w̃t = κww̃ss + (1− κw)

[
ntϕ0 (1− lt)−

1
ϕ

(
ct
zt
−b zt−1zt

ct−1
zt−1

(c̃ss)
χ0

)χ
(c̃ss)

χ0

]
m

w̃t = κww̃ss + (1− κw)

[
ntϕ0 (1− lt)−

1
ϕ

(
c̃t−bc̃t−1µ−1z,t

(c̃ss)
χ0

)χ
(c̃ss)

χ0

]

EQ 3
Et [Mt,t+1Rt] = 1
where

Mt,t+1 = β

[Et [V 1−α
t+1

]] 1
1−α

Vt+1

α

dt+1

dt

(
ct+1−bct
c̃
χ0
ss z

χ0
t+1

)−χ
z
−χ0
t+1(

ct−bct−1
c̃
χ0
ss z

χ0
t

)−χ
z
−χ0
t

1

πt+1

m

Mt,t+1 = β


[
Et

[(
Vt+1

z
(1−χ)(1−χ0)
t+1

z
(1−χ)(1−χ0)
t+1

)1−α
]] 1

1−α

Vt+1
z
(1−χ)(1−χ0)
t+1

z
(1−χ)(1−χ0)
t+1



α

dt+1

dt

(
ct+1−bct
z
χ0
t+1

z
1−χ0
t+1

z
1−χ0
t+1

)−χ
(
ct−bct−1
z
χ0
t

z
1−χ0
t

z
1−χ0
t

)−χ (zt+1

zt

)−χ0 1

πt+1
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m

Mt,t+1 = β


[
Et
[(
Ṽt+1z

(1−χ)(1−χ0)
t+1

)1−α
]] 1

1−α

Ṽt+1z
(1−χ)(1−χ0)
t+1


α

dt+1

dt

(
ct+1−bct
zt+1

z
1−χ0
t+1

1

)−χ
(
ct−bct−1

zt

z
1−χ0
t

1

)−χ (zt+1

zt

)−χ0 1

πt+1

m

Mt,t+1 = β


[
Et

[(
Ṽt+1

z
(1−χ)(1−χ0)
t+1

z
(1−χ)(1−χ0)
t

)1−α
]] 1

1−α

Ṽt+1
z
(1−χ)(1−χ0)
t+1

z
(1−χ)(1−χ0)
t



α

dt+1

dt

(
c̃t+1 − bµ−1

z,t c̃t
)−χ(

c̃t − bµ−1
z,t−1c̃t−1

)−χ z−χ(1−χ0)
t+1

z
−χ(1−χ0)
t

(
zt+1

zt

)−χ0 1

πt+1

m

Mt,t+1 = β


[
Et
[(
Ṽt+1µ

(1−χ)(1−χ0)
z,t+1

)1−α
]] 1

1−α

Ṽt+1µ
(1−χ)(1−χ0)
z,t+1


α

dt+1

dt

(
c̃t+1 − bµ−1

z,t c̃t
)−χ(

c̃t − bµ−1
z,t−1c̃t−1

)−χµ−χ(1−χ0)
z,t+1 µ

−χ0
z,t+1

1

πt+1

m

Mt,t+1 = β


[
Et
[(
Ṽt+1µ

(1−χ)(1−χ0)
z,t+1

)1−α
]] 1

1−α

Ṽt+1µ
(1−χ)(1−χ0)
z,t+1


α

dt+1

dt

(
c̃t+1 − bµ−1

z,t c̃t
)−χ(

c̃t − bµ−1
z,t−1c̃t−1

)−χµ−χ(1−χ0)−χ0
z,t+1

1

πt+1

EQ 4
wt = mct (1− θ) ztatkθsslt−θ
m
wt
zt

= mct (1− θ) atkθssl−θt
m
w̃t = mct (1− θ) atkθssl−θt

EQ 5

(1− η) yt + Et
[
ξM real

t,t+1

(
πt+1
πνss
− 1
)
πt+1
πνss

yt+1

]
+ ηmctyt = ξ

(
πt
πνss
− 1
)
yt

πt
πνss

m
(1− η) ytzt + Et

[
ξM real

t,t+1

(
πt+1
πνss
− 1
)
πt+1
πνss

yt+1
zt+1

zt+1
zt

]
+ ηmct

yt
zt

= ξ
(
πt
πνss
− 1
)
yt
zt

πt
πνss

m
(1− η) ỹt + Et

[
ξM real

t,t+1

(
πt+1
πνss
− 1
)
πt+1
πνss

ỹt+1µz,t+1

]
+ ηmctỹt = ξ

(
πt
πνss
− 1
)
ỹt

πt
πνss

or as in the Appendix

(1− η) + Et
[
ξMt,t+1πt+1

(
πt+1
πνss
− 1
)
πt+1
πνss

ỹt+1
ỹt
µz,t+1

]
+ ηmct = ξ

(
πt
πνss
− 1
)

πt
πνss

m
ηmct = ξ

(
πt
πνss
− 1
)

πt
πνss
− (1− η)− Et

[
ξMt,t+1πt+1

(
πt+1
πνss
− 1
)
πt+1
πνss

ỹt+1
ỹt
µz,t+1

]
m

12



1 = 1
ηmct

{
ξ
(
πt
πνss
− 1
)

πt
πνss
− (1− η)− Et

[
ξMt,t+1πt+1

(
πt+1
πνss
− 1
)
πt+1
πνss

ỹt+1
ỹt
µz,t+1

]}
EQ 6

Rt = RssEt
[
exp

{
φπ log

(
πt+1

πssπ∗t+1

)
+ φ∆c (∆ct+1 −∆css)

}]
Note that

∆ct = log (ct/ct−1)

= log

(
c̃tzt

c̃t−1zt−1

)
= log

(
c̃t
c̃t−1

)
+ log µz,t

so no transformation of ∆ct is needed. Also

∆ct+1 = log

(
c̃t+1

c̃t

)
+ logµz,t+1

So we get

Rt = RssEt
[
exp

{
φπ log

(
πt+1

πssπ∗t+1

)
+ φ∆c

(
log

(
c̃t+1

c̃t

)
+ logµz,t+1 − logµz,ss

)}]
as ∆css = logµz,ss.

EQ 7

ct + ztδkss =

(
1− ξ

2

(
πt
πνss
− 1
)2
)
yt

m

c̃t + δkss =

(
1− ξ

2

(
πt
πνss
− 1
)2
)
ỹt

EQ 8
yt = ztatk

θ
ssl

1−θ
t

m
ỹt = atk

θ
ssl

1−θ
t

The remaining equations in the model do not need to be detrended.
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Household

1 Ṽt = u0 + dt

[
1

1−χ

(
c̃t−bc̃t−1µ−1z,t

c̃
χ0
ss

)1−χ
+ ud0 + ntϕ0

(1−lt)
1− 1

ϕ

1− 1
ϕ

]
+ β

(
Et
[(
Ṽt+1µ

(1−χ)(1−χ0)
z,t+1

)1−α
]) 1

1−α

2 w̃t = κww̃ss + (1− κw)

[
ntϕ0 (1− lt)−

1
ϕ

(
c̃t−bc̃t−1µ−1z,t

(c̃ss)
χ0

)χ
(c̃ss)

χ0

]
3 Et [Mt,t+1Rt] = 1

Mt,t+1 = β


[
Et
[(
Ṽt+1µ

(1−χ)(1−χ0)
z,t+1

)1−α]] 1
1−α

Ṽt+1µ
(1−χ)(1−χ0)
z,t+1


α

dt+1
dt

(c̃t+1−bµ−1z,t c̃t)
−χ

(c̃t−bµ−1z,t−1c̃t−1)
−χµ

−χ(1−χ0)−χ0
z,t+1

1
πt+1

Firm
4 w̃t = mct (1− θ) atkθssl−θt
5 (1− η) ỹt + Et

[
ξM real

t,t+1

(
πt+1
πνss
− 1
)
πt+1
πνss

ỹt+1µz,t+1

]
+ ηmctỹt = ξ

(
πt
πνss
− 1
)
ỹt

πt
πνss

Central bank
6 Rt = RssEt

[
exp

{
φπ log

(
πt+1

πssπ∗t+1

)
+ φ∆c

(
log
(
c̃t+1
c̃t

)
+ logµz,t+1 − logµz,ss

)}]
Aggregation

7 c̃t + δkss =

(
1− ξ

2

(
πt
πνss
− 1
)2
)
ỹt

8 ỹt = atk
θ
ssl

1−θ
t

Links
9 (c̃t−1)t+1 = c̃t
10- Shocks

To these equations, we add the recursive equations for bond prices, i.e. B(k)
t = Et

[
Mt,t+1B

(k−1)
t+1

]
.

1.8 Steady state

Some steady state values are calibrated to certain values, i.e. KoY = kss
4yss

, lss, πss, µz,ss.

1.8.1 Separable utility case

Notice, that in steady state we have

Mt,t+1 = β


[
Et
[(
Ṽt+1µ

(1−χ)(1−χ0)
z,t+1

)1−α
]] 1

1−α

Ṽt+1µ
(1−χ)(1−χ0)
z,t+1


α

dt+1

dt

(
c̃t+1 − bµ−1

z,t c̃t
)−χ(

c̃t − bµ−1
z,t−1c̃t−1

)−χµ−χ(1−χ0)−χ0
z,t+1

1

πt+1

⇓

Mss,ss = β
µ
−χ(1−χ0)−χ0
z,ss

πss

Then it follows from equation (3) that
Et [Mt,t+1Rt] = 1

⇓
Rss =

1

Mss
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From equation (8), we have that ỹss = assk
θ
ssl

1−θ
ss . Dividing by kss 6= 0 and multiplying by 4

4ỹss
kss

=
1

KoY
= 4assk

θ−1
ss l1−θss .

Then, as ass = 1, we get
1

kθ−1
ss

= 4KoY l1−θss

m
k1−θ
ss = 4KoY l1−θss

m
kss = lss (4 ·KoY )

1
1−θ .

From equation (8) then
ỹss = kθssl

1−θ
ss ,

and from equation (7)

c̃ss + δkss =

(
1− ξ

2

(
πss
πνss
− 1

)2
)
ỹss

m

c̃ss =

(
1− ξ

2

(
πss
πνss
− 1

)2
)
ỹss − δkss

From equation (5) we have

(1− η) ỹss + ξM real
ss

(
πss
πνss
− 1

)
πss
πνss

ỹssµz,ss + ηmcssỹss = ξ

(
πss
πνss
− 1

)
ỹss

πss
πνss

m

ηmcssỹss = ξ

(
πss
πνss
− 1

)
ỹss

πss
πνss
− (1− η) ỹss − ξM real

ss

(
πss
πνss
− 1

)
πss
πνss

ỹssµz,ss

m

mcss =
1

ηỹss

[
ξ

(
πss
πνss
− 1

)
ỹss

πss
πνss
− (1− η) ỹss − ξM real

ss

(
πss
πνss
− 1

)
πss
πνss

ỹssµz,ss

]
Inserted in Equation (4) we then get

w̃ss = mcss (1− θ) atkθssl−θt
The parameter ϕ0 is set to imply the choosen steady state for labor, i.e. lss. Hence, from equation (2) we get

w̃ss = κww̃ss + (1− κw)

[
ϕ0 (1− lss)−

1
ϕ

(
c̃ss − bc̃ssµ−1

z,ss

(c̃ss)
χ0

)χ
(c̃ss)

χ0

]

m

w̃ss = ϕ0 (1− lss)−
1
ϕ

(
c̃ss − bc̃ssµ−1

z,ss

(c̃ss)
χ0

)χ
(c̃ss)

χ0

m
w̃ss

(c̃ss)
χ0

(
c̃ss − bc̃ssµ−1

z,ss

(c̃ss)
χ0

)−χ
= ϕ0 (1− lss)−

1
ϕ

15



m⇓

ϕ0 (1− lss)−
1
ϕ =

(
c̃ss − bc̃ssµ−1

z,ss

c̃
χ0
ss

)−χ
w̃ss
c̃
χ0
ss

m

ϕ0 =

(
c̃ss−bc̃ssµ−1z,ss

c̃
χ0
ss

)−χ
w̃ss

(1− lss)−
1
ϕ c̃

χ0
ss

Finally, from equation (1)

Ṽss = u0 +
1

1−χ

(
c̃ss − bc̃ssµ−1

z,ss

c̃
χ0
ss

)1−χ

+ ud0 + ϕ0

(1− lss)1− 1
ϕ

1− 1
ϕ

+ β
(
Ṽssµ

(1−χ)(1−χ0)
z,ss

)
m

Vss =
1

1− βµ(1−χ)(1−χ0)
z,ss

u0 + ud0 +
1

1−χ

(
c̃ss − bc̃ssµ−1

z,ss

c̃
χ0
ss

)1−χ

+ ϕ0

(1− lss)1− 1
ϕ

1− 1
ϕ

 .

2 Digression on The New Keynesian Model

2.1 Risk Aversion at the Steady State

We follow Swanson (2012) and compute two measures of relative risk aversion in our model. With recursive Epstein-Zin
preferences controlled by α, there are two measures of relative risk aversion. The first measure RRAc applies when there
is no upper bound for labor and therefore total household wealth At equals the present discounted value of consumption.
The other measure RRAcl applies when the upper bound for the household’s time endowment is well-specified, meaning
that total household wealth Ãt equals the present discounted value of leisure plus consumption.
Throughout this section we use the notational convention in Swanson (2012) where a variable in the steady state is

denoted without a subscript. For instance c is the steady state value of ct. Moreover, u = u (c, l).
The general formulas with external habit formation are (see Swanson (2012), page 24, eq 53 and eq 54)

RRAcl =
−u11 + λu12

u1

c+ w (1− l)
1 + wλ

+ α
(c+ w (1− l))u1

u

RRAc = c

(
−u11 + λu12

u1

1

1 + wλ
+ α

u1

u

)
where

w = −u2

u1

λ =
wu11 + u12

u22 + wu12

Note that
RRAcl = −u11+λu12

u1

c+w(1−l)
1+wλ + α (c+w(1−l))u1

u

= c+w(1−l)
c c

[
−u11+λu12

u1
1

1+wλ + αu1u

]
m

RRAcl =
(

1 +
w

c
(1− l)

)
RRAc.

Here, we use the notation that
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• u = the utility index

• u1 = the partial derivative of u with respect to consumption

• u2 = the partial derivative of u with respect to hours worked

• w = the steady state wage level

• c = the steady state consumption level

• l = hours worked

Note that these formulas also apply in our case even though we have wage strickiness. The reason is that the household
derives its FOC in a frictionless setting, and the steady state of wage is not affected by the presence of wage stickiness, i.e.,
when using the notation above we have w∗t /zt = wt/zt in the steady state. Also, Swanson (2012) shows that the above
formulas also hold with balanced growth (see Swanson (2012) page 48). Recall that our utility function reads (ignoring dt
and nt as dss = nss = 1)

u (ct − bct−1, 1− lt) =
(
ud0 + u0

)
z

(1−χ)(1−χ0)
t +

1
1−χ

(
ct − bct−1

c̃
χ0
ss z

χ0
t

)1−χ
+ z

(1−χ)(1−χ0)
t ϕ0

(1− lt)1− 1
ϕ

1− 1
ϕ

Hence, from now on all steady state variables refer to those in the normalized economy without trends. Hence, in the steady
state we have

u =
(
ud0 + u0

)
+ 1

1−χ

(
ct−bcµ−1z,t

cχ0

)1−χ
+ ϕ0

(1−l)1−
1
ϕ

1− 1
ϕ

=
(
ud0 + u0

)
+ cχ0(χ−1)

1−χ

(
c− bcµ−1

z

)1−χ
+ ϕ0

(1−l)1−
1
ϕ

1− 1
ϕ

u1 = cχ0(χ−1)
(
c− bcµ−1

z

)−χ
u11 = −χcχ0(χ−1)

(
c− bcµ−1

z

)−χ−1

u2 = −φ0 (1− l)−
1
ϕ

u22 = − 1
ϕ (−φ0) (1− l)−

1
ϕ−1

(−1) = − 1
ϕφ0 (1− l)−

1
ϕ−1

u12 = 0

Thus

w = −u2u1 = − −φ0(1−l)−
1
ϕ

cχ0(χ−1)(c−bcµ−1z )
−χ = φ0(1−l)−

1
ϕ

cχ0(χ−1)(c−bcµ−1z )
−χ

m
φ0 =

cχ0(χ−1)w(c−bcµ−1z )
−χ

(1−l)−
1
ϕ

And

λ = wu11+u12
u22+wu12

=
w
[
−χcχ0(χ−1)(c−bcµ−1z )

−χ−1]
− 1
ϕφ0(1−l)−

1
ϕ
−1

=
wχcχ0(χ−1)(c−bcµ−1z )

−χ−1

1
ϕ

cχ0(χ−1)w(c−bcµ−1z )
−χ

(1−l)
− 1
ϕ

(1−l)−
1
ϕ
−1

=
χ(c−bcµ−1z )

−1

1
ϕ (1−l)−1

= χ(1−l)
1
ϕ (c−bcµ−1z )

Note also that
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wλ = φ0(1−l)−
1
ϕ

cχ0(χ−1)(c−bcµ−1z )
−χ

χ(1−l)
1
ϕ (c−bcµ−1z )

= χφ0(1−l)1−
1
ϕ

1
ϕ c

χ0(χ−1)(c−bcµ−1z )
1−χ

Hence, the first measure of relative risk-aversion is:

RRAc = c
(
−u11
u1

1
1+wλ + αu1u

)
= c

χcχ0(χ−1)(c−bcµ−1z )
−χ−1

cχ0(χ−1)(c−bcµ−1z )
−χ

1

1+
χφ0(1−l)

1− 1
ϕ

1
ϕ
cχ0(χ−1)(c−bcµ−1z )

1−χ

+ cα
cχ0(χ−1)(c−bcµ−1z )

−χ

(ud0+u0)+ cχ0(χ−1)
1−χ (c−bcµ−1z )

1−χ
+ϕ0

(1−l)
1− 1

ϕ

1− 1
ϕ

= c
[
χ
(
c− bcµ−1

z

)−1
]

1

1+
χφ0(1−l)

1− 1
ϕ

1
ϕ
cχ0(χ−1)(c−bcµ−1z )

1−χ

+ cα
cχ0(χ−1)(c−bcµ−1z )

−χ

(ud0+u0)+ cχ0(χ−1)
1−χ (c−bcµ−1z )

1−χ
+ϕ0

(1−l)
1− 1

ϕ

1− 1
ϕ

= cχ

c−bcµ−1z
1

1+
χφ0(1−l)

1− 1
ϕ

1
ϕ
cχ0(χ−1)(c−bcµ−1z )

1−χ

+ cα
cχ0(χ−1)(c−bcµ−1z )

−χ

(ud0+u0)+ cχ0(χ−1)
1−χ (c−bcµ−1z )

1−χ
+ϕ0

(1−l)
1− 1

ϕ

1− 1
ϕ

= cχ

c−bcµ−1z +
χφ0(1−l)

1− 1
ϕ

1
ϕ
cχ0(χ−1)(c−bcµ−1z )

−χ

+ cα
cχ0(χ−1)(c−bcµ−1z )

−χ

(ud0+u0)+ cχ0(χ−1)
1−χ (c−bcµ−1z )

1−χ
+ϕ0

(1−l)
1− 1

ϕ

1− 1
ϕ

=
cχ(c−bcµ−1z )

−χ

(c−bcµ−1z )
1−χ

+
χφ0(1−l)

1− 1
ϕ

cχ0(χ−1) 1
ϕ

+ cα
cχ0(χ−1)(c−bcµ−1z )

−χ

(ud0+u0)+ cχ0(χ−1)
1−χ (c−bcµ−1z )

1−χ
+ϕ0

(1−l)
1− 1

ϕ

1− 1
ϕ

=
cχ(c−bcµ−1z )

−χ

(c−bcµ−1z )
1−χ

+
wcχ0(χ−1)(c−bcµ−1z )

−χ

(1−l)
− 1
ϕ

χ(1−l)
1− 1

ϕ

cχ0(χ−1) 1
ϕ

+ cα
cχ0(χ−1)(c−bcµ−1z )

−χ

(ud0+u0)+ cχ0(χ−1)
1−χ (c−bcµ−1z )

1−χ
+
wcχ0(χ−1)(c−bcµ−1z )

−χ

(1−l)
− 1
ϕ

(1−l)
1− 1

ϕ

1− 1
ϕ

using φ0 =
wcχ0(χ−1)(c−bcµ−1z )

−χ

(1−l)−
1
ϕ

= cχ

(c−bcµ−1z )+w
1
χ(1−l)

1
ϕ

+ cα
cχ0(χ−1)(c−bcµ−1z )

−χ

(ud0+u0)+ cχ0(χ−1)
1−χ (c−bcµ−1z )

1−χ
+
wcχ0(χ−1)(c−bcµ−1z )

−χ

1
(1−l)
1− 1

ϕ

= cχ

(c−bcµ−1z )+w
1
χ(1−l)

1
ϕ

+ cα
(c−bcµ−1z )

−χ

(ud0+u0)
cχ0(χ−1)

+ 1
1−χ (c−bcµ−1z )

1−χ
+
w(c−bcµ−1z )

−χ

1
(1−l)
1− 1

ϕ

= χ

(1−bµ−1z )+w
c
χ(1−l)

1
ϕ

+ cα 1

(ud0+u0)
cχ0(χ−1)

(c−bcµ−1z )
χ

+ 1
1−χ (c−bcµ−1z )+w

1
(1−l)
1− 1

ϕ

= χ

(1−bµ−1z )+w
c
χ(1−l)

1
ϕ

+ α 1

(ud0+u0)
cχ0(χ−1)c

(c−bcµ−1z )
χ

+ 1
1−χ (1−bµ−1z )+w

c
(1−l)
1− 1

ϕ

= χ

(1−bµ−1z )+w
c
χ(1−l)

1
ϕ

+ α 1−χ

(1−χ)
(ud0+u0)

cχ0(χ−1)+1
(c−bcµ−1z )

χ
+(1−bµ−1z )+

w(1−l)
c

(1−χ)
1− 1

ϕ

Note when b = 0, χ0 = 0, and u0 = 0, we get
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RRAc = χ

1+w
c
χ(1−l)

1
ϕ

+ α 1−χ

(1−χ)
ud0

cχ0(χ−1)+1
cχ+1+

w(1−l)
c

(1−χ)
1− 1

ϕ

= χ

1+χϕ
w(1−l)
c

+ α 1−χ
(1−χ)ud0c

χ−1+1+
(1−χ)
1− 1

ϕ

w(1−l)
c

Also, when ud0 = u0 = 0 (standard EZ preferences) we get
RRAc = χ

(1−bµ−1z )+w
c
χ(1−l)

1
ϕ

+ α 1−χ

(1−χ)
(ud0+u0)

cχ0(χ−1)+1
(c−bcµ−1z )

χ
+(1−bµ−1z )+

w(1−l)
c

(1−χ)
1− 1

ϕ

= χ

1−bµ−1z +w
c
χ(1−l)

1
ϕ

+ α 1−χ
1−bµ−1z +

w(1−l)
c

(1−χ)
1− 1

ϕ

Thus, to back out α from RRAc we have

RRAc =
χ(

1− bµ−1
z

)
+ w

c
χ(1−l)

1
ϕ

+ α
1− χ

(1− χ)
(ud0+u0)
cχ0(χ−1)+1

(
c− bcµ−1

z

)χ
+
(
1− bµ−1

z

)
+ w(1−l)

c
(1−χ)

1− 1
ϕ

m

α =

RRAc − χ

(1−bµ−1z )+w
c
χ(1−l)

1
ϕ

1−χ

(1−χ)
(ud0+u0)

cχ0(χ−1)+1
(c−bcµ−1z )

χ
+(1−bµ−1z )+

w(1−l)
c

(1−χ)
1− 1

ϕ

Note also that

RRAc = c

(
−u11

u1

1

1 + wλ
+ α

u1

u

)
m

RRAc

c
+
u11

u1

1

1 + wλ
= α

u1

u

m

α =

(
RRAc

c
+
u11

u1

1

1 + wλ

)
u

u1

And therefore

RRAcl =
(

1 +
w

c
(1− l)

)
RRAc =

(
1 +

w

c
(1− l)

)
RRAc

If we condition on a given value of α (for instance, based on reasons motivated by accuracy of the model solution), then
we can alternatively back out the value of u0 to get a given RRAc. That is, we get

RRAc =
χ(

1− bµ−1
z

)
+ w

c
χ(1−l)

1
ϕ

+ α
1− χ

(1− χ)
(ud0+u0)
cχ0(χ−1)+1

(
c− bcµ−1

z

)χ
+
(
1− bµ−1

z

)
+ w(1−l)

c
(1−χ)

1− 1
ϕ

m
1

α (1− χ)

RRAc − χ(
1− bµ−1

z

)
+ w

c
χ(1−l)

1
ϕ

 =
1

(1− χ)
(ud0+u0)
cχ0(χ−1)+1

(
c− bcµ−1

z

)χ
+
(
1− bµ−1

z

)
+ w(1−l)

c
(1−χ)

1− 1
ϕ
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m

(1− χ)

(
ud0 + u0

)
cχ0(χ−1)+1

(
c− bcµ−1

z

)χ
+
(
1− bµ−1

z

)
+
w (1− l)

c

(1− χ)

1− 1
ϕ

=
α (1− χ)(

RRAc − χ

(1−bµ−1z )+w
c
χ(1−l)

1
ϕ

)
m

(1− χ)

(
ud0 + u0

)
cχ0(χ−1)+1

(
c− bcµ−1

z

)χ
=

α (1− χ)(
RRAc − χ

(1−bµ−1z )+w
c
χ(1−l)

1
ϕ

) − (1− bµ−1
z

)
− w (1− l)

c

(1− χ)

1− 1
ϕ

m

ud0 + u0 =
cχ0(χ−1)+1(

c− bcµ−1
z

)χ
(1− χ)

 α (1− χ)(
RRAc − χ

(1−bµ−1z )+w
c
χ(1−l)

1
ϕ

) − (1− bµ−1
z

)
− w (1− l)

c

(1− χ)

1− 1
ϕ


where either ud0 or u0 are zero.

2.2 The Frisch Labor Supply Elasticity

Recall that this elasticity is given by
elasF = ul

l(ull−
ucl
ucc

)

ϕ0
(1−lt)

1− 1
ϕ

1− 1
ϕ

In our case (given that the utility of leisure is ϕ0
(1−lt)

1− 1
ϕ

1− 1
ϕ

)

ul = −ϕ0 (1− lt)−
1
ϕ

ull = −ϕ0

(
− 1
ϕ

)
(1− lt)−

1
ϕ−1

(−1) = −ϕ0
1
ϕ (1− lt)−

1
ϕ−1

ucl = 0

So, in the steady state we have
elasF = ul

lss(ull−
ucl
ucc

)

= −ϕ0(1−lss)
− 1
ϕ

lss

(
−ϕ0 1

ϕ (1−lss)
− 1
ϕ
−1−0

)
= ϕ

lss(1−lss)−1

= ϕ 1−lss
lss

= ϕ
(

1
lss
− 1
)

When lss = 1
3 , then

elasF = ϕ
(

3
1 − 1

)
= 2ϕ
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2.3 Intertemporal Elasticity of Substitution

The intertemporal elasticity of substitution (IES) is given by

IESt = − UcUccct

=
−c̃χ0(χ−1)

ss

(
ct−bct−1
z
χ0
t

)−χ
1

c̃
χ0
ss z

χ0
t

−χc̃χ0(χ−1)
ss

(
ct−bct−1
z
χ0
t

)−χ−1
ct
z
2χ0
t

=
−
(
ct−bct−1
z
χ0
t

z
1−χ0
t

z
1−χ0
t

)−χ
−χ
(
ct−bct−1
z
χ0
t

z
1−χ0
t

z
1−χ0
t

)−χ−1
ct
z
χ0
t

=
−
(
ct−bct−1

zt

z
1−χ0
t

1

)−χ
−χ
(
ct−bct−1

zt

z
1−χ0
t

1

)−χ−1
ct
z
χ0
t

=

(
c̃t − bc̃t−1µ

−1
z,t

)−χ
χ
(
c̃t − bc̃t−1µ

−1
z,t

)−χ−1 ct
z
χ0
t

1

z
−(1−χ0)
t

=

(
c̃t − bc̃t−1µ

−1
z,t

)−χ
χ
(
c̃t − bc̃t−1µ

−1
z,t

)−χ−1
ctz
−χ0
t

1

z
−1+χ0
t

=
c̃t − bc̃t−1µ

−1
z,t

χc̃t

In the steady state we get

IESss =
1

χ

(
1− bµ−1

z,ss

)

2.4 The Equity Price

We have
Pmt = Et

[
M real
t,t+1

(
Divt+1 + Pmt+1

)]
,

where Divt = ct, i.e. a claim on consumption.
Inducing stationarity

Pmt
zt

= Et
[
M real
t,t+1

((
Divt+1

zt+1

)
+

(
Pmt+1

zt+1

))(
zt+1

zt

)]
m

P̃mt = Et
[
M real
t,t+1

(
D̃ivt+1 + P̃mt+1

)
µz,t+1

]
Hence, in the steady state:

P̃mss = M real
ss,ss+1

(
D̃ivss + P̃mss

)
µz,ss

m
P̃mss = M real

ss,ss+1µz,ssD̃ivss +M real
ss µz,ssP̃

m
ss

m

P̃mss =
M real
ss,ss+1µz,ssD̃ivss

1−M real
ss µz,ss
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Recall that Mss,ss = β
µ−χ(1−χ0)−χ0z,ss

πss
, so M real

ss,ss = βµ
−χ(1−χ0)−χ0
z,ss , and we therefore get

P̃mss =
βµ

1−χ(1−χ0)−χ0
z,ss D̃ivss

1− βµ1−χ(1−χ0)−χ0
z,ss

where D̃ivss = c̃ss. Note also that

Pmt = P̃mt zt

= exp
{

log P̃mt + log zt

}
and similarly for dividends.
The requity return is

exp
{
rmt+1

}
≡

(
Divt+1 + Pmt+1

)
P̃mt

=

(
D̃iv

ω

t+1 + P̃mt+1

)
µz,t+1

P̃mt

m
rmt+1 = log

(
D̃ivt+1 + P̃mt+1

)
− log

(
P̃mt

)
+ logµz,t+1.

2.5 The Timing Premium

We extend the definition of the timing premium to accommodate leisure in the utility function. Here, we apply the approach
suggested in Andreasen & Jørgensen (2020). The basic idea is to impose that the household is on the equilibrium path for
the leisure and consumption trade-off. That is, we use the first order condition

z
(1−χ)(1−χ0)
t ntϕ0 (1− lt)−

1
ϕ =

(
ct − bct−1

(c̃sszt)
χ0

)−χ
w∗t

(c̃sszt)
χ0

m

1

(1− lt)
1
ϕ

=

(
ct−bct−1
(c̃sszt)

χ0

)−χ
w∗t

(c̃sszt)
χ0

z
(1−χ)(1−χ0)
t ntϕ0

m

(1− lt)
1
ϕ =

z
(1−χ)(1−χ0)
t ntϕ0(

ct−bct−1
(c̃sszt)

χ0

)−χ
w∗t

(c̃sszt)
χ0

m

(1− lt) =

 z
(1−χ)(1−χ0)
t ntϕ0(

ct−bct−1
(c̃sszt)

χ0

)−χ
w∗t

(c̃sszt)
χ0


ϕ
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This implies that

ntϕ0

(1− lt)1− 1
ϕ

1− 1
ϕ

= ntϕ0

[
z
(1−χ)(1−χ0)
t ntϕ0(

ct−bct−1
(c̃sszt)

χ0

)−χ w∗t
(c̃sszt)

χ0

]ϕ(1− 1
ϕ )

1− 1
ϕ

= n
1+ϕ(1− 1

ϕ )
t

ϕ
1+ϕ(1− 1

ϕ )
0

1− 1
ϕ

z
(1−χ)(1−χ0)ϕ(1− 1

ϕ )
t(

ct−bct−1
(c̃sszt)

χ0

)−χϕ(1− 1
ϕ ) (w∗t )

ϕ(1− 1
ϕ )

(c̃sszt)
χ0ϕ(1− 1

ϕ )

= n1+ϕ−1
t

ϕ1+ϕ−1
0

1− 1
ϕ

z
(1−χ)(1−χ0)ϕ(1− 1

ϕ )
t(

ct−bct−1
(c̃sszt)

χ0

)−χϕ(1− 1
ϕ ) (w∗t )

ϕ(1− 1
ϕ )

(c̃sszt)
χ0ϕ(1− 1

ϕ )

=
(ntϕ0)

ϕ

1− 1
ϕ

z
(1−χ)(1−χ0)ϕ(1− 1

ϕ )
t (c̃sszt)

χ0ϕ(1− 1
ϕ )
(
ct−bct−1
(c̃sszt)

χ0

)χϕ(1− 1
ϕ )

(w∗t )
ϕ(1− 1

ϕ )
t

=
(ntϕ0)

ϕ

1− 1
ϕ

z
(1−χ)(1−χ0)(ϕ−1)
t (ct − bct−1)

χ(ϕ−1)
(c̃sszt)

χ0(ϕ−1)(1−χ)

(w∗t )
(ϕ−1)

Hence, we can write the value function as (for negative value function) as

Vt = u0z
(1−χ)(1−χ0)
t + dt

[
1

1−χ

(
ct − bct−1

(c̃sszt)
χ0

)1−χ
+ ud0 × z

(1−χ)(1−χ0)
t + z

(1−χ)(1−χ0)
t ntϕ0

(1− lt)1− 1
ϕ

1− 1
ϕ

]

−β
(
Et
[
(−Vt+1)

1−α
]) 1

1−α

m

Vt = u0z
(1−χ)(1−χ0)
t + dt

 1
1−χ

(
ct−bct−1
(c̃sszt)

χ0

)1−χ
+ ud0 × z

(1−χ)(1−χ0)
t

+z
(1−χ)(1−χ0)
t

(ntϕ0)ϕ

1− 1
ϕ

z
(1−χ)(1−χ0)(ϕ−1)
t (ct−bct−1)χ(ϕ−1)(c̃sszt)

χ0(ϕ−1)(1−χ)

(w∗t )(ϕ−1)


−β
(
Et
[
(−Vt+1)

1−α
]) 1

1−α

m

Vt = u0z
(1−χ)(1−χ0)
t + dt

 1
1−χ

(
ct−bct−1
(c̃sszt)

χ0

)1−χ
+ ud0 × z

(1−χ)(1−χ0)
t

+ (ntϕ0)ϕ

1− 1
ϕ

z
(1−χ)(1−χ0)ϕ
t (ct−bct−1)χ(ϕ−1)(c̃sszt)

χ0(ϕ−1)(1−χ)

(w∗t )(ϕ−1)


−β
(
Et
[
(−Vt+1)

1−α
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1−α
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We define the timing premium Πt implicitely as

Vt = u0 (zt (1−Πt))
(1−χ)(1−χ0)

+dt

[
1

1−χ

(
ct − bct−1

(c̃sszt)
χ0

(1−Πt)

)1−χ
+ ud0 × (zt (1−Πt))

(1−χ)(1−χ0)

]

+dt
(ntϕ0)

ϕ

1− 1
ϕ

z
(1−χ)(1−χ0)ϕ
t ((ct − bct−1) (1−Πt))
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−β
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d
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]
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ϕ

1− 1
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(w∗t )
(ϕ−1)

−β

Et
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Here, N0,t is the continuation value of u0z
(1−χ)(1−χ0)
t if uncertainty is resolved in the next period. The variable Nc,t measures

the continuation value of dt
1−χ

(
ct−bct−1
(c̃sszt)

χ0

)1−χ
, while Nd,t measures the continuation value of dtud0z

(1−χ)(1−χ0)
t . Finally, Nl,t

is the continuation value of leisure. Note that

N0,t+1 = u0z
(1−χ)(1−χ0)
t+1 + βu0z

(1−χ)(1−χ0)
t+2 + β2u0z

(1−χ)(1−χ0)
t+3 + ...

= u0

∞∑
i=1

βi−1z
(1−χ)(1−χ0)
t+i

Nc,t+1 =

∞∑
i=1

βi−1 dt+i
1−χ

(
(ct+i − bct−1+i)

(c̃sszt+i)
χ0

)1−χ

Nd,t+1 = ud0

∞∑
i=1

βi−1dt+iz
(1−χ)(1−χ0)
t+i

and

Nl,t+1 =

∞∑
i=1

βi−1dt+i
(nt+iϕ0)

ϕ

1− 1
ϕ

z
(1−χ)(1−χ0)ϕ
t+i (ct+i − bct−1+i)

χ(ϕ−1)
(c̃sszt+i)

χ0(ϕ−1)(1−χ)(
w∗t+i

)ϕ−1

where we recall that

log

(
µz,t+1

µz,ss

)
= ρµz log

(
µz,t
µz,ss

)
+ σµzεµz,t+1

log dt+1 = ρd log dt + σdεd,t+1

log nt+1 = ρn log nt + σnεn,t+1
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zt = zt−1µz,t

and
wt = κw (w̃sszt) + (1− κw)w∗t

m

w∗t =
wt − κw (w̃sszt)

1− κw
We start the simulations of all these sums at the steady state, i.e. where zt = 1, nt = 1, and dt = 1. Also the timing
premium is computed for the economy at the steady state.

3 Data

3.1 Hours

Hours is calculated based on total nonfarm payrolls, which is detrended using the regression filter of Hamilton (2018).

3.2 Wages

For real wages, we use the real hourly compensation for all employed persons in the nonfarm business sector, Index 2012=100,
and seasonally adjusted. This data series is then detrended using the regression filter of Hamilton (2018).

3.3 Consumption

Quarterly consumption is for real per capita non-durables and service expenditures, which are available from the Federal
Reserve Bank of St. Louis.

3.4 Inflation

Inflation is calculated as the year-on-year growth rate in the seasonal adjusted Consumer Price Index (excluding food and
energy) for all urban consumers.

3.5 Bond Yields

We use the 3-month nominal risk-free rate rt from the secondary market. The 1-year, 3-year, 5-year, 7-year, and 10-year
bond yields are from the Gurkaynak, Sack and Wright dataset. This data series is available from 1961Q2.

3.6 Short Rate Expectations from Surveys

Expected future short rates 1,2,3, and 4 quarters ahead are taken from the survey of Professionel Forecasts for the 3-month
T bill. Here, we use the median from panel of forecasts in the survey Professionel Forecasts. These survey data are not
used in the paper, but they are included in the matlab codes linked to the paper.

3.7 Stock Market Data

Dividend and market return series are constructed from two CRSP series, the value-weighted index including distributions
(VWRD) and the value-weighted index excluding distributions (VWRX). A price index is constructed as

Ps+1 = Ps (1 + VWRXs+1) , (11)

with P0 = 1, where s denotes a monthly time index. The related dividends are then calculated as

Ds+1 = Ps (VWRDs+1 − VWRXs+1) . (12)
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To remove seasonality effects in monthly dividends, we construct aggregate dividends Da
s =

∑11
i=0Ds−i. Using this series,

dividend growth is calculated as
∆ds = logDa

s − logDa
s−1, (13)

and then summing these monthly observations over the particular quarter to get quarterly dividends. The market return
each month is

rms = log (Ps +Ds)− logPs−1, (14)

which we annualize. Finally the price-dividend ratio is

ps − ds = logPs − logDa
s . (15)

We then obtain quarterly time series of the price-dividend ratio by using values at the end of each quarter.

3.8 Related Model Variables

1. Hours
We have

l̂Datat = l̂Model
t ,

where we use the standard notation that a "hat" denotes deviation from the steady state, i.e. l̂t = log
(
lt
lss

)
.

2. Wages
We have

ŵDatat = ̂̃wModel

t

3. Consumption growth
The expressions for real quarterly consumption growth is given by

∆ct ≡ log
ct
ct−1

= log
c̃tzt

c̃t−1zt−1
= log

c̃t
c̃ss
− log

c̃t−1

c̃ss
+ log

zt
zt−1

= ̂̃ct − ̂̃ct−1 + log
(
µz,t

)
because ̂̃ct ≡ log c̃t

c̃ss
.

4. Inflation
The quarterly inflation rate is given by

log πt = log πss + π̂t

where π̂t = log
(
πt
πss

)
5. The Nominal Yield Curve
All yields are given by

r
(k)
t = rss + r̂

(k)
t ,

where k denotes the maturity. Note that r(1)
t ≡ rt.

6. Surveys of Expected future short rates

Et [rt+i] = rss + Êt [rt+i]

where i = {1, 2, 3, 4}.

Note finally, that all variables are annualized through a multiplication by 4, except for hours and wages.
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4 Estimation Methodology: Filtering with Shrinkage

This section presents the estimation methodology used in the paper.

4.1 The Estimator

To describe the considered estimator, let θ denote the structural parameters of dimension nθ×1. We would like to estimate
θ using the observables yobst with dimension ny × 1. Given the presence of latent variables xt of dimension nx × 1 in the
model, a log-likelihood function

∑T
t=1 LCDKFt is evaluated by Kalman filtering. Due to the nonlinear structure of our state

space system, we evaluate a quasi-log likelihood function by the central difference Kalman filter of Norgaard, Poulsen &
Ravn (2000) as studied in Andreasen (2013) within the context of nonlinear DSGE models.
To robustify the estimation of θ from a quasi log-likelihood function, we propose to shrink the estimation of θ towards

a set of unconditonal moments. The empirical moments are denoted by 1
T

∑T
t=1 mt and the model-implied moments by

E [m (θ)], which both have dimension nm × 1. Hence, the contribution from these shrinkage moments are given by

Q =

(
1

T

T∑
t=1

mt−E [m (θ)]

)′
W

(
1

T

T∑
t=1

mt−E [m (θ)]

)
= g1:T (θ)

′
Wg1:T (θ)

where g1:T (θ) ≡ 1
T

∑T
t=1 gt (θ) with gt (θ) ≡ (mt−E [m (θ)]) and W is a weigthing matrix. Here, we consider the case

where W is diagonal and its elements are given by the inverse of the standard error attached to each of the moments in
mT .

Hence, the considered estimator is given by

θ̂ =Max
θ∈Θ

1

T

T∑
t=1

LCDKFt − λg1:T (θ)
′
Wg1:T (θ) (16)

where λ ∈ R+ controls the weight given to the skrinkage moments. For the implemention in Matlab, where we use
minimization routines, we use the equivalent formulation

θ̂ =Min
θ∈Θ

− 1

T
LCDKFt + λg1:T (θ)

′
Wg1:T (θ) .

4.2 The Unconditional Shrinkage Moments

To describe the unconditional moments included in the estimation, consider the following nine variables:
l̂t
ŵt
∆ct

log πt

r
(i)
t


︸ ︷︷ ︸

ymomt

where i = {1, 4, 12, 20, 28, 40}. The first set of moments we include contains the first and second uncentered moments for
ymomt , that is

1

T

∑T
t=1 m1,t =

[
1
T

∑T
t=1 ymomt

1
T

∑T
t=1 (ymomt )

2

]
.

To describe the second set of moments, consider the Campbell-Shiller regression

r
(k−m)
t+m − r(k)

t = αk + βk
m

k −m

(
r

(k)
t − r

(m)
t

)
+ u

(k)
t
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where m indicates the forecast horizon. Here, we apply m = 4 for forecasting four quarters ahead. The population value
for βk is given by

βk =
Cov

(
r

(k−m)
t+m − r(k)

t , m
k−m

(
r

(k)
t − r

(m)
t

))
V ar

(
m

k−m

(
r

(k)
t − r

(m)
t

))
=

m
k−mCov

(
r

(k−m)
t+m − r(k)

t , r
(k)
t − r

(m)
t

)
(

m
k−m

)2

V ar
(
r

(k)
t − r

(m)
t

)
=

Cov
(
r

(k−m)
t+m − r(k)

t , r
(k)
t − r

(m)
t

)
m

k−mV ar
(
r

(k)
t − r

(m)
t

)
We represent βk by including moments for the covariance and the variance determining βk. That is, we target

1

T

∑T
t=1 m2,t =

[
1
T

∑T
t=1 mCov

2,t
1
T

∑T
t=1 mV AR

2,t

]

where
1

T

∑T
t=1 mCov

2,t =

{
1

T

∑T−m
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(
r

(k−m)
t+m − r(k)

t

)((
r

(k)
t − r

(m)
t

)
− slopet

(k)
)}′

k={8,16,...,40}

and
1

T

∑T
t=1 mV AR

2,t =

{
1
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(
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(k)
t − r

(m)
t

)((
r
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(m)
t
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− slopet

(k)
)}′

k={8,16,...,40}
,

with slopet
(k) ≡ 1

T

∑T
t=1

(
r

(k)
t − r

(m)
t

)
for k = {8, 16, ..., 40}.

Thus, we consider the following unconditional moments for the skrinkage part of our estimator

1

T

T∑
t=1

mt ≡
[

1
T

∑T
t=1 m1,t

1
T

∑T
t=1 m2,t

]
.

4.3 Computing the Shrinkage Moments

In general, E [m (θ)] and hence Qmust be computed by simulation. However, for the pruned approximation (and a linearized
approximation), it is possible to compute E [m (θ)] in closed form. When the standard perturbation approximation is used,
we can easily compute the closed-form expression for E [m (θ)] using the results in Andreasen et al. (2018). For the second-
order projection approximation applied in the paper, we extend the results of Andreasen et al. (2018) to this approximation,
such that it is also possible to obtain a closed form expression for E [m (θ)] in this case.

The value of E [m1 (θ)] follows directly from the unconditional mean of a control variable yt and its covariance matrix.

For E
[
m2 (θ)

Cov
]
, we first observe for the kth element of m2 (θ)

Cov that

E
[
m2 (θ)
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k

]
= E
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(k)
t − E

[
slope

(k)
t

])]
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[
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t , slope
(k)
t

]
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[
r
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t+m , slope

(k)
t

]
− Cov

[
r

(k)
t , slope

(k)
t

]
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Hence, Cov
[
r

(k)
t , slope

(k)
t

]
can be computed directly using the expression for unconditional second moments for control

variables, and Cov
[
r

(k−m)
t+m , slope

(k)
t

]
follows from the auto-covariance matrix for control variables. As for E

[
m2 (θ)

V AR
]

we have

E
[
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(m)
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)]
,

which also follows directly using the expression for unconditional second moments for control variables when applied to the
slope of the yield curve.

4.4 The Link Between Campbell-Shiller and Return Regressions

We first introduce some notation. Let B(k)
t denote the price of a zero-coupon bond with maturity k at time t. The m-period

holding period return on a k-period bond is

h̃pr
(k)

t+m ≡ log

(
B

(k−m)
t+m

B
(k)
t

)
= logB

(k−m)
t+m − logB

(k)
t

= − (k −m) r
(k−m)
t+m + kr

(k)
t ,

because r(k)
t, = − 1

k logB
(k)
t . One period in our model corresponds to one quarter, so it is natural to express everything in

quarterly returns. That is, we get quarterly returns as

hpr
(k)
t+m = −k −m

4
r

(k−m)
t+m +

k

4
r

(k)
t

The Campbell-Shiller regression is given by

r
(k−m)
t+m − r(k)

t = αk + βk
m

k −m

(
r

(k)
t − r

(m)
t

)
+ ut+m,k,

The classic return regression is given by
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m

4
r

(m)
t = α̃k + β̃k

(
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t − r

(m)
t

)
+ εt+m,k

To see the link between these two regressions, consider the quarterly holding period returns

hpr
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t+m = −k −m

4
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4
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Now subtract m4 r
(m)
t on both sides to obtain
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Then add and subtract m4 r
(k)
t on the right hand side
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Multiplying both sides by 4
k−m and rearranging, we get
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. (17)

Regressing each of the three terms in (17) on a constant and m
k−m

(
r

(k)
t − r

(m)
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)
we get:

i)
(
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m
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= αk + βk

m
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Thus, for the constants, we simply insert the intercepts from i) to iii) into (17). That is

4

k −m × intercept from i) =
m

k −m × intercept from ii) − intercept from iii)

m
4

k −m × α̃k =
m

k −m × 0− αk

m
α̃k = −αk

k −m
4

For the loadings, we get

4

k −m × slope from i) =
m

k −m × slope from ii) − slope from iii)

4

k −mβ̃k
k −m
m

=
m

k −m ×
k −m
m

− βk

m
4

m
β̃k = 1− βk

Thus the two regressions contain the same information.
For the case of m = 4, we thus have the simple mappings α̃k = −αk k−4

4 = −αk
(
k
4 − 1

)
and β̃k = 1− βk.

4.5 Asymptotic Distribution

The asymptotic analysis is carried out based on the assumption that any filtering errors caused solely due to the adopted
integration approximation in the CDKF are small and none essential for the estimates. The validity of this assumption is
explored in the Monte Carlo study presented in this Online Appendix. Given this assumption, the standard QML estimator
based on the CDKF is consistent (see Andreasen (2013)). We also have that GMM is consistent, given standard regularity
conditions (see Hansen (1982)), and therefore, the proposed estimator with shrinkage is also consistent with respect to θ.
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To derive the asymptotic distribution of θ̂ for T −→∞, let

L =
1

T

T∑
t=1

LCDKFt − λQ,

and note that
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(
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)
where st (θ) ≡ ∂LCDKFt

∂θ is the score function for observation t related to the Central Difference Kalman filter and G (θ) ≡
∂g1:T (θ)
∂θ′ = 1

T

∑T
t=1

gt(θ)
∂θ′ is the Jacobian related to the shrinkage moments. The first-order conditions are
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A mean-value expansion of st and gt around the true value θo gives
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(
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)}
− 2λG
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)′
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g1:T (θo) + G̃
(
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Here, H̃t is the nθ × nθ Hessian matrix of observation t related to the Kalman filtering. The tilde on the Hessian matrix
indicates that each row of H̃t is evaluated at a different mean value, which is on the line segment between θo and θ̂.
Similarly, G̃ is the Jacobian related to the shrinkage moments where each row of G̃ is evaluated at a different mean value,
which is on the line segment between θo and θ̂. Thus, we get
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For suffi ciently large T , we have
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Also, let qt (θ) ≡ −st (θ) +2λG (θ)
′
Wgt (θ), then given suffi cient regularity conditions, we have that 1√

T

∑T
t=1 qt (θ)

converges to a multivariate normal distribution for T −→∞ (see for instance Hansen (1982)). That is,
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T∑
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(
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where E [qt (θo)] = 0. To realize that E [qt (θo)] = 0 recall that θo solves the population problem
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which implies the first-order conditions
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Given suffi cient regularity conditions such that the derivative and the expectation operator can be interchanged, we have
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as desired. Thus, given standard regularity conditions, as stated in Hayashi (2000), we have

√
T
(
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)
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(
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where qt (θ) ≡ −st (θ) +2λG (θ)
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Wgt (θ). Thus, the asymptotic covariance matric is given by
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We can consistently estimate Ao by

Â =
1

T

T∑
t=1

Ht

(
θ̂
)
− 2λG

(
θ̂
)′

WG
(
θ̂
)

As for V ar (qt (θo)), we can use standard estimators to account for autocorrelation and heteroskedasticity in a time series,
which is generally needed because of autocorrelation and heteroskedasticity in gt (θo). We use the estimator of Newey &
West (1987), i.e.

V̂ ar
(
qt

(
θ̂
))

= Γ̂0 +

k∑
ν=1

(
Γ̂ν + Γ̂′ν

)
where
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(
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(
θ̂
)
− q̄t

(
θ̂
))(

qt−ν

(
θ̂
)
− q̄t

(
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))′

and k is a tuning parameter.
In terms of the specific value of λ, we suggest simply to let λ = T , i.e. the sample size.
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4.6 Alternative Interpretation of the Proposed Estimator

One may alternatively consider the proposed estimator as belonging to the class of Laplace type estimators (LTE) or quasi-
Bayesian estimators in Chernozhukov & Hong (2003) with the endogenours prior specification of Christiano, Trabandt &
Walentin (2011). The use of LTE implies that a potentially misspecified log-likelihood function (as considered in our case)
may be used within a Bayesian setting, whereas such a misspecification is generally not accommodated within a standard
Bayesian framework.
To realize this, let LT (θ) ≡ 1

T

∑T
t=1 LCDKFt be the considered extremum statistic and let the priors be denoted by

π (θ). The quasi-posterior density pT (θ) for the estimator in Chernozhukov & Hong (2003) is proportional to

pT (θ) ∝ exp {LT (θ)}π (θ)

m
log pT (θ) ∝ LT (θ) + log π (θ) .

For the priors we use the endogenours prior specifiction in Christiano et al. (2011) based on sample moments mt. For a
suffi ciently large pre-sample size T , it follows that the density of the empirical sample moments mT = 1

T

∑T
t=1 mt is given

by (see Appendix B (page 38) related to Christiano et al. (2011))

p (mT |θ) =

(
T

2π

)T/2 ∣∣∣Ŝ∣∣∣−1/2

exp
{
−T/2 (mT − E [m (θ)])

′
Ŝ−1 (mT − E [m (θ)])

}
,

where Ŝ is the estimated co-variance matrix of the sample moments. Letting p (θ) denote the primitive priors before
observing mT , then

π (θ) = p (mT |θ) p (θ) ,

or simply
π (θ) = p (mT |θ) ,

when p (θ) is set to flat priors. Accordingly

log pT (θ) ∝ LT (θ) + log π (θ)

∝ LT (θ)− T/2 (mT − E [m (θ)])
′
Ŝ−1 (mT − E [m (θ)])

= LT (θ)− T/2×Q

when W = Ŝ−1, which is identical to (16) when λ = T/2.

4.7 Monte Carlo Evidence

This section presents a small simulation study to illustrate the benefit of introducing shrinkage when the New Keynesian
model is misspecified. To make the simulation study computational feasible, we consider a reduced version of the New
Keynesian model. That is, we omit preference shocks, labor supply shocks, and shocks to the inflation target. Also, we
omit consumption habits (b = 0) and we do not include wage stickiness (κw = 0), and therefore we also omit wages as
an observable in the estimation. The model is solved by third-order perturbation, as the issue related to the accuracy of
the solution is not essential in this context. That is, the data generating process is given by a third-order perturbation
approximation, which is also used for the estimation. We estimate the parameters listed below, while the remaining
paramters take the values a = −100, lss = 0.33, β = 0.9925, φ = 0.075, η = 6, (K/Y )ss = 2.5, δ = 0.025, µz,ss = 1.0055.
We simulate 1,000 samples, each with T = 250 observations and estimate the model using the proposed estimation for various
values of λ. We study the performance of QML (i.e., λ = 0) and shrinkage towards the first and second unconditional
moments as described in the paper.
Without any misspecification in Panel A in Table 1, we see that QML (i.e., λ = 0) gives nearly unbiased estimates with

low degree of variability as measured by the standard deviation of the sampling distribution. Letting λ = T or λ = 106

only worsen the performance of the estimator, as it increases the biases and generates less effi cient estimates.
Panel B in Table 1 considers the case, where the data generating model is solved using the true structural parameters

(to get the g- and the h-functions), but when simulating data we use the value ρa = 0.8 for the persistence in the stationary
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technology shocks. That is, we introduce a clear misspecification in the model. To ensure that the unconditional variance

of the stationary technology shocks are unaffected by this misspecification, we let σa =
√

0.012

1−0.982 (1− 0.802). Hence, for
this case with misspecification, there is no true value of ρa and σa, and this explains why we do not report their estimates
in Panel B. We then estimate the model without accounting for this misspecification, i.e., with the same value of ρa being
used to solve and simulate the model. Panel B shows that QML with shrinkage (λ = T ) gives parameter estimates that
are less biased when compared to QML without shrinkage (i.e., λ = 0). This is seen clearly from the overall root measure
squared biases

RMSBθ =

√
1

nθ

∑nθ
i=1

(
θi − θ̄i

)2
,

where θi is the true value of the structural parameter and θ̄i is the mean estimate of the ith parameter in the Monte Carlo
study. Here, nθ denotes the number of estimated structural parameters. We find RMSBθ = 0.116 with λ = 0 but only
RMSBθ = 0.087 with λ = T . The cost of robustifying the QML estimator in this way is that we find less effi cient estimate
with λ = T compared to λ = 0.
We benchmark these results to using an extreme degree of shrinkage with λ = 106, which corresponds to estimating

the structural parameters by GMM and obtaining the states afterwards by the CDKF. The Monte Carlo study shows
that these GMM estimates display notable biases in finite samples and are clearly less effi cient compared to the standard
QML estimator (λ = 0) and the proposed estimator (with λ = T ), both with and without model misspecification. These
imprecise GMM estimates of the structural parameters also imply less accurate state estimates when compared to the
proposed estimator with λ = T . This is seen from the following measure related to the estimated states

RMSEStates =
1

1, 000

∑1,000
s=1

√
1

nx

∑T
t=1

∑nx
i=1

(
x

(s)
i,t − x̂

(s)
i,t

)2

,

which is RMSEStates = 0.0223 with λ = 106 but only RMSEStates = 0.0159 with λ = T .

5 Projection Approximation

The considered second order projection approximation reads (unpruned)

yt = g0 + gxxt + Gxx (xt ⊗ xt)

xt+1 = h0 + hxxt + Hxx (xt ⊗ xt) + ηεt+1

where Gxx ≡ reshape
(
gxx, ny, n

2
x

)
and Hxx ≡ reshape

(
hxx, nx, n

2
x

)
, whereas the pruned version reads

yt = g0 + gx

(
xft + xst

)
+ Gxx

(
xft ⊗ xft

)
xft+1 = h0 + hxxft + ηεt+1

xst+1 = hxxst + Hxx

(
xft ⊗ xft

)
Thus, the only differences with respect to the pruned state space system for the standard perturbation approximation are
i) the presence of h0 in the law of motion for xft and ii) the absence of

1
2hσσσ

2 in the law of motion for xst . We include h0

in the law of motion for xft because it is presence even in a first-order projection solution as it captures a risk-adjustment.
Thus, to get the closed-form moments for the pruned projection solution, all we need to do is to extend the results in
Andreasen et al. (2018) to account for h0. This is done below.

For the pruned version, we can show stability and compute the first and second unconditional moments.
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Table 1: A Monte Carlo Study
This table reports the biases and standard deviation for the estimated parameters in a simulation study using 1,000 replications and T = 250.

Parameter bias Standard deviation
True value λ = 0 λ = T λ = 106 λ = 0 λ = T λ = 106

A: No Misspecification
χ 2.000 0.005 0.076 -0.009 0.102 0.230 0.226
ξCalvo 0.750 0.010 0.030 0.013 0.040 0.053 0.057
φπ 1.250 0.026 0.092 0.128 0.073 0.147 0.147
φ∆c 0.250 -0.001 0.019 0.053 0.045 0.143 0.145
πss 1.005 0.000 0.001 -0.001 0.002 0.005 0.004
ρµz 0.500 0.051 -0.141 -0.271 0.106 0.191 0.212
σµz 0.001 0.000 0.001 0.000 0.000 0.001 0.001
ρa 0.980 -0.001 0.005 0.002 0.004 0.006 0.005
σa 0.010 0.000 -0.001 -0.001 0.001 0.001 0.001
RMSBθ - 0.041 0.212 0.214 - - -
RMSEStates - 0.0066 0.0269 0.0327 - - -

B: With misspecification
χ 2.000 -0.339 -0.084 -0.181 0.347 0.192 0.132
ξCalvo 0.750 -0.010 -0.079 -0.043 0.079 0.193 0.141
φπ 1.250 0.004 0.175 0.316 0.100 0.217 0.287
φ∆c 0.250 -0.015 0.023 0.148 0.091 0.184 0.279
πss 1.005 0.000 -0.001 -0.002 0.004 0.002 0.002
ρµz 0.500 0.120 0.035 -0.239 0.151 0.213 0.313
σµz 0.001 0.000 0.000 0.000 0.000 0.001 0.001
RMSBθ - 0.116 0.087 0.350 - - -
RMSEStates - 0.0346 0.0159 0.0223 - - -

5.1 Covariance-stationary

Proposition 1:
The pruned second-order approximation for xft ,x

s
t , and yst is covariance-stationary if

1. If all eigenvalue of hx have modulus less than one

2. εt+1 has finite fourth moment

Proof
We now form the extended state vector

zt ≡

 xft
xst

xft ⊗ xft


We know the law of motion for xft and xst , so we only need to find the law of motion for xft ⊗ xft . Hence consider

xft+1 ⊗ xft+1 =
(
h0 + hxxft + ηεt+1

)
⊗
(
h0 + hxxft + ηεt+1

)
= h0 ⊗

(
h0 + hxxft + ηεt+1

)
+hxxft ⊗

(
h0 + hxxft + ηεt+1

)
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+ηεt+1 ⊗
(
h0 + hxxft + ηεt+1

)
using (A + B)⊗ (C + D) = A⊗C + A⊗D + B⊗C + B⊗D

= h0 ⊗ h0 + h0 ⊗ hxxft + h0 ⊗ ηεt+1

+hxxft ⊗ h0 + hxxft ⊗ hxxft + hxxft ⊗ ηεt+1

+ηεt+1 ⊗ h0 + ηεt+1 ⊗ hxxft + ηεt+1 ⊗ ηεt+1

= h0 ⊗ h0 + (h0 ⊗ hx) xft + (h0 ⊗ η) εt+1

+hxxft ⊗ h01 + (hx ⊗ hx)
(
xft ⊗ xft

)
+ (hx ⊗ ση)

(
xft ⊗ εt+1

)
+ηεt+1 ⊗ h01 + (η ⊗ hx)

(
εt+1 ⊗ xft

)
+ (η ⊗ η) (εt+1 ⊗ εt+1)

using (A⊗B) (C⊗D) = AC⊗BD

= h0 ⊗ h0 + (h0 ⊗ hx) xft + (h0 ⊗ η) εt+1

+ (hx ⊗ h0)
(
xft ⊗ 1

)
+ (hx ⊗ hx)

(
xft ⊗ xft

)
+ (hx ⊗ η)

(
xft ⊗ εt+1

)
+ (η ⊗ h0) (εt+1 ⊗ 1) + (η ⊗ hx)

(
εt+1 ⊗ xft

)
+ (η ⊗ η) (εt+1 ⊗ εt+1)

Note that E [(εt+1 ⊗ εt+1)] = vec (Ine). Thus, we get
xft+1 ⊗ xft+1 = h0 ⊗ h0 + (h0 ⊗ hx) xft + (h0 ⊗ η) εt+1 + (η ⊗ η) vec (Ine)

+ (hx ⊗ h0) xft + (hx ⊗ hx)
(
xft ⊗ xft

)
+ (hx ⊗ η)

(
xft ⊗ εt+1

)
+ (η ⊗ h0) εt+1 + (η ⊗ hx)

(
εt+1 ⊗ xft

)
+ (η ⊗ η) ((εt+1 ⊗ εt+1)− vec (Ine))

Accordingly xft+1

xst+1

xft+1 ⊗ xft+1

 =

 hx 0nx×nx 0nx×n2x
0nx×nx hx Hxx

h0 ⊗ hx + hx ⊗ h0 0n2x×nx hx ⊗ hx

 xft
xst

xft ⊗ xft

+

 h0

0
h0 ⊗ h0 + (η ⊗ η) vec (Ine)



+

 η 0 0 0
0 0 0 0

h0 ⊗ η + η ⊗ h0 η ⊗ η η ⊗ hx hx ⊗ η




εt+1

εt+1 ⊗ εt+1 − vec (Ine)

εt+1 ⊗ xft
xft ⊗ εt+1



m

zt+1 = Azt + c + Bξt+1 (18)

where Cov
(
ξt+1, ξt−s

)
= 0 for s = 1, 2, 3, ... because εt+1 is independent across time. This follows from the observation

that ξt+1 is identical to the value stated for ξt+1 in Andreasen et al. (2018), which show the claimed result..

The absolute value of the eigenvalues in hx are all strictly less then one by assumption. Accordingly, all eigenvalues of
A are also strictly less than one. To see this note first that

p (λ) =
∣∣A−λI2nx+n2x

∣∣
=

∣∣∣∣∣∣
 hx − λInx 0nx×nx 0nx×n2x

0nx×nx hx − λInx Hxx

h0 ⊗ hx + hx ⊗ h0 0n2x×nx hx ⊗ hx − λIn2x

∣∣∣∣∣∣
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=

∣∣∣∣ B11 B12

B21 B22

∣∣∣∣
where we let

B11 ≡
[

hx − λInx 0nx×nx
0nx×nx hx − λInx

]
which is 2nx × 2nx

B12 ≡
[

0nx×n2x
Hxx

]
which is 2nx × n2

x

B21 ≡
[

h0 ⊗ hx + hx ⊗ h0 0n2x×nx
]
which is n2

x × 2nx
B22 ≡ hx ⊗ hx − λIn2x which is n

2
x × n2

x

= |B11| |B22|

using

∣∣∣∣ U C
0 Y

∣∣∣∣ = |U| |Y| where U is m×m and Y is n× n

=

∣∣∣∣[ hx − λInx 0nx×nx
0nx×nx hx − λInx

]∣∣∣∣ ∣∣hx ⊗ hx − λIn2x
∣∣

= |hx − λInx | |hx − λInx |
∣∣hx ⊗ hx − λIn2x

∣∣
Hence, the eigenvalue λ solves the problem
p (λ) = 0
m

|hx − λInx | |hx − λInx |
∣∣hx ⊗ hx − λIn2x

∣∣ = 0
m

|hx − λInx | = 0 or
∣∣hx ⊗ hx − λIn2x

∣∣ = 0
The absolute value of all eigenvalues to the first problem are strictly less than one. That is |λi| < 1 i = 1, 2, ..., nx. This

is also the case for the second problem because the eigenvalues to hx ⊗ hx are λiλj for i = 1, 2, ..., nx and j = 1, 2, ..., nx

Thus, the system in (18) is covariance stationary if ξt+1 has finite first and second moment. It follows directly that
E
[
ξt+1

]
= 0 and ξt+1 has finite second moments if εt+1 has a finite fourth moment. The latter holds by assumption.

For the control variables we have yt = Dzt + g0 where D ≡
[

gx gx Gxx

]
. That is yt is linear function of zt and

yt is therefore also covariance-stationary.

Q.E.D.

5.2 Formulas for the first and second moments

This section computes first and second unconditional moments using the representation of the second-order system stated
above. Note first that

E
[
xft+1

]
= h0 + hxE

[
xft

]
⇓

E
[
xft

]
= (I− hx)

−1
h0

And
V ar

[
xft+1

]
= hxV ar

[
xft

]
h′x + ηη′

m
vec

(
V ar

[
xft+1

])
= (hx ⊗ hx) vec

(
V ar

[
xft

])
+ vec (ηη′)
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⇓
vec

(
V ar

[
xft

])
= (I− hx ⊗ hx)

−1
vec (ηη′)

Hence,

V ar
[
xft

]
= E

[(
xft − E

[
xft

])(
xft − E

[
xft

])′]
= E

[(
xft − E

[
xft

])(
xft

)′]
= E

[
xft

(
xft

)′]
− E

[
xft

]
E

[(
xft

)′]
m

E

[
xft

(
xft

)′]
= V ar

[
xft

]
+ E

[
xft

]
E

[(
xft

)′]
.

The system
zt+1 = c + Azt + Bξt+1

yt = Dzt + g0

The mean values are
E [zt] =

(
I2nx+n2x

−A
)−1

c.

E [yt] = DE [zt] + g0

Then note that E
[
xft

]
is at the top of E [zt] and E

[
xft

(
xft

)′]
is at the bottom of E [zt], which is an easy way to get these

moments.
For the variances we first have that
E
[
zt+1z

′
t+1

]
= E

[(
c + Azt + Bξt+1

) (
c + Azt + Bξt+1

)′]
= E

[(
c + Azt + Bξt+1

) (
c′ + z′tA

′ + ξ′t+1B
′)]

= E
[
c
(
c′ + z′tA

′ + ξ′t+1B
′)]

+E
[
Azt

(
c′ + z′tA

′ + ξ′t+1B
′)]

+E
[
Bξt+1

(
c′ + z′tA

′ + ξ′t+1B
′)]

= E
[
cc′ + cz′tA

′ + cξ′t+1B
′]

+E
[
Aztc

′ + Aztz
′
tA
′ + Aztξ

′
t+1B

′]
+E

[
Bξt+1c

′ + Bξt+1z
′
tA
′ + Bξt+1ξ

′
t+1B

′]
= cc′ + cE [z′t] A

′

+AE [zt] c
′ + AE [ztz

′
t] A

′ + AE
[
ztξ
′
t+1

]
B′

+BE
[
ξt+1z

′
t

]
A′ + BE

[
ξt+1ξ

′
t+1

]
B′

We then note that

E
[
ztξ
′
t+1

]
= E

 xft
xst

xft ⊗ xft

[ ε′t+1 (εt+1 ⊗ εt+1 − vec (Ine))
′
(
εt+1 ⊗ xft

)′ (
xft ⊗ εt+1

)′ ]

38



= E


xft ε

′
t+1 xft (εt+1 ⊗ εt+1 − vec (Ine))

′
xft

(
εt+1 ⊗ xft

)′
xft

(
xft ⊗ εt+1

)′
xstε
′
t+1 xst (εt+1 ⊗ εt+1 − vec (Ine))

′
xst

(
εt+1 ⊗ xft

)′
xst

(
xft ⊗ εt+1

)′(
xft ⊗ xft

)
ε′t+1

(
xft ⊗ xft

)
(εt+1 ⊗ εt+1 − vec (Ine))

′
(
xft ⊗ xft

)(
εt+1 ⊗ xft

)′ (
xft ⊗ xft

)(
xft ⊗ εt+1

)′


=

 0 0 0 0
0 0 0 0
0 0 0 0


Thus
E
[
zt+1z

′
t+1

]
= cc′ + cE [z′t] A

′ + AE [zt] c
′ + AE [ztz

′
t] A

′ + BE
[
ξt+1ξ

′
t+1

]
B′

= cE [z′t] A
′ + (c + AE [zt]) c′ + AE [ztz

′
t] A

′ + BE
[
ξt+1ξ

′
t+1

]
B′

Note also that
E [zt]E [zt]

′
= (c + AE [zt]) (c + AE [zt])

′

= (c + AE [zt]) c′ + (c + AE [zt])E [z′t] A
′

= (c + AE [zt]) c′ + cE [z′t] A
′ + AE [zt]E [z′t] A

′

So
E
[
zt+1z

′
t+1

]
− E [zt]E [zt]

′
= cE [z′t] A

′ + (c + AE [zt]) c′ + AE [ztz
′
t] A

′ + BE
[
ξt+1ξ

′
t+1

]
B′

− (c + AE [zt]) c′ − cE [z′t] A
′ −AE [zt]E [z′t] A

′

= AE [ztz
′
t] A

′ + BE
[
ξt+1ξ

′
t+1

]
B′ −AE [zt]E [z′t] A

′

= A (E [ztz
′
t]− E [zt]E [z′t]) A′ + BE

[
ξt+1ξ

′
t+1

]
B′

m

V ar (zt+1) = AV ar (zt) A′+BV ar
(
ξt+1

)
B′

m

vec (V ar (zt+1)) = vec (AV ar (zt) A′) +vec
(
BV ar

(
ξt+1

)
B′
)

m

vec (V ar (zt+1)) = (A⊗A) vec (V ar (zt)) +vec
(
BV ar

(
ξt+1

)
B′
)

m

vec (V ar (zt+1))
(
I(2nx+n2x)2 − (A⊗A)

)
= vec

(
BV ar

(
ξt+1

)
B′
)

m

vec (V ar (zt+1)) =
(
I(2nx+n2x)2 − (A⊗A)

)−1

vec
(
BV ar

(
ξt+1

)
B′
)

Hence we only need to compute V ar
(
ξt+1

)
. Given that the expression for ξt+1 is identifical to the one for the pruned

standard perturbation approximation, the matrix V ar
(
ξt+1

)
can be computed as outlined in Andreasen et al. (2018). For

completeness, we reproduce how this is done below.
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V ar
(
ξt+1

)
= E




εt+1

εt+1 ⊗ εt+1 − vec (Ine)

εt+1 ⊗ xft
xft ⊗ εt+1




εt+1

εt+1 ⊗ εt+1 − vec (Ine)

εt+1 ⊗ xft
xft ⊗ εt+1


′

= E




εt+1

εt+1 ⊗ εt+1 − vec (Ine)

εt+1 ⊗ xft
xft ⊗ εt+1

 ε′t+1 (εt+1 ⊗ εt+1 − vec (Ine))
′
(
εt+1 ⊗ xft

)′ (
xft ⊗ εt+1

)′ 

= E


εt+1ε

′
t+1 εt+1 (εt+1 ⊗ εt+1 − vec (Ine))

′

(εt+1 ⊗ εt+1 − vec (Ine)) ε
′
t+1 (εt+1 ⊗ εt+1 − vec (Ine)) (εt+1 ⊗ εt+1 − vec (Ine))

′(
εt+1 ⊗ xft

)
ε′t+1

(
εt+1 ⊗ xft

)
(εt+1 ⊗ εt+1 − vec (Ine))

′(
xft ⊗ εt+1

)
ε′t+1

(
xft ⊗ εt+1

)
(εt+1 ⊗ εt+1 − vec (Ine))

′

εt+1

(
εt+1 ⊗ xft

)′
εt+1

(
xft ⊗ εt+1

)′
(εt+1 ⊗ εt+1 − vec (Ine))

(
εt+1 ⊗ xft

)′
(εt+1 ⊗ εt+1 − vec (Ine))

(
xft ⊗ εt+1

)′(
εt+1 ⊗ xft

)(
εt+1 ⊗ xft

)′ (
εt+1 ⊗ xft

)(
xft ⊗ εt+1

)′(
xft ⊗ εt+1

)(
εt+1 ⊗ xft

)′ (
xft ⊗ εt+1

)(
xft ⊗ εt+1

)′


We next evaluate each of these terms.
The first row:
E
[
εt+1ε

′
t+1

]
= Inε

E
[
εt+1 (εt+1 ⊗ εt+1 − vec (Ine))

′]
= E

[
εt+1 (εt+1 ⊗ εt+1)

′ − εt+1vec (Ine)
′]

= E
[
εt+1 (εt+1 ⊗ εt+1)

′]
E

[
εt+1

(
εt+1 ⊗ xft

)′]
= E

[
(εt+1 ⊗ 1)

(
ε′t+1 ⊗

(
xft

)′)]
= E

[
εt+1ε

′
t+1 ⊗

(
xft

)′]
= E

[
Et
[
εt+1ε

′
t+1

]
⊗
(
xft

)′]
= E

[
Inε ⊗

(
xft

)′]
= Inε ⊗ E

[(
xft

)′]
E

[
εt+1

(
xft ⊗ εt+1

)′]
= E

[
(1⊗ εt+1)

((
xft

)′
⊗ ε′t+1

)]
= E

[(
xft

)′
⊗ εt+1ε

′
t+1

]
= E

[(
xft

)′]
⊗ Inε

The second row
E
[
(εt+1 ⊗ εt+1 − vec (Ine)) ε

′
t+1

]
= E

[
(εt+1 ⊗ εt+1) ε′t+1

]
E
[
(εt+1 ⊗ εt+1 − vec (Ine)) (εt+1 ⊗ εt+1 − vec (Ine))

′]
= E

[
((εt+1 ⊗ εt+1)− vec (Ine))

(
(εt+1 ⊗ εt+1)

′ − vec (Ine)
′)]

= E
[
(εt+1 ⊗ εt+1) (εt+1 ⊗ εt+1)

′ − (εt+1 ⊗ εt+1) vec (Ine)
′ − vec (Ine) (εt+1 ⊗ εt+1)

′
+ vec (Ine) vec (Ine)

′]
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= E
[
(εt+1 ⊗ εt+1) (εt+1 ⊗ εt+1)

′ − vec (Ine) vec (Ine)
′ − vec (Ine) vec (Ine)

′
+ vec (Ine) vec (Ine)

′]
= E

[
(εt+1 ⊗ εt+1) (εt+1 ⊗ εt+1)

′ − vec (Ine) vec (Ine)
′]

E

[
(εt+1 ⊗ εt+1 − vec (Ine))

(
εt+1 ⊗ xft

)′]
= E

[
(εt+1 ⊗ εt+1)

(
εt+1 ⊗ xft

)′
− vec (Ine)

(
εt+1 ⊗ xft

)′]
= E

[
(εt+1 ⊗ εt+1)

(
εt+1 ⊗ xft

)′]
E

[
(εt+1 ⊗ εt+1 − vec (Ine))

(
xft ⊗ εt+1

)′]
= E

[
(εt+1 ⊗ εt+1)

(
xft ⊗ εt+1

)′]
Third row
E
[(
εt+1 ⊗ xft

)
ε′t+1

]
= E

[(
εt+1 ⊗ xft

) (
ε′t+1 ⊗ 1

)]
= E

[
εt+1ε

′
t+1 ⊗ xft

]
= Inε ⊗ E

[
xft

]
E
[(
εt+1 ⊗ xft

)
(εt+1 ⊗ εt+1 − vec (Ine))

′
]

= E
[(
εt+1 ⊗ xft

)
(εt+1 ⊗ εt+1)

′
]

E

[(
εt+1 ⊗ xft

)(
εt+1 ⊗ xft

)′]
= E

[(
εt+1 ⊗ xft

)(
ε′t+1 ⊗

(
xft

)′)]
= E

[(
εt+1ε

′
t+1

)
⊗
(

xft

(
xft

)′)]
= Ine ⊗ E

[
xft

(
xft

)′]
using (A⊗B) (C⊗D) = AC⊗BD

E

[(
εt+1 ⊗ xft

)(
xft ⊗ εt+1

)′]
= E

[(
εt+1 ⊗ xft

)(
xft ⊗ εt+1

)′]
Fourth row
E
[(

xft ⊗ εt+1

)
ε′t+1

]
= E

[(
xft ⊗ εt+1

) (
1⊗ ε′t+1

)]
= E

[
xft ⊗

(
εt+1ε

′
t+1

)]
= E

[
xft

]
⊗ Ine

E
[(

xft ⊗ εt+1

)
(εt+1 ⊗ εt+1 − vec (Ine))

′
]

= E
[(

xft ⊗ εt+1

)
(εt+1 ⊗ εt+1)

′
]

E

[(
xft ⊗ εt+1

)(
εt+1 ⊗ xft

)′]
= E

[(
xft ⊗ εt+1

)(
εt+1 ⊗ xft

)′]
E

[(
xft ⊗ εt+1

)(
xft ⊗ εt+1

)′]
= E

[(
xft

(
xft

)′)
⊗
(
εt+1ε

′
t+1

)]
= E

[
xft

(
xft

)′]
⊗ Ine

Exploiting that all third moments of εt+1 are zero for the normal distribution, we get

V ar
(
ξt+1

)
=


Ine 0nε×n2ε

0n2ε×nε E
[
(εt+1 ⊗ εt+1) (εt+1 ⊗ εt+1)

′ − vec (Ine) vec (Ine)
′]

Inε ⊗ E
[
xft

]
0nεnx×n2ε

E
[
xft

]
⊗ Ine 0nεnx×n2ε

Inε ⊗ E
[(

xft

)′]
E

[(
xft

)′]
⊗ Inε

0n2ε×nεnx 0n2ε×nεnx

Ine ⊗ E
[
xft

(
xft

)′]
E

[(
εt+1 ⊗ xft

)(
xft ⊗ εt+1

)′]
E

[(
xft ⊗ εt+1

)(
εt+1 ⊗ xft

)′]
E

[
xft

(
xft

)′]
⊗ Ine


All elements in this matrix can be computed (and coded) directly as shown below. The variance of the control variables

is then given by
V ar [yst ] = DV ar [zt] D

′
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5.2.1 Computing the variance of the innovations

1) for E
[
εt+1 (εt+1 ⊗ εt+1)

′]
E
[
εt+1 (εt+1 ⊗ εt+1)

′]
= E

[
{εt+1 (φ1, 1)}neφ1=1

({
εt+1 (φ2, 1) {εt+1 (φ3, 1)}neφ3=1

}ne
φ2=1

)′]
Hence the quasi MATLAB codes are :
E_eps_eps2 = zeros(ne, (ne)

2
)

for phi1 = 1 : ne
index2 = 0
for phi2 = 1 : ne

for phi3 = 1 : ne
index2 = index2 + 1
if (phi1 = phi2 = phi3)

E_eps_eps2(phi1, index2) = m3 (εt+1 (phi1))
end

end
end

end

Note also that E
[
(εt+1 ⊗ εt+1) ε′t+1

]
=
(
E
[
εt+1 (εt+1 ⊗ εt+1)

′])′
2) E

[
(εt+1 ⊗ εt+1) (εt+1 ⊗ εt+1)

′]− vec (Ine) vec (Ine)
′

Here
E
[
(εt+1 ⊗ εt+1) (εt+1 ⊗ εt+1)

′]
= E

[{
εt+1 (φ1, 1) {εt+1 (φ2, 1)}neφ2=1

}ne
φ1=1

({
εt+1 (φ3, 1) {εt+1 (φ4, 1)}neφ4=1

}ne
φ3=1

)′]
Hence the quasi MATLAB codes are
E_eps2_eps2 = zeros(n2

e, n
2
e)

index1 = 0
for phi1 = 1 : ne

for phi2 = 1 : ne
index1 = index1 + 1
index2 = 0
for phi3 = 1 : ne

for phi4 = 1 : ne
index2 = index2 + 1
% second moments
if (phi1 == phi2 && phi3 == phi4 && phi1˜ = phi4)

E_eps2_eps2(index1, index2) = 1
elseif (phi1 == phi3 && phi2 == phi4 && phi1˜ = phi2)

E_eps2_eps2(index1, index2) = 1
elseif (phi1 == phi4 && phi2 == phi3 && phi1˜ = phi2)

E_eps2_eps2(index1, index2) = 1
% fourth moments
elseif(phi1 == phi2 && phi1 == phi3 && phi1 == phi4)

E_eps2_eps2(index1, index2) = m4 (εt+1 (phi1))
end

end
end

end
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end

3) E
[(
εt+1 ⊗ xft

)(
εt+1 ⊗ xft

)′]
Here

E

[(
εt+1 ⊗ xft

)(
εt+1 ⊗ xft

)′]

= E

[{
εt+1 (φ1, 1)

{
xft (γ1, 1)

}nx
γ1=1

}ne
φ1=1

{
εt+1 (φ2, 1)

{
xft (γ2, 1)

}nx
γ2=1

}ne
φ2=1

]
Hence the quasi MATLAB codes are
E_epsxf_epsxf = zeros(nenx, nxne)
index1 = 0
for phi1 = 1 : ne

for gama1 = 1 : nx
index1 = index1 + 1
index2 = 0
for phi2 = 1 : ne

for gama2 = 1 : nx
index2 = index2 + 1
if phi1 = phi2

E_epsxf_epsxf (index1, index2) = E_xf_xf(gama1, gama2)
end

end
end

end
end
where E_xf_xf = reshape(E

[
xft ⊗ xft

]
, nx, nx)

4) E
[(
εt+1 ⊗ xft

)(
xft ⊗ εt+1

)′]
Here

E

[(
εt+1 ⊗ xft

)(
xft ⊗ εt+1

)′]

= E

[{
εt+1 (φ1, 1)

{
xft (γ1, 1)

}nx
γ1=1

}ne
φ1=1

{
xft (γ2, 1) {εt+1 (φ2, 1)}neφ2=1

}nx
γ2=1

]
Hence the quasi MATLAB codes are
E_epsxf_xfeps = zeros(nenx, nenx)
index1 = 0
for phi1 = 1 : ne

for gama1 = 1 : nx
index1 = index1 + 1
index2 = 0
for gama2 = 1 : nx

for phi2 = 1 : ne
index2 = index2 + 1
if phi1 = phi2

E_epsxf_xfeps (index1, index2) = E_xf_xf(gama1, gama2)
end

end
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end
end

end

5) E
[(

xft ⊗ εt+1

)(
εt+1 ⊗ xft

)′]
Here

E

[(
xft ⊗ εt+1

)(
εt+1 ⊗ xft

)′]
=

[
E

[(
εt+1 ⊗ xft

)(
xft ⊗ εt+1

)′]]′
so E_xfeps_epsxf = E_epsxf_xfeps′

6) E
[(

xft ⊗ εt+1

)(
xft ⊗ εt+1

)′]
Here

E

[(
xft ⊗ εt+1

)(
ε′t+1 ⊗

(
xft

)′)]

= E

[{
xft (γ1, 1) {εt+1 (φ1, 1)}neφ1=1

}nx
γ1=1

({
εt+1 (φ2, 1)

{
xft (γ2, 1)

}nx
γ2=1

}ne
φ2=1

)′]
Thus the quasi Matlab codes are
E_xfeps_epsxf = zeros(nxne, nxne)
index1 = 0
for gama1 = 1 : nx

for phi1 = 1 : ne
index1 = index1 + 1
index2 = 0
for phi2 = 1 : ne

for gama2 = 1 : nx
index2 = index2 + 1
if phi1 = phi2

E_xfeps_epsxf (index1, index2) = E_xf_xf(gama1, gama2)
end

end
end

end
end
where E_xf_xf = reshape(E

[
xft ⊗ xft

]
, nx, nx)

5.3 The auto-correlations

This section derives the auto-correlations for the states and the control variables.

5.3.1 The innovations

We start by showing that ξt+1 and ξt+1+s are uncorrelated for s = 1, 2, .... To see this note that
E
[
ξt+1ξ

′
t+1+s

]
=
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E




εt+1

εt+1 ⊗ εt+1 − vec (Ine)

εt+1 ⊗ xft
xft ⊗ εt+1

 ε′t+1+s (εt+1+s ⊗ εt+1+s − vec (Ine))
′
(
εt+1+s ⊗ xft+s

)′ (
xft+s ⊗ εt+1+s

)′ 

= E


εt+1ε

′
t+1+s εt+1 (εt+1+s ⊗ εt+1+s − vec (Ine))

′

(εt+1 ⊗ εt+1 − vec (Ine)) ε
′
t+1+s (εt+1 ⊗ εt+1 − vec (Ine)) (εt+1+s ⊗ εt+1+s − vec (Ine))

′(
εt+1 ⊗ xft

)
ε′t+1+s

(
εt+1 ⊗ xft

)
(εt+1+s ⊗ εt+1+s − vec (Ine))

′(
xft ⊗ εt+1

)
ε′t+1+s

(
xft ⊗ εt+1

)
(εt+1+s ⊗ εt+1+s − vec (Ine))

′

εt+1

(
εt+1+s ⊗ xft+s

)′
εt+1

(
xft+s ⊗ εt+1+s

)′
(εt+1 ⊗ εt+1 − vec (Ine))

(
εt+1+s ⊗ xft+s

)′
(εt+1 ⊗ εt+1 − vec (Ine))

(
xft+s ⊗ εt+1+s

)′(
εt+1 ⊗ xft

)(
εt+1+s ⊗ xft+s

)′ (
εt+1 ⊗ xft

)(
xft+s ⊗ εt+1+s

)′(
xft ⊗ εt+1

)(
εt+1+s ⊗ xft+s

)′ (
xft ⊗ εt+1

)(
xft+s ⊗ εt+1+s

)′



=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



5.3.2 The auto-covariances

Recall that we have

zt =

 xft
xst

xft ⊗ xft


zt+1 = c + Azt + Bξt+1

yst = Dzt + g0

To find the one period auto-correlation, i.e. Cov (zt+1, zt) , we have

Cov (zt+1, zt) = Cov
(
c + Azt + Bξt+1, zt

)
= ACov (zt, zt) = AV ar (zt)

because Cov
(
zt, ξt+1

)
= 0 as shown above. And for two periods

Cov (zt+2, zt) = Cov
(
c + Azt+1 + Bξt+2, zt

)
= Cov

(
A
(
c + Azt + Bξt+1

)
+ Bξt+2, zt

)
= Cov

(
A2zt + Bξt+2, zt

)
= Cov

(
A2zt, zt

)
= A2Cov (zt, zt)
= A2V ar (zt)

Here, we use the fact that Cov
(
ξt+2, zt

)
= 0. This follows from the same arguements as above, that is consider

E
[
ztξ
′
t+2

]
= E

 xft
xst

xft ⊗ xft

[ ε′t+2 (εt+2 ⊗ εt+2 − vec (Ine))
′
(
εt+2 ⊗ xft+1

)′ (
xft+1 ⊗ εt+2

)′ ]
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= E


xft ε

′
t+2 xft (εt+2 ⊗ εt+2 − vec (Ine))

′
xft

(
εt+2 ⊗ xft+1

)′
xft

(
xft+1 ⊗ εt+2

)′
xstε
′
t+2 xst (εt+2 ⊗ εt+2 − vec (Ine))

′
xst

(
εt+2 ⊗ xft+1

)′
xst

(
xft+1 ⊗ εt+2

)′(
xft ⊗ xft

)
ε′t+1

(
xft ⊗ xft

)
(εt+2 ⊗ εt+2 − vec (Ine))

′
(
xft ⊗ xft

)(
εt+2 ⊗ xft+1

)′ (
xft ⊗ xft

)(
xft+1 ⊗ εt+2

)′


= 0

Hence, in the general case
Cov (zt+l, zt) = AlV ar (zt)

For the control variables:
Cov

(
yst+l,y

s
t

)
= Cov

(
Dzt+l + 1

2gσσσ
2,Dzt + g0

)
= Cov (Dzt+l,Dzt)

= DCov (zt+l, zt) D′

= DAlV ar (zt) D′

5.4 Impulse Response Functions

This section derives closed-form expressions for the generalized impulse response functions in a non-linear DSGE model
approximated by the pruned second-order projection solution. The generalized impulse response functions are defined as

GIRFvar (l, νi,wt) = Et [vart+l|νi]− Et [vart+l]

for a disturbance to innovation i. To reduce the notational burden in the derivations below, we adopt the parsimonious
notation

IRFvar (l, νi,wt) = Et [ṽart+l]− Et [vart+l]

in relation to the conditional expectation operators. Note that the formulas we derive below also apply even if we want
to explore the joint effects of more than one shock - for instance when simultaneous shocking disturbances i and j, i.e.
GIRFvar (l, νi, νj ,wt) = Et [vart+l|νi, νj ]− Et [vart+l].

5.4.1 The specification for the conditional information

This subsection explains how we will compute conditional expectations by conditioning on νi - and possible more distur-
bances. Let S be nε × nε diagonal selection matrix with either 1 or zeros on the diagonal, and let the shock sizes appear in
the vector ν of dimension nε × 1. For shocks which are not hit by a disturbance, we simply put them to zero.
As an example, consider an economy with three shocks and we want to condition our expectations on the first shock.

Hence, we need the vector  ν1

ε2,t+1

ε3,t+1


We can form this vector by letting

S =

 1 0 0
0 0 0
0 0 0


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and

ν =

 ν1

0
0

 .
Then we have

Sν + (I− S) εt+1 =

 1 0 0
0 0 0
0 0 0

 ν1

0
0

+

 0 0 0
0 1 0
0 0 1

 ε1,t+1

ε2,t+1

ε3,t+1


=

 ν1

ε2,t+1

ε3,t+1


Similarly, if we want to condition on the first two shocks, then we let

S =

 1 0 0
0 1 0
0 0 0


and

ν =

 ν1

ν2

0

 .
meaning that

Sν + (I− S) εt+1 =

 ν1

ν2

ε3,t+1


5.4.2 At first order

Recall that we have:
xft+1 = h0 + hxxft + ηεt+1

and
xft+2 = h0 + hxxft+1 + ηεt+2

= h0 + hx

(
h0 + hxxft + ηεt+1

)
+ ηεt+2

= h0 + hxh0 + h2
xxft + hxηεt+1 + ηεt+2

and
xft+3 = h0 + hxxft+2 + ηεt+3

= h0 + hx

(
h0 + hxh0+h2

xxft + hxηεt+1 + ηεt+2

)
+ ηεt+3

= h0 + hxh0 + h2
xh0 + h3

xxft + h2
xηεt+1 + hxηεt+2 + ηεt+3

= h3
xxft +

3∑
j=1

h3−j
x h0 +

3∑
j=1

h3−j
x ηεt+j

In general

xft+l = hlxxft +
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx ηεt+j

With a shock of ν in period t+ 1, we have
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x̃ft+l = hlxxft +
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx ηδt+j

where we define δt such that

δt+j =

{
Sν + (I− S) εt+1 for j = 1

εt+j for j 6= 1

Agents know the size of the shock ν at time t+ 1, and it is therefore in agents’information set. I.e. ν is non-stochastic.
So

Et

[
x̃ft+l − xft+l

]
= Et

[
l∑

j=1

hl−jx ηδt+j −
l∑

j=1

hl−jx ηεt+j

]

= Et
[
hl−1

x η (Sν + (I− S) εt+1)
]

= hl−1
x ηSν

and
Et

[
ỹft+l − yft+l

]
= gxEt

[
x̃ft+l − xft+l

]

5.4.3 At second order

We need to consider:
xst+1 = hxxst + Hxx

(
xft ⊗ xft

)
xst+2 = hxxst+1 + Hxx

(
xft+1 ⊗ xft+1

)
= hx

(
hxxst + Hxx

(
xft ⊗ xft

))
+ Hxx

(
xft+1 ⊗ xft+1

)
= h2

xxst + hxHxx

(
xft ⊗ xft

)
+ Hxx

(
xft+1 ⊗ xft+1

)
xst+3 = hxxst+2 + Hxx

(
xft+2 ⊗ xft+2

)
= hx

(
h2

xxst + hxHxx

(
xft ⊗ xft

)
+ Hxx

(
xft+1 ⊗ xft+1

))
+Hxx

(
xft+2 ⊗ xft+2

)
= h3

xxst + h2
xHxx

(
xft ⊗ xft

)
+ hxHxx

(
xft+1 ⊗ xft+1

)
+Hxx

(
xft+2 ⊗ xft+2

)
= h3

xxst + h2
xHxx

(
xft ⊗ xft

)
+ hxHxx

(
xft+1 ⊗ xft+1

)
+ Hxx

(
xft+2 ⊗ xft+2

)
= h3

xxst +
2∑
j=0

h2−j
x Hxx

(
xft+j ⊗ xft+j

)
and in general

xst+l = hlxxst +
l−1∑
j=0

h
(l−1)−j
x Hxx

(
xft+j ⊗ xft+j

)
for l = 1, 2, 3, ...

Thus, to compute Et
[
x̃st+l − xst+l

]
, we need to find Et

[
x̃ft+l ⊗ x̃ft+l − xft+l ⊗ xft+l

]
. Hence, consider:

xft+l ⊗ xft+l =

(
hlxxft +

l∑
j=1

hl−jx h0 +
l∑

j=1

hl−jx ηεt+j

)
⊗
(

hlxxft +
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx ηεt+j

)
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= hlxxft ⊗ hlxxft + hlxxft
l∑

j=1

hl−jx h0 + hlxxft ⊗
l∑

j=1

hl−jx ηεt+j

+
l∑

j=1

hl−jx h0 ⊗ hlxxft +
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx ηεt+j

+
l∑

j=1

hl−jx ηεt+j ⊗ hlxxft +
l∑

j=1

hl−jx ηεt+j ⊗
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx ηεt+j ⊗
l∑

j=1

hl−jx ηεt+j

and

x̃ft+l ⊗ x̃ft+l = hlxxft ⊗ hlxxft + hlxxft
l∑

j=1

hl−jx h0 + hlxxft ⊗
l∑

j=1

hl−jx ηδt+j

+
l∑

j=1

hl−jx h0 ⊗ hlxxft +
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx ηδt+j

+
l∑

j=1

hl−jx ηδt+j ⊗ hlxxft +
l∑

j=1

hl−jx ηδt+j ⊗
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx ηδt+j ⊗
l∑

j=1

hl−jx ηδt+j

where we define δt such that:

δt+j =

{
Sν + (I− S) εt+1 for j = 1

εt+j for j 6= 1

This means that:
Et

[
x̃ft+l ⊗ x̃ft+l − xft+l ⊗ xft+l

]

= Et[h
l
xxft ⊗ hlxxft + hlxxft

l∑
j=1

hl−jx h0 + hlxxft ⊗
l∑

j=1

hl−jx ηδt+j

+
l∑

j=1

hl−jx h0 ⊗ hlxxft +
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx ηδt+j

+
l∑

j=1

hl−jx ηδt+j ⊗ hlxxft +
l∑

j=1

hl−jx ηδt+j ⊗
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx ηδt+j ⊗
l∑

j=1

hl−jx ηδt+j

−hlxxft ⊗ hlxxft − hlxxft
l∑

j=1

hl−jx h0 − hlxxft ⊗
l∑

j=1

hl−jx ηεt+j

−
l∑

j=1

hl−jx h0 ⊗ hlxxft −
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx h0 −
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx ηεt+j

−
l∑

j=1

hl−jx ηεt+j ⊗ hlxxft −
l∑

j=1

hl−jx ηεt+j ⊗
l∑

j=1

hl−jx h0 −
l∑

j=1

hl−jx ηεt+j ⊗
l∑

j=1

hl−jx ηεt+j ]

= Et[0 + 0 + hlxxft ⊗
l∑

j=1

hl−jx ηδt+j

+0 + 0 +
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx ηδt+j

+
l∑

j=1

hl−jx ηδt+j ⊗ hlxxft +
l∑

j=1

hl−jx ηδt+j ⊗
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx ηδt+j ⊗
l∑

j=1

hl−jx ηδt+j

−0− 0− hlxxft ⊗
l∑

j=1

hl−jx ηεt+j

−0− 0−
l∑

j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx ηεt+j

−
l∑

j=1

hl−jx ηεt+j ⊗ hlxxft −
l∑

j=1

hl−jx ηεt+j ⊗
l∑

j=1

hl−jx h0 −
l∑

j=1

hl−jx ηεt+j ⊗
l∑

j=1

hl−jx ηεt+j ]
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= Et[h
l
xxft ⊗

l∑
j=1

hl−jx ηδt+j

l∑
j=1

hl−jx h0 ⊗
l∑

j=1

hl−jx ηδt+j

+
l∑

j=1

hl−jx ηδt+j ⊗ hlxxft +
l∑

j=1

hl−jx ηδt+j ⊗
l∑

j=1

hl−jx h0 +
l∑

j=1

hl−jx ηδt+j ⊗
l∑

j=1

hl−jx ηδt+j

−0
−0

−0− 0−
l∑

j=1

hl−jx ηεt+j ⊗
l∑

j=1

hl−jx ηεt+j ]

as Et [εt+j ] = 0

= Et[h
l
xxft ⊗ hl−1

x ηSν
l∑

j=1

hl−jx h0 ⊗ hl−1
x ηSν

+hl−1
x ηSν ⊗ hlxxft + hl−1

x ηSν ⊗
l∑

j=1

hl−jx h0

+

(
hl−1

x η (Sν + (I− S) εt+1) +
l∑

j=2

hl−jx ηεt+j

)
⊗
(

hl−1
x η (Sν + (I− S) εt+1) +

l∑
j=2

hl−jx ηεt+j

)

−
(

hl−1
x ηεt+j +

l∑
j=2

hl−jx ηεt+j

)
⊗
(

hl−1
x ηεt+j +

l∑
j=2

hl−jx ηεt+j

)
]

using that δt+j =

{
Sν + (I− S) εt+1 for j = 1

εt+j for j 6= 1
and Et [εt+j ] = 0

= Et[h
l
xxft ⊗ hl−1

x ηSν +
l∑

j=1

hl−jx h0 ⊗ hl−1
x ηSν + hl−1

x ηSν ⊗ hlxxft + hl−1
x ηSν ⊗

l∑
j=1

hl−jx h0

+

(
hl−1

x η (Sν + (I− S) εt+1) +
l∑

j=2

hl−jx ηεt+j

)
⊗
(

hl−1
x η (Sν + (I− S) εt+1) +

l∑
j=2

hl−jx ηεt+j

)

−
(

hl−1
x ηεt+j +

l∑
j=2

hl−jx ηεt+j

)
⊗
(

hl−1
x ηεt+j +

l∑
j=2

hl−jx ηεt+j

)
]

= Et[

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)

+

(
hl−1

x η (Sν + (I− S) εt+1) +
l∑

j=2

hl−jx ηεt+j

)
⊗
(

hl−1
x η (Sν + (I− S) εt+1) +

l∑
j=2

hl−jx ηεt+j

)

−
(

hl−1
x ηεt+j +

l∑
j=2

hl−jx ηεt+j

)
⊗
(

hl−1
x ηεt+j +

l∑
j=2

hl−jx ηεt+j

)
]

= Et[

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)

+
(
hl−1

x ηSν + hl−1
x η (I− S) εt+1

)
⊗
(

hl−1
x η (Sν + (I− S) εt+1) +

l∑
j=2

hl−jx ηεt+j

)

+
l∑

j=2

hl−jx ηεt+j ⊗
(

hl−1
x ηSν + hl−1

x η (I− S) εt+1 +
l∑

j=2

hl−jx ηεt+j

)
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−
(
hl−1

x ηεt+1

)
⊗
(

hl−1
x ηεt+1 +

l∑
j=2

hl−jx ηεt+j

)

−
l∑

j=2

hl−jx ηεt+j ⊗
(

hl−1
x ηεt+1 +

l∑
j=2

hl−jx ηεt+j

)
]

= Et[

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)

+hl−1
x ηSν ⊗

(
hl−1

x η (Sν + (I− S) εt+1) +
l∑

j=2

hl−jx ηεt+j

)

+hl−1
x η (I− S) εt+1 ⊗

(
hl−1

x η (Sν + (I− S) εt+1) +
l∑

j=2

hl−jx ηεt+j

)
+

l∑
j=2

hl−jx ηεt+j ⊗
(
hl−1

x ηSν + hl−1
x η (I− S) εt+1

)
+

l∑
j=2

hl−jx ηεt+j ⊗
l∑

j=2

hl−jx ηεt+j

−
(
hl−1

x ηεt+1

)
⊗ hl−1

x ηεt+1

−
(
hl−1

x ηεt+1

)
⊗

l∑
j=2

hl−jx ηεt+j

−
l∑

j=2

hl−jx ηεt+j ⊗ hl−1
x ηεt+1

−
l∑

j=2

hl−jx ηεt+j ⊗
l∑

j=2

hl−jx ηεt+j ]

= Et[

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+hl−1

x ηSν ⊗ hl−1
x ηSν + 0 + 0

+hl−1
x η (I− S) εt+1 ⊗

(
hl−1

x η (I− S) εt+1

)
+ 0

+0

+
l∑

j=2

hl−jx ηεt+j ⊗
l∑

j=2

hl−jx ηεt+j

−
(
hl−1

x ηεt+1

)
⊗ hl−1

x ηεt+1

−0
−0

−
l∑

j=2

hl−jx ηεt+j ⊗
l∑

j=2

hl−jx ηεt+j ]

using Et [εt+j ] = 0 and εt+j are uncorrelated across time

= Et[

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+hl−1

x ηSν ⊗ hl−1
x ηSν + 0 + 0

+hl−1
x η (I− S) εt+1 ⊗

(
hl−1

x η (I− S) εt+1

)
+ 0

−
(
hl−1

x ηεt+1

)
⊗ hl−1

x ηεt+1]

canceling terms
l∑

j=2

hl−jx ηεt+j ⊗
l∑

j=2

hl−jx ηεt+j
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= Et[

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+ hl−1

x ηSν ⊗ hl−1
x ηSν

+
(
hl−1

x ⊗ hl−1
x

)
(η (I− S) εt+1 ⊗ η (I− S) εt+1)

−
(
hl−1

x ⊗ hl−1
x

) (
ηεt+1 ⊗ ηεt+1

)
]

= Et[

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+ hl−1

x ηSν ⊗ hl−1
x ηSν

+
(
hl−1

x ⊗ hl−1
x

) (
η (I− S) εt+1 ⊗ η (I− S) εt+1 − ηεt+1 ⊗ ηεt+1

)
]

=

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+ hl−1

x ηSν ⊗ hl−1
x ηSν

+
(
hl−1

x ⊗ hl−1
x

) (
Et [η (I− S) εt+1 ⊗ η (I− S) εt+1]− Et

[
ηεt+1 ⊗ ηεt+1

])
Hence, we only need to compute Et [η (I− S) εt+1 ⊗ η (I− S) εt+1] and Et

[
ηεt+1 ⊗ ηεt+1

]
. We know

Et
[
ηεt+1 ⊗ ηεt+1

]
= Et [(η ⊗ η) (εt+1 ⊗ εt+1)] = (η ⊗ η) vec (I)

using (A⊗B) (C⊗D) = AC⊗BD if AC and BD are defined

and
Et [η (I− S) εt+1 ⊗ η (I− S) εt+1] = Et [(η (I− S)⊗ η (I− S)) (εt+1 ⊗ εt+1)] = (η (I− S)⊗ η (I− S)) vec (I)

Thus, we have

Et

[
x̃ft+l ⊗ x̃ft+l − xft+l ⊗ xft+l

]
=

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+ hl−1

x ηSν ⊗

hl−1
x ηSν

+
(
hl−1

x ⊗ hl−1
x

)
((η (I− S)⊗ η (I− S)) vec (I)− (η ⊗ η) vec (I))

=

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+ hl−1

x ηSν ⊗ hl−1
x ηSν

+
(
hl−1

x ⊗ hl−1
x

)
((η (I− S)⊗ η (I− S))− (η ⊗ η)) vec (I)

=

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+
(
hl−1

x ⊗ hl−1
x

)
[(ηSν ⊗ ηSν) + (η (I− S)⊗ η (I− S)) vec (I)− (η ⊗ η) vec (I)]

=

(
hlxxft +

l∑
j=1

hl−jx h0

)
⊗ hl−1

x ηSν + hl−1
x ηSν ⊗

(
hlxxft +

l∑
j=1

hl−jx h0

)
+
(
hl−1

x ⊗ hl−1
x

)
[(ηSν ⊗ ηSν) + Λ]

where
Λ ≡ ((η (I− S)⊗ η (I− S))− (η ⊗ η)) vec (I)

Then note that
l∑

j=1

hl−jx = hl−1
x + hl−2

x + ...+ h0
x = (I− hx)

−1 (
I− hlx

)
as we recall the general result that

Q = (hx)
0

+ (hx)
1

+ ...+ (hx)
11

= (I− hx)
−1
(
I− (hx)

12
)
.

Hence, we have
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Et

[
x̃ft+l ⊗ x̃ft+l − xft+l ⊗ xft+l

]
=
(
hlxxft + (I− hx)

−1 (
I− hlx

)
h0

)
⊗hl−1

x ηSν + hl−1
x ηSν⊗

(
hlxxft + (I− hx)

−1 (
I− hlx

)
h0

)
+
(
hl−1

x ⊗ hl−1
x

)
[(ηSν ⊗ ηSν) + Λ]

Or (using another index)

Et

[
x̃ft+j ⊗ x̃ft+j − xft+j ⊗ xft+j

]
=
(
hjxxft + (I− hx)

−1 (
I− hjx

)
h0

)
⊗hj−1

x ηSν + hj−1
x ηSν⊗

(
hjxxft + (I− hx)

−1 (
I− hjx

)
h0

)
+
(
hj−1

x ⊗ hj−1
x

)
[(ηSν ⊗ ηSν) + Λ]

for j = 1, 2, 3, ...

Thus, we have in general

Et
[
x̃st+l − xst+l

]
= Et

[
l−1∑
j=0

hl−1−j
x Hxx

(
x̃ft+j ⊗ x̃ft+j

)
−
l−1∑
j=0

hl−1−j
x Hxx

(
xft+j ⊗ xft+j

)]

=
l−1∑
j=1

hl−1−j
x HxxEt

[
x̃ft+j ⊗ x̃ft+j − xft+j ⊗ xft+j

]
the shock hits in period t+ 1, so

(
x̃ft ⊗ x̃ft

)
= xft ⊗ xft

When implementing the GIRF, it may be useful to have a recursive expression. Here, it is most convenient to use the
general expression

Et
[
x̃st+l − xst+l

]
=

l−1∑
j=1

hl−1−j
x HxxEt

[
x̃ft+j ⊗ x̃ft+j − xft+j ⊗ xft+j

]
So
Et
[
x̃st+1 − xst+1

]
= 0

Et
[
x̃st+2 − xst+2

]
=

1∑
j=1

h1−j
x HxxEt

[
x̃ft+j ⊗ x̃ft+j − xft+j ⊗ xft+j

]
= HxxEt

[
x̃ft+1 ⊗ x̃ft+1 − xft+1 ⊗ xft+1

]

Et
[
x̃st+3 − xst+3

]
=

2∑
j=1

h2−j
x HxxEt

[
x̃ft+j ⊗ x̃ft+j − xft+j ⊗ xft+j

]
= hxHxxEt

[
x̃ft+1 ⊗ x̃ft+1 − xft+1 ⊗ xft+1

]
+HxxEt

[
x̃ft+2 ⊗ x̃ft+2 − xft+2 ⊗ xft+2

]
= hxEt

[
x̃st+2 − xst+2

]
+ HxxEt

[
x̃ft+2 ⊗ x̃ft+2 − xft+2 ⊗ xft+2

]
So in general

Et
[
x̃st+k − xst+k

]
= hxEt

[
x̃st+k−1 − xst+k−1

]
+ HxxEt

[
x̃ft+k−1 ⊗ x̃ft+k−1 − xft+k−1 ⊗ xft+k−1

]
For the total state variable:
Et [x̃t+l − xt+l] = Et

[
x̃ft+l − xft+l

]
+ Et

[
x̃st+l − xst+l

]
For the control variables:
yst+l = g0 + gx

(
xft+l + xst+l

)
+ Gxx

(
xft+l ⊗ xft+l

)
ỹst+l = g0 + gx

(
x̃ft+l + x̃st+l

)
+ Gxx

(
x̃ft+l ⊗ x̃ft+l

)
Et
[
ỹst+l − yst+l

]
= gx

(
Et

[
x̃ft+l − xft+l

]
+ Et

[
x̃st+l − xst+l

])
+ GxxEt

[
x̃ft+l ⊗ x̃ft+l − xft+l ⊗ xft+l

]

53



6 Additional Model Output

This section reports additional output from the model.

6.1 Correlation matrix for the estimated state innovations

The table below shows the correlation matrix for the estimated states in the baseline model, i.e.,MM,CS .

εµz,t εd,t εn,t επ∗,t εa,t
εµz,t 1 −0.12 0.12 0.10 0.09
εd,t 1 −0.21 −0.11 0.08
εn,t 1 0.03 0.26
επ∗,t 1 0.07
εa,t 1

6.2 Correlation matrix for the estimated measurement errors

The table below shows the correlation matrix for the estimated measurement errors in by the baseline model, i.e.,MM,CS .

l̂t ŵt ∆ct πt rt r
(4)
t r

(12)
t r

(20)
t r

(28)
t r

(40)
t

l̂t 1.00 0.23 0.44 0.25 -0.16 -0.26 -0.09 0.07 0.08 -0.11
ŵt - 1.00 -0.11 -0.44 0.03 0.29 0.25 0.06 -0.21 -0.42
∆ct - - 1.00 0.23 -0.23 -0.50 -0.55 -0.46 -0.35 -0.17
πt - - - 1.00 -0.09 -0.11 0.03 0.20 0.34 0.32
rt - - - - 1.00 0.09 0.05 0.05 0.07 0.15
r

(4)
t - - - - - 1.00 0.72 0.26 -0.08 -0.20
r

(12)
t - - - - - - 1.00 0.80 0.41 -0.13
r

(20)
t - - - - - - - 1.00 0.83 0.12
r

(28)
t - - - - - - - - 1.00 0.58
r

(40)
t - - - - - - - - - 1.00

6.3 Impulse Reponse Functions to Demand Shocks for a perfect foreslight model solution
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Figure 1: A Demand Shock under Perfect Foresight (no Risk)
This figure shows the generalized impulse response functions (IRFs) of a positive one-standard deviation shock to dt, where the various shadings
cover the indicated fraction of the distribution obtained using 1,000 randomly generated initial states. These IRFs are computed in closed-form
for the second order projection solution using the approach in Andreasen et al. (2018), except for Mt,t+1 that is computed using Monte Carlo

integration with 1,000 draws. Except for the term premium TP
(40)
t and the nominal stochastic discount factor Mt,t+1, all impulse response

functions are expressed in percentage deviations from the steady state (i.e., scaled by 100), with consumption expressed in deviations from the

balanced growth path and all bond yields and inflation measured in annualized terms. The term premium TP
(40)
t is expressed in annualized

basis points.
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