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Abstract

This study utilizes U.S. Patent Office data to explore potential improvements in the patent 

examination process through machine learning. It shows that integrating machine learning with 

human expertise can increase patent citations by up to 26%. Using machine learning 

predictions as benchmarks, I find that the early expiration rate of granted patents positively 

correlates with examiners' false acceptance rates. These errors negatively impact public 

companies' operational performance and reduce successful IPO or M&A exits for private 

firms. Overall, this study highlights significant social and economic benefits of incorporating 

machine learning as a robo-advisor in patent screening.



1 Introduction

“The strength and vitality of the U.S. economy depends directly on effective
mechanisms that protect new ideas and investments in innovation and creativity.”

– The U.S. Patent and Trademark Office

The patent system grants firms temporary monopoly rights over their inventions, pro-

viding crucial incentives for innovation and contributing to technological growth in the

economy (see, e.g., Nordhaus, 1969; Arrow, 1972; Mansfield, 1986). However, there has

been considerable criticism of the U.S. patent system, alleging that it grants many low-

quality patents through an inefficient screening process (see, e.g., Heller and Eisenberg,

1998; Jaffe and Lerner, 2011; Feng and Jaravel, 2020; Schankerman and Schuett (2022)).

Critics argue that inefficient screening of patent applications reduces, instead of increas-

ing, firms’ incentives to innovate (see, e.g., Cornelli and Schankerman, 1999; Lemley and

Shapiro, 2005; Bessen and Maskin, 2009).

Several factors contribute to this problem. First, patent examiners at the U.S. Patent

and Trademark Office (USPTO) face increasing time pressure. Patent applications surged

from 345,732 in 2001 to 643,303 in 2018, as shown in Figure 1, but examiner numbers did

not increase proportionally.1 As a result, although examiners spend only about 19 hours

per application, the average processing time is around 25 months (Frakes and Wasserman,

2017). Second, the USPTO struggles to recruit and retain top talent due to competition

from the private sector (Jaffe and Lerner, 2011). Third, internal incentives at the USPTO

tend to favor approvals over rejections; examiners are often evaluated based on the volume

of applications processed, and approving an application typically requires less effort than
1Data source: U.S. Patent Statistics Chart and Patent Examination Data from the USPTO website.
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rejecting it (Merges, 1999; Frakes and Wasserman, 2015).

Motivated by these issues, this paper explores whether combining human expertise

with machine learning algorithms can improve the patent screening process. Machine

learning’s ability to quickly analyze large datasets could potentially alleviate time and

resource constraints faced by examiners. Moreover, algorithms are not subject to human

biases or agency problems like career or compensation concerns. Reflecting this potential,

the USPTO has begun seeking help from artificial intelligence to enhance examination

efficiency.2

Using detailed data on granted and rejected patent applications from the USPTO, I

train a supervised machine learning algorithm (referred to as MLQuality) to predict patent

quality based on application characteristics. These characteristics include textual features

of patent claims, similarity measures to prior patents, backward citations, application orig-

inality, technological classes, and others. Patent quality is measured by forward citation

counts, a standard measure in the literature (see, e.g., Trajtenberg et al., 1997; Hall et al.,

2005). Out-of-sample predictions reveal that the current examination system grants many

low-quality patents and rejects many high-quality ones within each art unit.3

Next, I test whether human examiners can do a better job with the help of Algorithm

MLQuality. The main challenge here is the missing counterfactual: I do not observe actual

quality information for applications rejected by humans but accepted by the algorithm.

To address this selection issue, I exploit the quasi-random assignment of applications to

2USPTO director Andrei Iancu told the Wall Street Journal, “Our need is high and technology has ad-
vanced, so this is a good time to take advantage of these new tools to help our examiners.” For the full news
story, please see https://www.wsj.com/articles/patent-office-seeks-help-from-ai-11572297295.

3There are nine patent examining group centers, with each consisting of several art units examining
patents in the relevant field.
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examiners with different leniency levels within each art unit.4 Following Kleinberg et al.

(2017), I divide examiners into two groups based on the median grant rate within each

art unit, treating these two groups as two independent patent screening systems. Figure

2 illustrates this identification strategy using a hypothetical Art Unit XYZ, where lenient

examiners approve 700 applications, and strict examiners approve 500. In this example,

I rank the 700 patents granted by lenient examiners based on predicted quality and use

the algorithm to keep the 500 highest-quality patents. Then, I compare observable quality

measures (e.g., forward citations) between these 500 patents granted by lenient examiners

with the help of an algorithm and the 500 patents granted by strict examiners.

Intuitively, we would expect strict examiners to be the better examiners, given that they

set a higher bar for approving patent applications. Nevertheless, lenient examiners, with

the help of MLQuality, significantly outperform strict examiners, achieving a 26% increase

in patent citations. This suggests that lenient (underperforming) examiners, when helped

by the algorithm, can outperform strict (better-performing) examiners. Additionally, the

analysis provides suggestive evidence on why human examiners may struggle with screen-

ing. Key predictors of patent citations include backward citations, text-based numerical

vectors, similarity measures, and the originality of the application—factors that require

considerable time and attention to assess properly.

Algorithm MLQuality assumes that examiners’ objective is to assess and grant higher-

quality patent applications as measured by forward citation counts. To relax this assump-

tion, I use examiners’ past screening decisions as proxies for their objectives. Given the

4Because of this quasi-random assignment, I argue that the average quality of patent applications re-
viewed by examiners with different levels of leniency is similar. Several recent studies exploit this feature
to make causal inferences (see, e.g., Maestas et al., 2013; Farre-Mensa et al., 2020; Sampat and Williams,
2019).
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increasing time constraints on examiners, it is important to assess whether their screen-

ing decisions have deteriorated over time. To study this, I train another machine learn-

ing model, MLDecision, which maps patent application characteristics to examiners’ past

screening. I then apply MLDecision to predict screening decisions for more recent applica-

tions.

Evaluating MLDecision’s performance faces the same missing counterfactual problem

as MLQuality: the actual quality information for applications rejected by humans but ac-

cepted by the algorithm is not observable. To address this problem, I employ the same

identification strategy as before. Starting with patents granted by lenient examiners in

each art unit, I reject those with the highest predicted probability of rejection until the

grant rate matches that of strict examiners. I then compare the quality of patents granted

by lenient examiners assisted by MLDecision with those granted by strict examiners, both

having observable citation counts and the same acceptance rate. This comparison reveals

significant improvements in patent quality among recent applications in the out-of-sample

test set: decisions made by lenient examiners assisted by MLDecision result in approxi-

mately a 17% increase in patent citations compared to those made by strict examiners.

Using the discrepancies between machine learning predictions and actual examiners’

decisions, I further explore whether examiner-level characteristics, such as gender and

workload, affect their screening performance. For each art unit and year, I calculate the

number of applications accepted by examiners and rank all applications based on predicted

citations (Algorithm MLQuality) or acceptance probabilities (Algorithm MLDecision). I

then hypothetically accept the same number of applications as the examiners did, accord-

ing to this ranking. Each application thus has two decisions: the examiner’s actual decision
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and the algorithm’s hypothetical decision. I define a “false accept” when the examiner ac-

cepts an application that the algorithm rejects and a “false reject” when the examiner

rejects an application that the algorithm accepts. I find that busy examiners make more

mistakes of both types, suggesting time constraints may reduce screening performance.

More experienced examiners make fewer false rejections but more false acceptances, pos-

sibly due to compensation incentives favoring acceptance. Lastly, I find no evidence that

male examiners make more mistakes.

The findings so far suggest that human + machine could potentially outperform hu-

mans alone in granting higher-quality patents. Could human + machine also improve

economic outcomes for firms applying for patents? To investigate this, I calculate the false

acceptance rate of each patent examiner by making use of the disagreement in screening

decisions between human examiners and Algorithm MLQuality (or MLDecision) among

earlier applications. The empirical findings are summarized as follows. First, falsely ac-

cepted patents are more likely to expire early. Second, public firms holding patents granted

by such examiners are more likely to have worse operating performance than other patent

grantees. Third, affected private firms are less likely to exit successfully through initial

public offerings (IPOs) or mergers and acquisitions (M&As). The above effects are eco-

nomically significant. For example, if either Algorithm MLQuality or MLDecision were

used to help examiners screen patent applications, public firms’ annual return on assets

(ROA) would increase by 35 to 48 basis points (bps), and private firms’ probability of

going public or being acquired in three years would increase by 0.9 to 1.6 percentage

points. The above results are likely to be causal since patent applications are randomly

assigned to patent examiners whose characteristics are unlikely to be correlated with firm
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characteristics.

The rest of the paper is organized as follows. Section 2 discusses the relation of my

paper to the existing literature. Section 3 discusses the institutional background of the

patent examination process. Section 4 describes the patent application data and sample

statistics. Section 5 discusses the empirical design and results of the machine learning

analysis. Section 6 describes the firm-level data and discusses the empirical analysis of

firm performance. Section 7 concludes.

2 Relation to the existing literature

My paper is related to several different strands of the literature. The first strand is the

theoretical and legal literature that explores the question of how to improve the patent

screening process by reforming the patent system itself. For example, Dreyfuss (2008)

argues that the patent system systematically creates type II errors (i.e., erroneous grants)

due to the resource constraints faced by patent examiners and the incentive structure at

the USPTO. Dreyfuss (2008) proposes to increase the nonobviousness threshold in order

to reduce the incidence of type II error (see also, e.g., Duffy, 2008; Eisenberg, 2008;

Mandel, 2008). In a similar vein, Schankerman and Schuett (2022) theoretically show

that almost half of all innovations granted patents would be produced even without patent

incentives and argue that the social value of the patent system would be larger if antitrust

limits on licensing were implemented. On the other hand, Scherer (1972), and several

other theoretical papers focus on reforming the optimal patent right (i.e., patent length
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and breadth) to improve innovation incentives and quality (see, e.g., Gilbert and Shapiro,

1990; Matutes et al., 1996). Finally, a set of related papers studies the cost and benefit of

the patent litigation system in affecting patent validity and scope (see, e.g., Meurer, 1989;

Choi, 1998; Lanjouw and Schankerman, 2001; Bessen and Meurer, 2006). This paper

presents another exercise in using machine learning to evaluate the performance of the

current patent screening system and provides further discussions on improving the current

system under resource constraints.

The second strand of related literature applies machine learning techniques to eco-

nomics and finance research. For example, Athey and Imbens (2017) argue that although

it has not yet been widely utilized in social science research, supervised machine learn-

ing has great potential for prediction problems. Several studies apply machine learning

to issues in finance: e.g., measuring asset risk premia (Gu et al., 2020), predicting stock

returns (Rossi, 2018), classifying fund types (Abis, 2017), and selecting boards of direc-

tors (Erel et al., 2021). However, there are also challenges in applying machine learning

in social science research. Kleinberg et al. (2017) use New York judges’ decisions over

bail cases as a setting to discuss unique potential endogeneity problems in applications of

machine learning in social science and provide methodologies to address these problems

using econometric identification schemes.5 Several recent papers also discuss the potential

benefits and challenges of using machine learning in patent examinations. Krishna et al.

(2016) develop an automated prior art search system and find that it reduces patent ex-

aminers’ search effort. On the other hand, Choudhury et al. (2020) find that algorithms

5See also Kleinberg et al. (2015), and Mullainathan and Spiess (2017) for detailed discussions on how to
use machine learning as an applied econometrics tool.
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such as automated prior art searching systems may be biased from input incompleteness

and argue that human expertise is complementary to machine learning in mitigating bias.

Overall, my paper complements the above literature by showing the potential efficiency

gains from combining human expertise with machine predictions.6

Finally, my paper also contributes to the empirical literature that studies the relation-

ship between innovation, firm operating performance, and stock market performance. For

example, Chemmanur et al. (2022) show that private firms with a large number of patents

and citations per patent have higher IPO valuations and future operating performance (see,

e.g., Bowen III et al. (2023)). In terms of stock market performance, Hall et al. (2005)

empirically document that a larger number of citations per patent leads to higher market

values for the firms holding the patents (see also, e.g., Zucker et al., 2002, Eberhart et al.,

2004). Kogan et al. (2017) measure the economic value of a patent with the stock price an-

nouncement effect of the patent grant and study its relationship with aggregate economic

growth and total factor productivity (TFP). Alternatively, Cohen et al. (2013) show that

the stock market does not take firms’ past successes in innovation into consideration when

valuing their future innovation. Fitzgerald et al. (2021) show that firms with exploitation

innovation strategies are undervalued relative to firms with exploration innovation strate-

gies. Some recent papers also study the effect of examiner characteristics and decisions

on firm performance. For example, Kline et al. (2019) estimate the ex-ante value of ac-

cepted and rejected patent applications and study the relationship between patent-induced

shocks and labor productivity. Shu et al. (2022) test whether the workload of each patent

6In addition, my paper discusses and addresses the forward-looking issue existing in both the training
data and the training algorithm itself. For example, when the algorithm is trained with future information,
it will result in unfair comparisons between humans and machines in the test set since humans in the test
set are not able to access this future information.
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examiner can predict firms’ future stock market returns and show that investors underre-

act to the negative effect of examiner workload on patent quality. My paper complements

the above literature by showing the potential economic gains in firm performance from

combining human with machine intelligence in patent examinations.

3 Patent examination process and patentability

3.1 Patent examination process

The patent examination process starts with the filing of a patent application with the

USPTO; the USPTO then forwards the newly filed application to a relevant art unit for

examination. Next, that patent application is assigned to a patent examiner, a specialized

technology employee with training and experience pertinent to the invention, for examina-

tion. Though there are no explicit policies regarding how patent applications are assigned,

many recent studies show that patent applications are randomly assigned to examiners

within each art unit: applications filed first are assigned to the first available examiners

(see, e.g., Maestas et al., 2013; Farre-Mensa et al., 2020; Sampat and Williams, 2019).

After receiving a patent application, examiners first evaluate the claimed invention

against the existing state of knowledge in the “prior art,” consisting of patent documents

and the scientific and commercial literature, to determine whether the invention satisfies

legal requirements for patentability. If an invention fails the patentability requirement, the

examiner issues an office action rejecting that application for unpatentability and explains
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the reasons for the rejection. Following such a rejection, the inventor may revise the appli-

cation and submit it again or withdraw it. My paper focuses only on the first round of all

regular nonprovisional utility patent applications to mitigate the concern that subsequent

applications may not be randomly assigned (Righi and Simcoe, 2019).

3.2 Legal requirements for patentability

The Patent and Copyright Clause of the Constitution (Article I, Section 8, Clause 8)

grants Congress the power “to promote the progress of science and useful arts, by securing

for limited times to authors and inventors the exclusive right to their respective writings

and discoveries.” To fulfill this mandate, the U.S. Patent Act (35 U.S. Code §101) sets the

requirements for patent protection as follows:

“Whoever invents or discovers any new and useful process, machine, manufacture, or com-

position of matter, or any new and useful improvements thereof, may obtain a patent, subject

to the conditions and requirements of this title.”

Under the U.S. Patent Act, an invention is patentable if it satisfies the following three

criteria: novelty, usefulness, and nonobviousness. Specifically, the novelty requirement

(35 U.S. Code §102) states that an invention cannot be patented if the invention has

been publicly disclosed before the applicant filed for patent protection, and the usefulness

requirement states that the subject matter must be useful. Usually, a patent application can

easily pass both the novelty and usefulness requirements. However, the nonobviousness

requirement (35 U.S. Code §103), according to which the invention must represent a

nonobvious improvement over the prior art, is an ambiguous threshold that has attracted
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much criticism from the law literature alleging that it leads to the approval of many low-

quality patents (see, e.g., Duffy, 2008; Dreyfuss, 2008; Eisenberg, 2008; Mandel, 2008).

Since the goal of the U.S. Patent Act is to reward patent applicants for providing the

public with new discoveries with a limited exclusive right to their invention, I argue that,

at the very minimum, the system should not discard high-quality applications in favor of

low-quality applications. For example, the USPTO itself states in its 2018–2022 strategic

plan that the most important goal for the office is to continue optimizing patent quality.7

To capture this goal, I first trained a machine learning algorithm by assuming the objective

of examiners is to screen against patent quality. Nevertheless, the above assumption may

fail to capture other aspects of the examiners’ objective. To relax this assumption, I also

trained a machine learning algorithm based on the screening decisions made by examiners

for earlier patent applications.

3.3 Measuring patent quality

The existing literature measures patent quality using either the scientific or the eco-

nomic value of a patent. A patent’s scientific value is usually constructed based on the

number of citations that a patent receives after it is granted (see, e.g., Trajtenberg, 1990;

Trajtenberg et al., 1997; Hall et al., 2005), while its economic value is constructed based

on the announcement return from the patent grant news to the patent owner (see, e.g.,

Kogan et al., 2017). Since the economic value of a patent can be measured only if the

patent is owned by a public firm, I use citation-based measures as my measures of patent

7For the full USPTO 2018–2022 strategic plan, please see
https://www.uspto.gov/sites/default/files/documents/USPTO_2018-2022_Strategic_Plan.pdf.
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quality. More specifically, I use patent forward citation as my primary quality measure: the

number of citations of a patent in the four years after the patent is granted.

4 Patent application data and sample selection

4.1 Patent application data

I collect data on patent applications from the USPTO website, which provides various

research datasets.8 In particular, I collect patent application examination data from the

Patent Examination Research Dataset (Graham et al., 2018; Marco et al., 2017), the patent

application claims data from the Patent Claims Research Dataset (Marco et al., 2019) and

PatentsView, patent application citation data from the Office Action Research Dataset for

Patents (Lu et al., 2017) and PatentsView, and patent assignment data from the Patent

Assignment Dataset (Marco et al., 2015b).9

4.1.1 Turning patent claims text into numerical variables

The claim section in each patent application defines the extent of the protection sought.

A typical patent contains several claims, each representing an original contribution, which

can be considered a good measure of the actual invention (Tong and Frame, 1994). If the

8For a complete list of research datasets provided by the USPTO, please see https://www.uspto.gov/ip-
policy/economic-research/research-datasets.

9Public PAIR (Patent Application Information Retrieval) data were available from the USPTO website
until recently. Though not all patent applications received by the USPTO were included in Public PAIR,
the database included more than 83% of all patent applications granted after the implementation of the
American Inventors Protection Act (AIPA) in late 2000. For the regular utility patent applications on which
this paper focuses, the coverage in Public PAIR from 2001 increases to 95% as a consequence of the AIPA,
according to Graham et al. (2018).
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claims in a patent application are very similar or are close to the claims in earlier patents,

I would expect this patent application’s quality (innovativeness) to be low. To capture the

similarity of each patent application filed in a given technological class to all prior patents

in that technological class, I convert claim texts into a vector of 50 dimensions through

word embedding and create similarity-based novelty measures based on application claims

in a similar spirit of Arts et al. (2018).

First, I compiled the claims texts from each patent application in the training sample,

as well as from all patents granted before 2001 within the same technological class, to cre-

ate one corpus for each technological class. Using the given corpus in each technological

class, I produced a 50-dimensional vector from the claims text with the Word2vec algo-

rithm.10 Regarding technological classes, the USPTO has developed its own U.S. Patent

Classification (USPC) system, which includes over 450 unique classes and 150,000 sub-

classes. However, the USPC classes do not directly correspond to established product and

industry classifications (Marco et al., 2015a). Hall et al. (2001) developed a hierarchical

classification (the NBER classification) by aggregating USPC classes into 37 (two-digit)

subcategories.11

Next, I calculated the pairwise cosine similarity between patent application i and patent

j, where patent j was granted before the filing date of application i but within the same

technological class: Sim(Pi, Pj) =
PiPj

|Pi||Pj | . Pi and Pj are the vectors of 50 dimensions

of patent application i and patent j. For each new application i in the training data, I

10The Word2vec algorithm learns vector representations of words from the input text corpus and places
words that share a similar context in the corpus in close proximity to one another in the vector space, where
the vector space is set to 50 dimensions (see, e.g., Mikolov et al., 2013a, Mikolov et al., 2013b, and Mikolov
et al., 2013c for details).

11The NBER classification comes from the NBER Patent Data Project:
https://sites.google.com/site/patentdataproject.
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computed the pairwise cosine similarity between it and each prior patent granted within

the same technological class.

Finally, I constructed three sets of similarity measures based on pairwise cosine similar-

ities between each focal application and prior patents within the same technological class.

Specifically, for each focal application, I calculated the average, maximum, and minimum

cosine similarities with patents in four groups: the 10 most recent patents, the 100 most

recent patents, the 1,000 most recent patents, and all available prior patents. This resulted

in a total of twelve similarity measures—four average similarities, four maximum similari-

ties, and four minimum similarities—each corresponding to one of the four groups of prior

patents.

I used the 50-dimensional vector, twelve similarity measures, and numerical statistics

of claims as input variables, along with other patent application characteristics discussed

in a later section, to train the Algorithm MLQuality or MLDecision.

To construct the 50-dimensional vector and its derived similarity measures for applica-

tions in the test sample, I used all claims text in each patent application in the test sample

and all patents granted prior to 2010 as a new corpus and repeated the above steps. This

ensures that the trained algorithm never uses any information from the test sample, avoid-

ing potential temporal leakage.

4.2 Summary statistics

Table 1 reports summary statistics for all patent applications of the numerical variables

used in my machine learning prediction. Out of 638,159 applications, 434,960 (68.2%)
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are approved: the average number of 4-year forward citations is 1.886. In terms of nu-

merical statistics of claims, each patent application, on average, has 2.791 independent

claims and 15.527 dependent claims, where the average length of an independent claim

(around 138 words) tends to be longer than that of a dependent claim (around 42 words).

I also compute the originality index for each patent application: Originalityi = 1−
∑ni

j s2ij,

where sij denotes the fraction of backward citations made by application i in patent class j

from the total number of patent classes ni and
∑ni

j s2ij is the Herfindahl–Hirschman index

(Hirschman, 1980). By definition, the originality index captures the technological disper-

sion of prior patents utilized in patent application i. The average number of backward

patent citations and originality index are 8.505 and 0.165, respectively. In addition to cit-

ing prior patents, a patent application may cite previous applications, scientific literature,

and foreign patents. The average numbers of backward citations of patent applications, ci-

tations of scientific literature, and citations of foreign patents are 2.752, 3.835, and 2.903,

respectively.12 In addition to patent application characteristics, 26.9% of patent applica-

tions are submitted by small entities, and 43.9% of primary inventors are from the U.S.

5 Machine learning prediction design and results

The empirical design to analyze the efficiency of the patent screening process follows

three steps (Kleinberg et al., 2017). First, I partition my sample into training and test

sets, as described in Subsection 5.1. Second, I separately train the two algorithms using

12I exclude citations made by examiners when I count backward citations for each patent application.
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the training set by mapping a patent application’s characteristics to its quality (Algorithm

MLQuality) and to its screening outcome (Algorithm MLDecision). I present the results in

Subsection 5.2. Third, I evaluate the prediction accuracy of these two algorithms using

patent applications in the out-of-sample test set and present the results in Subsection ??.

Last, I test whether these two algorithms can improve the screening decisions of actual

patent examiners by comparing the predicted decisions to those of patent examiners and

presenting relevant results in Subsection 5.4.

5.1 Sample partition

I use the unique application number to merge across different data sets and obtain

an initial sample of 3,473,251 patent applications that have screening outcomes available

(i.e., the patent was either granted or rejected) and that were filed at the USPTO from 2001

to 2014. When I train a machine learning algorithm to compare its predictions with human

decisions, I have to make sure the data used to train the algorithm is ex-ante available

for actual examiners in the test set in order to make fair comparisons. In my setting, I

use patent application characteristics and patent outcomes of earlier applications in the

training set. Since my outcome variable for training the algorithm, the 4-year forward

citations, and available only four years after each application is granted, I set a 4-year

gap between the training and test sample periods. Specifically, I use applications filed

from 2001 to 2005 whose screening status is available before 2006 for the training sample

to train the machine learning algorithm and applications filed from 2010 to 2013 whose
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status is available before 2014 for the test sample to evaluate the algorithm.13

When I partition my sample in this way, both my trained machine learning algorithm

and the patent application quality measure in the training sample are available for the

period from the beginning of 2010. In other words, the information needed to train the

algorithm is also available for patent examiners in the test sample. This sample partition

approach allows me to make a fair comparison of the decisions of the algorithm and the

actual examiners in terms of screening any patent application in the test set. Figure 3

presents the sample partition along the timeline. The final sample in my machine learning

prediction consists of 280,690 patent applications in the training set and 357,471 patent

applications in the test set.

5.2 Training machine learning algorithms

To train Algorithm MLQuality, I need both input variables of patent application char-

acteristics and an output variable of patent application quality from applications in the

training data: the output variable y is the 4-year forward citations of each patent described

in Subsection 3.3, and the input variables X include the numerical statistics of the claims

texts described in Subsection 4.2; the text-based numerical vector of claims; backward ci-

tations of prior patents, patent applications, foreign patents, and scientific literature; filing

year dummies; an inventor nationality dummy; a small entity dummy; 37 NBER classes

dummies; and 597 art unit dummies. As I mentioned earlier in Subsection 5.1, my train-

13I also partition my sample in alternative ways: by partitioning the whole sample randomly into a training
sample and a test sample and by partitioning the whole sample over time but without the 4-year gap. Though
these alternatively partitioned samples are subject to the concerns raised in this section, the results based on
these alternative partitioning methods are similar to the main findings in this paper.
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ing set consists of 280,690 patent applications, including 81,428 rejected applications and

199,262 accepted applications. Since the rejected applications do not have information

on forward citations, the 199,262 accepted applications with an available forward citation

are used for training Algorithm MLQuality.

I train the prediction function called extreme gradient boosting, an ensemble method

of decision trees based on tree boosting.14 A decision tree is a tree-like prediction func-

tion that can be trained by splitting the dataset into subsets based on particular values

of input variables, where the process is repeated until splitting no longer adds value to

the predictions (see, e.g., Rokach and Maimon, 2008). Since a single decision tree may

produce a weak learning function subject to noise, gradient boosting algorithms optimize

a cost function by iteratively choosing a weak learning function that follows the negative

gradient direction to produce a strong learning function (see, e.g., Friedman, 2001; Chen

and Guestrin, 2016). The strength of an extreme gradient boosting algorithm is finding the

best feature across different subsamples. In addition, I implement 5-fold cross-validation

when training the algorithm to alleviate the in-sample over-fitting problem.

Figure 5 presents the important features identified by Algorithm MLQuality in predict-

ing patent citation. Feature importance is determined by calculating the relative contri-

bution of each feature to the model’s predictive power: whether that feature was selected

to split on during the tree building process, and how much the overall squared error de-

creased. The most important feature, backward citations made by patent applications,

accounts for 28.6% of the total predictive power of the algorithm. Additionally, a set of

14Section IA.1 of the Internet Appendix provides a detailed discussion of the supervised machine learning
problem and the extreme gradient boosting algorithm.
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50-dimensional vectors collectively explain 22.2% of the model’s predictive power. Several

art units also play a significant role in citation forecasting. For example, Art Unit 3672,

which focuses on mining and earth engineering, is responsible for 3.1% of the algorithm’s

predictive power. This is followed by Art Unit 2829, which focuses on semiconductors and

memory, contributing 1.0%. Furthermore, various technological classes significantly con-

tribute to prediction accuracy: Information Storage (NBER Classification 24) accounts for

1.9% of the total predictive power. This is complemented by contributions from Organic

Compounds (NBER Classification 14), Drugs (NBER Classification 31), and Semiconduc-

tor Devices (NBER Classification 46), each contributing over 1%. Two similarity measures

derived from the 50-dimensional vectors—Maximum similarity (with respect to the prior

1000 patents) and Minimum similarity (with respect to the prior 100 patents)—each con-

tributes 0.8% to the predictive power. Other important features include patent application

originality and the number of cited scientific literature, cited foreign patents, cited patent

applications, claims, and words in claims. Interestingly, whether an inventor is based in the

U.S. also explains 1.8% of the predictive power, possibly reflecting a language advantage

for U.S. inventors.15

To train the Algorithm MLDecision, I followed the same procedure as above and re-

placed the output variable y with the screening decision made by the actual examiner.

Since both accepted and rejected applications have information on their screening out-

comes, all 280,690 patent applications in the training sample are used for training Algo-

rithm MLDecision.
15Figures IA.2 and IA.3 plot the top 10 important features based on the mean absolute Shapley (SHAP)

values and the distribution of SHAP values for these 10 features (Shapley, 1953). The top important features
based on the mean absolute SHAP value highly overlap with those identified in Figure 5.
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5.3 Evaluating the out-of-sample prediction performance of machine

learning algorithms

In this subsection, I present the out-of-sample prediction performance of the machine

learning model. The out-of-sample root mean square error (RMSE) of Algorithm MLQual-

ity is 3.3. Since RMSE correlates with the magnitude of the outcome variable, it is chal-

lenging to assess whether an RMSE of 3.3 is small or large. To provide context, predicting

the mean citations for all patents in the out-of-sample test set yields an RMSE of 6.4, while

predicting the mean citations for all patents within each art unit results in an RMSE of 6.2.

Additionally, to visualize the predictive accuracy, Figure IA.1 in the Internet Appendix plots

the predicted citations from Algorithm MLQuality against the actual citations of granted

patents. The majority of data points cluster around the 45-degree line, indicating high

accuracy in the out-of-sample predictions.

Evaluating the out-of-sample prediction performance for Algorithm MLDecision is less

straightforward. If Algorithm MLDecision predicts examiner decisions perfectly in the out-

of-sample test set, it has no use in terms of improving examiner decisions since it agrees

perfectly with examiners. To that extent, I report the differences between the predicted

decisions and the actual decisions for applications in the out-of-sample test set. The out-

of-sample RMSE of Algorithm MLDecision is 0.29. For comparison, predicting the mean

grant rates for all applications in the out-of-sample test set yields an RMSE of 0.47, while

predicting the mean grant rates for all applications within each art unit results in an RMSE

of 0.45. Two possibilities may explain the discrepancies between predicted and actual

decisions: (1) Algorithm MLDecision performs poorly in out-of-sample prediction. If this
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is the case, we would expect the quality of the predicted accepted applications to be worse

than that of the actual accepted applications. (2) Examiners are performing worse over

time, possibly due to the time and resource constraints discussed earlier. If this is the case,

we would expect the quality of the predicted accepted applications to be better than that

of the actual accepted applications. Section 5.4.2 provides tests for these two possibilities.

5.4 Improving screening decisions with the help of a machine learn-

ing algorithm

5.4.1 Do examiners accept low-quality patents?

To answer the question of how often low-quality patents pass examinations, I examine

the grant rates of actual examiners across patent applications of different predicted cita-

tions. To visualize the results, I divide the patent applications in the test set equally into

1,000 bins based on the patents’ predicted citation and compute the grant rates of patent

applications for actual examiners in each of these 1,000 bins. Figure 4 plots the correlation

between the grant rates of actual examiners and the average predicted citation of patent

applications in each bin. I find that while examiners do indeed reject more applications

in bins with lower quality, they still accept around 50% of the patents in the bins with the

lowest quality. These patents, on average, receive zero citations going forward and have

very limited social values in terms of promoting science and useful arts.
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5.4.2 Using variation in examiner leniency to quantify the improvement to screen-

ing decisions from machine learning algorithms

One way to quantify the potential quality gain achieved by algorithms is to rank all

patent applications within the same art unit based on my predicted citation/grant proba-

bility and then set the grant rate of an algorithm to be the same as that of examiners. I can

then compare the average citation of all patent applications granted by an algorithm to the

average citation of the actually granted patents. However, measuring the improvement in

this way may be misleading since I do not have information on the actual citations of the

patent applications rejected by examiners but approved by an algorithm. To address this

issue, I make use of the fact that patent applications are randomly assigned to examiners

with different grant rates within the same art unit: lenient examiners (i.e., those with an

above-median grant rate) accept approximately 77.6% of patent applications and strict

examiners accept 49.5% of patent applications. Thus, given all patents granted by lenient

examiners in a given art unit, I can reject additional applications based on predicted cita-

tion/grant probability to match the grant rate of strict examiners within that art unit (i.e.,

those with a below-median grant rate). Then, I can compare the average actual citation of

patents granted by the algorithm to those granted by strict examiners.

More importantly, comparing the decisions of examiners with different levels of le-

niency allows me to track the quality (citation) of marginal applications that are rejected.

Figure 6 shows the results of these comparisons based on Algorithm MLQuality. I sort

patent applications by predicted citation and divide them into 20 bins. At the bottom of

a given bin, the black bar shows the fraction of patent applications rejected by lenient
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examiners. The red bar on top of the black bar in a given bin shows the fraction of addi-

tional applications rejected by strict examiners, while the blue bar on top of the black bar

in a given bin shows the share of additional applications that were rejected by Algorithm

MLQuality. The top panel of Figure 6 shows that strict examiners would reject additional

applications from patent applications in both the low- and high-quality bins. However,

the bottom panel of Figure 6 shows that Algorithm MLQuality would reject additional

applications starting from the lowest quality of predicted citation.

Next, I quantify the quality gain under the above exercise by comparing the actual out-

come of strict examiner decisions to the decisions made by lenient examiners + Algorithm

MLQuality. On average, patents approved by strict examiners receive 1.79 citations over

four years, whereas those approved by lenient examiners + Algorithm MLQuality aver-

age 2.55 citations. Excluding patents that received no citations, the average for patents

reviewed by strict examiners increases to 3.53 but still trails behind the 4.47 average for

patents granted by lenient examiners with Algorithm MLQuality. These comparisons indi-

cate a citation increase ranging from 26% to 42%.

I also employ the same identification strategy to quantify the potential quality gain

achieved by Algorithm MLDecision. Figure 7 compares the decisions of strict examiners to

those made by lenient examines and Algorithm MLDecision, which shows similar results

as above. Quantitatively, the combination of lenient examiner decisions and Algorithm

MLDecision results in an average of 2.24 citations per patent—or 4.15 for patents exclud-

ing those with zero citations. This represents an increase of 25% in overall citations and

17% among patents receiving citations, compared to those evaluated by strict examiners

alone.
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5.4.3 Do examiners’ characteristics affect their performance?

To explore whether examiner characteristics are related to their screening performance,

I measure examiners’ screening performance based on whether there is disagreement be-

tween machine learning predictions and actual patent examiners’ decisions. Specifically, I

first calculate the number of applications accepted by examiners within each art unit for a

given year. Next, I rank all patent applications (both accepted and rejected applications)

within each art unit filed in that same year based on the predicted citation by Algorithm

MLQuality (or predicted acceptance probability by Algorithm MLDecision). I then hypo-

thetically accept the same number of applications as the examiners did in that year. At this

point, each patent application has two decisions: the actual decision made by the examiner

and a hypothetical decision made by the machine learning algorithm. I define a “false ac-

cept” (FalseAccept) as a case where the patent is accepted by the examiner but rejected by

the algorithm. Conversely, a “false reject” (FalseReject) occurs when the examiner rejects

the patent application but the algorithm would have accepted it.

Using these definitions, I construct four metrics to evaluate examiner screening per-

formance for each year: (1) the number of false reject cases, (2) the false rejection rate,

(3) the number of false accept cases, and (4) the false acceptance rate. I also construct

the following three measures of examiner characteristics: work experience in a given year,

workload in a given year, and gender. To identify the gender of each examiner, I make use

of a Social Security Administration dataset, namely, national data on the relative frequency

of given names in the population of U.S. births where the individual has a Social Security
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number.16 This dataset contains all given names and their associated genders with a pop-

ulation greater than 5. I match examiners’ first names with the names in this dataset to

obtain examiners’ gender.17

I test the relationship between examiner characteristics and screening performance

with the following regression:

yi,t = α + β1WorkLoadi,t + β2WorkExperiencei,t + β3MaleExamineri

+Art Unita + Status Yeart + ϵi,t, (1)

where i indexes the patent examiner, a the art unit, and t the issue year of a patent. y

includes # False Rejection, False Rejection Rate, # False Acceptance, and False Accep-

tance Rate. WorkLoadi,t measures the workload of examiner i in year t and is calculated

as the natural logarithm of the number of patent applications reviewed by that examiner.

WorkExperiencei,t measures the work experience of a given examiner in year t and is cal-

culated as the natural logarithm of the number of years worked in the patent office by

examiner i. MaleExamineri is a dummy variable that equals one if the gender of examiner

i is male and zero otherwise. Art Unita and Status Yeart indicate the art unit fixed effect

and status year fixed effect.

Panel A Table 2 presents the results of the above regression using Algorithm MLQuality

as the benchmark. First, busy examiners tend to make more mistakes of both types, as

suggested by the positive coefficient of WorkLoad in columns (1), (3), and (4) of Table 2.

16To access this dataset, please see https://www.ssa.gov/oact/babynames/limits.html.
17When a given name is associated with both genders, I first calculate its probability of being specific

to a certain gender based on the gender-specific population and assign the name to the gender with the
probability > 90%.
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These findings are consistent with increasing time constraints faced by patent examiners,

reducing their screening performance. Second, the negative coefficients of WorkExperience

in columns (1) and (2) of Table 2 suggest that patent examiners with more experience

tend to make fewer false rejection mistakes. However, they tend to make more false ac-

ceptance mistakes, as suggested by the positive coefficient of WorkExperience in columns

(3) and (4) of Table 2. These results confirm the findings in the existing literature that

more experienced examiners have a greater grant rate (see, e.g., Lemley, 2009; deGrazia

et al., 2021), suggesting potential agency problems induced by the compensation struc-

ture in the patent office: examiners obtain higher compensation by accepting more patent

applications. Lastly, I find no evidence of more mistakes made by male examiners. Panel B

of Table 2 reports similar results with Algorithm MLDecision as the benchmark.

5.4.4 Do disagreements between humans and machine algorithms predict early

patent expiration?

In this subsection, I test whether granted patents from the out-of-sample test set that

the algorithm would have rejected would expire early. To measure disagreements between

the machine learning predictions and actual screening decisions of patent examiners, I

label a patent falsely accepted if it is accepted by an examiner but rejected by the algorithm.

Section 154 of the U.S. Patent Law (35 U.S. Code §154 (a)) sets the term of a utility

patent filed on or after June 8, 1995, in the U.S. to 20 years from the earliest filing date

of the application for the granted patent. Section 41 of the U.S. Patent Law (35 U.S. Code

§41 (b) & (c)) states that maintenance fees must be paid at regular intervals to keep utility
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patents active.18 If these falsely accepted patents should not have been granted in the

first place, we would expect them to be more likely to expire early as a result of delays or

defaults in the payment of maintenance fees. Specifically, I test whether falsely accepted

patents are properly maintained with the following regression:

yi = α + βFalseAccepti + ArtUnita + IssueYeart + Small&MicroEntitys + USPCj + ϵi, (2)

where i indexes the patent, a the art unit, t the issue year of a patent, s the size of the

patentee, and j the USPC class. y represents patent maintenance–related dummies indi-

cating the following four aspects: payment of the 4th-year maintenance fee, payment of

the 8th-year maintenance fee, mailing of a maintenance fee reminder, and patent expiry

for unpaid maintenance fees. FalseAccepti is a dummy variable equal to one if a patent is

accepted by actual examiners but would be rejected by the algorithm. ArtUnita, IssueYeart,

SmallEntitys, and USPCj represent art unit fixed effects, issue year fixed effects, the small

entity dummy, and USPC class fixed effects.19

Panel A (B) of Table 3 presents the results of regressing Equation (2) based on the

disagreement between examiners and Algorithm MLQuality (MLDecision). The negative

coefficients of FalseAccept in columns (1) and (2) suggest that falsely accepted patents are

less likely to be maintained by their holders four years and eight years after being granted.

The positive coefficient of FalseAccept in column (3) suggests that patentees holding falsely

accepted patents are more likely to receive maintenance fee reminders. Further, the pos-

18The patentee must pay maintenance fees before the 4th, 8th, and 12th years to keep the patent active.
19A patentee that is a small or micro entity needs to pay only 1/2 or 1/4 of the maintenance fees paid by

a large entity.
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itive coefficient of FalseAccept in column (4) indicates that falsely accepted patents are

more likely to expire due to unpaid maintenance fees. These results collectively show that

falsely accepted patents turn out to be not very useful to their holders.

6 Innovation screening and firm performance

This section extends my empirical analysis to study the (potential) economic conse-

quences of the current patent screening procedure for firm performance. First, I describe

firm data and an ex-ante measure of the innovation screening performance of patent ex-

aminers in Subsection 6.1. Second, I discuss empirical results on the effect of innova-

tion screening on the subsequent operating performance of public firms in Subsection 6.2.

Lastly, I examine the effect of innovation screening on subsequent exits of private firms in

Subsection 6.3.

6.1 Firm data and sample selection

I use all patent applications filed since 2010 with screening results available by 2018

in my analysis. In addition to the data on patent applications and patent examiners used

in the previous section, I collect data on patent assignees from the USPTO website, ac-

counting and financial data for public firms from Compustat, firm characteristics, and VC

financing data for private firms from VentureXpert. I match each dataset with firm names

standardized by the NBER patent data name standardization routine.20 By construction,

20The name standardization routine comes from the NBER Patent Data Project:
https://sites.google.com/site/patentdataproject.
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both public and private firms analyzed in this section should have at least one patent ap-

plication filed since 2010.

6.1.1 Measure of innovation screening performance

I calculate the false acceptance rate of each patent examiner based on the cases of

disagreement between the machine learning predictions and screening decisions of a given

examiner. Specifically, I calculate the false acceptance rate of examiner e in art unit a who

reviews patent application p at date t as follows:

ExaminerFalseAcceptRatep,e,t,a =
#FalseAccepte,t,a
#Reviewede,t,a

, (3)

where #Reviewede,t,a is the number of patent applications reviewed by examiner j prior

to date t; #FalseAccepte,t,a is the number of patent applications and falsely accepted by

examiner j prior to date t as defined in Section 5.4.3.21

To match the time horizon of financial and accounting data on firm performance, I

further measure the patent screening performance of the examiners associated with each

firm in each quarter by averaging the false acceptance rates over the past three years of

examiners who have examined that firm’s patent applications using a three-year rolling

window.22 For example, the false acceptance rate of firm i in quarter q is calculated as

21I exclude the patent application p from both the numerator and the denominator. I also exclude firms
whose patent applications are assigned to patent examiners who reviewed fewer than 10 patent applications
prior to patent application p. All results in this section are robust to removing the above exclusions.

22I use different time windows to measure firm-level innovation screening performance (i.e., 1-quarter,
1-year, and 2-year windows), and all empirical results in this section remain qualitatively similar.
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follows:

AvgExaminerFalseAcceptRatei,q =
1

N

N∑
a=1

(
q−1∑

t=q−13

ExaminerFalseAcceptRatep,e,t,a

)
, (4)

where ExaminerFalseAcceptRatep,e,t,a is the false acceptance rate over the past three years

of examiner e reviewing firm i’s patent application p and N is the total number of patent

applications filed by firm i with screening results that became available in the past three

years.

By construction, the false acceptance rate of an individual examiner is available ex-ante

for any newly filed patent application in my sample. More importantly, these measures are

unlikely to be correlated with firm characteristics due to the quasi-random assignment of

patent applications to patent examiners within each art unit.

6.1.2 Summary statistics

Table 4 reports summary statistics for my measures of innovation screening perfor-

mance and firm characteristics. Panel A of Table 4 presents the summary statistics of firm

performance and firm characteristics for public firms at the firm–quarter level. The aver-

age false acceptance rate for public firms based on algorithms MLQuality and MLDecision

are 14.1% and 8.3%. The median number of patent applications filed by public firms in a

given three-year window is 14; the median quarterly ROA, defined as net income divided

by total assets, is 0.6%. Public firms, on average, have log book assets of 6.9, a leverage

ratio of 0.2, a log market-to-book ratio of 1.1, and R&D expenditures of 3.3%.23

23All accounting variables (i.e., ROA, R&D Expenditures, Leverage, and Ln(M/B)) are winsorized at 1% and
99%. All regression results are robust to winsorizing with different thresholds.
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Panel B of Table 4 presents the summary statistics of firm performance and firm char-

acteristics for private firms at the firm–quarter level. The average false acceptance rate for

private firms based on algorithms MLQuality and MLDecision are 13.6% and 8.0%. The

median number of patent applications filed by private firms in a given three-year window

is 5, much lower than the figures for public firms. In terms of firm characteristics, the av-

erage age of private firms is 10.7; private firms have a log quarterly VC financing amount

of 0.2 and a quarter number of VC funds of 0.4. Finally, the average rate of successful exits

through IPOs or M&As is 25.9%.

6.2 Innovation screening and the subsequent operating performance

of public firms

In this subsection, I empirically examine whether the false acceptance rates of patent

examiners have any effect on the subsequent operating performance of public firms using

the following regression:

ROAi,q+n = α + βAvgExaminerFalseAcceptRatei,q + γXi,q + Firmi + Quarterq + ϵi,q, (5)

where i indexes the firm, j the industry, and q the quarter and n equals 1, 4, 8, or 12. y is

the operating performance of each public firm, measured using either ROA or Cash Flow.

For example, ROAi,q+4 measures the subsequent 4-quarter (or 1-year) operating perfor-

mance of each public firm. AvgExaminerFalseAcceptRatei,q is the average false acceptance

rate in the past three years (or twelve quarters) of the examiners who have examined firm

31



i’s patent applications as described in 6.1.1. X is a vector of control variables, including

the number of patents reviewed in the past three years, firm size in quarter t, leverage in

quarter t, market-to-book ratio in quarter t, and R&D expenditures in quarter t as described

in 6.1.2. Firmi and Quarterq represent firm fixed effects and year-quarter fixed effects. All

standard errors are double-clustered at the firm and quarter levels.

The regression results using ROA as the dependent variable are reported in Table 5.

Panel A of Table 5 uses the false acceptance rate based on Algorithm MLQuality and shows

that the coefficient of AvgExaminerFalseAcceptRate is negative in all four columns and be-

comes statistically significant in column (4). These results suggest that public firms whose

patent applications are reviewed by examiners with higher past false acceptance rates per-

form worse starting 2 years or more. Panel B of Table 5 uses the false acceptance rate based

on Algorithm MLDecision and shows similar results. These results are also economically

significant. For example, a one-standard-deviation increase in AvgExaminerFalseAcceptRate

decreases annual ROA by 22 bps to 37 bps. In other words, if all patent applications

were screened by Algorithm MLQuality (MLDecision) (i.e., if AvgExaminerFalseAcceptRate

reduces to 0), annual ROA would increase by 35 bps (48 bps). Moreover, the effect of

the current patent screening system on firm performance is likely to be causal due to the

quasi-random assignment of patent applications to patent examiners.24 Regarding poten-

tial channels, these results are consistent with the finding in Section 5.4.4 that firms are

more likely to allow falsely granted patents to expire early, possibly due to the failed com-

24I focus on the impact of false acceptances on firm performance for several reasons. First, false acceptance
is the main problem facing the USPTO, with an average acceptance rate of more than 68%. Second, analyzing
the impact of false rejections on firm performance poses empirical challenges: (1) we do not observe actual
quality information for applications rejected by humans but accepted by the algorithm, and (2) it is difficult
to isolate the negative impact of correct rejections on firm performance.
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mercialization of these patents.25

6.3 Innovation screening and the subsequent performance of private

firms

In this subsection, I study the relationship between innovation screening and the sub-

sequent performance of private firms with the following specifications:

yi,q+n = α+βAvgExaminerFalseAcceptRatei,q+γZi,q+States+Industryj+Quarterq+ϵi,q, (6)

where y is the performance of each private firm, measured using either subsequent LnVC-

FinancingAmount or SuccessfulExit. For example, LnVCFinancingAmounti,q+4 is the natural

logarithm of the VC investment amount received by each firm in the following 1-year (4-

quarter) period; SuccessfulExiti,q+4 is a dummy variable that equals one if a firm success-

fully exits by either an IPO or a M&A in the following 1-year (4-quarter) period and zero

otherwise. AvgExaminerFalseAcceptRatei,q is my screening performance measure for the ex-

aminers who have examined firm i’s patent applications in the past three years (twelve

quarters) as described in 6.1.1. Z is a vector of control variables, including the number

of patents reviewed and granted in the past three years, firm age in quarter t, VC funding

received in quarter t, and the number of funds invested in quarter t as described in 6.1.2.

States, Industryj, and Quarterq represent state-of-incorporation, two-digit SIC industry, and

quarter fixed effects. Standard errors are clustered at the state level.

25I also find that firms are more likely to be sued in patent litigation cases if their patent applications are
screened by examiners with higher false acceptance rates based on Algorithm MLQuality as shown in Table
IA.1. However, the results on patent litigation are not significant based on Algorithm MLDecision.
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Table 6 reports the regression results using SuccessfulExit as the dependent variable.

Panel A of Table 6 uses the false acceptance rate based on Algorithm MLQuality and shows

that the coefficient of AvgExaminerFalseAcceptRate is negative and statistically significant

in all four columns, suggesting that private firms whose patent applications are reviewed

by examiners with higher past false acceptance rates are less likely to exit successfully

by either an IPO or a M&A in subsequent quarters. Panel B of Table 6 uses the false

acceptance rate based on Algorithm MLDecision and shows similar but slightly weaker

results. Both results are also economically significant: a one-standard-deviation increase

in AvgExaminerFalseAcceptRate decreases the following 2-year probabilities of exiting suc-

cessfully by an IPO or a M&A by 1.2% (0.7%). In other words, if all patent applications

were screened by Algorithm MLQuality (MLDecision) (i.e., if AvgExaminerFalseAcceptRate

reduces to 0), the probability of exiting successfully by an IPO or M&A over the following

two-year period would increase by 1.6% (0.9%). Overall, these results suggest that weak

innovation screenings could negatively affect the probability of subsequent exits through

IPOs or M&As for private firms.

7 Conclusion

In this paper, I examine whether the patent screening process can be improved under

the current patent system in terms of granting higher-quality patents. I argue that exam-

iners may not process relevant information efficiently enough to screen out low-quality

applications, possibly due to the examiners’ increasing time constraints and conflicting in-
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centives. However, machine learning algorithms have much larger capacities than humans

to process information efficiently and can potentially reduce human-specific agency issues.

Using utility patent applications filed at the USPTO from 2001 to 2018, I trained two sepa-

rate machine learning algorithms to learn application quality and examiner decision using

earlier patent applications and predict the quality and examiner decision of more recent

patent applications out of sample. I show that the current patent system accepts many

low-quality patents. To compare the performance of a human-only system and a human

+ machine system, I make use of the quasi-random assignment of patent applications to

examiners with different levels of leniency within each art unit. I find that a human +

machine system could significantly improve the quality of the granted patents.

The analysis reveals that busy and more experienced examiners are more prone to im-

properly grant patents, pointing to the influence of both resource constraints and agency

problems. Regression analysis suggests that such inappropriately granted patents often ex-

pire prematurely, indicating their limited benefit to the owners. To examine the potential

economic gains that could be achieved under the current patent screening system, I con-

struct an innovation screening performance measure by calculating the false acceptance

rate of each patent examiner. I find that the worse innovation screening performance of

examiners negatively impacts firm performance. For example, public firms whose patent

applications are reviewed by examiners with higher false acceptance rates are likely to

have lower operating performance (measured by ROA). Similarly, private firms under such

examiners have a reduced likelihood of successful exits via IPOs or M&As. Economically,

implementing a hypothetical human-plus-machine screening process could increase pub-

lic firms’ annual ROA by 35 to 48 bps and enhance private firms’ 3-year probability of
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successful exits by 0.9 to 1.6 percentage points.

It is important to acknowledge the potential limitations of my analyses. First, the miss-

ing counterfactual issue pervades machine learning applications in screening decisions: I

do not observe actual outcomes for applications rejected by human examiners but accepted

by the algorithm. Recognizing this, I show that this issue can be addressed using quasi-

random assignment of patent applications to patent examiners. Second, using forward

citations as the sole measure of patent quality may capture only parts of what examiners

value. To mitigate this, I use examiners’ past screening decisions as proxies for their screen-

ing objectives to train a second algorithm. Nevertheless, a key benefit of machine learning

algorithms is that they are not subject to the agency conflicts and resource constraints

currently faced by human examiners at USPTO.

To summarize, despite the great promise of augmenting human expertise with ma-

chine learning in patent screenings, replacing human examiners entirely might lead to

unforeseen consequences, such as strategic patent filings (Choudhury et al., 2020). In-

stead, machine learning could serve as a complementary tool, aiding examiners in refining

their decision-making process—perhaps as an audit mechanism to reevaluate their assess-

ments.26 Based on the findings in this paper, combining the expertise of human examiners

and the strength of machine learning may potentially yield better screening outcomes.

26While human examiners may or may not change their decisions after reexaminations of patent appli-
cations, such a reexamination process may potentially reduce human bias from behavioral issues or the
increasing time constraints that examiners face.

36



References

Abis, Simona (2017), “Man vs. machine: Quantitative and discretionary equity manage-
ment.” Unpublished working paper. Columbia Business School.

Arrow, Kenneth Joseph (1972), “Economic welfare and the allocation of resources for
invention.” In Readings in Industrial Economics, 219–236, Springer.

Arts, Sam, Bruno Cassiman, and Juan Carlos Gomez (2018), “Text matching to measure
patent similarity.” Strategic Management Journal, 39, 62–84.

Athey, Susan and Guido W Imbens (2017), “The state of applied econometrics: Causality
and policy evaluation.” Journal of Economic Perspectives, 31, 3–32.

Bessen, James and Eric Maskin (2009), “Sequential innovation, patents, and imitation.”
The RAND Journal of Economics, 40, 611–635.

Bessen, James E and Michael J Meurer (2006), “Patent litigation with endogenous dis-
putes.” American Economic Review, 96, 77–81.

Bowen III, Donald E, Laurent Frésard, and Gerard Hoberg (2023), “Rapidly evolving tech-
nologies and startup exits.” Management Science, 69, 940–967.

Chemmanur, Thomas J, Manish Gupta, and Karen Simonyan (2022), “Top management
team quality and innovation in venture-backed private firms and ipo market rewards to
innovative activity.” Entrepreneurship Theory and Practice, 46, 920–951.

Chen, Tianqi and Carlos Guestrin (2016), “Xgboost: A scalable tree boosting system.” In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, 785–794, ACM.

Choi, Jay Pil (1998), “Patent Litigation as an Information-Transmission Mechanism.” The
American Economic Review, 88, 1249–1263.

Choudhury, Prithwiraj, Evan Starr, and Rajshree Agarwal (2020), “Machine learning and
human capital complementarities: Experimental evidence on bias mitigation.” Strategic
Management Journal, 41, 1381–1411.

Cohen, Lauren, Karl Diether, and Christopher Malloy (2013), “Misvaluing innovation.” The
Review of Financial Studies, 26, 635–666.

Cornelli, Francesca and Mark Schankerman (1999), “Patent renewals and R&D incentives.”
The RAND Journal of Economics, 30, 197–213.

deGrazia, Charles, Nicholas A Pairolero, and Mike Teodorescu (2021), “Shorter patent
pendency without sacrificing quality: The use of examiner’s amendments at the USPTO.”
Research Policy, 50, 2019–03.

37



Dreyfuss, Rochelle Cooper (2008), “Nonobviousness: a comment on three learned papers.”
Lewis & Clark Law Review, 12, 431.

Duffy, John F (2008), “A Timing Approach to Patentability.” Lewis & Clark Law Review, 12,
343.

Eberhart, Allan C, William F Maxwell, and Akhtar R Siddique (2004), “An examination of
long-term abnormal stock returns and operating performance following R&D increases.”
The Journal of Finance, 59, 623–650.

Eisenberg, Rebecca S (2008), “Pharma’s nonobvious problem.” Lewis & Clark Law Review,
12, 375.

Erel, Isil, Léa H Stern, Chenhao Tan, and Michael S Weisbach (2021), “Selecting directors
using machine learning.” The Review of Financial Studies, 34, 3226–3264.

Farre-Mensa, Joan, Deepak Hegde, and Alexander Ljungqvist (2020), “What is a patent
worth? Evidence from the US patent “lottery”.” The Journal of Finance, 75, 639–682.

Feng, Josh and Xavier Jaravel (2020), “Crafting intellectual property rights: Implications
for patent assertion entities, litigation, and innovation.” American Economic Journal:
Applied Economics, 12, 140–81.

Fitzgerald, Tristan, Benjamin Balsmeier, Lee Fleming, and Gustavo Manso (2021), “Inno-
vation search strategy and predictable returns.” Management Science, 67, 1109–1137.

Frakes, Michael D and Melissa F Wasserman (2015), “Does the us patent and trademark
office grant too many bad patents: evidence from a quasi-experiment.” Stanford Law
Review, 67, 613.

Frakes, Michael D and Melissa F Wasserman (2017), “Is the time allocated to review patent
applications inducing examiners to grant invalid patents? Evidence from microlevel
application data.” Review of Economics and Statistics, 99, 550–563.

Friedman, Jerome H. (2001), “Greedy function approximation: A gradient boosting ma-
chine.” The Annals of Statistics, 29, 1189 – 1232.

Gilbert, Richard and Carl Shapiro (1990), “Optimal patent length and breadth.” The RAND
Journal of Economics, 21, 106–112.

Graham, Stuart JH, Alan C Marco, and Richard Miller (2018), “The USPTO patent ex-
amination research dataset: A window on patent processing.” Journal of Economics &
Management Strategy, 27, 554–578.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu (2020), “Empirical asset pricing via machine
learning.” The Review of Financial Studies, 33, 2223–2273.

Hall, Bronwyn H., Adam Jaffe, and Manuel Trajtenberg (2005), “Market value and patent
citations.” The RAND Journal of Economics, 36, 16–38.

38



Hall, Bronwyn H, Adam B Jaffe, and Manuel Trajtenberg (2001), “The NBER patent ci-
tation data file: Lessons, insights and methodological tools.” Technical report, National
Bureau of Economic Research.

Heller, Michael A and Rebecca S Eisenberg (1998), “Can patents deter innovation? The
anticommons in biomedical research.” Science, 280, 698–701.

Hirschman, Albert O (1980), National power and the structure of foreign trade, volume 105.
University of California Press.

Jaffe, Adam B and Josh Lerner (2011), Innovation and its discontents: How our broken
patent system is endangering innovation and progress, and what to do about it. Princeton
University Press.

Kleinberg, Jon, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mul-
lainathan (2017), “Human decisions and machine predictions.” The Quarterly Journal
of Economics, 133, 237–293.

Kleinberg, Jon, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer (2015), “Predic-
tion policy problems.” American Economic Review, 105, 491–95.

Kline, Patrick, Neviana Petkova, Heidi Williams, and Owen Zidar (2019), “Who profits
from patents? rent-sharing at innovative firms.” The Quarterly Journal of Economics,
134, 1343–1404.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman (2017), “Technolog-
ical innovation, resource allocation, and growth.” The Quarterly Journal of Economics,
132, 665–712.

Krishna, Arthi M, Brian Feldman, Joseph Wolf, Greg Gabel, Scott Beliveau, and Thomas
Beach (2016), “User interface for customizing patents search: an exploratory study.” In
International Conference on Human-Computer Interaction, 264–269, Springer.

Lanjouw, Jean O. and Mark Schankerman (2001), “Characteristics of patent litigation: A
window on competition.” The RAND Journal of Economics, 32, 129–151.

Lemley, Mark A (2009), “Examiner characteristics and the patent grant rate.”

Lemley, Mark A and Carl Shapiro (2005), “Probabilistic patents.” Journal of Economic Per-
spectives, 19, 75–98.

Lu, Qiang, Amanda Myers, and Scott Beliveau (2017), “USPTO patent prosecution re-
search data: Unlocking office action traits.” Unpublished, USPTO Economic Working
Papter.

Maestas, Nicole, Kathleen J Mullen, and Alexander Strand (2013), “Does disability insur-
ance receipt discourage work? Using examiner assignment to estimate causal effects of
SSDI receipt.” American Economic Review, 103, 1797–1829.

39



Mandel, Gregory N (2008), “Another missed opportunity: the Supreme Court’s failure to
define nonobviousness or combat hindsight bias in KSR v. Teleflex.” Lewis & Clark Law
Review, 12, 323.

Mansfield, Edwin (1986), “Patents and innovation: an empirical study.” Management Sci-
ence, 32, 173–181.

Marco, AC, M Carley, S Jackson, and AF Myers (2015a), “The USPTO historical patent data
files: two centuries of invention.” Unpublished, USPTO Economic Working Papter.

Marco, Alan C, Amanda Myers, Stuart JH Graham, Paul D’Agostino, and Kirsten Apple
(2015b), “The USPTO patent assignment dataset: Descriptions and analysis.” Unpub-
lished, USPTO Economic Working Papter.

Marco, Alan C, Joshua D Sarnoff, and AW Charles (2019), “Patent claims and patent
scope.” Research Policy, 48, 103790.

Marco, Alan C, Andrew A Toole, Richard Miller, and Jesse Frumkin (2017), “USPTO Patent
Prosecution and Examiner Performance Appraisal.” Unpublished, USPTO Economic Work-
ing Papter.

Matutes, Carmen, Pierre Regibeau, and Katharine Rockett (1996), “Optimal Patent Design
and the Diffusion of Innovations.” The RAND Journal of Economics, 27, 60–83.

Merges, Robert P (1999), “As many as six impossible patent before breakfast: Property
rights for business concepts and patent system reform.” Berkeley Technology Law Journal,
14, 577.

Meurer, Michael J. (1989), “The settlement of patent litigation.” The RAND Journal of
Economics, 20, 77–91.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013a), “Efficient estimation
of word representations in vector space.” arXiv preprint arXiv:1301.3781.

Mikolov, Tomas, Quoc V Le, and Ilya Sutskever (2013b), “Exploiting similarities among
languages for machine translation.” arXiv preprint arXiv:1309.4168.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013c), “Linguistic regularities in con-
tinuous space word representations.” In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, 746–751.

Mullainathan, Sendhil and Jann Spiess (2017), “Machine learning: an applied econometric
approach.” Journal of Economic Perspectives, 31, 87–106.

Nordhaus, William D (1969), “An economic theory of technological change.” American
Economic Review, 59, 18–28.

Righi, Cesare and Timothy Simcoe (2019), “Patent examiner specialization.” Research Pol-
icy, 48, 137–148.

40



Rokach, Lior and Oded Z Maimon (2008), Data mining with decision trees: theory and
applications, volume 69. World scientific.

Rossi, Alberto (2018), “Predicting Stock Market Returns with Machine Learning.” Unpub-
lished working paper. Georgetown University.

Sampat, Bhaven and Heidi L Williams (2019), “How do patents affect follow-on innova-
tion? Evidence from the human genome.” American Economic Review, 109, 203–36.

Schankerman, Mark and Florian Schuett (2022), “Patent screening, innovation, and wel-
fare.” The Review of Economic Studies, 89, 2101–2148.

Scherer, Frederic M (1972), “Nordhaus’ theory of optimal patent life: A geometric reinter-
pretation.” American Economic Review, 62, 422–427.

Shapley, Lloyd S (1953), “A value for n-person games.” Contribution to the Theory of Games,
2.

Shu, Tao, Xuan Tian, and Xintong Zhan (2022), “Patent quality, firm value, and investor
underreaction: Evidence from patent examiner busyness.” Journal of Financial Eco-
nomics, 143, 1043–1069.

Tong, Xuesong and J Davidson Frame (1994), “Measuring national technological perfor-
mance with patent claims data.” Research Policy, 23, 133–141.

Trajtenberg, Manuel (1990), “A penny for your quotes: Patent citations and the value of
innovations.” The RAND Journal of Economics, 21, 172–187.

Trajtenberg, Manuel, Rebecca Henderson, and Adam Jaffe (1997), “University versus cor-
porate patents: A window on the basicness of invention.” Economics of Innovation and
New Technology, 5, 19–50.

Zucker, Lynne G, Michael R Darby, and Jeff S Armstrong (2002), “Commercializing knowl-
edge: University science, knowledge capture, and firm performance in biotechnology.”
Management Science, 48, 138–153.

41



Figure 1: The number of patent applications and patent examiners at the USPTO from
2001 to 2018

This figure shows the number of patent applications and patent examiners at the USPTO from 2001 to
2018. Each blue bin represents the number of patent applications and the yellow line represents the number
of patent examiners. Data source: Patent Statistics Chart and Patent Examination Data from the USPTO
website.
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Figure 2: An illustrative example of using examiner leniency to evaluate the screening
performance of a machine learning algorithm

This figure provides an illustrative example of using examiner leniency to compare the performance of actual
examiners and a machine learning algorithm.

Figure 3: Training and testing data used for my machine learning prediction

The figure shows the partition for the training and test data used for my machine learning prediction. I select
applications filed from 2001 to 2005 with screening status available before the beginning of 2006 into the
training set, and applications filed from 2010 to 2013 with screening status available before the beginning
of 2014 into the test set. The training set is used to form the algorithm for my prediction and the test set
is used to evaluate all of my results. The final sample used in my machine learning prediction consists of
280,243 patent applications in the training set and 357,101 patent applications in the test set.
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Figure 4: The relation between predicted citation by Algorithm MLQuality and actual
examiner grant decisions

The figure shows the relation between predicted citation by Algorithm MLQuality and actual examiner grant
decisions. The rank of the average predicted citation of all patent applications in each pin is on the x-axis.
The grant rate is on the y-axis.
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Figure 5: Important features identified by Algorithm MLQuality

The figure lists the 20 most important features identified by Algorithm MLQuality. The predictive power of
each feature measured as the percentage of total predictive power is on the x-axis. The name of each of the
features is on the y-axis.
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Figure 6: Comparison between applications rejected by strict examiners and applications
rejected by Algorithm MLQuality

This figure compares applications rejected by strict examiners and those rejected by Algorithm MLQuality
within each art unit. Strict (lenient) examiners are defined as those with an above (below) median reject rate
in each art unit. I divide patent applications in the test set into 20 bins by the predicted number of forward
citations (x-axis). In both panels, the black bar at the bottom of each bin shows the fraction of patent
applications rejected by lenient examiners. The red bar in the top panel shows which applications strict
examiners actually reject. The blue bar in the below panel shows which applications Algorithm MLQuality
would reject to match the grant rate of strict examiners.
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Figure 7: Comparison between applications rejected by strict examiners and applications
rejected by Algorithm MLDecision

This figure compares applications rejected by strict examiners and those rejected by Algorithm MLDecision
within each art unit. Strict (lenient) examiners are defined as those with an above (below) median reject rate
in each art unit. I divide patent applications in the test set into 20 bins by predicted acceptance probability
(x-axis). In both panels, the black bar at the bottom of a given bin shows the fraction of patent applications
being rejected by lenient examiners. The pink bar in the top panel shows which applications strict examiners
actually reject. The green bar in the below panel shows which applications Algorithm MLDecision would
reject to match the grant rate of strict examiners.
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Table 1: Summary statistics (patent applications)

This table shows descriptive statistics for the sample of patent applications from 2001 to 2013 used in my ma-
chine learning analysis. ForwardCitations counts the number of future citations that each patent has received over
a 4-year period after it is granted. NumberIndepClaims and NumberDepClaims count the number of independent
claims and dependent claims for each patent application. NumberWordsIndepClaims and NumberWordsDepClaims
count the total number of words in independent claims and dependent claims for each patent application. Min-
NumberWordsIndepClaims and MinNumberWordsDepClaims count the minimum number of words in independent
claims and dependent claims for each patent application. AvgNumberWordsIndepClaims and AvgNumberWords-
DepClaims count the average number of words per independent claim and per dependent claim for each patent
application. NumberCitedForeignPatents counts the number of foreign patents that each patent application has
cited. NumberCitedLiterature counts the number of scientific literature that each patent application has cited.
NumberCitedApplications counts the number of patent applications that each patent application has cited. Original-
ityApplication captures the industry dispersion of backward cited patent applications that each patent application
has made, which equals to one minus the Herfindahl-Hirschman index of industries that cited patent applications
belong to. NumberCitedPatents counts the number of patents that each patent application has cited. Originality-
Patent captures the industry dispersion of backward cited patents that each patent application has made, which
equals to one minus the Herfindahl-Hirschman index of industries that cited patents belong to. USInventorDummy
is a dummy variable indicating whether an investor is from the U.S. or not. SmallEntityDummy is a dummy vari-
able indicating whether a patent application is from a small entity or not.

N Mean Median p10 p90 S.D.

Panel A: Patent application quality variables
ForwardCitations 434,960 1.886 1 0 4 5.242
Panel B: Patent application characteristics
SmallEntityDummy 638,159 0.269 0 0 1 0.444
NumberClaims 638,159 2.791 2 1 5 2.545
NumberWordsInClaims 638,159 361.526 258 85 695 499.204
MinNumberWordsInClaims 638,159 115.744 92 32 210 130.599
NumberDepClaims 638,159 15.527 14 4 27 13.436
NumberWordsInDepClaims 638,159 601.319 475 135 1,135 879.589
MinNumberWordsInDepClaims 638,159 21.841 17 11 30 64.494
AvgNumberWordsInClaims 638,159 138.196 114 51.500 235.333 136.412
AvgNumberWordsInDepClaims 638,159 42.356 34.125 20.875 64.500 69.755
NumberCitedForeignPatents 638,159 2.903 0 0 7 10.674
NumberCitedLiterature 638,159 3.835 0 0 6 22.242
NumberCitedApplications 638,159 2.752 0 0 5 15.437
OriginalityApplication 638,159 0.155 0 0 0.769 0.309
NumberCitedPatents 638,159 8.505 0 0 18 35.568
OriginalityPatent 638,159 0.165 0 0 0.618 0.259
USInventorDummy 638,159 0.439 0 0 1 0.496
AvgSimilarity (All prior patents) 638,159 0.629 0.647 0.478 0.756 0.113
MaxSimilarity (All prior patents) 638,159 0.959 0.964 0.934 0.981 0.025
MinSimilarity (All prior patents) 638,159 0.048 0.054 -0.080 0.167 0.099
AvgSimilarity (Prior 10 patents) 638,159 0.613 0.632 0.435 0.767 0.132
MaxSimilarity (Prior 10 patents) 638,159 0.797 0.825 0.640 0.914 0.118
MinSimilarity ((Prior 10 patents) 638,159 0.403 0.409 0.179 0.619 0.167
AvgSimilarity (Prior 100 patents) 638,159 0.626 0.644 0.475 0.751 0.112
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MaxSimilarity (Prior 100 patents) 638,159 0.895 0.907 0.826 0.951 0.058
MinSimilarity (Prior 100 patents) 638,159 0.269 0.273 0.088 0.444 0.139
AvgSimilarity (Prior 1000 patents) 638,159 0.629 0.647 0.478 0.753 0.110
MaxSimilarity (Prior 1000 patents) 638,159 0.932 0.939 0.891 0.967 0.035
MinSimilarity ((Prior 1000 patents) 638,159 0.174 0.178 0.017 0.328 0.122
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Table 2: Relationship between patent examiner characteristics and screening performance

The sample consists of patent examiners in the out-of-sample test set. # False Rejections (# False Acceptances) counts
the number of false rejections (false acceptances) made by a given examiner in each year, where False Rejection (False
Acceptance) equals to one if a patent application is rejected (accepted) by that examiner but accepted (rejected) by
the algorithm and zero otherwise. False Rejection Rate (False Acceptance Rate) measures the percentage of false
rejections (acceptances) over reviewed applications by a given examiner in each year. WorkExperience measures the
work experience of a given examiner in a given year and is calculated as the natural logarithm of the number of years
worked in the patent office for that examiner. WorkLoad measures the workload of a given patent examiner in a
given year and is calculated as the natural logarithm of the number of patent applications reviewed by that examiner.
MaleExaminer is a dummy variable that equals one if the gender of a given examiner is male and zero otherwise.
Art Unit fixed effects and issue year fixed effects are included in all regressions. t-statistics are in parentheses. ∗∗∗,
∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Panel A: false acceptance/rejection based on Algorithm MLQuality

Dependent Vari-
able

# False
Rejections

False Rejection
Rate

# False
Acceptances

False Acceptance
Rate

(1) (2) (3) (4)

WorkLoad 1.014∗∗∗ -0.034∗∗∗ 1.719∗∗∗ 0.016∗∗∗

(32.52) (-12.50) (41.31) (7.01)
WorkExperience -0.122∗∗∗ -0.008∗∗∗ 0.136∗∗∗ 0.003∗∗∗

(-19.90) (-15.67) (16.72) (7.13)
Male Examiner 0.038 -0.000 0.224∗∗∗ 0.001

(0.91) (-0.02) (4.02) (0.26)
Art Unit FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
R2 0.432 0.104 0.395 0.073
Observations 18013 18013 18013 18013

Panel B: false acceptance/rejection based on Algorithm MLDecision

Dependent Vari-
able

# False
Rejections

False Rejection
Rate

# False
Acceptances

False Acceptance
Rate

(1) (2) (3) (4)

WorkLoad 0.644∗∗∗ -0.024∗∗∗ 1.122∗∗∗ 0.009∗∗∗

(28.57) (-10.38) (40.10) (4.93)
WorkExperience -0.080∗∗∗ -0.005∗∗∗ 0.091∗∗∗ 0.002∗∗∗

(-18.19) (-11.91) (16.58) (5.80)
Male Examiner 0.025 -0.001 0.124∗∗∗ 0.000

(0.84) (-0.30) (3.32) (0.20)
Art Unit FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
R2 0.379 0.079 0.387 0.060
Observations 18013 18013 18013 18013
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Table 3: Relationship between weak patent screening and subsequent patent maintenance

The sample consists of granted patents in the out-of-sample test set. FalseAccept equals one if a patent is accepted by an actual examiner but rejected by the
algorithm and zero otherwise as described in Section 5.4.4. Small & Micro Entity Dummies, Art Unit fixed effects, issue year fixed effects, and patent USPC
class fixed effects are included in all regressions. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Panel A: false acceptance based on Algorithm MLQuality

Dependent Variable Payment of
Maintenance Fee in

the 4th Year

Payment of
Maintenance Fee in

the 8th Year

Maintenance
Fee Reminder

Mailed

Patent Expired for
Failure to Pay

Maintenance Fees

(1) (2) (3) (4)

FalseAccept -0.048∗∗∗ -0.018∗∗∗ 0.046∗∗∗ 0.050∗∗∗

(-26.87) (-12.04) (21.88) (26.60)
Small & Micro Entity Dummies Yes Yes Yes Yes
Art Unit, Patent USPC Class, & Year FE Yes Yes Yes Yes
R2 0.094 0.458 0.083 0.058
Observations 235597 235597 235597 235597

Panel B: false acceptance based on Algorithm MLDecision

Dependent Variable Payment of
Maintenance Fee in

the 4th Year

Payment of
Maintenance Fee in

the 8th Year

Maintenance
Fee Reminder

Mailed

Patent Expired for
Failure to Pay

Maintenance Fees

(1) (2) (3) (4)

FalseAccept -0.052∗∗∗ -0.015∗∗∗ 0.062∗∗∗ 0.053∗∗∗

(-24.44) (-8.44) (25.36) (23.97)
Small & Micro Entity Dummies Yes Yes Yes Yes
Art Unit, Patent USPC Class, & Year FE Yes Yes Yes Yes
R2 0.093 0.458 0.083 0.058
Observations 235597 235597 235597 235597
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Table 4: Summary statistics (firms)

This table shows descriptive statistics for the sample of both public and private firms that have at least one patent appli-
cation filed since 2010 and with status available before (and including) 2018. Panel A reports summary statistics for the
sample of public firms; Panel B reports summary statistics for the sample of private firms. AvgExaminerFalseAcceptRate
is defined as the average false acceptance rates of examiners that are related to all granted and rejected applications
for each firm in a given past three-year rolling window as described in Section 6.1.1, where the false acceptance rate
of an examiner associated with each patent application is defined as the ratio of falsely accepted applications over all
applications he/she has made decisions prior to that patent application. A patent application is falsely accepted if it
is accepted by the actual examiner but rejected by the machine learning algorithm.#ApplicationsReviewed counts the
number of patent applications being reviewed for each firm in a given past three-year rolling window. ROA is the ratio
of quarterly net income over book assets. Cash Flow is the quarterly cash flow over book assets. R&D Expenditures
are the quarterly R&D expenditures over book assets. FirmSize is the natural logarithm of book assets. Leverage is
the total debt (both current liability and long-term debt) over book assets. Ln(M/B) is the natural logarithm of the
market-to-book ratio. SuccessfulExit is a dummy, which equals one if a given private firm has exited through an IPO
or a M&A by the end of my sample period and zero otherwise. LnVCFinancingAmount is the natural logarithm of the
quarterly investment amount for each firm. LnNumberFundInvested is the natural logarithm of the quarterly number of
invested funds for each firm. LnFirmAge is the natural logarithm of firm age, which equals the current year minus the
firm founding year plus one. All accounting variables (i.e., ROA, Cash Flow, R&D Expenditures, Leverage, Ln(M/B)) are
winsorized at 1% and 99%.

Panel A: public firm sample (firm-quarter level)

N Mean Median p10 p90 S.D.

AvgExaminerFalseAcceptRate (MLQuality) 19,573 0.132 0.129 0 0.222 0.084
AvgExaminerFalseAcceptRate (MLDecision) 19,573 0.083 0.080 0 0.148 0.064
#ApplicationsReviewed 19,573 2.577 2.197 0.693 4.796 1.606
ROA 19,437 -0.023 0.006 -0.126 0.033 0.084
FirmSize 19,464 6.931 6.656 3.969 10.335 2.449
Leverage 18,704 0.195 0.159 0 0.461 0.205
Ln(M/B) 18,570 1.092 1.022 0.055 2.200 0.858
R&D Expenditures 19,464 0.033 0.018 0 0.088 0.044

Panel B: private firm sample (firm-quarter level)

N Mean Median p10 p90 S.D.

AvgExaminerFalseAcceptRate (MLQuality) 5,896 0.132 0.124 0 0.231 0.096
AvgExaminerFalseAcceptRate (MLDecision) 5,896 0.080 0.074 0 0.154 0.068
#ApplicationsReviewed 5,896 1.840 1.792 0.693 3.091 0.919
SuccessExit 5,896 0.259 0 0 1 0.438
FirmAge 5,896 10.731 10 6 16 4.610
LnVCFinancingAmount 5,896 0.217 0 0 0 0.767
NumberFundInvested 5,896 0.371 0 0 1 1.295
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Table 5: Relationship between screening performance of patent examiners and
subsequent operating performance of public firms

The sample consists of firms that have at least one patent application filed since 2010 and with appli-
cation outcome available by 2018. ROA is the ratio of quarterly net income over book assets. AvgExam-
inerFalseAcceptRate is defined as the average false acceptance rates of examiners that are related to all
granted and rejected applications for each firm in a given past three-year rolling window as described
in Section 6.1.1, where the false acceptance rate of an examiner associated with each patent application
is defined as the ratio of falsely accepted applications over all applications he/she has made decisions
prior to that patent application. A patent application is falsely accepted if it is accepted by the actual
examiner but rejected by the machine learning algorithm. #ApplicationsReviewed counts the number of
patent applications being reviewed for each firm in a given past three-year rolling window. All regres-
sions include FirmSize, Leverage, Ln(M/B), and R&D Expenditures as control variables. All accounting
variables (i.e., ROA, Cash Flow, R&D Expenditures, Leverage, Ln(M/B)) are winsorized at 1% and 99%.
Firm and quarter fixed effects are included in all regressions. t-statistics are in parentheses. ∗∗∗, ∗∗ and
∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Panel A: false acceptance rate of patent examiners based on Algorithm MLQuality

Dependent Variable Subsequent ROA

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate -0.004 -0.014 -0.034 -0.080∗∗

(-0.53) (-0.71) (-1.18) (-2.37)
#ApplicatiosReviewed 0.000 0.003 0.012∗∗∗ 0.014∗∗∗

(0.16) (1.41) (3.85) (3.76)
Controls Yes Yes Yes Yes
Firm & Quarter FE Yes Yes Yes Yes
R2 0.719 0.880 0.940 0.970
Observations 17417 14958 11714 8711

Panel B: false acceptance rate of patent examiners based on Algorithm MLDecision

Dependent Variable Subsequent ROA

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate 0.000 -0.023 -0.103∗∗ -0.175∗∗∗

(0.01) (-0.83) (-2.44) (-3.50)
#ApplicationsReviewed 0.000 0.003 0.012∗∗∗ 0.014∗∗∗

(0.18) (1.42) (3.84) (3.79)
Controls Yes Yes Yes Yes
Firm & Quarter FE Yes Yes Yes Yes
R2 0.719 0.880 0.940 0.970
Observations 17417 14958 11714 8711
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Table 6: Relationship between screening performance of patent examiners and
subsequent exits of private firms

The sample consists of firms that have at least one patent application filed since 2010 and with appli-
cation outcome available by 2018. SuccessfulExit is a dummy, which equals one if a given private firm
has exited through an IPO or a M&A by the end of my sample period and zero otherwise. AvgExam-
inerFalseAcceptRate is defined as the average false acceptance rates of examiners that are related to all
granted and rejected applications for each firm in a given past three-year rolling window as described
in Section 6.1.1. #ApplicationsReviewed counts the number of patent applications being reviewed for
each firm in a given past three-year rolling window. The following control variables are included in
all regressions: LnVCFinancingAmount, TotalFundingToDate, LnNumberFundInvested, and LnFirmAge.
Year fixed effects, industry (two-digit SIC code) fixed effects, and state fixed effects are included in all
regressions. t-statistics are in parentheses. All regressions are OLS regressions with standard errors
clustered at the state level. ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level, respec-
tively.

Panel A: false acceptance rate of patent examiners based on Algorithm MLQuality

Dependent Variable Subsequent SuccessfulExit

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate -0.005 -0.056∗∗ -0.126∗∗∗ -0.173∗∗∗

(-0.45) (-2.51) (-3.27) (-3.37)
#ApplicationsReviewed 0.008∗∗∗ 0.017∗∗∗ 0.024∗∗∗ 0.024∗

(3.89) (3.84) (2.78) (1.93)
Controls Yes Yes Yes Yes
Industry, Quarter, & State FE Yes Yes Yes Yes
R2 0.016 0.038 0.059 0.070
Observations 5888 5888 5888 5242

Panel B: false acceptance rate of patent examiners based on Algorithm MLDecision

Dependent Variable Subsequent SuccessfulExit

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate 0.003 -0.052∗ -0.107∗∗ -0.129
(0.22) (-1.95) (-2.17) (-1.68)

#ApplicationsReviewed 0.008∗∗∗ 0.017∗∗∗ 0.025∗∗∗ 0.025∗∗

(3.87) (3.92) (2.84) (2.03)
Controls Yes Yes Yes Yes
Industry, Quarter, & State FE Yes Yes Yes Yes
R2 0.016 0.037 0.058 0.069
Observations 5888 5888 5888 5242
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Improved? A Machine Learning Analysis with Economic

Consequences for Firm Performance”

IA.1 The supervised machine learning problem and the algorithm used

in this paper

IA.1.1 The supervised machine learning problem

Supervised learning is a machine learning problem of learning a function that maps

input variables to an output variable using the training data with both input and output

variables available. The goal of supervised learning is to predict well with a new out-of-

sample dataset (which we usually call the test data).

In the context of this paper, I use the training data to construct f̂(X) = ŷ from input

variables X about patent applications to predict an outcome variable y about the perfor-

mance of patent applications such that f̂(X) predicts well out of sample. Specifically, I use

the training data to train f(X) as follows:

ŷ = f̂(X) = argmin
f∈F

L(f(X), y) +R(f(X)), (IA.1)

where L(f(X), y) is the training loss function, F is the set of all possible functions f , and
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R(f(X)) is the regularization term.

The goal of minimizing the training loss function is to increase the in-sample prediction

accuracy as much as possible, while adding the regularization term is to avoid in-sample

overfitting by penalizing the algorithm for choosing more expressive functions.

IA.1.2 The “Extreme Gradient Boosting” algorithm

The “Extreme Gradient Boosting” algorithm (XGBoost) is an implementation of gra-

dient boosting machines, which is used for the supervised machine learning prediction

described above (see, e.g., Chen and Guestrin (2016); Friedman (2001)). XGBoost is a

decision tree ensemble based on tree boosting. A decision tree ensemble consists of a set

of decision trees, where each tree i itself is a prediction function fi(X). Tree boosting is

to train each prediction function fi(X) using an additive strategy: add one new tree at a

time from what we have learned. Specifically, we have

ŷ0 = f̂0(X) = 0 (IA.2)

ŷ1 = f̂1(X) = f̂0(X) + f1(X) = f1(X) (IA.3)

ŷ2 = f̂2(X) = f̂1(X) + f2(X) = f1(X) + f2(X) (IA.4)

...

ŷt = f̂t(X) = f̂t−1(X) + ft(X) =
t∑

i=1

fi(X), (IA.5)

and the goal at step t is to find ft(X) that solves the following minimization problem:

ŷt = f̂t(X) = argmin
f∈F

L(ft(X) + ŷt−1, y) +R(ft(X)). (IA.6)
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Here, each prediction function fi(X) and the corresponding regularization term R(fi(X))

are defined as

fi(X) = ωq(X), q : Rm → T, ω ∈ RT , (IA.7)

R(fi(X)) = γT +
1

2
λ

T∑
j=1

ω2
j (IA.8)

where ω are the leaf weights, q is a function mapping each data point to the corresponding

leaf index, T is the total number of leaves in the tree, both γ and λ are parameters to

weight each of these two complexity measures in order to avoid over-fitting (see Chen and

Guestrin (2016) for a detailed discussion).
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Figure IA.1: The relation between predicted citations and actual citations of patent
applications in the test set

The figure shows the relation between predicted citations and actual citations of patent applications in the
test set. The average predicted number of citations of patent applications in each bin based on Algorithm
MLQuality is on the x-axis, and the actual citation is on the y-axis.
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Figure IA.2: Important features identified by Algorithm MLQuality (Mean absolute SHAP
value)

The figure lists the 10 most important features based on the mean of the absolute Shapley (SHAP) values.
The mean of the absolute SHAP value of each feature is on the x-axis. The name of each of the features is on
the y-axis.
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Figure IA.3: Distributions of SHAP value for important features identified by Algorithm
MLQuality

The figure presents the beeswarm plot of the the distributions of SHAP value for the 10 most important
features identified by Algorithm MLQuality. The SHAP value of each feature is on the x-axis. The name of
each of the features is on the y-axis.
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Table IA.1: Relationship between screening performance of patent examiners and the
subsequent number of patent litigation of public firms

The sample consists of firms that have at least one patent application filed since 2010 and with appli-
cation outcome available by 2018. #PatentLitigation counts the quarterly number of patent litigation
that firms act as defendants. AvgExaminerFalseAcceptRate is defined as the average false acceptance
rates of examiners that are related to all granted and rejected applications for each firm in a given past
three-year rolling window as described in Section 6.1.1, where the false acceptance rate of an examiner
associated with each patent application is defined as the ratio of falsely accepted applications over all
applications he/she has made decisions prior to that patent application. A patent application is falsely
accepted if it is accepted by the actual examiner but rejected by Algorithm MLQuality. #ApplicationsRe-
viewed counts the number of patent applications being reviewed for each firm in a given past three-year
rolling window. FirmSize is the natural logarithm of book assets. Leverage is the total debt (both cur-
rent liability and long-term debt) over book assets. Ln(M/B) is the natural logarithm of the market
to book ratio. R&D Expenditures are the quarterly R&D expenditures over book assets. All accounting
variables (i.e., R&D Expenditures, Leverage, Ln(M/B)) are winsorized at 0.1% and 99.9%. Quarter fixed
effects and industry (two-digit SIC code) fixed effects are included in all regressions. t-statistics are in
parentheses. All regressions are OLS regressions with standard errors double clustered at the firm and
quarter level. ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Dependent Variable Subsequent #PatentLitigation

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate 0.112 0.621∗∗∗ 1.048∗∗∗ 1.062∗∗

(1.46) (2.86) (2.69) (2.06)
#ApplicationsReviewed -0.094∗∗∗ -0.375∗∗∗ -0.753∗∗∗ -1.079∗∗∗

(-13.11) (-17.77) (-18.53) (-18.90)
Controls Yes Yes Yes Yes
Firm & Quarter FE Yes Yes Yes Yes
R2 0.472 0.676 0.778 0.871
Observations 17417 14869 11629 8622
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