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Abstract
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I Introduction

The New Keynesian model is one of the most prominent models in macroeconomics to
understand the dynamics of economic activity, inflation, and the monetary policy rate. The
model has also implications for prices on financial assets, although these prices often are ignored.
The market for nominal government bonds is of particular interest, because bond yields contain
information about expected future policy rates and term premia, where the latter is determined
by consumption and inflation risk. But, it is well-known that the model struggles to explain
bond yields, mainly because term premia are too low and too stable (see, e.g., Rudebusch and
Swanson (2008)). This is obviously a concern, because prices are the key device that ensure
equilibrium in the model, as emphasized by Cochrane (2007).

Much work has therefore been devoted to improve the New Keynesian model along this
dimension.! The inclusion of recursive preferences by Rudebusch and Swanson (2012) is crucial
in this context, because these preferences allow an otherwise standard New Keynesian model to
generate plausible term premia without distorting macro fundamentals. In this model news
about expected inflation is a key driver of bond yields. However, Duffee (2018) shows that this
implication is not consistent with data for the United States (U.S.), and this finding therefore
challenges the current specification of bond yields and inflation dynamics in the New Keynesian
model.

This paper modifies the New Keynesian model to explain macro fundamentals and bond
yields with a low level of news in expected inflation. The proposed model generates realistic term
premia that have the same level and variability as in reduced-form dynamic term structure
models (DTSMs). In addition, the model satisfies the two requirements in Dai and Singleton
(2002) for a correct specification of term premia, which serve as useful diagnostic tests given that
term premia are unobserved. The first requirement is that the difference between long- and
short-term bond yields (i.e., the yield spread) predicts future bond yields as in Campbell and

Shiller (1991). This property of bond yields is evaluated using a long simulated sample and is

!See for instance Hordahl, Tristani, and Vestin (2008), Graeve, Emiris, and Wouters (2009), Bekaert, Cho, and
Moreno (2010), Dew-Becker (2014), Kung (2015), Bretscher, Hsu, and Tamoni (2020), and Meyer-Gohde and Kliem
(2022) among others.



therefore an unconditional test of term premia. The second requirement is that historical bond
yields satisfy the expectations hypothesis once adjusted for term premia using the proposed
model. This second requirement is therefore a conditional test of term premia, in the sense that
it requires reliable state and term premia estimates for historical bond yields. We also show that
the nonlinear structure of the model generates variation in key macro variables that is not
explained in linear regressions of these macro variables on bond yields. That is, the model
endogenously produces unspanned variation in macro variables as observed in U.S. data, and it
therefore goes a long way in avoiding the critique of macro-finance term structure models raised
in Joslin, Priebsch, and Singleton (2014). The model also provides a close fit to real bond yields,
although they are not included when estimating the model. Taking the analysis beyond bond
yields, we finally show that the model captures the overall evolution in the price-dividend ratio,
and that excess equity returns are predictable based on the yield spread and the price-dividend
ratio, as documented by Fama and French (1989). Here, and throughout we restrict relative risk
aversion to 10, meaning that we do not rely on extreme levels of risk aversion to explain asset
prices from macro fundamentals.

Two features of our model are essential to obtain these results. First, we use the flexible
formulation of recursive preferences in Andreasen and Jgrgensen (2020) to separate the
intertemporal elasticity of substitution (IES), the relative risk aversion (RRA), and the timing
attitude. In contrast, the standard formulation of recursive preferences only separates the IES
and the RRA, while the timing attitude follows directly from the IES and RRA. With this
flexible formulation of recursive preferences, demand shocks is found to be a key driver of bond
yields, their embedded term premia, and key macro variables, but not of inflation. This is
different from the standard formulation of recursive preferences, where bond yields and term
premia are mainly determined by productivity shocks, as shown in Rudebusch and Swanson
(2012). However, productivity shocks have a sizable effect on inflation and hence explain bond
yield dynamics with too much variation in expected inflation, as emphasized by Duffee (2018).

Second, the New Keynesian model is typically solved using a third-order perturbation

approximation, because it allows for time-varying term premia unlike the standard log-linear



approximation widely used in macroeconomics. The perturbation approximation and its
risk-adjustment for the variables of interest y, are obtained at the deterministic steady state y.s,
but the approximation is applied around the unconditional mean E [y;]. This extrapolation
typically works well when y,, is reasonably close to E [y,]. However, we generally find that this
difference is large with recursive preferences estimated to match U.S. bond yields, and that this
leads to poor performance of the perturbation approximation, even when considering expansions
up to fifth order. We address this previously unnoticed shortcoming of the perturbation
approximation by instead using the projection method of Judd (1992), which is computed on a
grid around E [y,]. To greatly improve its computational efficiency, we note that for a given
stochastic discount factor the solution to all bond prices is given in closed form by ordinary least
squares (OLS) and hence obtained instantaneously. The same holds for expected future short
rates and hence for term premia. These closed form solutions represent a new methodological
contribution to the projection literature and apply to many popular choices of basis functions
and to any approximation order. We show that the estimates for several parameters in the New
Keynesian model change substantially when using the projection approximation instead of the
less accurate but widely used third-order perturbation approximation.

The remainder of this paper is organized as follows. Section II presents the New
Keynesian model, while our estimation approach is described in Section III. The main empirical
results are provided in Section IV, with various sensitivity results provided in Section V.

Additional model implications are discussed in Section VI and Section VII concludes.

II A New Keynesian Model

A The Households

We consider an infinitely lived representative household with recursive preferences as in

Epstein and Zin (1989) and Weil (1990). Using the formulation in Rudebusch and Swanson



(2012), the value function V; is given by
M V= + B BV

when the utility function u; > 0 for all £.> The subjective discount factor 5 € (0,1) and E; [-]
denotes the conditional expectation in period ¢. The main purpose of « € R\ {1} is to endow
the household with preferences for when uncertainty is resolved, unless a = 0 and equation (1)
reduces to expected utility. It follows from Kreps and Porteus (1978) that equation (1) implies
preferences for early (late) resolution of uncertainty if a > 0 (a < 0) for u; > 0, whereas the
opposite sign restrictions apply when u; < 0. Andreasen and Jgrgensen (2020) further argue that
the size of this timing attitude is proportional to «, meaning that numerically larger values of «
generate stronger preferences for early (late) resolution of uncertainty.

The utility function w; = u (¢, ;) is assumed to depend on the number of consumption
units ¢; bought in the goods market and the provided labor supply /; to firms. Following
Andreasen and Jgrgensen (2020), we also include a constant wg in the utility function to account
for utility from goods and services that are not acquired in the goods market. This could be
utility from government spending or utility from goods produced and consumed within the
household. As shown in Andreasen and Jgrgensen (2020), the reason for introducing wy is to
separately control the level of the utility function to disentangle the timing attitude « from
relative risk aversion (RRA), which otherwise are tightly linked in the standard formulation of
recursive preferences. Using a power specification to quantify the utility from market

consumption ¢; and similarly for leisure 1 — [;, we let

dy I=x , 1-x (1- lt)l_é
(2) u (Cta lt) = T (Ct - thfl) + 2 dtntgool_—l +ug | .
@

The parameter b > 0 accommodates external consumption habits, which are included to capture
autocorrelation in consumption growth. The variable d; introduces shocks to the utility function

to temporally increase or decrease the utility from a given level of ¢; and [;, implying that d,

*When u; < 0, V; = uy — ﬁEt[(—VtH)l’o‘]ﬁ as in Rudebusch and Swanson (2012).



operates as a demand shock.? The variable n, is also exogenous and temporally shifts the
household’s incentive between ¢, and [;, meaning that n, may be interpreted as a labor supply
shock. Market consumption grows with the rate of the productivity level z;, and it is therefore
necessary to scale the utility from leisure and nonmarket consumption by ztl X to ensure that
these terms do not diminish relative to = (¢; — bct,l)l_x along the balanced growth path. This
scaling is discussed and motivated further in Rudebusch and Swanson (2012) and Andreasen and
Jorgensen (2020).

The parameter x > 0 and the degree of habit formation b determine the steady state
intertemporal elasticity of substitution (IES) as (1 — b,u;’;s) /X, which measures the percentage
change in market consumption growth for a one percent change in the real interest rate when
ignoring uncertainty. The endogenous labor supply gives the household an additional margin to
absorb shocks and this modifies existing expressions for RRA. Using the results in Swanson

(2018), it follows that RRA in the steady state is

RRA = - X s
<1 N p‘z,ss) + X(pwss Css =
+ o (1 B X)
X Ty
(1—x) U ! <1 _ Mb ) i (1 _ Mb > n 1:§ w(cl—l)

@

where ¢, = ¢/ 2, and W}, = w]/z]|,, refer to the steady state (ss) of market consumption and
the real frictionless wage w; relative to the productivity level. Given that the IES is determined
by x, and « controls the strength of the timing attitude, the level of the utility function wug is the
key parameter for determining RRA.
The real budget constraint is ¢; + E; [Mt,tﬂxﬁ‘ﬂ = x;"eal /7y + wily + Divy + T;. That is,
resources are spent on market consumption goods ¢; and nominal state-contingent claims X,
real —

where 274 = X411/ P, denotes the real value of these claims that are priced using the nominal

stochastic discount factor M, ;1. The household’s income is given by the real value of

3In the endowment models of Albuquerque, Eichenbaum, Luo, and Rebelo (2016) and Gomez-Cram and Yaron
(2021), shocks to the utility function affect only asset prices and are therefore referred to as capturing valuation
risk. In production-based equilibrium models, shocks to d; generate also endogenous variation in consumption,
inflation, etc., and this explains why these shocks are referred to as demand shocks within these models.



state-contingent claims bought in the previous period z7°® /7, the real wage income w;l;, real
dividend payments from firms Div;, and real lump-sum transfers 7;. Here, 7; denotes the gross
inflation rate.

The first-order conditions for the utility maximizing household are

(3) By (M1l =1

(4) 2 Xnypy (L= 1) 7% = (¢ — bery) Ny,

where R; is gross one-period nominal interest rate. Equation (3) is the well-known consumption
Euler-equation, while equation (4) is the optimality condition for the labor supply.

To incorporate wage stickiness, we follow Blanchard and Gali (2005), Rudebusch and
Swanson (2008), among others and introduce a simple wage bargaining friction in the labor

market. Specifically, we assume that the real market wage w; is given by
(5) Wy = Ky (Wssze) + (1 — Kw) Wy,

where k,, € [0,1) captures wage stickiness by smoothing the frictionless wage w; in relation to
the long-term wage along the balanced growth path w,sz;. Although this simple wage rule does
not explicitly introduce Nash bargaining between workers and firms, Blanchard and Gali (2005)

argue that it is a parsimonious way to capture the essential features of real wage bargaining.

B The Firms

Output y; is produced by a competitive representative firm, which combines differentiated

N
intermediate goods y; (i) using y; = ( fol Ui (2)7771 dz’) " with n > 1. The demand for the ith
1
I0)

-n i
good is given by y; (i) = (T) ys, where P, = ( fol P, (i)"" dz’) """ denotes the aggregate price

level and P, (7) is the price of the ith good.

Intermediate firms produce slightly differentiated goods using the production function



y (i) = zak? 1, (i)' %, where ks, and I, (i) denote capital and labor services at the ith firm,
respectively. The variables a; and z; capture transitory and permanent productivity shocks,
respectively. Each intermediate firm can freely adjust its labor demand at the given market wage
wy. Price stickiness is introduced as in Rotemberg (1982), where £ > 0 controls the size of firms’
real cost % (P, (i) / (Pi_y (i) mss) — 1)* 1 when changing P, (i). As in Rudebusch and Swanson
(2012), each firm uses dkss2; units of output for investment to maintain a constant capital stock

along the balanced growth path. The first-order conditions for profit maximization are

(6) wy =mey (1 —0) ztatk:gslt_e

T T T T
(7) Y (1 —n) +E, {fMt,t+17Tt+1 ( a2 1) t+1yt+1] +meyn = § ( L - 1) Y,

S8 SS Ss SS

where mec; denotes marginal costs. Equation (6) determines labor demand, and equation (7)
implies an aggregate supply relation between output and inflation.

2
The aggregate resource constraint reads ¢; + z,0kgs = (1 — % (ﬂ’_r—t — 1> > Yi, Where

2
% <7f—t — 1) y; is the output loss from price stickiness.*

C The Central Bank

The policy rate for the Federal Reserve is the short (one-period) nominal rate R;. It is set

according to the forward-looking Taylor-rule

(8) Ry = Ry {GXP {% log < WH*I > + Gac (Aci1 — Acss)}] ;

ssTq1

based on a desire to stabilize future inflation 7, and future economic activity as measured by
consumption growth Ac;, 1. To accommodate the large variation in inflation in post-war U.S.
data, we follow the existing literature and introduce an exogenous inflation target 7; around the

steady state inflation rate ;.

4Here we abstract from any costs linked to wage stickiness by setting the household transfers T} = l;w; — lyw] =
Kuwlt ((Wss2¢) — wi) to ensure that the wage bill w;l; paid by the firms is also the wage bill received by the household.

7



D Bond Pricing and Structural Shocks

)

The price in period t of a default-free zero-coupon bond Bfk maturing in k periods with a

face value of one dollar is Bt(k) =E; [MtytHBﬁIl)} for k =1, ...,n, with Bt(o) = 1. Using

continuos compounding, the yield to maturity is rt(k) = —%bﬁ’“) with bgk) = log Bt(k). Bond prices

are therefore determined by the nominal stochastic discount factor, which reads

«

(9) M= 5dt+1 (Ctﬂ _ bct) - (Et [V;Sir_la})m 1

dy ¢t — bepq ‘4+1 T41

when u; > 0 for all £. The term premium TPt(k) is defined as the difference between rt(k) and the
expected future path of the short rate, i.e., TPt(k) = rﬁ’“) - Zf;ol By [ry4] with r; = log R;.

Finally, we use a standard specification for the five structural shocks by letting

(10) lOg log (:UJz,t—&—l/:uz,ss) = sz lOg (:uz,t//l’z,ss) + O-Mz eﬂz,tJrl

logdiyn = pylogd, + oa€qi41

lognin = p,logng + onén i

* *
logmi,, = pplogm + opeern
logai1 = p,logas + ou€aria

with p, , = 2 /211, where € t+15 €di+1, Ent+1s Ex= 41, aNd €441 are standard normally

distributed and independent across time, denoted N ZD (0,1), and mutually uncorrelated.

IIT Estimation Methodology

This section outlines how we estimate the New Keynesian model. We describe the
considered data in Section III.A and present our solution method in Section III.B. The adopted

estimation routine is discussed in Section III.C.



A Data

The model is estimated using quarterly U.S. data from 1961Q2 to 2019Q3, where we end
the sample before the start of the COVID-19 pandemic. The dynamics of the macro economy is
measured by i) detrended labor supply l}, ii) the detrended real wage 0, iii) consumption growth
Ac;, and iv) inflation 7;.> The nominal yield curve is represented by the 3-month, 1-, 3-, 5-, 7-,
and 10-year bond yields. These yields are taken from Giirkaynak, Sack, and Wright (2007),
except at the 3-month maturity where we use the implied rate on a 3-month Treasury Bill.

Taylor-rules as the one considered in equation (8) are obviously an approximation to the
historical policy decisions taken by the Federal Reserve. In particular, the rule ignores the
‘monetarist experiment’ from 1979Q4 to 1982Q4 and the policy rate being constrained by the
zero lower bound (ZLB) after 2008. We account for both of these deviations from the adopted
interest rule in the following way.

First, during the monetarist experiment, the Federal Reserve targeted monetary
aggregates and its policy decisions were therefore not well summarized by the interest rule in
equation (8). To avoid that the highly volatile short rate in this period distorts the estimation,
we greatly downweight the importance of the 3-month interest rate from 1979Q4 to 1982Q4 in
the estimation. As explained below in Section III.C, the model is estimated using nonlinear
filtering techniques, and we implement this downweighting by increasing the standard deviation
of the measurement errors for the 3-month interest rate to 100 basis points from 1979Q4 to
1982Q4.

Second, the interest rule in equation (8) does not enforce the ZLB. A possible concern is
therefore that the model may generate a short rate during the estimation that is clearly below
zero although the empirical short rate is always positive. We guard against this possibility by
lowering the standard deviation of the measurement in the 3-month rate to just 5 basis points at

the ZLB. This also ensures that the signal-to-noise ratio for the 3-month rate remains reasonable

>The labor supply is measured by the total number of employees for total nonfarm payrolls, while the real wage
is measured by the seasonally adjusted real hourly compensation in the nonfarm business sector. Both variables are
detrended using the procedure in Hamilton (2018). The consumption growth rate is calculated from real per capita
nondurables and service expenditures. Inflation is measured by the year-on-year growth rate in the consumer price
index (CPI) excluding food and energy prices for all urban consumers.



at the ZLB, where the variability in the short rate is greatly reduced. We define the ZLB as
spells where the 3-month interest rate is below 50 basis points.
obs

In total, the estimation uses 10 variables, which we collect in the vector y;”® and express

in annualized terms except for [; and wy.

B Model Solution

The state variables for the model appear in the vector x;, = | log <Zj> log ., logd,
logn; logn; logay |, where consumption is scaled by the productivity level z; to ensure
stationarity. All the remaining variables appear in the vector y; with dimensions n, x 1. The
exact solution is
yi = g(x;0)

(11)

X1 = h(x;0) + ney

with €, = | €ut €dt €nt Erii €ay |" and all structural coefficients collected in 8. The law of
motions for the exogenous states are provided in equation (10), and the dynamics of log (Z—j) is
identical to the one for consumption scaled by z; in g (x;;0). As a result, we only need to
approximate the g-function.

The solution to the New Keynesian model with asset prices is typically obtained using a
third-order perturbation approximation, because it allows for non-zero and time-varying risk
premia. Although this approximation is often found to be very accurate as shown in Aruoba,
Fernandez-Villaverde, and Rubio-Ramirez (2006) and Caldara, Fernandez-Villaverde,
Rubio-Ramirez, and Yao (2012), the inclusion of recursive preferences generates a large
risk-adjustment that may reduce the accuracy of the approximation. The reason is that the
risk-adjustment to capture term premia in the perturbation approximation is computed around
the deterministic steady state of y;, denoted y,, but applied around the unconditional mean of
v+, denoted E [y;]. This extrapolation typically works well when y; is reasonably close to E [y;].

However, we generally find that this difference is large with recursive preferences estimated to

match U.S. bond yields, and this leads to poor performance of the perturbation approximation.

10



For instance, in our baseline specification of the New Keynesian model, the annualized short rate
has a determinist steady state of 18.50%, but an unconditional mean of just 4.80%.°

Based on this observation, we instead solve the model by the projection method of Judd
(1992) using a second-order polynomial for the g-function. Feasibility obviously dictates this
relative low approximation order with n, = 6 states, n, = 45 control variables, and n. = 5
structural shocks in the model. Nevertheless, as we show below in Section V.B, the global nature
of this solution provides a more accurate approximation when compared to even a fifth order
perturbation solution - in part because the risk correction in the projection approximation is

computed on a grid around E [y,| and not around y,s. That is, we let

(12) Vi = 80 + 8xX¢ + Buxvech (xiX})

where the unknown loadings for this projection approximation appear in gg, gy, and gy, with
dimensions n, x 1, n, x n,, and n, x n, (n, + 1) /2, respectively. We consider N grid points
X = {Xi}i]il for the states and determine these unknown loadings by minimizing the model’s
Euler-equation errors on this grid. Details on the construction of the grid X', evaluation of the
conditional expectations in the Euler-equations, and the construction of the objective function

are standard and provided in Appendix A.

/
!/
Y

For an efficient implementation, consider the partition y; = l (yg)’ (yf?)/ (bz°)

where y{ = | log (Z_:) logm, logevf; ]’ contains the three macro variables required to solve the
model without any bond yields, with evf;, = E; [(V} / ztl _X)l_a} being an auxiliary variable used
to capture the recursive preferences. The vector y? = [ logl, log (%) | represents additional
macro variables used in the estimation, while all log-transformed zero-coupon bond prices appear
in bj® = | bgl) bgz) b§40) |'. As shown in Appendix A, only the optimization step with
respect to the unknown loadings related to y¢ is nonlinear. Given the solution for yy{, the

projection loadings for y? and bi¢ are given in closed form by ordinary least squares (OLS) and

hence obtained instantaneously. We also show that the same holds for expected future short

6The main problem appears to be that the perturbation method struggles to accurately approximate V; and
E, [Vt{ﬁa], which then spills over into large approximations errors for bond yields.

11



rates and hence for term premia. These closed form solutions for bond prices b;® and expected
short rates represent a new methodological contribution to the projection literature for models
with a yield curve and extends to other basis functions than the one applied in equation (12) and
to any approximation order. As a result, we are able to obtain a second-order projection
approximation in just about 6 seconds on a standard desktop computer using a single CPU.”
Exploiting this new computational trick is absolutely essential for making a formal estimation of

our medium-sized New Keynesian model computational feasible with a global solution routine.

C Robustified Inference with Nonlinear Filtering

The approximated state space representation of the model includes nonlinear terms with
the unobserved states x;, implying that the Kalman filter cannot be used to estimate the model.
Instead, we rely on the central difference Kalman filter (CDKF') developed by Norgaard,
Poulsen, and Ravn (2000), which is a nonlinear extension of the Kalman filter. The CDKF
accommodates measurement errors in y?**, which in practice also include potential modelling
errors. We specify these errors v; to be uncorrelated Gaussian white noise, as typically assumed
when estimating structural macroeconomic models and reduced-form DTSMs. That is,

v; ~NZID(0,R,) where R, is a diagonal covariance matrix, implying that y?* = Sy, + v; for
an appropriate selection matrix S.8

A likelihood function can be derived from the CDKF under the assumption that the
prediction errors for y** are Gaussian. However, this distributional specification does not hold
exactly due to the nonlinear terms in the model solution. The CDKF therefore only provides a
quasi log-likelihood function % Zthl L (0), which can be used for a quasi maximum likelihood

(QML) estimation, as suggested in Andreasen (2013).

A possible limitation of any QML approach (as with standard maximum likelihood) is its

"The processor is an AMD Ryzen 7 PRO 7840U. We reserve the use of multi-processing for the estimation of
the structural parameters using the evolutionary optimization routine of Andreasen (2010) applied to the objective
function described below in Section III.C.

8Unlike the more accurate particle filter proposed in Ferndndez-Villaverde and Rubio-Ramirez (2007), the up-
dating rule for the states in the CDKF is linear, implying that the recursive filtering equations only depend on first
and second moments. The CDKF approximates these moments by a deterministic sampling procedure, and this
makes the CDKF computationally much faster than any particle filter and generally also more accurate than the
well-known extended Kalman filter.

12



lack of robustness to model misspecifications other than the distributional assumption of the
prediction errors for y?*s. A possible source of misspecification in the New Keynesian model is
that the same structural parameters in 8 determine the g- and the h-function. In contrast, the
widely used reduced-form Gaussian DTSM basically allows these two functions to be determined
by separate parameters, which in these models is essential to generate term premia dynamics
that are not rejected by historical data (see Dai and Singleton (2002)).? In the context of the
New Keynesian model, the g-function is likely to prefer large and persistent shocks, because this
helps the model to generate variation in term premia and hence fit medium- and long-term bond
yields. On the other hand, small and less persistent shocks are typically needed in the h-function
to fit the state dynamics and ensure sensible unconditional properties of y?**. Given the
inclusion of several bond yields with small measurement errors in the estimation, our experience
is that the g-function dominates the QML estimates of the New Keynesian model. This typically
implies a tight in-sample fit to y¢**, but it comes at the expense of unconditional variances for
y% that are too large compared to U.S. data.

Thus, a robustified version of the standard QML estimator is required to obtain reliable
estimates of our New Keynesian model. The solution we propose is to shrink the QML estimator
to the unconditional first and second moments of y?*, because this is a simple and transparent
way to increase the weight assigned to the h-function in the estimation. We denote the shrinkage
moments by + S°7, m, in the sample and by E [m (8)] in the model. The applied estimator is

given by

R 1
(13) 6 —argmax ST UL (0) — My (0) WEp (),
S

where © is the feasible domain of 8, fi.7 () = 7 L £, () with £, (8) = m;,~E [m ()], and W
is a diagonal weighting matrix containing the inverse of the standard errors for the shrinkage

moments.!?

9The only link between the g- and h-functions in the reduced-form Gaussian DTSM is the conditional covariance
matrix of the states, but the effect of this covariance matrix on the g-function is typically very small.

10 Another possibility is to use the optimal weigthing matrix, but this version of equation (13) is not considered to
avoid well-known small-sample distortions from estimating large covariance matrices in moment-based estimators.
In our application, we estimate the diagonal elements in W using the Newey-West estimator with three lags.

13



The nature of the estimator in equation (13) is determined by A > 0, which controls the
weight assigned to the shrinkage moments relative to the sample average of £; (). We obviously
recover the standard QML estimator when A = 0, while 8 converges to the generalized method of
moments (GMM) estimator of Hansen (1982) when A becomes sufficiently large. We consider a
small amount of shrinkage by letting A = T', which in our setting implies that shrinkage
constitutes a small part of the objective function. Our results are not particularly sensitive to
increasing the degree of shrinkage further, although we do find notable effects of shrinkage when
compared to the standard QML estimator.!!

To obtain closed-form expressions for the model-implied shrinkage moments, we apply the
pruning scheme of Andreasen, Fernandez-Villaverde, and Rubio-Ramirez (2018) when setting up
the state space system for the approximated version of the model.!? This implies that the
estimator in equation (13) can be implemented without resorting to simulation and belongs to
the general class of extremum estimators. Its asymptotic properties are therefore easily derived
in the Online Appendix.

We use two classes of shrinkage moments. The first class contains first and second
unconditional moments of y2*, except for the mean of detrended labor supply and the real wage
that are zero. These moments help to robustify the QML estimates, which we illustrate in a
Monte Carlo study in the Online Appendix. Here we show that shrinkage towards these
moments give smaller parameter biases than standard QML when the model is misspecified with
the g- and h-functions determined by different structural parameters. On the other hand,
without any model misspecification, we unexpectedly find no benefit of shrinkage, which mainly
reduces the efficiency of the standard QML estimator that is nearly unbiased in this case. We
benchmark these results to using an extreme degree of shrinkage with A = 105, which

corresponds to estimating the structural parameters by GMM and obtaining the states

HNote also that equation (13) belongs to the class of Laplace type or quasi-Bayesian estimators of Chernozhukov
and Hong (2003), where a potentially misspecified log-likelihood function (as considered in our case) may be used
within a Bayesian setting. When this estimator is combined with the endogenours prior specification in Christiano,
Trabandt, and Walentin (2011) using a pre-sample of length T*, we obtain the objective function in equation (13)
with A = T%/2, as shown in the Online Appendix.

12The pruning scheme is not essential in our case, because the proposed model has only one endogenous state
(i.e., log (ct—1/2t—1)), and partly for this reason appears to be stable when simulated without pruning. Details
related to the pruned state space system and the derivations of its moments are provided in the Online Appendix.
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afterwards by the CDKF. The Monte Carlo study shows that these GMM estimates of 8 display
notable biases in finite samples and are clearly less efficient compared to the standard QML
estimator (A = 0) and the proposed estimator (with A = T"), both with and without model
misspecification. These imprecise GMM estimates of the structural parameters also imply less
accurate state estimates when compared to the proposed estimator with A = T'.

The second class of moments we include contain information about term premia as

captured by the regression of Campbell and Shiller (1991). That is,

(14 i = = o By () = ol

m

el (Al ) + Ut

where ;1,1 is an error term and m = 4 to obtain annual changes in bond yields for our
quarterly sample. The expectations hypothesis implies 5, = 1, but empirical estimates of the
slope coeflicients /3, are negative and decreasing with maturity, which is evidence of time-varying
term premia. This implies that bond returns are predictable, because equation (14) is equivalent
to the forecast regression rxgi)m —ap+ 3 K <7’,£k) — T,f(m)> + Et4m,k, Where mﬂ?m is excess bond
returns and /3 r =% (1—=3,). We consider 3, at the 2-, 3-, ..., 10-year maturity to assign more
weight to the evidence against the expectations hypothesis than implied by the considered panel
of bond yields used to compute the quasi log-likelihood function. These slope coefficients are

(k—m) (k) (K) (m)>

represented in the shrinkage moments by including Cov(ry.,, ry,ry . — 1y ) and

Var(r§k) — rﬁm) ) related to 3, at the included maturities.

IV Estimation Results

This section presents the main results for the proposed model. We proceed by discussing
the estimated parameters in Section IV.A and the model fit in Sections IV.B to IV.D. The
following three subsections explore how well the model matches key moments of bond yields that
are not included in the estimation. The key mechanisms in the model are finally explained in

Section IV.H.
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A Estimated Parameters

Not all parameters in the New Keynesian model are well-identified from our set of
observables, and these parameters are therefore determined by standard calibration arguments.
Hence, we let § = 0.025, [;, = 0.33, and 6 = 0.4 as typically assumed for the U.S. economy. We
also set the ratio of capital to output in the steady state to 2.5 as in Rudebusch and Swanson
(2012). The value of j, ., is set to match the mean of consumption growth, implying that
t, s = 1.0055. Finally, we set the constant ug in the utility function to get a steady state RRA
of 10 as considered in Bansal and Yaron (2004).

Given the large number of variables included in the estimation, we set the size of the
measurement errors in y?° using reasonable assumptions. The standard deviation for the
measurement errors in all bond yields is set to 25 basis points, corresponding to 8.3% of the
average standard deviations in the six considered yields. Similarly, we assume that 20% of the
variation in labor supply, the real wage, and consumption growth is due to measurement errors,
implying standard deviations of 58, 44, and 35 basis points, respectively. Inflation displays very
similar dynamics to short-term bond yields, and we therefore set its measurement errors to 10%
of its variation, as it gives a standard deviation of 24 basis points.

The first column in Table 1 reports the estimated parameters in the preferred version of
the model. This baseline model is denoted M:¢S where the superscripts indicate that
shrinkage is applied based on the considered first and second unconditional moments of y¢** (by
"M") and the selected Campbell-Shiller moments (by "C'S"). The results for the other versions
of the model will be discussed below in Section V. For our preferred model M™:¢S we find
B =0.991 and a moderate degree of habit formation with b = 0.65. For consumption growth,
this implies autocorrelations of 0.65, 0.42, 0.27, and 0.17 at the first four lags, which are
reasonably close to the responding sample moments of 0.47, 0.37, 0.39, and 0.18, respectively.
For the curvature parameter in the utility function, we get ¥ = 5.83, which together with our
estimate of b imply an IES of 0.06. This relatively low IES is consistent with Hall (1988) and
Yogo (2004), who estimate the IES to between zero and 0.2.

The degree of substitutability among the intermediate goods is n = 8.85, giving a low and
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Table 1: The Structural Parameters

This table shows the estimated parameters using quarterly data from 1961 to 2019, with asymptotic standard errors
provided in parentheses. The first four observations are used to initialize the CDKF. The use of shrinkage is denoted
on the model object by using the superscipts "M" for the unconditional moments and "CS" for the Campbell-Shiller
moments. The subscript on the model object indicates that the standard specification of recursive preferences (EZ)
is used in column 4 and that a third-order perturbation approximation (3th) to the model solution is used in column
5. No standard errors are provided for 3, n, and ¢, when they are at their upper bounds of 0.999, 10, and 10,
respectively. The timing premium is evaluated at the steady state and computed as in Andreasen and Jgrgensen

(2020).

M.CS .05
MMCS MM M Mgz M,
1 2 3 4 5
—11.460 —9.029 —9.032 | —16.488 —14.250
(6.214) (1.664) (0.630) (3.788) (2.367)
0.991 0.999 0.988 0.993 0.948
(0.011) - (0.000) (0.003) (0.057)
b 0.653 0.574 0.841 0.866 0.625
(0.077) (0.007) (0.010) (0.116) (0.268)
%) 0.098 0.092 0.156 0.209 0.169
(0.065) (0.003) (0.003) (0.045) (0.347)
X 5.828 7.104 5.042 1.948 15.633
(1.101) (0.309) (0.630) (0.550) (13.174)
Ecalvo 0.438 0.309 0.497 0.772 0.396
(0.086) (0.003) (0.026) (0.008) (0.230)
Kw 0.917 0.909 0.834 0.867 0.945
(0.016) (0.020) (0.001) (0.045) (0.017)
n 8.848 10.000  10.000 8.208 9.774
(11.414) - - (2.166) (0.763)
o 3.957 3.691 4.764 2.982 10.000
(2.321) (0.880) (1.558) (0.830) -
DA 1.096 0.658 4.572 2.344 2.940
(0.442) (0.563) (1.532) (2.600) (0.799)
Py 0.491 0.373 0.540 0.770 0.218
= (0.128) (0.075) (0.000) (0.046) (0.272)
P4 0.984 0.985 0.968 0.978 0.998
(0.001) (0.000) (0.005) (0.002) (0.010)
P, 0.986 0.985 0.984 0.967 0.980
(0.008) (0.005) (0.004) (0.041) (0.026)
P 0.995 0.989 0.985 0.997 0.987
(0.011) (0.000) (0.009) (0.003) (0.015)
Pa 0.983 0.981 0.984 0.990 0.996
(0.008) (0.004) (0.000) (0.001) (0.027)
Tes 1.021 1.021 1.034 1.018 1.024
(0.012) (0.004) (0.002) (0.003) (0.007)
ou, % 100 0.330 0.378 0.403 0.297 0.609
# (0.013) (0.072) (0.039) (0.003) (0.342)
o4 0.127 0.122 0.152 0.033 0.053
(0.058) (0.008) (0.006) (0.010) (0.114)
On 0.044 0.064 0.087 0.035 0.108
(0.017) (0.010) (0.007) (0.002) (0.111)
o x 100 0.043 0.060 0.247 0.083 0.086
(0.036) (0.016) (0.042) (0.001) (0.075)
o4 x 100 0.236 0.218 0.677 0.395 0.148
(0.129) (0.043) (0.039) (0.021) (0.509)
Additional Info
Timing Premium 2.81% 2.77% 4.65% 7.33% 1.13%
IES 0.06 0.06 0.03 0.07 0.02
RRA 10 10 10 34.70 10
Uug -459 -273 -5,945 0 -913,824

plausible average price markup of 13%. To aid the interpretation of the price adjustment

parameter &, Table 1 reports the corresponding Calvo parameter écmo that gives the same slope
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of the aggregate supply relation as é’ when linearizing this relation.!> We find é’calw = 0.44, which
corresponds to an average price duration of just 1.8 quarters, showing that our New Keynesian
model does not impose a strong degree of price stickiness. Instead, the model relies more on real
wage stickiness with &, = 0.92, which is similar to the finding in Smets and Wouters (2007).

In relation to the labor supply, we find ¢ = 0.10 and therefore a Frisch elasticity of
v (1/lss — 1) = 0.20 in the steady state with [s; = 0.33. Most micro estimates of the Frisch labor
supply elasticity for males are in the range from 0.10 to 0.40 according to Keane (2011), showing
that our low estimate of ¢ is consistent with micro evidence. With (Zs and x well below and above
one, respectively, the utility function in equation (2) is negative. Hence, the estimate & = —11.46
implies preferences for early resolution of uncertainty and a realistic timing premium of 2.81%.
As discussed in Epstein, Farhi, and Strzalecki (2014), this means that the household is willing to
give up 2.81% of total lifetime consumption to have all uncertainty resolved in the following
period. Given these estimates, we obtain the required relative risk aversion of 10 when the utility
constant is uy = —459. To interpret the magnitude of this constant, we compute the periodic
utility u (ct, l;) with and without a constant in a simulated sample to find the fraction of utility
from consumption and leisure, i.e., u (ct,t)],,—o /u (ct,l;). This fraction has an average of 12%,
but displays considerable variation over the business cycle with a 5th percentile of 3% and a 95th
percentile of 26%. As a result, the constant u ensures a high and therefore also more stable
utility level relative to its mean when compared to the standard specification with ug = 0. As
argued by Andreasen and Jgrgensen (2020), this helps to keep the household’s risk aversion at a
low and plausible level.

The forward-looking central bank assigns more weight to stabilizing future inflation than
economic activity with &W = 3.96 and g% Ae = 1.10, which is a common finding in the literature.
For the structural shocks, we find that permanent productivity shocks display low persistence
with p, = 0.49, showing that the model does not rely on a strong long-run risk component. In
contrast, the inflation target is highly persistent with p_. = 0.995 and it has low volatility with

0 = 0.00043, implying that this shock captures long-run nominal risk. Finally, the preference

_ (1-04+19)(n—1)€cuivo
(17€Calvo)(179)(17£Calvoﬁ/‘ti;§) ’

13The mapping between ¢ and £y, 15 €
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shock, the labor supply shock, and the stationary productivity shock are also highly persistent
with first-order autocorrelation functions of about 0.98.
Overall, the estimated structural parameters appear reasonable and consistent with micro

evidence as well as previous findings for the New Keynesian model.

B Model Fit

Figure 1 plots the data and the model-implied values (the thick line) for the 10 variables
included in the estimation. The model captures the overall evolution in the labor supply [, and
the real wage w; remarkably well despite our parsimonious specification of the labor market.
This is also evident from the correlation between the data series and the model-implied series as
denoted by 7 in the figure, which is 0.87 for the labor supply and 0.85 for the real wage. The
model provides an even closer fit to consumption growth Ac, and inflation 7, with 7 = 0.98. For
the short rate r;, we see an outlier around 1980, which is expected due to our choice of
downweighting the importance of the short rate in the estimation during the monetary policy
experiment. We also find that the model fits the short rate closely at the zero lower bound as
desired, and that all remaining bond yields are well matched by the model.

Accordingly, the proposed model with just five structural shocks provides a good
in-sample fit to the 10 variables in y?*. To benchmark this result to the literature, recall that
the New Keynesian model is typically estimated using as many shocks as observables. However,
the dynamics of the yield curve is well captured by the first two principal components, implying
that six structural shocks should be needed in our case. The fact that the proposed model

matches the observed data using just five shocks is therefore very satisfying.

C Unconditional Stylized Moments

Table 2 explores the ability of M™:¢9 to match the unconditional means and standard
deviations in y?* as included when estimating M*:©9. The first column in Table 2 shows U.S.
sample moments and their bootstrapped 95% confidence bands, while the second column shows

the corresponding population moments in M-S, We first note that M™-¢S reproduces the

19



Figure 1: Model Fit

This figure shows the observables in the data along with the model-implied values at the state estimates from the
CDKEF for the baseline model MM:CS | estimated on quarterly data from 1961 to 2019. The value of 7 denotes the
correlation between the empirical series and the model-implied series.
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mean of inflation and the mean of all bond yields. For instance, the level of the 3-month yield is
4.80% vs. 4.58% in the data, and the level of the 10-year bond yield is 6.42% vs. 6.13% in the
data. This implies that the average yield spread is 162 basis points in M*:¢S compared to 155
basis points in U.S. data.

The model is also successful in matching the standard deviation of the labor supply
(2.78% vs. 2.88% in the data), the real wage (1.99% vs. 2.20% in the data), consumption growth
(1.60% vs. 1.74% in the data), and inflation (2.58% vs. 2.43% in the data). The standard
deviations of all bond yields are also well matched.!?

Accordingly, MM:¢S explains the overall level and variability of the data. This shows that

the satisfying in-sample fit in Figure 1 does not come at the expense of distorted unconditional

HFollowing the work of Piazzesi and Schneider (2007), the correlation between 7, and Ac; has attracted some
attention in the literature. We find corr(m;, Ac;) = —0.16 in MM:CS and corr(m;, Ac;) = —0.11 in our quarterly
sample from 1961 to 2019.
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Table 2: Unconditional First and Second Moments

The data moments are for the U.S. from 1961 to 2019 with 95% confidence bands stated below. These bands are
computed using a block bootstrap with 10,000 bootstrap samples using blocks of 60 observations. The model-
implied moments are computed in closed form using the procedure in Andreasen et al. (2018). The version of the
model is denoted by the superscipts "M" for applying shrinkage to the unconditional moments and "CS" to the
Campbell-Shiller moments. The subscript on the model object indicates that the standard specification of recursive
preferences (EZ) is used in column 5 and that a third-order perturbation approximation (3th) to the model solution
is used in column 6. All means and standard deviations are stated in annualized percent, except for the standard
deviation of [t and w; which are not annualized.

Data MMCS MM M MJJ;[ZCS Mg{ﬁcs
1 2 3 4 5 6

Means

Ac, 1.91 1.91 191 191 191 1.91
(1.39,2.44)

m 3.67 3.67 364 714 372 3.71
(1.93,5.41)

ry 458 4.80 474 2192 478 4.54
(2.21,6.96)

ri® 5.04 4.93 497 <127 496 473
(2.50,7.59)

ri? 5.43 5.26 533  -026  5.44 5.25
(2.91,7.95)

r{20) 5.70 5.58 561 026  5.79 5.64
(3.27,8.14)

ri®) 5.91 5.91 588  0.66  6.04 5.97
(3.56,8.26)

r{40) 6.13 6.42 620  1.24  6.29 6.38
(3.87,8.39)

Stds

I, 2.88 2.78 291 649 291 2.36
(2.42,3.34)

iy 2.20 1.99 209 651 193 1.81
(1.65,2.75)

Ac, 1.74 1.60 175 216 170 1.68
(1.49,1.98)

™ 2.43 2.58 248 609  2.76 2.34
(1.18,3.67)

r 3.19 3.11 330  7.97  3.07 3.76
(2.07,4.32)

i 3.31 3.13 324 771 3.02 3.67
(2.16,4.46)

rit? 3.17 3.13 310 709 289 3.46
(2.02,4.32)

r{2) 3.02 3.10 297 647 280 3.25
(1.89,4.15)

ri®) 2.90 3.06 286 591 274 3.05
(1.78,4.01)

r{0) 2.78 3.02 272 519 268 2.79
(1.68,3.88)

model dynamics. This indicates that the estimated state innovations €;,, evolve according to the

assumed laws of motion in equation (10) and hence do not show evidence of overfitting. We draw

the same conclusion from an inspection of €;,1, which are basically uncorrelated as desired. For

instance, the average of the absolute correlations between the five innovations is just 0.12, and

21



the highest and lowest correlations are just 0.26 and —0.21, respectively.'®

D Ordinary Campbell-Shiller Loadings

Another important question is whether M*-¢S can match the empirical pattern in the
ordinary Campbell-Shiller loadings 3, from equation (14), which we include in the estimation.
The top panel in Table 3 reports these loadings in the sample along with their bootstrapped 95%
confidence bands. A very encouraging finding is that M™:¢S generates ordinary
Campbell-Shiller loadings that are negative and track the empirical loadings remarkably well
inside their 95% confidence bands, although the loadings in the model do not fall as much with
time to maturity as in the data. This shows that the model satisfies the first requirement for a

correct specification of term premia.

E Risk-Adjusted Campbell-Shiller Loadings

Next, we study moments that are not included in the estimation of M™:¢5. A correct
specification of term premia should imply that historical risk-adjusted bond yields satisfy the
expectations hypothesis. Dai and Singleton (2002) show that this corresponds to testing whether

the loading B?dj is equal to one in the following version of the Campbell-Shiller regression

m

Tptfwd,(kfm)

15 Al {0 — (TR TR 4

_ L Ad Adj T (k) (m) Adj
= o + 0 S\ T ) T

where term premia are subtracted from long-term yields. Here, the variable

TPtfwd’(k) = fir — B¢ [re4+x) is the term premium in the forward rate f;; = —log (Bt(kﬂ)/Bék))
and uf fﬁnk is an error term. That is, we substract the estimated term premia by the New
Keynesian model from U.S. bond yields rt(_]i;lm) — rt(k) and regress them on a constant and the

yield spread in the U.S.

The bottom panel in Table 3 uses term premia from M%S to compute risk-adjusted

15The full correlation matrix for the structural innovations are reported in the Online Appendix.
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Table 3: Ordinary and Risk-Adjusted Campbell-Shiller Loadings

The top panel shows the ordinary Campbell-Shiller regression loadings §; for m = 4. The empirical values
are computed using quarterly U.S. data from 1961 to 2019, with the 95 percent confidence interval provided in
parentheses, computed using a block bootstrap where the regressand and the regressor in equation (14) are sampled
jointly in blocks of 10 observations in 10,000 bootstrap samples. The model-implied Campbell-Shiller loadings are
computed in closed form. The bottom panel shows the risk-adjusted Campbell-Shiller regression loadings B?dj
for m = 4 in quarterly U.S. data from 1961 to 2019 when using term premia from the particular version of the
model with the 95 percent confidence interval provided in parentheses, computed using a block bootstrap where the
regressand and the regressor in equation (15) are sampled jointly in blocks of 10 observations in 10,000 bootstrap
samples.

M,C3 M,C3
Data MMCS MM M Mgy, 3th
1 2 3 4 5 6
Ordinary
CS loadings
Bia —-1.03 —0.73 —0.28 0.49 —0.60 —0.72
(—2.27,0.20)
Bao —1.53 —-0.74 —-0.29 0.31 —0.36 —0.65
(—2.92,—0.14)
Bag —-1.93 —0.78 —0.30 0.20 —0.18 —0.64
(—3.43,—0.42)
Bao —-2.39 —0.82 —-0.29 0.10 —0.01 —0.62
(—4.09,—0.70)
Adjusted
CS loadings
Adj - —0.50 —0.33 —0.57 —0.90 —0.04
‘ (-1.57,0.99)  (—1.41,1.21) (—1.78,1.35)  (=1.93,0.57)  (—1.73,1.65)
it -~ —0.49 —0.34 —0.59 —1.42 0.16
. (-1.74,1.23)  (=1.58,1.36) (—1.72,1.11)  (—2.60,0.20)  (—1.74,2.07)
el - —0.42 —0.31 —0.56 —1.88 0.39
, (~1.85,1.40)  (—1.68,1.45) (—1.64,0.99) (—8.17,—0.15)  (—1.69,2.47)
Adj - —0.27 —0.21 —0.42 —2.40 0.77
(—2.08,1.74)  (—1.86,1.70) (—1.47,1.01)  (—3.92,—0.52) (—1.61,3.14)

Campbell-Shiller loadings Bﬁdj and their 95% confidence bands on the historical sample from
1961 to 2019. We find that these risk-adjusted loadings B?dj are notably larger than the
corresponding unadjusted loadings 3, and hence closer to the desired value of one. For instance,
at the 10-year maturity, the loading increases from [,, = —2.39 to fodj = —0.27. At the other
maturities, we also find that the risk-adjusted Campbell-Shiller loadings are slightly below zero,
but that the desired value of one generally is within the 95% confidence bands for B?dj . The only
exception is at the 1-year maturity, where the upper bound for the confidence interval is 0.99
and hence just below one. Subject to this minor qualification, term premia from the model are
not rejected by the data, implying that M™:¢S also passes the second requirement for a correct

specification of term premia.
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F Inflation News in Bond Yields

Duffee (2018) shows that the quarterly news in bond yields ft(k) = rt(k) — B4 [rt(k)] is
much more volatile than the quarterly news in expected inflation
nﬁr’? = [ [% Zle 7Tt+,-] —E; 4 [% Zle 7Tt+,} . The inflation variance ratio VRY) = V[ngr]fg]/V[fﬁk)}
is therefore only around 0.15 in the U.S., whereas this ratio often exceeds one in various versions
of the New Keynesian model (see Duffee (2018)). However, the time series for ft(k) and nﬁr’? in the
U.S. display clear evidence of time-varying volatility, and Gomez-Cram and Yaron (2021)
therefore refine the estimates in Duffee (2018) by correcting for heteroskedasticity. This increases
VRY to 0.23, 0.22, and 0.19 at the 1-, 3-, and 5-year maturity, as shown in Table 4.1°

The proposed model MM:¢S implies that the standard deviation in news to expected
inflation is only 0.31 at the 1-year maturity, and falls steadily to 0.26 at the 5- and 10-year
maturities. The standard deviation in news to bond yields is substantially higher at 0.49 at the
1-year maturity and 0.46 at the 3- and 5-year maturities, and hence within the reported 90%
uncertainty bands for the corresponding data moments in Table 4. The model therefore implies
fairly low inflation variance ratios of 0.41, 0.35, and 0.33 at the 1-, 3-, and 5-year maturities,
respectively, which are just outside the reported 90% uncertainty bands. This shows that the
proposed New Keynesian model goes a long way in addressing the critique of Duffee (2018). As
with the risk-adjusted Campbell-Shiller loadings in Section IV.E, we emphasize that the model’s
ability to explain the inflation variance ratios is an out-of-sample test, in the sense that B?dj and

VRgrk) are not included in the model estimation.

G Term Premia

The 10-year term premium implied by M™-¢% is shown at the top left graph in Figure 2,
where the shaded bars denote NBER recessions. The graph reveals that the model generates the
same overall pattern for the 10-year nominal term premium as found in the flexible 5-factor
model of Adrian, Crump, and Moench (2013), which is a standard reduced-form Gaussian DTSM

without any economic structure. The correlation between the two measures of term premium is

16We are grateful to Roberto Gomez-Cram for sharing these data moments.
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Table 4: News to Inflation and Bond Yields

(k)

,t

This table reports the annualized standard deviation of quarterly news in expected inflation 7

E, [% Zle 7Tt+1} —E;_1 [% Zle 7rt+i] in percent, the annualized standard deviation of quarterly news in bond

yields Ft(k) = rt(k) —Ei [rgk)} in percent, and the inflation variance ratio VRS = V[n;kg]/V[ft(k)] The data mo-

ments are from Gomez-Cram and Yaron (2021) (supported material provided by R. Gomez-Cram) with a correction
for heteroskedasticity. These estimates are from 1962Q1 to 2018Q4, where the standard deviations in bond yields
news use martingale forecasts, and the standard deviations in expected inflation news are obtained using the GDP
deflator and surveys on current-quarter inflation. Figures in parentheses denote the 90 percent credibility interval.
The corresponding model-implied moments are computed for the indicated versions of the New Keynesian model
using a simulated sample of 100,000 observations to obtain the reported moments.

Data MM.CS MM M Mélics :]s\{ﬁcs
1 2 3 4 5 6

Std of inflation news

1-year 0.22 0.31 0.39 0.94 0.27 0.37
[0.19,0.25]

3-year 0.21 0.27 0.35 0.88 0.27 0.34
[0.18,0.24]

5-year 0.20 0.26 0.34 0.85 0.27 0.32
[0.18,0.23]

10-year - 0.26 0.31 0.77 0.27 0.28

Std of yield news

1-year 0.46 0.49 0.62 1.86 0.48 0.45
[0.41,0.51]

3-year 0.44 0.46 0.56 1.39 0.43 0.44
[0.40,0.50]

5-year 0.46 0.46 0.53 1.24 0.39 0.43
[0.41,0.51]

10-year - 0.45 0.48 1.01 0.33 0.41

Inflation variance ratio

1-year 0.23 0.41 0.39 0.26 0.32 0.67
[0.16,0.32]

3-year 0.22 0.35 0.40 0.40 0.39 0.59
[0.16,0.32]

5-year 0.19 0.33 0.41 0.47 0.48 0.55
[0.14,0.27]

10-year - 0.33 0.42 0.58 0.69 0.48

0.73, with the similarities being particularly strong since the early 1980s. Note also that both
measures generally increase during NBER recessions and hence capture the counter-cyclical
nature of term premia, with the two recessions during the 1970s as the main exceptions for
MMCS  The summary statistics for term premia are also very similar across the two models, as
the 10-year nominal term premium in the model of Adrian et al. (2013) has a mean of 163 basis
points and a standard deviation of 110 basis points, while the corresponding moments in M€
are 151 and 100 basis points, respectively, in a simulated sample of 100,000 observations.

To conduct a shock decomposition of the 10-year term premium, we condition on the
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Figure 2: The 10-year Term Premium
The first graph shows the 10-year term premium in M™M-:CS and in the model by Adrian et al. (2013). The
remaining graphs show how each of the structural shocks in M-S contribute to the variation in the 10-year term
premium. The percentage of the total variation in the term premium explained by each shock, denoted pct(ATP;),
is computed using equation (16) based on the absolute variation in the series. The gray shaded bars denote NBER
recessions, and term premium is expressed in annualized basis points.
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nonlinear solution in equation (12) obtained using all five shocks and adopt the following
procedure. First, let T P®*)%% denote the term premium computed using the nonlinear solution
and the estimated states %; from the CDKF using all shocks. Second, let T P%*):~% denote the
term premium when omitting variation in X; due to the ¢th shock. The contribution to term
premium by the ith shock is then AT P®) = TPk)all _ 7 pk).~i which we plot in Figure 2 for
each of the five shocks. To quantify the variation explained by a given shock, we compute the

percentage of the total variation in the term premium explained by each shock as

i1 ’ATP(’W‘ _ ATpH
Z;ﬂ:&l Zf:l

(16) pet (TPH) = for i ={1,2,...,n.},

ATPMJ—ATPWﬂ
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where W(k)’i denotes the sample average of AT P®*)?. We find that demand and labor supply
shocks are the two dominating forces, explaining 41% and 36%, respectively, of the variation in
the 10-year term premium. Stationary productivity shocks account for 21%, whereas shocks to
the inflation target 7} and the growth rate p,, have hardly any effect on the 10-year term
premium. The decomposition also shows that the elevated level of the term premium during the
two recessions in the early 1980s are due to demand and stationary productivity shocks. For the
1991 and the 2001 recessions, labor supply shocks and stationary productivity shocks are the
main drivers behind the term premium. More recently, we see that demand, labor supply, and

stationary productivity shocks all contribute to generate a high term premium during the

2007-2009 Great Recession.

H Understanding the Key Mechanisms in the Model

At this point, we have shown that the proposed model i) explains historical bond yields,
ii) matches unconditional properties of the data, iii) passes the two requirements for a correct
specification of term premia, and iv) goes a long way in matching the level of news in expected
inflation. Most of these features are also matched by reduced-form DTSMs, but these models
offer little insights into the economic mechanisms that determine bond yields and especially term
premia. The model we propose provides such a structural explanation, and this section analyzes
the key mechanisms in M™:©S that drive term premia. Our discussion is structured around
Table 5, which shows how unconditional moments and Campbell-Shiller loadings (both ordinary
and risk-adjusted) are affected when omitting one of the five shocks in the model.

We first note that permanent productivity shocks have a large impact on the level of
bond yields, as omitting variation in p_, (i.e., 0, = 0) increases the average level of the yield
curve by about five percentage points. For instance, the mean of the 10-year yield increases from
6.42% with all five shocks to 11.60% when omitting permanent productivity shocks. This effect
arises from a precautionary saving motive, as omitting permanent productivity shocks make the
economy less risky and this reduces the negative precautionary saving correction in bond yields.

We also note that omitting permanent productivity shocks reduce the standard deviations in the
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Table 5: Decomposing the Effects of the Structural Shocks

This table reports unconditional moments for M*-CS when all structural shocks are present in column 1, and when
each of the structural shocks are omitted in columns 2 to 6. The model-implied moments are computed in closed
form using the procedure in Andreasen et al. (2018). All means and standard deviations are stated in annualized
percent, except for the standard deviation of [; and w; which are not annualized.

MMCS 0y, =0 09g=0 0,=0 0=0 0,=0
1 2 3 4 5 6

Means
Acy 1.91 1.91 191 1.91 1.91 1.91
T 3.67 4.70 7.00  3.76 3.67 3.66
Ty 4.80 927 1843 534 4.76 3.56
i 4.93 945 1843 551 488 3.51
i 5.26 992 1851  5.96 5.20 3.58
720 5.58 1040 1854  6.37 5.51 3.85
r{®) 5.91 10.88 1856  6.77 5.83 4.22
r{0 6.42 11.60 1857  7.37 634 491
Stds
I, 2.78 1.82 181 151 2.78 4.47
iy 1.99 1.30 132 152 1.98 2.90
Act 1.60 0.80 142 1.44 1.60 1.88
T 2.58 2.50 244 245 0.82 3.61
Ty 3.11 3.49 266  2.84 1.77 5.16
it 3.13 3.45 2.60  2.97 1.85 3.97
rit? 3.13 3.41 251  3.07 1.93 3.33
r{20 3.10 3.39 245  3.08 1.93 3.24
r{®) 3.06 3.37 239  3.07 1.94 3.25
r{10) 3.02 3.36 230 3.0 1.96 3.34
Ordinary
CS loadings
Bia -0.73 051  1.02  -087  -0.74  -0.62
Bao -0.74 070  1.03  -1.07  -0.76  -0.55
Bog -0.78 078  1.03  -124 081  -0.57
Bao -0.82 083  1.04  -140  -0.87  -0.62
Adjusted
CS loadings

Adi -0.50 063 -099 -0.93  -0.61  -0.29

Adj -0.49 076 -1.49 159 -0.79  -0.13

ol -0.42 076 -1.89  -215  -0.93  0.03

Adj -0.27 058  -235 285  -1.07  0.26

three macro variables l}, wy, and Acy, whereas the variability in 7, is almost unaffected. On the
other hand, the standard deviation in bond yields actually increase when imposing that o, = 0.
This may at first seem counter-intuitive, but this effect arises because the nonlinear policy

function for bond yields changes with o, = 0 such that they depend more strongly on the other
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structural shocks due to a sizable risk-adjustment in the model solution. The ordinary and
risk-adjusted Campbell-Shiller loadings are not materially affected by letting o, = 0. This
suggests that permanent productivity shocks are not the key source for generating bond return

predictability and hence variability in term premia, consistent with the results in Figure 2.

Figure 3: Impulse Response Functions: A Permanent Productivity Shock
This figure shows the generalized impulse response functions (IRF's) for a positive one-standard deviation shock
to p, 4, where the various shadings cover the indicated fraction of the distribution for these IRFs obtained using
1,000 randomly generated initial states. The IRFs are computed in closed-form for the second order projection
solution using the approach in Andreasen et al. (2018), except for M; ;41 which is computed using Monte Carlo

integration with 1,000 draws. Except for the term premium TPt(4O) and the nominal stochastic discount factor
M 141, all impulse response functions are expressed in percentage deviations (i.e., scaled by 100) from the steady
state or from the deterministic growth path (in the case of consumption and the wage level). All bond yields and

. . . . . 40) . . . . .
inflation are measured in annualized terms and the term premium TPt( ) is expressed in annualized basis points.

10%-90% W 20%-80% [30%-70% EE40%-60% ——Mean
Ct Tt I Wt
0 0
0.5 0.5
0.1 -0.05
-0.2 -0.1
0 0°f
0 10 20 0 10 20 0 10 20 0 10 20
(36) (40)
Tt 7'540) 7”[(4) E; [Ttﬂ} -
0.3 0.02 0.05 0.005
0.2 0 0
0.1 0.01 -0.05 -0.005
0 0 01 -0.01
0.1 -0.01 0.15 -0.015
0 10 20 0 10 20 0 10 20 0 10 20
40
TPt( ) M 11
0.04 0
0.02
0 -0.05
-0.02 -0.1
-0.04
-0.06 -0.15
0 10 20 0 10 20

To further analyze the effects a change in productivity, Figure 3 shows the generalized

impulse response functions (IRFs) following a positive one-standard deviation permanent

productivity shock. These IRFs depend on the initial state x; when the shock hits in period

t + 1, and we therefore show fan charts for the distribution of these responses across 1,000

randomly generated initial states from a simulated sample of the model. Consistent with the
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results in Table 5, the 10-year term premium is basically unaffected by this shock. On the other
hand, consumption and the wage level increase strongly, whereas inflation shows a small
reduction. These findings are consistent with the empirical evidence provided in Altig,
Christiano, Eichenbaum, and Linde (2011) using quarterly U.S. data from 1982 to 2008.
However, the drop in the labor supply in Figure 3 is contrary to the finding in Altig et al. (2011),
but Fisher (2006) shows that the reponse in the labor supply is sensitive to the considered
sample, as it is negative when using data before 1982 but positive when using data after 1982.
Accordingly, the IRFs to a permanent productivity shock appear consistent with existing
empirical evidence. This suggests that the shock is well specified in the model, and that its
responses do not appear to be distorted by letting z; enter in the utility function in equation (2).
Our second observation is that demand shocks generate an upward sloping yield curve.
This is seen from the third column in Table 5, which shows an almost flat yield curve close to the
steady state of 18.50% when omitting demand shocks (i.e., o4 = 0). In contrast, demand shocks
often generate a downward sloping yield curve in other versions of the New Keynesian model
(see, for instance, Nakata and Tanaka (2016)). To understand this implication of M:C5
consider the IRFs in Figure 4 for a positive demand shock. We generally find that inflation 7,

,540) falls following a demand shock.

and the long-term bond yield r,§40) increase, and hence that B
On the other hand, the responses of consumption, labor supply, and the real wage may be either
positive or negative. In contrast, when solving the model without accounting for risk (as
typically done in the macro literature), we find almost exclusively positive responses in
consumption, the labor supply, and the real wage to a demand shock, as shown in the Online
Appendix. This means that the sizable risk-adjusted required in the model to match bond yields
has notable macroeconomic effects. Despite these state-dependent responses, we see a large
increase in the nominal stochastic discount factor M,y due to d;.1/d; > 1 and an increase in
(E: [V3]) A /Vi&1. As shown in Rudebusch and Swanson (2012), such a negative comovement
between M, ;.1 and the bond price Bt(40) over the lifetime of the bond generates a positive term

premium. Thus, demand shocks make long-term bonds a risky investment for the household, and

this explains why they generate a strong increase in the 10-year term premium TPt(40) of about
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15 basis points and an upward sloping yield curve.

Figure 4: Impulse Response Functions: A Demand Shock
This figure shows the generalized impulse response functions (IRFs) for a positive one-standard deviation shock to
d;, where the various shadings cover the indicated fraction of the distribution for these IRFs obtained using 1,000
randomly generated initial states. The IRFs are computed in closed-form for the second order projection solution
using the approach in Andreasen et al. (2018), except for M; ;41 which is computed using Monte Carlo integration

with 1,000 draws. Except for the term premium TPt(40 and the nominal stochastic discount factor M .41, all
impulse response functions are expressed in percentage deviations (i.e., scaled by 100) from the steady state or

from the deterministic growth path (in the case of consumption and the wage level). All bond yields and inflation

)

. . . 40) . . . . .
are measured in annualized terms and the term premium 7T Pt( is expressed in annualized basis points.
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Another important observation from Figure 4 is that demand shocks increase the yield

) r§4) and reduce the expected change in the long yield E; [rfﬁ)] — rt(40). Demand

spread 7’,540
shocks therefore also help to generate the desired negative estimates of 3% in the ordinary
Campbell-Shiller regressions. Indeed, the ordinary Campbell-Shiller loadings are basically one
without demand shocks, and the model-implied risk-adjustment in U.S. bond yields is negligible
with risk-adjusted Campbell-Shiller loadings that almost coincide with the unadjusted slope

coefficients in the first column in Table 3. This shows that demand shocks are a key driver for

generating return predictability and variation in term premia in the model. Hence, when
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omitting these shocks we greatly reduce the variation in term premia and therefore also the
standard deviation in bond yields, as shown in the third column in Table 5. In contrast, the
standard deviation of inflation only drops slightly from 2.58% to 2.44% without demand shocks.
These shocks therefore help to explain the variation in bond yields without materially affecting
inflation, which is precisely what is required to match the low inflation variance ratios discussed
in Section IV.F. Indeed, the inflation variance ratio for the 10-year bond yield increases from
0.33 to 0.65 without demand shocks in the model.

Given the importance of the demand shock for the New Keynesian model to match bond
yields, we briefly explore how well this shock relates to the widely used consumer sentiment
index from the University of Michigan. This index is obtained by surveying a cross-section of the
population in the U.S. to capture their views about the current state of their own finances and
the U.S. economy in general. The index therefore responds to aggregate shocks hitting the U.S.
economy such as changes in productivity and government spendings, but also to variation within
the household that are unrelated to such external shocks, as discussed in Lagerborg, Pappa, and
Ravn (2023). This means that we should not expect a perfect correlation between this sentiment
index and our measure of the demand shock. A regression of the consumer sentiment index on a
constant and the estimated demand shock d, from MM:CS shows a positive correlation of 0.42,
with a 95% confidence interval of (0.24,0.59) obtained using Newey-West standard errors with
four lags. This shows that the demand shock is not simply some unobserved statistical factor
extracted to fit bond yields, but instead is well connected to the level of consumer sentiment in
the U.S. and hence has a clear economic interpretation.

The last columns in Table 5 show that i) labor supply shocks n; unsurprisingly explain
much of the variation in the labor supply, ii) shocks to 7} control much of the variation in
inflation and bond yields, and that iii) stationary productivity shocks a;, mainly affect the level
of bond yields and the variation in the labor supply, the real wage, inflation, and short-term

bond yields.
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V  Sensitivity Analysis

This section explores various aspects of the baseline model M:¢S that are new to the
literature. We first examine the effects of the estimator with shrinkage in Section V.A, while
Section V.B applies the standard formulation of recursive preferences. Finally, we discuss the
accuracy of the projection solution in Section V.C and relate it to the standard perturbation

approximation.

A The Effects of Shrinkage

The results presented so far are obtained when shrinking the traditional QML estimates
of the structural parameters towards some stylized empirical moments for y?**. Given that this
estimator is new to the literature on the New Keynesian model, we next explore the effects of
gradually removing this form of shrinkage. We first re-estimate the model when only shrinking
the QML estimates to the first and second unconditional moments of y?¢ and not to the
ordinary Campbell-Shiller loadings. This version of the model is denoted M™ . Table 1 shows
that this modification implies slightly higher curvature in the utility function (x = 7.1 vs.

X = 5.8), lower price stickiness (§cgp0 = 0-31 V8. Ecpwo = 0.44), and a lower weight on
consumption growth in the Taylor-rule (¢, = 0.66 vs. ¢, = 1.10) when compared to M5,
The unconditional means and standard deviations in Table 2 are basically unchanged, whereas
the standard deviations of news to inflation and bond yields in Table 4 increase and imply larger
inflation variance ratios in M than in MM:¢5. We further find that M generates bond
return predictability with ordinary Campbell-Shiller loadings around —0.3, which are somewhat
lower (in absolute terms) than in M*:“5 and the data. The risk-adjusted Campbell-Shiller
loadings for MM increase slightly compared to M™-¢9 with their 95% confidence bands
including the desired value of one, as seen from Table 3.

Another possibility is to abstract from any shrinkage and simply use QML for the
estimation. We refer to this version of the model as M. This modification gives somewhat larger
changes in the estimated structural parameters in Table 1, with stronger habit formation

(b=0.84 vs. b =10.65), less wage stickiness (k,, = 0.83 vs. k,, = 0.92), and a much larger weight
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on consumption growth in the Taylor-rule (¢5. = 4.57 vs. ¢5. = 1.10) when compared to
MMCS Tn addition, the standard deviations for all five structural shocks increase in M
compared to MM which illustrates the tendency of QML to select large structural shocks in
the New Keynesian model, as discussed in Section III.C. By construction, these estimates for M
give a higher value of the log-likelihood function and therefore a closer in-sample fit than in both
MM and MMCS that apply shrinkage. But Table 2 shows that M completely misses the i)
mean of inflation, ii) the mean of bond yields, and iii) generates too much volatility in the
observables y?**, with all standard deviations exceeding their 95% confidence bands. This imply
that the standard deviations of news in expected inflation and bond yields are much larger than
in the data according to Table 4. Thus, the standard QML estimates display clear signs of
overfitting, as the improved value of the quasi log-likelihood function compared to M™:¢S and
MM comes at the cost of distorting the fit to several unconditional properties of the model. This
also distorts estimates of term premia in M, as its ordinary Campbell-Shiller loadings are all
positive and outside of the 95% confidence bands for the corresponding sample moments
according to Table 3.

We therefore conclude that shrinking in the estimation of the structural parameters is

essential for the New Keynesian model to provide a satisfying in-sample fit and match several

unconditional aspects of bond yields and macroeconomic variables.

B Standard Formulation of Recursive Preferences

Our baseline model MM-¢S uses the flexible formulation of recursive preferences in
Andreasen and Jgrgensen (2020) with the utility constant ug to separate the IES, RRA, and the
timing attitude. We next re-estimate the model with uy = 0 to recover the standard specification
of recursive preferences applied in Rudebusch and Swanson (2012), Binsbergen,
Fernandez-Villaverde, Koijen, and Rubio-Ramirez (2012), many among others. We refer to this
version of the model as M]EWZ’CS, which we estimate using the same shrinkage specification as in
our baseline model. Table 1 shows that this seemingly minor modification implies substantial

changes in the estimated structural parameters. In particular, we find stronger habit formation
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(b =0.87 vs. b =0.65), less curvature in the utility function (xy = 1.95 vs. y = 5.83), much more
price stickiness (§cu00 = 0-77 VS. €cumo = 0.44), a larger weight on consumption growth in the
Taylor-rule (¢5. = 2.98 vs. ¢,. = 1.10), much smaller demand shocks (g4 = 0.033 vs.

o4 = 0.127), and larger stationary productivity shocks (o, = 0.0040 vs. o, = 0.0024) when
compared to MMCS As a result, we obtain a high RRA of 35 in M{E”Z’CS with a = —16.49, as
typically found when estimating the New Keynesian model with recursive preferences.

The unconditional means and standard deviations in Table 2 are almost perfectly
matched by MéJZ’CS. However, Table 3 shows that the model is unable to reproduce the ordinary
Campbell-Shiller loadings at the 7- and 10-year maturities, and it misses completely the
risk-adjusted Campbell-Shiller loadings, which are far from the desired value of one. These
findings suggest that term premia are not appropriately specified in this version of the New
Keynesian model. Finally, Table 4 shows that the inflation variance ratios increase
monotonically with the time to maturity and clearly become too large. For instance, the
inflation variance ratio is 0.48 and 0.69 at the 5- and 10-year maturity in Mé/écs but only 0.19
in US data at the 5-year maturity.

To conclude, the flexible formulation of recursive preferences in Andreasen and Jgrgensen
(2020) is required to enable the New Keynesian model to appropriately capture the dynamics of

bond yields and their embedded term premia.

C Accuracy of the Model Solution

All versions of the New Keynesian model have so far been estimated using the
second-order projection solution outlined in Section ITI.B. Table 6 studies the accuracy of this
approximation on a grid of S = 10,000 simulated states and compare its performance to the
standard perturbation approximation up to fifth order as made available by Levintal (2017). We

report accuracy separately for the n,, = 9 equations defining the macro block of the model and
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the n, = 40 equations defining bond prices. This is done using the standard summary statistics

1
(17) MAE = log10 (% Zle Yo |EEZS|)

1

n

I s

RMSE = logl()( S gZS_lEE3,5>

1
Max AE = log10 (— > o, max <{|EEZS|}5_1>)
n

for n = n,, and n = ny. Here, E'E; ; is the ith unit-free Euler-equation error at state value x,,
with log 10 denoting the base 10 logarithm (e.g., log 10(0.01) = —2).

The top panel in Table 6 considers the macro block of the baseline model M5 where
the second-order perturbation approximation clearly does better than the certainty equivalent
first-order solution. But accuracy does surprisingly not improve monotonically when increasing
the approximaiton order for standard perturbation. Our second-order projection solution gives
marginally higher accuracy than even a fifth order perturbation solution for the MAE and the
RMSE (as indicated by the bold figures), whereas the second-order perturbation solution gives
the lowest maximum absolute error. For the bond equations, we see larger differences between
the two solution methods, where the second-order projection solution gives MAE= —2.74 and
RMSE= —2.34, whereas we find —1.97 and —1.75, respectively, for a fifth order perturbation
solution. Analogue to the macro block, we also note that the performance of standard
perturbation for bond prices does not improve monotonically when increasing the approximation
order.

The middle part of Table 6 considers Mé@’(’s with the standard specification of recursive
preferences. The results show that the perturbation solution breaks down in this case, as the
Euler-errors are very large and increase with the approximation order. In contrast, our
second-order projection solution performs well also in this case.

To illustrate what drives this disappointing performance of the perturbation
approximation, consider a restricted version of the baseline model without demand shocks by
letting o0, = 0. This parametrization is informative, because it implies that the deterministic

steady state is close to the unconditional mean (as shown for bond yields in Secti