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Abstract

Existing portfolio combination rules that optimize the out-of-sample performance under

parameter uncertainty assume multivariate normally distributed returns. However, we show

that this assumption is not innocuous because fat tails in returns lead to poorer out-of-sample

performance of the sample mean-variance and sample global minimum-variance portfolios

relative to normality. Consequently, when returns are fat-tailed, portfolio combination rules

should allocate less to the sample mean-variance and sample global minimum-variance

portfolios, and more to the risk-free asset, than the normality assumption prescribes.

Empirical evidence shows that accounting for fat tails in the construction of optimal portfolio

combination rules significantly improves their out-of-sample performance.
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I. Introduction

Sample mean-variance portfolios are not optimal out of sample because of the impact of

estimation errors in the mean and the covariance matrix; see, e.g. Michaud (1989), Chopra and

Ziemba (1993), Kan and Zhou (2007), DeMiguel, Garlappi and Uppal (2009), and Barroso and

Saxena (2021). To study the impact of estimation risk on out-of-sample performance and optimal

portfolio choice, most papers assume that returns are multivariate normally distributed.1 However,

this assumption is not innocuous because it disregards the impact of fat tails on estimation risk.

In this paper, we study the impact of estimation errors on the out-of-sample performance

of sample mean-variance portfolios when asset returns are multivariate elliptically distributed,

and thus, are fat-tailed.2 We first quantify the impact of fat tails on the out-of-sample mean,

variance, and utility of sample mean-variance portfolios. Then, we extend the results in Kan and

Zhou (2007), who show that with parameter uncertainty it is suboptimal to hold the sample

mean-variance portfolio and the risk-free asset with the proportions advised by portfolio theory

and that investors benefit from holding a three-fund rule that also includes the sample global

minimum-variance (GMV) portfolio, to the case with fat tails in returns. Specifically, we derive

the optimal two-fund and three-fund portfolio combination rules in Kan and Zhou (2007) when

1See Jobson and Korkie (1980), Jorion (1986), Okhrin and Schmid (2006), Kan and Zhou (2007), Kan and Smith

(2008), DeMiguel et al. (2009), Frahm and Memmel (2010), Tu and Zhou (2011), DeMiguel, Martı́n-Utrera and

Nogales (2013, 2015), Ao, Li and Zheng (2019), Kan, Wang and Zhou (2021), Yuan and Zhou (2023), Kan and Wang

(2023), Lassance, Martı́n-Utrera and Simaan (2024a), and Kan, Wang and Zheng (2024).

2Not all elliptical distributions have a kurtosis larger than three (Bentler and Berkane, 1986). However, we

consider the subclass of elliptical distributions in El Karoui (2010, 2013), which are all fat-tailed.
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asset returns are multivariate elliptically distributed instead of normally distributed. We analyze

these two problems in finite samples and in a high-dimensional asymptotic setting.

Our theoretical results show that fat tails have a substantial impact on the out-of-sample

performance of sample mean-variance portfolios. Specifically, multivariate elliptical returns

increase both the expected out-of-sample mean and variance of sample mean-variance portfolios

compared with the case of multivariate normal returns. However, the increase in the out-of-sample

variance is larger than the increase in the out-of-sample mean, which hurts the risk-adjusted

performance. As a result, it is optimal in a two-fund rule that we allocate less weight to the sample

mean-variance portfolio, and more weight to the risk-free asset, relative to the normality case.

Similarly, in a three-fund rule, it is optimal to allocate less weights to both the sample

mean-variance portfolio and the sample global minimum-variance (GMV) portfolio. These results

mean that the normality assumption can deliver misleading forecasts of out-of-sample

performance and suboptimal portfolio rules.

In our empirical analysis across six datasets of equity returns, the optimal weights on the

sample mean-variance portfolio and the sample GMV portfolio calibrated to the multivariate

elliptical distribution are on average 24% and 49% smaller, respectively, when the sample size is

120 months compared with the weights calibrated to the multivariate normal distribution in Kan

and Zhou (2007). The resulting gain in performance can be large. On average across datasets and

across the two-fund and three-fund rules, the annualized net-of-cost utility gain when switching

from the normal to the elliptical distribution is 32.9, 12.6, and 9.3 percentage points when the

sample size is 60, 120, and 240 months, respectively, and the risk-aversion coefficient is equal to

one. These results are robust to using daily data, which, relative to monthly data, have fatter tails
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but allow a more accurate estimation of asset return covariances.3 We also find that calibrating the

two-fund and three-fund rules to the multivariate elliptical distribution helps reduce kurtosis

significantly relative to the multivariate normal calibration.

Instead of obtaining the combination coefficients in the two-fund and three-fund rules

based on the multivariate elliptical distribution, one could use a non-parametric approach to

estimate them entirely based on the data. To get a taste of how such an approach might fare, we

consider estimating the combination coefficients using a five-fold cross-validation method. We

find that although cross-validation often outperforms the multivariate normality assumption, it

generally delivers a lower out-of-sample utility compared with the multivariate elliptical

distribution. This suggests there are benefits of making good distributional assumptions as

opposed to a pure non-parametric approach.

As a robustness test of our empirical experiments, we consider the optimal combination of

the sample GMV portfolio with the risk-free asset, which can be an appealing rule because it

ignores expected returns and delivers less extreme portfolio weights and transaction costs.

Although estimation risk is less of a concern when we sideline expected returns, we find that

calibrating this portfolio combination to elliptically instead of normally distributed returns

continues to deliver superior performance, especially when the sample size is small.

Few papers study the impact of estimation risk on sample mean-variance portfolios under

the multivariate elliptical distribution. Mainly, we can cite El Karoui (2010, 2013) who studies the

high-dimensional asymptotic out-of-sample mean and variance of sample mean-variance

3Fat tails are pronounced for both monthly and daily data in the datasets we consider. Specifically, when we

assume returns are multivariate t-distributed, the estimated number of degrees of freedom varies, across datasets,

between roughly 4 and 8 for monthly returns and 3 and 6 for daily returns.
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portfolios. Lassance, Vanderveken and Vrins (2024b) exploit these asymptotic results to combine

the sample mean-variance and 1/N portfolios. In this paper, we provide asymptotic results that

complement El Karoui (2010, 2013), but more importantly, we also provide exact finite-sample

results. Moreover, we derive optimal two-fund and three-fund rules under elliptical returns in both

the finite-sample and asymptotic cases. We find that the asymptotic setting under-estimates the

impact of fat tails and over-estimates the optimal weights on the sample mean-variance portfolio

and the sample GMV portfolio in the two-fund and three-fund rules. However, the asymptotic

setting delivers faster analytical solutions and thus can be a viable approach in practice if the

sample size is large enough.

In addition to proposing new optimized portfolio rules that account for fat tails, we also

contribute to explaining why existing optimized portfolio rules often disappoint out of sample

when they are explicitly designed to address estimation error. Specifically, Barroso and Saxena

(2021) find that the three-fund rules in Kan and Zhou (2007) and Tu and Zhou (2011) often fail to

outperform simple naive portfolios and substantially under-estimate the out-of-sample portfolio

risk. Our results show that at least part of this disappointing performance can be attributed to the

ignorance of fat tails. Indeed, we show theoretically that fat tails can substantially increase the

out-of-sample variance of estimated mean-variance portfolios, and empirically that the two-fund

and three-fund rules calibrated to the multivariate elliptical distribution provide better forecasts of

out-of-sample return statistics. Moreover, whereas in our empirical analysis the two-fund and

three-fund rules of Kan and Zhou (2007) under normality often do not perform well and deliver

negative utilities, our proposed portfolio rules corrected for fat tails offer a consistently better

performance.

Finally, our finding that fat tails can have a substantial impact on the out-of-sample
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performance of mean-variance portfolios contrasts with Tu and Zhou (2004), who find that the

performance losses associated with ignoring fat tails are small. Their different conclusion can be

explained because estimation risk is more limited in their setting, which also limits how much fat

tails can impact parameter uncertainty and portfolio performance. First, they conduct an in-sample

analysis with a long time window spanning 1963 to 1997, instead of an out-of-sample analysis.4

Second, the base case results in Tu and Zhou (2004, Table 7) are based on 12 assets, which is

rather small in comparison with their sample size. The robustness test with 23 assets in their

Table 8 suggests larger performance losses due to fat tails. Third, they optimize their

mean-variance portfolio under weight constraints, which make portfolios less sensitive to

estimation risk (Jagannathan and Ma, 2003). For these reasons, one ought to be cautious in

generalizing their conclusion that fat tails have a small impact on portfolio performance to a more

general setting. Indeed, we reach different conclusions in our setting in which the impact of

estimation risk can be far more serious.

The rest of the paper is organized as follows. Section II sets out the assumptions, notation,

and objectives. Sections III and IV present our theoretical results about the impact of fat tails on

estimation risk. Section V explains how we estimate our optimal two-fund and three-fund rules.

Section VI evaluates the out-of-sample performance using simulated and empirical data.

4Specifically, Tu and Zhou (2004) estimate the mean and covariance matrix of returns using a Bayesian

framework in which the investor has a prior that allows the returns to be multivariate t-distributed with different

degrees of freedom. Then, over the whole sample of data, they compute the in-sample utility delivered by a

mean-variance portfolio constructed with these estimates of the mean and covariance matrix. Finally, they compare

this utility to that of a mean-variance portfolio constructed with estimates of the mean and covariance matrix that

force the investor to have a prior belief that returns are multivariate normal.
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Section VII concludes. In Section IV of the supplementary material, we detail the proofs of all

theoretical results.

II. Assumptions, Notations, and Objectives

Let rt be the vector of excess returns of N ≥ 2 assets at time t. We assume rt has a mean of

µ and a positive-definite covariance matrix of Σ. In addition, we assume rt is multivariate

elliptically distributed. Following El Karoui (2010, 2013), we assume rt has the following

stochastic representation:

rt = µ +(τtΣ)
1/2Yt ,(1)

where Yt ∼ N (0N , IN), τt is a univariate random variable that satisfies E[τt ] = 1, and Yt is

independent of τt . Two important cases are the multivariate normal distribution, obtained for

τt = 1, and the multivariate t-distribution with ν > 2 degrees of freedom, obtained for

τt ∼ (ν −2)/χ
2
ν ,(2)

where χ2
ν stands for a chi-square distribution with ν degrees of freedom. When the fourth moment

of returns exists, we denote

κ = E[τ2
t ]−1(3)
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as the excess kurtosis of the returns divided by three. For example, when rt follows a multivariate

t-distribution in (2) with ν > 4, we have κ = 2/(ν −4).

As El Karoui (2010, 2013) explain, the stochastic representation in (1) does not encompass

all multivariate elliptical distributions, but we focus on this class because it possesses fat tails. The

elliptical distribution assumption is less restrictive than normality but still simple enough to allow

us to derive detailed asymptotic and finite-sample properties of the considered portfolios.

We define the mean return and squared Sharpe ratio of the GMV portfolio, the maximum

squared Sharpe ratio, and the difference between the maximum squared Sharpe ratio and that of

the GMV portfolio as

µg =
µ⊤Σ−11N

1⊤N Σ−11N
,(4)

θ
2
g =

(µ⊤Σ−11N)
2

1⊤N Σ−11N
,(5)

θ
2 = µ

⊤
Σ
−1

µ,(6)

ψ
2 = θ

2 −θ
2
g ,(7)

respectively. Given a risk-aversion coefficient γ , the mean-variance utility of a portfolio w is

U(w) = w⊤
µ − γ

2
w⊤

Σw.(8)

The weights of the portfolio that maximizes U(w) are

w⋆ =
1
γ

Σ
−1

µ.(9)
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The mean, variance, and utility of w⋆ are

µp = θ
2/γ,(10)

σ
2
p = θ

2/γ
2,(11)

U(w⋆) = θ
2/(2γ).(12)

Given an i.i.d. sample of size T > N, (r1, . . . ,rT ), the sample estimates of µ and Σ are

µ̂ =
1
T

T

∑
t=1

rt ,(13)

Σ̂ =
1
T

T

∑
t=1

(rt − µ̂)(rt − µ̂)⊤.(14)

The weights of the sample mean-variance portfolio that estimates w⋆ are then given by

ŵ =
1
γ

Σ̂
−1

µ̂.(15)

We have two main objectives in this paper. Our first objective is to study the out-of-sample

mean, variance, and utility of ŵ:

µ̃p = ŵ⊤
µ =

1
γ

µ̂
⊤

Σ̂
−1

µ,(16)

σ̃
2
p = ŵ⊤

Σŵ =
1
γ2 µ̂

⊤
Σ̂
−1

ΣΣ̂
−1

µ̂,(17)

U(ŵ) = µ̃p −
γ

2
σ̃

2
p .(18)

Our second objective is to determine the optimal two-fund and three-fund rules in Kan and Zhou
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(2007) but under the multivariate elliptical distribution assumption. That is, we consider the

portfolio combination rules

ŵ2 f (c) =
c
γ

Σ̂
−1

µ̂,(19)

ŵ3 f (c1,c2) =
c1

γ
Σ̂
−1

µ̂ +
c2

γ
Σ̂
−11N ,(20)

and we determine the combination coefficients c, c1, and c2 so as to maximize the expected

out-of-sample utility. In the next proposition, we show that the optimal combination coefficients

depend on five different constants.

Proposition 1. Let µ̃1 = E[µ̂⊤Σ̂−1µ], µ̃2 = E[µ⊤Σ̂−11N ], σ̃2
1 = E[µ̂⊤Σ̂−1ΣΣ̂−1µ̂],

σ̃2
2 = E[1⊤N Σ̂−1ΣΣ̂−11N ], and σ̃12 = E[µ̂⊤Σ̂−1ΣΣ̂−11N ]. The optimal combination coefficient that

maximizes the expected out-of-sample utility of the two-fund rule is

c⋆ = argmax
c

E
[
U(ŵ2 f (c))

]
= µ̃1/σ̃

2
1 ,(21)

and the optimal combination coefficients for the three-fund rule are

(c⋆1,c
⋆
2) = argmax

(c1,c2)

E
[
U(ŵ3 f (c1,c2))

]
=

(
µ̃1σ̃2

2 − µ̃2σ̃12

σ̃2
1 σ̃2

2 − σ̃2
12

,
µ̃2σ̃2

1 − µ̃1σ̃12

σ̃2
1 σ̃2

2 − σ̃2
12

)
.(22)

Finally, note that we focus on mean-variance portfolios even though the returns are

multivariate elliptically distributed, and thus, are fat tailed. This is because the multivariate

elliptical distribution is closed under linear transformations, which means that only the portfolio

mean return and variance can vary as we change the portfolio weights w, and all efficient
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portfolios maximizing expected utility are mean-variance portfolios; see Chamberlain (1983) and

Schuhmacher, Kohrs and Auer (2021). Therefore, under parameter uncertainty, we only consider

portfolio rules built from µ̂ and Σ̂; namely, the sample mean-variance portfolio, the two-fund rule,

and the three-fund rule. The result we uncover and detail in this paper is that even though the

sample mean-variance portfolio only depends on µ̂ and Σ̂, the way it should be optimally

combined with the risk-free asset in the two-fund rule, and also with the sample GMV portfolio in

the three-fund rule, also depends on the fat tails of returns via the distribution of τt . This is

because fat tails impact the effect that estimation risk has on the out-of-sample performance of the

sample mean-variance portfolio.

III. Asymptotic Results

In this section, we study the impact of fat tails on estimation risk in two different

asymptotic regimes. First, the standard regime in which N is fixed and T → ∞. Second, as in

Ledoit and Wolf (2017), Ao et al. (2019), and Kan et al. (2024), among others, the

high-dimensional regime in which N → ∞, T → ∞, and N/T → ρ ∈ (0,1).

A. Fixed N Asymptotic Regime

In the next proposition, we derive the fixed N asymptotic distribution of the sample

mean-variance portfolio ŵ and its out-of-sample mean, variance, and utility under the assumption

that returns follow a multivariate elliptical distribution.

Proposition 2. Let N be fixed, T → ∞, and the kurtosis parameter κ in (3) exists.
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1. The asymptotic distribution of the sample mean-variance portfolio ŵ is

√
T (ŵ−w⋆)

d−→ N
(

0N ,
1
γ2

[
[1+(1+κ)θ 2]Σ−1 +(1+2κ)Σ−1

µµ
⊤

Σ
−1
])

.(23)

2. The joint asymptotic distribution of the out-of-sample mean and variance of ŵ is

√
T

 µ̃p −µp

σ̃2
p −σ2

p

 d→ N

02,
θ 2[1+(2+3κ)θ 2]

γ2

 1 2/γ

2/γ 4/γ2


.(24)

3. The asymptotic distribution of the out-of-sample utility of ŵ is5

T [U(ŵ)−U(w⋆)]
d→− 1

2γ

(
[1+(1+κ)θ 2]χ2

N−1 +[1+(2+3κ)θ 2]χ2
1
)
,(25)

where the two chi-squared random variables are independent of each other.

4. The first-order biases of µ̃p, σ̃2
p , and U(ŵ) are given by

E[µ̃p]−µp =
(N +2)(1+κ)θ 2

γT
+O(T−2),(26)

E[σ̃2
p ]−σ

2
p =

N +[3(N +2)(1+κ)−1]θ 2

γ2T
+O(T−2),(27)

E[U(ŵ)]−U(w⋆) =−N +[(N +2)(1+κ)−1]θ 2

2γT
+O(T−2).(28)

Proposition 2 shows that ŵ is asymptotically unbiased when N is fixed. Therefore, for the

optimal combination coefficients, we have limT→∞ c⋆ = 1 and limT→∞(c⋆1,c
⋆
2) = (1,0).

5U(ŵ) is T -consistent instead of
√

T -consistent because it is bounded above by U(w⋆).
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Proposition 2 also shows that while µ̃p, σ̃2
p , and U(ŵ) are consistent estimators of µp, σ2

p , and

U(w⋆), respectively, the kurtosis parameter κ increases the magnitude of both the first-order bias

and the asymptotic variance of µ̃p, σ̃2
p , and U(ŵ). For example, take N = 5 and T = 120, which is

a case where applying the fixed N asymptotic is reasonable. Then, when θ = 0.3 and γ = 1, the

first-order bias of µ̃p, σ̃2
p , and U(ŵ) is 0.0053, 0.057, and −0.023 when κ = 0, respectively,

versus 0.016, 0.088, and −0.028 when κ = 2, respectively.

The asymptotic regime considered in Proposition 2 is practically relevant when N is small

relative to T . Next, we analyze the asymptotic regime in which both N and T are large.

B. Fixed N/T Asymptotic Regime

In the next proposition, we follow El Karoui (2010, 2013) to derive the high-dimensional

asymptotic limit of the out-of-sample mean, variance, and utility of the sample mean-variance

portfolio ŵ as N → ∞, T → ∞, and N/T → ρ ∈ (0,1). In this asymptotic regime, a higher ρ is

associated with more estimation risk. In this section, we assume that (Assumption-BB) in

El Karoui (2013) holds.6

Proposition 3. Let N → ∞, T → ∞, and N/T → ρ ∈ (0,1) while θ 2 stays bounded.

1. The out-of-sample mean of the sample mean-variance portfolio ŵ converges to

µ̃p
p→

ηµp

1−ρ
,(29)

6(Assumption-BB) ensures that the distribution of τt does not put too much mass near zero.
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where the parameter η is the unique positive solution to

E
[
(1−ρ +ρητt)

−1]= 1,(30)

and it satisfies 1 ≤ η ≤ E[1/τt ].

2. The out-of-sample variance of the sample mean-variance portfolio ŵ converges to

σ̃
2
p

p→
ϕσ2

p

(1−ρ)3 +
ηρ

γ2(1−ρ)3 ,(31)

where the parameter ϕ is

ϕ = (1−ρ)

(
η
−2 −E

[
ρτ2

t
(1−ρ +ρητt)2

])−1

,(32)

and it satisfies η2 ≤ ϕ ≤ (E[1/τt ])
2.

3. The out-of-sample utility of the sample mean-variance portfolio ŵ converges to

U(ŵ)
p→
(

2η

1−ρ
− ϕ

(1−ρ)3

)
U(w⋆)− ηρ

2γ(1−ρ)3 ,(33)

and this limit is smaller than that under the multivariate normal distribution.

4. The parameters η and ϕ attain their minimum value of one either if asset returns are

multivariate normally distributed or if ρ → 0. Moreover, η and ϕ attain their maximum

value of E[1/τt ] and (E[1/τt ])
2, respectively, when ρ → 1.

Proposition 3 shows that the impact of fat tails on the fixed N/T asymptotic limit of the
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out-of-sample mean and variance of ŵ is controlled by the parameters η and ϕ . These two

parameters increase with the dispersion of the random variable τt . Moreover, they determine the

increase in the out-of-sample mean and variance of ŵ relative to normality, as they are both greater

than one and equal to one when returns are multivariate normally distributed. Due to the fact that

ϕ ≥ η2 ≥ η , we can show that the percentage increase in the asymptotic limit of σ̃2
p due to fat tails

is larger than the corresponding percentage increase in the asymptotic limit of µ̃p. Therefore, U(ŵ)

is negatively affected by fat tails, and in the next proposition we show that under the multivariate

elliptical distribution it is optimal to allocate less weight to ŵ in the two-fund and three-fund rules.

Proposition 4. Let N → ∞, T → ∞, and N/T → ρ ∈ (0,1) while (µg,ψ
2,θ 2) stay bounded.

1. The optimal combination coefficient in the two-fund rule converges to

c⋆ → (1−ρ)2 θ 2

ϕ

η
θ 2 +ρ

.(34)

2. The optimal combination coefficients in the three-fund rule converge to

c⋆1 → (1−ρ)2 ψ2

ϕ

η
ψ2 +ρ

,(35)

c⋆2 → µg(1−ρ)2
η

ϕ
ρ

ϕ

η
ψ2 +ρ

.(36)

3. Given (ρ,µg,ψ
2,θ 2), the optimal combination coefficients c⋆, c⋆1, and c⋆2 attain their

maximum value when returns are multivariate normally distributed (i.e., ϕ = η = 1).

Proposition 3 shows that fat tails reduce the out-of-sample utility of ŵ compared with that

under the multivariate normality assumption. It is of interest to see if this continues to be the case
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for the optimal two-fund and three-fund rules derived in Proposition 4. In the next proposition, we

show that when c⋆ and (c⋆1,c
⋆
2) are chosen optimally based on the multivariate elliptical

distribution, the out-of-sample utility of the two-fund and three-fund rules can actually be larger

than that under the normality case under certain conditions.

Proposition 5. Let N → ∞, T → ∞, and N/T → ρ ∈ (0,1) while (ψ2,θ 2) stay bounded.

1. The out-of-sample utility of the optimal two-fund rule converges to

U(ŵ2 f (c⋆))
p→U(w⋆)(1−ρ)

ηθ 2

ϕ

η
θ 2 +ρ

,(37)

which is larger than that when returns are multivariate normally distributed (i.e.,

ϕ = η = 1) if and only if θ 2 < ρη(η −1)/(ϕ −η2).

2. The out-of-sample utility of the optimal three-fund rule converges to

U(ŵ3 f (c⋆1,c
⋆
2))

p→U(w⋆)(1−ρ)
ηψ2

ϕ

η
ψ2 +ρ

(
1+

ηρθ 2
g

ϕθ 2ψ2

)
,(38)

which is larger than that when returns are multivariate normally distributed (i.e.,

ϕ = η = 1) if and only if η(ψ2 +ρ)(θ 2ψ2 + η

ϕ
θ 2

g ρ)> (ϕ

η
ψ2 +ρ)(θ 2ψ2 +θ 2

g ρ).

Proposition 5 shows that fat tails could potentially help investors obtain better

out-of-sample performance. This is because when investors understand that the returns have fat

tails, they would reduce their exposure to the sample mean-variance portfolio and the sample

GMV portfolio. Although the specific conditions derived in Proposition 5 do not carry much

intuition, we show below they are easily satisfied in the case of the multivariate t distribution.
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In Section IV, we compare, in the finite-sample setting, the out-of-sample utility of the

optimal two-fund and three-rules with the utility obtained when using the combination

coefficients that wrongly assume the returns are multivariate normal. Moreover, we do a similar

analysis in Section VI using estimated combination coefficients and empirical data.

To illustrate the theoretical results derived in this section, we now assume a specific

multivariate elliptical distribution. Specifically, we employ the commonly used multivariate

t-distribution, i.e., τt is distributed as (2) with ν > 2 degrees of freedom. In the next proposition,

we derive the parameters η and ϕ when returns follow a multivariate t-distribution.

Proposition 6. Let N → ∞, T → ∞, N/T → ρ ∈ (0,1), and asset returns follow a multivariate

t-distribution with ν > 2 degrees of freedom.

1. The parameter η is the unique positive solution to

yeyE ν

2
(y) = ρ with y =

(ν −2)ρη

2(1−ρ)
,(39)

where En(x) =
∫∞

1 t−ne−xtdt is the exponential integral, and it satisfies 1 ≤ η ≤ ν

ν−2 .

2. The parameter ϕ is

ϕ =
2η2(1−ρ)

ν −η(ν −2)
,(40)

and it satisfies η2 ≤ ϕ ≤ ν2

(ν−2)2 .

In Figure 1, we depict the parameters η and ϕ as a function of ρ for ν = 4 and 8. We find

that η and ϕ can be substantially larger than one either when ν is smaller and thus tails are fatter
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or when ρ is larger and thus there is more estimation risk. Moreover, ϕ is significantly larger than

η and thus fat tails have a larger impact on the out-of-sample variance than on the out-of-sample

mean of the sample mean-variance portfolio.

[Insert Figure 1 approximately here]

In Figure 2, we depict how fat tails impact the asymptotic limit of the out-of-sample utility

of the sample mean-variance portfolio in (33). We set γ = 1, ρ = (0.1,0.3,0.5), θ = (0.3,0.5),

and we depict the limit of U(ŵ) as a function of ν . We observe that fat tails can have a large

negative effect on the out-of-sample utility of ŵ. Thus, the multivariate normality assumption is

overly optimistic in assessing the performance of sample mean-variance portfolios.

[Insert Figure 2 approximately here]

In Figure 3, we depict the ratio between the optimal three-fund combination coefficients

(c⋆1,c
⋆
2) under the multivariate t-distribution and those under the multivariate normal, i.e.,

c⋆1
c⋆1,n

→ ψ2 +ρ

ϕ

η
ψ2 +ρ

,(41)

c⋆2
c⋆2,n

→ η

ϕ

(
ψ2 +ρ

ϕ

η
ψ2 +ρ

)
.(42)

We depict (41)–(42) as a function of ρ for ν = (4,8) and ψ = (0.2,0.4). The figure shows that the

higher the ρ and lower the ν , the more the combination coefficients under the multivariate

t-distribution depart from those under normality. The difference is especially pronounced for the

coefficient c⋆2 on the sample GMV portfolio. This can be explained because while the sample

GMV portfolio only depends on Σ̂, the sample mean-variance portfolio depends on both µ̂ and Σ̂,
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and the dependence between µ̂ and Σ̂ can alleviate the impact of fat tails.7

[Insert Figure 3 approximately here]

Finally, we can determine when the out-of-sample utility of the optimal two-fund and

three-fund rules is larger under the multivariate t-distribution than under the multivariate normal.

Using Propositions 5 and 6, we can show that this is the case for the two-fund rule if

θ
2 <

ρ(1−1/η)(ν −η(ν −2))
η(ν −2)−ν +2(1−ρ)

.(43)

We find that (43) is typically a large threshold, e.g., θ < 0.70 for ρ = 0.3 and ν = 8. Similarly, the

condition for the three-fund rule in Proposition 5 can be easily satisfied.

IV. Finite-Sample Results

The high-dimensional asymptotic results in Section III may not deliver a good

approximation to the exact finite-sample results when N or T is not large. Therefore, in the next

proposition we present the exact expectation of the out-of-sample mean and variance of the

sample mean-variance portfolio ŵ.

Proposition 7. Let T > N +4, M = IT − (1T 1⊤T )/T , Y be a T ×N matrix of independent standard

normal random variables, Λ = Diag(λ1, . . . ,λT ) with λt =
√

τt , and Y and Λ are independent.

7Specifically, the out-of-sample variance of Σ̂−11N satisfies 1⊤N Σ̂−1ΣΣ̂−11N
p→ ϕθ 2

g /µ2
g while the out-of-sample

variance of Σ̂−1µ̂ satisfies µ̂⊤Σ̂−1ΣΣ̂−1µ̂
p→ (ϕθ 2 +ηρ)/(1−ρ)3. Given that ϕ ≥ η2 ≥ η , the percentage increase

in the out-of-sample variance due to fat tails is larger for Σ̂−11N than Σ̂−1µ̂ .
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The expected out-of-sample mean and variance of the sample mean-variance portfolio ŵ are

E[µ̃p] =
T

T −N −2
k1µp,(44)

E[σ̃2
p ] =

T 2(T −2)
(T −N −1)(T −N −2)(T −N −4)

(
k2σ

2
p +

k3

γ2
N
T

)
,(45)

where k1, k2, and k3 are functions of N, T , and the distribution of τt , but not of µ and Σ:

k1 =
T −N −2

N
E
[
tr
(
(Y⊤

ΛMΛY )−1)],(46)

k2 =
(T −N −1)(T −N −2)(T −N −4)

N(T −2)
E
[
tr
(
(Y⊤

ΛMΛY )−2)],(47)

k3 =
(T −N −1)(T −N −2)(T −N −4)

NT (T −2)
E
[
1⊤T ΛY (Y⊤

ΛMΛY )−2Y⊤
Λ1T

]
,(48)

provided the expectations exist. Moreover, k1, k2, and k3 are all equal to one when asset returns

are multivariate normally distributed.

Proposition 7 shows that the increase in the out-of-sample mean and variance caused by fat

tails is driven by the parameters k1, k2, and k3. It is difficult to find general analytical expressions

for these parameters, but they can readily be evaluated using Monte Carlo simulations given the

distribution of τt . In the fixed N/T asymptotic regime where N → ∞, T → ∞, and

N/T → ρ ∈ (0,1), we have from Proposition 3 that

k1 → η , k2 → ϕ, k3 → η .(49)

In the next proposition, we present the exact optimal two-fund and three-fund rules when returns

follow a multivariate elliptical distribution.
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Proposition 8. Let T > N +4 and define k1, k2, and k3 as in (46)–(48).

1. The optimal combination coefficient in the two-fund rule is

c⋆ =
(T −N −1)(T −N −4)

T (T −2)

(
k1θ 2

k2θ 2 + k3
N
T

)
.(50)

2. The optimal combination coefficients in the three-fund rule are

c⋆1 =
(T −N −1)(T −N −4)

T (T −2)

(
k1ψ2

k2ψ2 + k3
N
T

)
,(51)

c⋆2 = µg
(T −N −1)(T −N −4)

T (T −2)
k3

k2

(
k1

N
T

k2ψ2 + k3
N
T

)
.(52)

In Figure 4, we compare the exact finite-sample value of (k1,k2,k3) with their asymptotic

approximation (η ,ϕ,η), assuming the returns follow a multivariate t-distribution. We set a

sample size T = 100, a number of degrees of freedom ν = (4,8), and we vary the number of

assets N from 2 to 60. The figure shows that the asymptotic approximation under-estimates the

exact value of the parameters (k1,k2,k3), particularly for k2, and this effect is more pronounced as

N and ν get smaller. This means that the asymptotic approximation under-estimates the impact of

fat tails on the out-of-sample performance. However, the asymptotic approximation is overall

reasonably accurate. This observation, combined with the fact that we can compute (η ,ϕ) in a fast

way while computing (k1,k2,k3) requires simulations, makes the asymptotic approximation an

attractive alternative.8

8Whether the asymptotic combination coefficients in Proposition 4 are good approximations for the exact

finite-sample ones in Proposition 8 is not only affected by the accuracy of approximating (k1,k2,k3) by (η ,ϕ,η), but

also by the accuracy of approximating (T −N −1)(T −N −4)/(T (T −2)) by (1−N/T )2.
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[Insert Figure 4 approximately here]

In Figure 5, we depict the expected out-of-sample utility loss incurred when using

combination coefficients in the two-fund and three-fund rules that assume returns are multivariate

normal. Specifically, we calibrate (k1,k2,k3) to the multivariate t-distribution and we depict

E[U(ŵ2 f (c⋆n))]−E[U(ŵ2 f (c⋆))] and E[U(ŵ3 f (c⋆1,n,c
⋆
2,n))]−E[U(ŵ3 f (c⋆1,c

⋆
2))], where

(c⋆n,c
⋆
1,n,c

⋆
2,n) are obtained from Proposition 8 with k1 = k2 = k3 = 1. To conduct this analysis, we

set γ = 1, (ψ,θ) = (0.2,0.3) or (0.4,0.5), T = 100, N = (10,25,50) and we vary ν between 3

and 20. The first observation in Figure 5 is that the utility loss is generally small for the two-fund

rule, but can nonetheless get important as ν decreases, (ψ,θ) increase, and N increases. The

second observation is that the utility loss is much more substantial for the three-fund rule. This

finding is consistent with Figure 3 that indicates that the sample GMV portfolio is more affected

by fat tails than the sample mean-variance portfolio because c⋆2/c⋆2,n is significantly smaller than

c⋆1/c⋆1,n in the three-fund rule.

[Insert Figure 5 approximately here]

The analysis in Figure 5 uses known combination coefficients. In practice, the utility loss

is also affected by estimation errors in these coefficients. When allowing for such errors, we find in

the simulation analysis of Section VI.A that the utility loss incurred when assuming normality

becomes much more substantial both in the two-fund rule and the three-fund rule.

To summarize, we now have three different ways of determining the optimal combination

coefficients in the two-fund rule and the three-fund rule. First, we can assume returns are

multivariate normally distributed and use the exact finite-sample formula, as in Kan and Zhou

(2007), which corresponds to setting k1 = k2 = k3 = 1 in Proposition 8. Second, we can assume
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returns are multivariate elliptically distributed and use the fixed N/T asymptotic formula, which

corresponds to Proposition 4. Third, we can assume returns are multivariate elliptically distributed

and use the exact finite-sample formula, which corresponds to Proposition 8. In Section V, we

explain how we estimate the optimal combination coefficients in each case. In Section VI, we

compare the out-of-sample performance of the two-fund and three-fund rules using simulated and

empirical data. Using simulated data allows us to comply with the multivariate elliptical

distribution and to compare the case in which the optimal combination coefficients are known

with the case in which they are estimated. This, in turn, allows us to disentangle the impact of fat

tails and the impact of estimation errors in the combination coefficients. Using empirical data

allows us to assess the out-of-sample performance of the two-fund and three-fund rules when the

data is not exactly multivariate elliptically distributed and when transaction costs play a role.

V. Estimation of the Two-Fund and Three-Fund Rules

In this section, we explain how we estimate the parameters needed to determine the

optimal two-fund and three-fund combination coefficients. There are three types of parameters.

First, the parameters µg, θ 2, and ψ2 that depend on µ and Σ. Second, the parameters η and ϕ in

the fixed N/T asymptotic regime that depend on the distribution of τt but not on µ and Σ. Third,

the parameters k1, k2, and k3 in the finite-sample case that also depend on the distribution of τt but

not on µ and Σ. In Table 1, we provide formulas for the estimated two-fund and three-fund

combination coefficients under different calibration methods.

[Insert Table 1 approximately here]

Because of estimation risk in the combination coefficients, it is unclear how much of the
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theoretical expected out-of-sample utility of the optimal two-fund and three-fund rules can be

realized in practice. To address this point, in the simulation analysis of Section VI.A we compare

the cases with known and estimated combination coefficients.

A. Estimation of µg, θ 2, and ψ2

We estimate µg, θ 2, and ψ2 as in Kan and Zhou (2007). Specifically, we use the plug-in

estimator of µg and the adjusted estimators of θ 2 and ψ2, which are defined as

µ̂g =
1⊤N Σ̂−1µ̂

1⊤N Σ̂−11N
,(53)

θ̂
2
a =

(T −N −2)θ̂ 2 −N
T

+
2(θ̂ 2)N/2(1+ θ̂ 2)−(T−2)/2

T ×B
θ̂ 2/(1+θ̂ 2)(N/2,(T −N)/2)

,(54)

ψ̂
2
a =

(T −N −1)ψ̂2 − (N −1)
T

+
2(ψ̂2)(N−1)/2(1+ ψ̂2)−(T−2)/2

T ×Bψ̂2/(1+ψ̂2)((N −1)/2,(T −N +1)/2)
,(55)

where θ̂ 2 and ψ̂2 and the plug-in estimators of θ 2 and ψ2, respectively, and

Bx(a,b) =
∫ x

0 ta−1(1− t)b−1dt is the incomplete beta function. The rationale behind the adjusted

estimators in (54)–(55) is to adjust the unbiased estimator, i.e., the first term, so as to prevent the

estimator from becoming negative. In Section II of the supplementary material, we show that even

though the adjusted estimators θ̂ 2
a and ψ̂2

a are derived under the multivariate normal distribution,

their root mean squared error does not increase much with the fat tails of returns.

B. Estimation of η and ϕ in the Asymptotic Setting

We consider two different methods to estimate η and ϕ . The first method is to assume a

specific multivariate elliptical distribution, and we employ the multivariate t-distribution, i.e., τt is
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distributed as (2) with ν > 2 degrees of freedom. We estimate ν by the maximum likelihood

method, giving us ν̂ , whose estimation accuracy we analyze in Section I of the supplementary

material. This allows us to obtain estimates of η and ϕ using Proposition 6, which we denote η̂

and ϕ̂ . Specifically, η̂ is the unique positive solution to

yeyE ν̂

2
(y) =

N
T

with y =
(ν̂ −2)Nη̂

2(T −N)
,(56)

and the estimate of ϕ is

ϕ̂ =
2η̂2(1−N/T )
ν̂ − η̂(ν̂ −2)

.(57)

Calibrating η and ϕ to the multivariate t-distribution implies a larger risk of model

misspecification than assuming the more general class of multivariate elliptical distributions.

Therefore, the second method we consider is to estimate η and ϕ directly from the data without

specifying which particular multivariate elliptical distribution the returns follow. The principle is

to rely on a sample distribution of τt . Specifically, suppose we have T sample observations

(τ̂1, . . . , τ̂T ). Then, η̃ is the unique positive solution to

T

∑
t=1

1
T −N +Nη̃ τ̂t

= 1,(58)

and the estimate of ϕ is

ϕ̃ =

(
1− N

T

)(
η̃
−2 −

T

∑
t=1

Nτ̂2
t

(T −N +Nτ̂t η̃)2

)−1

.(59)
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El Karoui (2010, 2013) propose using the following sample distribution of τt :

τ̂t =
(rt − µ̂)⊤(rt − µ̂)

1
T ∑

T
i=1(ri − µ̂)⊤(ri − µ̂)

, t = 1, . . . ,T,(60)

which he shows is a consistent estimator of the true distribution of τt as N → ∞. In Section I of

the supplementary material, we illustrate how the distribution of τ̂t approaches that of τt as N

increases.

Figure 6 compares the estimators (η̂ , ϕ̂) and (η̃ , ϕ̃). We set N = 25, T = (60,120,240),

and we simulate 10,000 return vectors of size T from a multivariate t-distribution with

ν = (4,6,8).9 This allows us to generate 10,000 estimates (η̂ , ϕ̂) and (η̃ , ϕ̃), whose distribution

we summarize using boxplots. We find that the estimates are more accurate as ν and T increase.

Moreover, even though (η̂ , ϕ̂) assume the right distribution, they display a similar level of bias

and variance as (η̃ , ϕ̃). This result, combined with the fact that (η̃ , ϕ̃) can adapt to other elliptical

distributions than multivariate t, suggests that using (η̃ , ϕ̃) is preferable in practice. Our empirical

analysis confirms this finding. In particular, when using empirical data in Section VI.B, we find

that (η̃ , ϕ̃) are generally larger than (η̂ , ϕ̂), which suggests that fat tails in empirical data have a

larger impact on the out-of-sample mean and variance than the multivariate t-distribution

suggests. Therefore, using (η̃ , ϕ̃) instead of (η̂ , ϕ̂) allows us to improve the performance of the

two-fund and three-fund rules in practice.

[Insert Figure 6 approximately here]

9We set (µ,Σ) = (0N , IN) without loss of generality because η and ϕ do not depend on (µ,Σ).
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C. Estimation of k1, k2, and k3 in the Finite-Sample Setting

We estimate (k1,k2,k3) using two similar methods to those used for estimating η and ϕ .

First, we calibrate them to the multivariate t-distribution whose degrees of freedom ν is estimated

by maximum likelihood. To achieve this, we simulate 1,000 matrices Ym and Λm independently,

where m = 1, . . . ,1,000. Each Ym is a T ×N matrix of independent standard normal variables and

each Λm = Diag(
√

τ1, . . . ,
√

τT ), where the τt’s are simulated from (2) with ν = ν̂ . Then, we

estimate (k1,k2,k3) using the sample counterparts of (46)–(48), i.e.,

k̂1 =
T −N −2

N

[
1

1,000

1,000

∑
m=1

tr
(
(Y⊤

m ΛmMΛmYm)
−1
)]

,

(61)

k̂2 =
(T −N −1)(T −N −2)(T −N −4)

N(T −2)

[
1

1,000

1,000

∑
m=1

tr
(
(Y⊤

m ΛmMΛmYm)
−2
)]

,

(62)

k̂3 =
(T −N −1)(T −N −2)(T −N −4)

NT (T −2)

[
1

1,000

1,000

∑
m=1

1⊤T ΛmYm(Y⊤
m ΛmMΛmYm)

−2Y⊤
m Λm1T

]
.

(63)

Second, we estimate (k1,k2,k3) without specifying a particular elliptical distribution by

using the sample distribution of τt by El Karoui (2010, 2013), τ̂t in (60). Specifically, using the

fact that Y and Λ are independent, we first estimate Λ by Λ̂ = Diag(
√

τ̂1, . . . ,
√

τ̂T ). Then, we

simulate 1,000 matrices Ym, m = 1, . . . ,1,000, and estimate (k1,k2,k3) as

k̃1 =
T −N −2

N

[
1

1,000

1,000

∑
m=1

tr
(
(Y⊤

m Λ̂MΛ̂Ym)
−1
)]

,(64)
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k̃2 =
(T −N −1)(T −N −2)(T −N −4)

N(T −2)

[
1

1,000

1,000

∑
m=1

tr
(
(Y⊤

m Λ̂MΛ̂Ym)
−2
)]

,(65)

k̃3 =
(T −N −1)(T −N −2)(T −N −4)

NT (T −2)

[
1

1,000

1,000

∑
m=1

1⊤T Λ̂Ym(Y⊤
m Λ̂MΛ̂Ym)

−2Y⊤
m Λ̂1T

]
.(66)

In unreported results, we compare the estimates of (k1,k2,k3) according to these two

different methods and reach similar conclusions to those drawn for the comparison of the

estimates of (η ,ϕ) in Figure 6. Therefore, in our empirical analysis we also find that the approach

that does not require specifying a particular elliptical distribution to estimate (k1,k2,k3) instead of

specifying a multivariate t-distribution improves the performance of the two-fund and three-fund

rules.

VI. Performance Analysis

We now evaluate the out-of-sample performance of the two-fund and three-fund rules that

are calibrated to fat-tailed elliptical returns using our asymptotic and finite-sample theory

presented in Sections III and IV, respectively, and the estimation procedure laid out in Section V.

A. Simulated Data

In this section, we simulate i.i.d. excess returns from a multivariate t-distribution with

ν = 4, 6, or 8 degrees of freedom. We calibrate (µ,Σ) to a dataset of N = 25 portfolios of firms

sorted on size and book-to-market spanning July 1926 to July 2023. When asset returns are

multivariate elliptically distributed, we can show that the out-of-sample utility of the two-fund and

three-fund rules only depends on (µ,Σ) via (µg,ψ,θ), and for this dataset we have
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(µg,ψ,θ) = (0.0075,0.250,0.302) in monthly terms. We use a non-large value of N = 25 to be

able to identify non-negligible differences between portfolios derived under the fixed N/T

asymptotic regime in Section III.B and the finite-sample setting in Section IV. We can nonetheless

consider high degrees of estimation risk by varying the sample size T , which is why we consider

both a small sample size of T = 60 months and larger values of T = 120 and 240 months.

We report the expected out-of-sample utility delivered by two-fund and three-fund rules

with combination coefficients calibrated in six different ways. First, the combination coefficients

are calibrated to the multivariate normal distribution as in Kan and Zhou (2007). Second, the

coefficients are calibrated to the multivariate t-distribution using the asymptotic formula and a

number degrees of freedom ν estimated by maximum likelihood. Third, the coefficients are

calibrated to the multivariate t-distribution using the exact finite-sample formula and ν estimated

in the same way. Fourth, the coefficients are calibrated to the multivariate elliptical distribution

using the asymptotic formula and the sample distribution of τt by El Karoui (2010, 2013). Fifth,

the coefficients are calibrated to the multivariate elliptical distribution using the exact

finite-sample formula and the sample distribution of τt . Sixth, the coefficients are fully calibrated

from the data by using a five-fold cross-validation.10 Formulas for the combination coefficients are

10The five-fold cross-validation method for the two-fund rule works as follows; the method is similar for the

three-fund rule but over two coefficients instead of one. First, set c = 0. Then, divide the estimation window in five

intervals of equal length. Select one interval, remove it from the estimation window, and use the remaining data to

compute the two-fund rule. Use these portfolio weights to compute out-of-sample returns on the removed interval.

After repeating this procedure for all five intervals, compute the utility on all the out-of-sample returns. Increase c by

0.01 and repeat the process above. Finally, when c = 1 is reached, select the value of c delivering the maximum

out-of-sample utility.
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available in Table 1.

We compute the expected out-of-sample utility of a given portfolio strategy ŵ by

simulating M = 10,000 multivariate t-distributed returns and obtaining an estimated portfolio ŵm

for each simulation, where m = 1, . . . ,M. Then, given the true µ and Σ, we estimate the expected

out-of-sample utility of ŵ as

E[U(ŵ)]≈ 1
M

[
M

∑
m=1

ŵ⊤
mµ − γ

2
ŵ⊤

mΣŵm

]
.(67)

We consider a risk-aversion coefficient γ = 1. Given that the utility of each portfolio rule we

consider is proportional to 1/γ , the choice of γ does not affect their rankings.11

In Table 2, we report the annualized expected out-of-sample utility of the different

two-fund and three-fund rules as well as the mean value of the combination coefficients.12 To

disentangle the impact of fat tails and the impact of estimation errors in the combination

coefficients, we report results for the case with known and estimated combination coefficients.

[Insert Table 2 approximately here]

Our first observation is that when the combination coefficients are known, the

out-of-sample utility loss incurred when calibrating the combination coefficients to the

multivariate normal distribution instead of the multivariate t-distribution is small for the two-fund

rule but can be substantial for the three-fund rule. This finding is consistent with the conclusion

drawn from Figure 5. For example, when ν = 4 and we use the exact finite-sample combination

11The expected out-of-sample utility for other values of γ are simply obtained by dividing the values we obtain

with γ = 1 by the desired value of γ .

12We annualize the monthly utilities by multiplying them by 12.
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coefficients, the annualized out-of-sample utility loss for the three-fund rule is 4.4, 2.8, and 1.5

percentage points for a sample size T = 60, 120, and 240 months, respectively. When ν = 6, this

loss decreases to 1.1, 0.7, and 0.4 percentage points, respectively.

However, the corresponding out-of-sample utility loss is substantially larger when the

combination coefficients are estimated. For example, when ν = 6 and we use the exact

finite-sample combination coefficients, the annualized out-of-sample utility loss when calibrating

the two-fund rule to the multivariate normal distribution instead of the multivariate elliptical

distribution is 12.2, 4.6, and 1.7 percentage points for a sample size T = 60, 120, and 240 months,

respectively. For the three-fund rule, the utility loss increases to 21.3, 7.7, and 2.4 percentage

points, respectively.

The reason why the out-of-sample utility loss due to the multivariate normality

assumption is larger when the combination coefficients are estimated instead of known is that the

combination coefficients are larger when they are calibrated to the multivariate normal

distribution. This makes the two-fund and three-fund rules more exposed to estimation errors in

the combination coefficients when these coefficients are calibrated to the multivariate normal

distribution than to a multivariate elliptical distribution. To alleviate the impact of estimation

errors in the combination coefficients, Kan and Wang (2023) show that shrinking them helps, and

calibrating the combination coefficients to the multivariate elliptical distribution has this

shrinkage effect relative to normality. Moreover, this shrinkage of the combination coefficients

when switching from multivariate normal to multivariate elliptical is more substantial the lower

the sample size and the fatter the tails, which is exactly when estimation errors in the combination

coefficients are important.13 This is why, in Table 2, the out-of-sample utility loss due to the

13The accuracy of the estimates of the parameters (µg,ψ
2,θ 2) is negatively impacted by fat tails. For example,
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normality assumption is larger as T and ν decrease.14

In summary, both the multivariate normality assumption and the importance of shrinking

the combination coefficients to alleviate their estimation risk explain the utility loss incurred by

calibrating the two-fund and three-fund rules to the multivariate normal distribution instead of the

multivariate t or elliptical distribution, but it is the second factor that plays a more prominent role.

Our second observation is that when comparing portfolio rules that use combination

coefficients obtained from the finite-sample formula versus the asymptotic formula, we find that

the former consistently delivers higher expected out-of-sample utility than the latter. The gain in

performance is particularly important when the sample size is small, i.e., T = 60. For T = 120,

and particularly T = 240, the utility gain is more limited, and in such cases one could opt to use

the asymptotic formula that admits a fast analytical solution.

Our third observation is that the estimated combination coefficients are smaller when they

are calibrated to the multivariate t and elliptical distributions than to the multivariate normal

distribution, consistent with Proposition 4. For example, when ν = 6 and the coefficients are

found with the exact finite-sample formula, the mean value of ĉ1 in the three-fund rule when the

El Karoui (2010) shows that in the fixed N/T asymptotic regime, the plug-in estimator of θ 2 satisfies

θ̂ 2 p→ (ηθ 2 +ρ)/(1−ρ). That is, the bias of θ̂ 2 increases with fat tails via η . In Section II of the supplementary

material, we evaluate the root mean square error of the adjusted estimators θ̂ 2
a and ψ̂2

a and find that it increases as T

and ν decrease.

14A similar reasoning explains why calibrating the combination coefficients to the general multivariate elliptical

distribution instead of the multivariate t-distribution improves the expected out-of-sample utility even if the asset

returns are multivariate t-distributed. This is because the combination coefficients are smaller under the multivariate

elliptical distribution, which reduces the impact of estimation errors in these coefficients on the performance of the

two-fund and three-fund rules.
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sample size T = 60, 120, and 240 months is (0.079, 0.179, 0.303) for multivariate normal, (0.072,

0.167, 0.287) for multivariate t, and (0.054, 0.140, 0.253) for multivariate elliptical. As observed

in Figure 3, the difference is more substantial for the coefficient ĉ2/µ̂g. Its mean value when the

sample size T = 60, 120, and 240 months is (0.224, 0.425, 0.488) for multivariate normal, (0.162,

0.331, 0.411) for multivariate t, and (0.068, 0.190, 0.285) for multivariate elliptical. As explained

above, this shrinkage of combination coefficients helps alleviate the impact of both fat tails and

estimation errors in the combination coefficients.

Our fourth observation is that the calibration of the two-fund and three-fund rules to the

multivariate elliptical distribution outperforms that to the multivariate t-distribution, and they

both outperform the calibration to the multivariate normal distribution. The difference is

particularly substantial for a small sample size of T = 60, in which case the multivariate normal

and multivariate t-distributions deliver negative utilities while the multivariate elliptical always

delivers positive utilities. For example, when ν = 6, T = 60, and we use the combination

coefficients found with the exact finite-sample formula, the two-fund and three-fund rules deliver

utilities of (−0.087,−0.159) for multivariate normal, (−0.039,−0.055) for multivariate t, but

(0.035, 0.054) for multivariate elliptical. Moreover, the improvement is important for T = 120 too

with utilities of (0.071, 0.073) for multivariate normal, (0.091, 0.116) for multivariate t, and

(0.117, 0.150) for multivariate elliptical. That the calibration of the two-fund and three-fund rules

to the multivariate elliptical distribution outperforms that to the multivariate t-distribution seems

surprising given that the true distribution is multivariate t. This can be explained because the

combination coefficients are larger under the multivariate t-distribution and, as explained above,

this makes the two-fund and three-fund rules more exposed to estimation errors in the

combination coefficients.
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Our fifth observation is that the cross-validation method outperforms the calibration to the

multivariate normal and t distributions if the sample size is small enough and the data is fat-tailed

enough. Specifically, it outperforms the calibration to the multivariate normal distribution when

T = 60 for all degrees of freedom ν , when T = 120 for ν = 4 and 6, and when T = 240 for ν = 4.

Cross-validation also outperforms the calibration to the multivariate t-distribution when T = 60.

In contrast, cross-validation systematically underperforms the calibration to the multivariate

elliptical distribution. This suggests that there are benefits from relying on parametric assumptions

instead of a fully data-driven approach, but as long as the parametric assumptions are not too

restrictive.

Our final observation is that the three-fund rule consistently outperforms the two-fund rule

when the sample size T = 120 and 240, but can underperform when the sample size T = 60. We

can explain this result because there is an additional combination coefficient to estimate in the

three-fund rule, and when the sample size is small, the estimation risk induced by this additional

coefficient can be large enough to render the three-fund rule less attractive. Interestingly, when

T = 60, the three-fund rule underperforms the two-fund rule when the combination coefficients

are calibrated to the multivariate normal and multivariate t-distributions, but it outperforms the

two-fund rule when the combination coefficients are calibrated to the multivariate elliptical

distribution.

B. Empirical Data

We now evaluate the out-of-sample performance of the two-fund and three-fund rules

considered in Section VI.A using empirical data. We also report the out-of-sample performance of
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the equally weighted portfolio wew = 1N/N,15 the optimal combination of the equally weighted

portfolio with the risk-free asset (see DeMiguel et al. (2009, Appendix B)),

ŵewr f =
1⊤N µ̂

γ1⊤N Σ̂1N
1N ,(68)

and the two funds composing the two-fund and three-fund rules, i.e., the sample GMV portfolio,

ŵg =
Σ̂−11N

1⊤N Σ̂−11N
,(69)

and the sample mean-variance portfolio in (15). The risk-free asset is also a fund in the two-fund

and three-fund rules we consider, and it delivers a utility of zero by definition. The sample

mean-variance portfolio is by far the worst-performing strategy, and thus, we do not discuss it

further below. We also consider additional empirical tests in Section VI.C.

We consider six different datasets of monthly returns that we obtain from Kenneth

French’s and Robert Novy-Marx’s websites. First, a dataset of 10 portfolios of firms sorted on

momentum spanning January 1927 to July 2023 (10MOM). Second, a dataset composed of the

long and short legs of eight low-turnover anomalies in Novy-Marx and Velikov (2016) spanning

July 1963 to December 2013 (16ANOM). Third, a dataset of 25 portfolios of firms sorted on size

and market beta spanning July 1963 to July 2023 (25SBETA). Fourth, a dataset of 25 portfolios of

firms sorted on size and book-to-market spanning July 1926 to July 2023 25SBTM. Fifth, a

dataset of 25 portfolios of firms sorted on operating profitability and investment spanning July

1963 to July 2023 (25OPINV). Sixth, a dataset of 30 industry portfolios spanning July 1926 to

15The performance of the equally weighted portfolio is close to that of the value-weighted market portfolio.
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July 2023 (30IND).

In Table 3, we report for each dataset the number of degrees of freedom estimated by

maximum likelihood, ν̂ , which we show in Section I of the supplementary material is an accurate

estimator when the sample size is large as it is the case here over the whole sample. We observe

that fat tails are pronounced as ν̂ varies between roughly 4 and 8 across datasets. Given that tails

get fatter as the return frequency increases, we also use daily data in Section VI.C.3 for which ν̂

varies between roughly 3 and 6.

[Insert Table 3 approximately here]

[Insert Table 4 approximately here]

We evaluate the out-of-sample utility of the considered portfolio strategies using a

standard rebalancing procedure. For a given month, we estimate the portfolio weights based on T

months of historical data and evaluate the out-of-sample portfolio return on the next month. We

then roll the estimation window forward by one month and proceed iteratively until we reach the

end of the sample.16 We finally compute the out-of-sample utility from the time series of

out-of-sample portfolio returns. Although transaction costs do not enter the optimization of our

portfolio rules, these costs matter in practice. Therefore, we also evaluate the net-of-cost

out-of-sample utility by using the standard academic practice of adjusting the out-of-sample

returns to transaction costs proportional to turnover, as in DeMiguel et al. (2009) and Kan et al.

(2021), for instance. As in Ao et al. (2019), we use proportional transaction costs of 10 basis

points, in line with Engle, Ferstenberg and Russell (2012) who find an average cost of 8.8 basis

16We use rolling windows of a fixed size instead of expanding windows for consistency with the theory in

Section IV and to be able to test the effect of using both small and large fixed sample sizes.
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points for the NYSE stocks.17 As in Section VI.A, we consider a risk-aversion coefficient γ = 1

and a sample size T = 60, 120, and 240 months.

In Table 3, we report the gross and net-of-cost annualized out-of-sample utility of the

two-fund and three-fund rules estimated in six different ways.18 We also report the mean value of

the combination coefficients. All the portfolios are constructed using the sample mean µ̂ and the

sample covariance matrix Σ̂ for consistency with the theory. This should be considered a starting

point as the portfolios can then be combined with shrinkage estimators of the inputs as in Kan et al.

(2021) to further improve performance and reduce portfolio turnover. The main conclusions drawn

from simulated data in Section VI.A hold as well for empirical data. First, the exact finite-sample

combination coefficients outperform the asymptotic ones, and substantially so when T = 60.

Second, the combination coefficients are smaller when they are calibrated to the

multivariate elliptical distribution than to the multivariate t-distribution, and even smaller than

those calibrated to the multivariate normal distribution. On average across the six datasets, the

mean value of the elliptical two-fund combination coefficient ĉ is 29.7%, 23.8%, and 18.2%

smaller than the corresponding ones under the multivariate normal assumption for T = 60, 120,

and 240, respectively. For the three-fund combination coefficient ĉ2, the decrease is even larger

17Transaction costs are larger in the older part of the sample, but our objective is to adjust returns to transaction

costs of a magnitude that investors encounter nowadays. Moreover, our computation of transaction costs should be

recognized as a first-order approximation as it ignores turnover inside the basis portfolios themselves and

heterogeneity in transaction costs across stocks.

18Given that we recognize the fat tails of returns, in Section III of the supplementary material we also report the

skewness and excess kurtosis of the two-fund and three-fund rules calibrated either to the multivariate normal or

elliptical distribution. We find that whereas the trend for skewness is unclear, calibrating the portfolio rules to the

multivariate elliptical distribution helps reduce kurtosis significantly.
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with a reduction of 61.7%, 49.4%, and 38.3% for T = 60, 120, and 240, respectively.

To understand why the combination coefficients are smaller when they are calibrated to the

multivariate elliptical distribution than to the multivariate t and multivariate normal distributions,

in Figure 7 we depict boxplots of the estimates of the parameters (η ,ϕ) and (k1,k2,k3) for the

25SBTM dataset. These parameters control the increase in the out-of-sample mean and variance

relative to the normality case in the asymptotic and finite-sample setting, respectively. We get two

main findings from Figure 7. Firstly, these parameters can be significantly larger than one, and this

is particularly the case for k2. Given that k2 increases the out-of-sample variance, it is optimal to

lower the combination coefficients when accounting for fat tails. Secondly, whereas calibrating

these parameters to the multivariate t or the multivariate elliptical distribution leads to similar

values when asset returns are multivariate t-distributed in Figure 6, under empirical data (η ,ϕ)

and (k1,k2,k3) can be significantly larger when they are calibrated to the multivariate elliptical

distribution. This suggests that fat tails in empirical data have a larger impact on the out-of-sample

mean and variance than the multivariate t-distribution suggests. As a result, the combination

coefficients in the two-fund and three-fund rules are lower under the multivariate elliptical

distribution compared with multivariate t, and as we explain below, this helps

improve performance.

[Insert Figure 7 approximately here]

Third, the calibration of the two-fund and three-fund rules to the multivariate elliptical

distribution outperforms that to the multivariate t-distribution, which in turn outperforms that to

the multivariate normal distribution in Kan and Zhou (2007). On average across datasets, the

increase in the gross annualized out-of-sample utility when switching from multivariate normal to
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multivariate elliptical is 28.7, 10.7, and 8.65 percentage points for T = 60, 120, and 240,

respectively. In Figure 8, we depict the net-of-cost annualized out-of-sample utility delivered by

the two-fund and three-fund rules calibrated to the multivariate normal, t, and elliptical

distributions. We find that the multivariate elliptical distribution delivers the best performance and

that the multivariate normal and t-distributions deliver negative utilities when T = 60. Moreover,

when T = 120 and 240, the three-fund rule calibrated to the multivariate elliptical distribution

always delivers a positive net utility, which is not always true when it is calibrated to the

multivariate normal and t-distributions.

[Insert Figure 8 approximately here]

Fourth, there are a few cases in which five-fold cross-validation provides the best

performance, and it is often superior to the two-fund and three-fund rules calibrated to the

multivariate normal distribution. However, in most cases it underperforms the two-fund and

three-fund rules calibrated to the multivariate elliptical distribution. This suggests, as in the

simulated data, that not overly restrictive parametric assumptions are valuable over a fully

data-driven approach.19

Fifth, the three-fund rule outperforms the two-fund rule when the sample size T = 120 and

240. However, when the sample size decreases to T = 60, it is only when we use the multivariate

elliptical distribution or cross-validation that adding the sample GMV portfolio in the three-fund

19In unreported results, we find that the combination coefficients calibrated with five-fold cross-validation are

much more unstable over time than those calibrated with the multivariate elliptical distribution. This instability hurts

out-of-sample performance and explains why the two-fund and three-fund rules calibrated with cross-validation often

incur larger performance losses due to transaction costs even though they often take a higher exposure to the risk-free

asset than the portfolio rules calibrated with the elliptical distribution.
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rule outperforms the two-fund rule. This result highlights again the importance of using parametric

assumptions that are not too restrictive. On average across datasets, the annualized gross utility

gain when switching from the two-fund rule to the three-fund rule, when we use combination

coefficients calibrated to the multivariate elliptical distribution and the exact finite-sample

formula, is 2.75, 4.25, and 6.11 percentage points for T = 60, 120, and 240, respectively.

Finally, another benefit of calibrating the two-fund and three-fund rules to the multivariate

elliptical distribution rather than to the multivariate normal distribution is that it delivers lower

transaction costs because smaller combination coefficients induce less extreme positions in the

risky assets. Specifically, on average across datasets, the annualized out-of-sample utility loss due

to transaction costs suffered by the two-fund and three-fund rules calibrated to the multivariate

normal distribution is 14.5, 8.27, and 4.87 percentage points for T = 60, 120, and 240,

respectively. For the two-fund and three-fund rules calibrated to the multivariate elliptical

distribution using the exact finite-sample formula, this utility loss decreases to 10.2, 6.33, and 4.21

percentage points for T = 60, 120, and 240, respectively. This reduction in transaction costs

makes that the two-fund and three-fund rules calibrated to the multivariate elliptical distribution

substantially outperform the equally weighted portfolio (combined with the risk-free asset or not)

in Table 4 even after transaction costs. In contrast, there are many cases where the two-fund and

three-fund rules calibrated to the multivariate normal distribution underperform the equally

weighted portfolios.
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C. Additional Empirical Results

We consider three additional empirical results in this section. First, we compare the

in-sample versus out-of-sample performance of the two-fund and three-fund rules. Second, we

study the optimal combination of the sample GMV portfolio with the risk-free asset. Third, we use

daily instead of monthly data. The corresponding tables are in Section III of the supplementary

material.

1. In-Sample versus Out-of-Sample Performance

We run a similar exercise to that in Barroso and Saxena (2021) by comparing the

in-sample versus out-of-sample mean return, volatility, and utility of the two-fund and three-fund

rules. Barroso and Saxena (2021) observe that the in-sample risk of the three-fund rule of Kan and

Zhou (2007), calibrated to the multivariate normal distribution, substantially under-estimates the

out-of-sample portfolio risk. Therefore, our interest is to evaluate whether part of this result can be

attributed to ignoring the impact of fat tails on the out-of-sample portfolio performance. We

evaluate this by testing whether our two-fund and three-fund rules calibrated to the multivariate

elliptical distribution provide a better prediction of the out-of-sample realized mean return,

volatility, and utility than the portfolio rules calibrated to the multivariate normal distribution.

For each of the two-fund and three-fund rules calibrated to the multivariate normal, t, or

elliptical distribution using the exact finite-sample formula, we compute the difference between 1)

the average in-sample annualized mean return, volatility, and utility over all estimation windows

of size T = 60, 120, and 240 months versus 2) the corresponding out-of-sample realized statistic.

The difference for the volatility is always negative and we report it positively. Thus, the lower the
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differences, the better. We report the results in Table 2 of the supplementary material. We observe

that although there is a substantial difference between in-sample versus out-of-sample return

statistics, as is typical for optimized mean-variance portfolios (Kan et al., 2024), the mismatch is

also smaller when the two-fund and three-fund rules are calibrated to the multivariate elliptical

distribution, and often substantially so. Thus, incorporating fat tails in the calibration of portfolio

rules by increasing their exposure to the risk-free asset is helpful both for out-of-sample

performance and prediction.

2. Combining the Sample GMV Portfolio with the Risk-Free Asset

We consider an alternative portfolio combination rule, the scaled GMV portfolio, that

combines the sample GMV portfolio with the risk-free asset:

ŵg(c) =
c
γ

Σ̂
−11N .(70)

The scaled GMV portfolio ignores the sample mean return µ̂ , which may improve the

out-of-sample performance compared with the two-fund and three-fund rules because of the large

estimation risk in µ̂ . Moreover, such a portfolio rule may appeal to practitioners because ignoring

µ̂ typically implies less extreme portfolio weights and lower transaction costs.

Under i.i.d. multivariate normality, the optimal combination coefficient is

c⋆n = µg
(T −N −1)(T −N −4)

T (T −2)
.(71)

In the next proposition, we derive the optimal combination coefficient under the multivariate
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elliptical distribution in the fixed N/T asymptotic regime and in the finite-sample case.

Proposition 9. The optimal combination coefficient c⋆ that maximizes the expected out-of-sample

utility of the scaled GMV portfolio ŵg(c) in (70) is:

1. When N → ∞, T → ∞, and N/T → ρ ∈ (0,1),

c⋆ → µg(1−ρ)2 η

ϕ
.(72)

2. When N and T are finite,

c⋆ = µg
(T −N −1)(T −N −4)

T (T −2)
k1

k2
.(73)

In Table 3 of the supplementary material, we use our six empirical datasets to evaluate the

out-of-sample utility of the optimal scaled GMV portfolio with the combination coefficient

calibrated in six different ways as in Section VI.B. In Table 4, we also report the out-of-sample

utility of the sample GMV portfolio without a risk-free asset. The conclusions drawn in

Section VI.B are overall robust to using this alternative portfolio combination rule. In particular,

the combination coefficient calibrated to the multivariate elliptical distribution using the

finite-sample formula generally delivers the best performance. This is particularly true when the

sample size T = 60, in which case calibrating the combination coefficient to the multivariate

normal delivers a negative net-of-cost utility while the multivariate elliptical distribution delivers

a positive net-of-cost utility.

Interestingly, when T = 60 and the combination coefficients are calibrated to the

multivariate normal distribution, the scaled GMV portfolio considered in this section outperforms
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the three-fund rule in Table 3. The average gain in annualized out-of-sample utility across datasets

is 13.5 percentage points before transaction costs and 18.1 percentage points after transaction

costs. This is because the combination coefficient on the sample mean-variance portfolio in the

three-fund rule, which exploits expected returns, is too large when we ignore the impact of fat

tails. In contrast, when the combination coefficients are calibrated to the multivariate elliptical

distribution, the three-fund rule generally outperforms the scaled GMV portfolio even for T = 60

and net of transaction costs. Similarly, we observe that the scaled GMV portfolio calibrated to the

multivariate elliptical distribution outperforms the plain sample GMV portfolio in Table 4 in the

vast majority of cases for all sample sizes, unlike when it is calibrated to the multivariate normal

distribution.

However, irrespective of the calibration method, the three-fund rule outperforms the scaled

GMV portfolio when the sample size increases to T = 120 and 240. For example, when T = 120

and we calibrate the combination coefficients to the multivariate elliptical distribution using the

exact finite-sample formula, the three-fund rule increases the annualized gross out-of-sample

utility compared with the scaled GMV portfolio by 11.1 percentage points, and the net-of-cost

out-of-sample utility by 7.72 percentage points. However, a practical drawback of the three-fund

rule is that because it exploits expected returns, it suffers from larger performance losses due to

transaction costs. Specifically, when we calibrate combination coefficients to the multivariate

elliptical distribution using the exact finite-sample formula, the average loss in out-of-sample

utility across datasets suffered by the three-fund rule is 10.5, 6.30, and 4.08 percentage points for

T = 60, 120, and 240, respectively. For the scaled GMV portfolio, the average loss due to

transaction costs decreases to 5.64, 2.91, and 2.24 percentage points for T = 60, 120, and 240,

respectively.
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3. Daily Data

We now test the robustness of our results to using daily instead of monthly data, which are

available for the 10MOM, 25SBTM, 25OPINV, and 30IND datasets. Using higher-frequency data

has two contrasting impacts on estimation risk. On the one hand, the sample covariance matrix is

a more accurate estimate, which reduces estimation risk. On the other hand, fat tails are more

pronounced (Martellini and Ziemann, 2010), which increases estimation risk.

Although we use daily data, we reevaluate portfolio weights every month to avoid

excessive trading. We use a sample size of either 5, 10, or 20 years, i.e., T = 1260, 2520, or 5040

days. For the calibration to the multivariate t-distribution and the multivariate elliptical

distribution, we find that because the sample size is large, computing the combination coefficients

with the exact finite-sample formula or the asymptotic formula delivers similar results. Therefore,

we focus on the asymptotic coefficients that are faster to compute.

We report the results in Table 4 of the supplementary material for the scaled GMV

portfolio, the two-fund rule, and the three-fund rule. Overall, the conclusions drawn using

monthly data are robust to using daily data. In particular, it is remarkable that calibrating the

portfolio rules to the multivariate elliptical distribution systematically delivers the best

out-of-sample performance.

VII. Conclusion

Portfolio combination rules that optimize the out-of-sample performance under estimation

risk are a popular method in portfolio selection. In their derivations, researchers typically assume
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that asset returns are multivariate normally distributed; see, e.g., Kan and Zhou (2007), Tu and

Zhou (2011), DeMiguel et al. (2015), Kan et al. (2021), Lassance et al. (2024a), and Yuan and

Zhou (2023). In this paper, we investigate the impact that fat-tailed multivariate elliptical returns

have on the out-of-sample mean and variance of the sample mean-variance portfolio, and we

adapt the optimal two-fund rule and three-fund rule of Kan and Zhou (2007) accordingly. Our

theoretical results are applicable to any multivariate elliptical distribution. Empirically, we do not

need to specify which multivariate elliptical distribution the returns follow, and our two-fund and

three-fund rules can be calibrated directly from the data.

We show that fat tails in asset returns lead to poorer out-of-sample performance of the

sample mean-variance and sample global minimum-variance portfolios relative to normality.

Therefore, in the two-fund and three-fund rules it is optimal to allocate less weights to the sample

mean-variance portfolio and the sample GMV portfolio, and more weight to the risk-free asset,

when returns are fat-tailed than when returns are multivariate normally distributed. These

differences can be significant, and integrating the fat-tailed return distribution in the calibration of

portfolio combination rules substantially improves their out-of-sample performance in practice.

Finally, estimation risk is an important concern in other areas of finance in which sample

estimators are used to guide forecasts and optimize future outcomes. The multivariate normality

assumption is often used in these situations for theoretical tractability, and our results can help

researchers employ more realistic distributional assumptions that deliver improved performance.

For example, forecast combination is an established method for predicting the equity premium

(Rapach, Strauss and Zhou, 2010; Denk and Löffler, 2024). Given the correspondence between

forecast combination and portfolio selection (Beck, Kozbur and Wolf, 2023), estimation risk

affects both methods in a similar manner, and our results can thus help incorporate the impact of
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fat tails in the equity premium prediction. Another example is asset pricing, where the stochastic

discount factor (SDF) that prices all test assets and spans the efficient frontier depends on the

mean and covariance matrix of the test assets, and thus, suffers from parameter uncertainty out of

sample (Bryzgalova, Pelger and Zhu, 2023). Our results can help build better SDF models that

account for both the impact of fat tails and parameter uncertainty in spanning the out-of-sample

efficient frontier.
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Figure 1: Parameters η and ϕ under the Multivariate t-Distribution.

This figure depicts the parameters η and ϕ when asset returns follow a multivariate t-distribution as a
function of ρ for two different degrees of freedom ν = (4,8). The two parameters are obtained by using
Proposition 6.

Figure 2: Limit of the Out-of-Sample Utility of the Sample Mean-Variance Portfolio under the Multi-
variate t-Distribution.

This figure depicts the limit of the out-of-sample utility of the sample mean-variance portfolio, U(ŵ) in (33),
in the fixed N/T asymptotic setting. We set γ = 1, ρ = (0.1,0.3,0.5) θ = (0.3,0.5), and we depict the limit
of U(ŵ) as a function of the number of degrees of freedom ν of the multivariate t-distribution.
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Figure 3: Optimal Three-Fund Combination Coefficients under the Multivariate t-Distribution versus
the Normal Distribution.

This figure depicts the ratio between the optimal three-fund combination coefficients (c⋆1,c⋆2) under the
multivariate t-distribution and those under the multivariate normal distribution. We depict the ratio as a
function of ρ for a number of degrees of freedom ν = (4,8) and ψ = (0.2,0.4). The ratios are obtained by
using (41)–(42).

Figure 4: Exact versus Asymptotic (k1,k2,k3) under the Multivariate t-Distribution.

This figure compares the exact finite-sample value of (k1,k2,k3) in Proposition 7 to their asymptotic
approximation (η ,ϕ,η). We calibrate these parameters by assuming the returns follow a multivariate
t-distribution. We set a sample size T = 100, a number of degrees of freedom ν = (4,8), and we vary the
number of assets N from 2 to 60.
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Figure 5: Expected Out-of-Sample Utility Loss Due to the Multivariate Normality Assumption.

This figure depicts the difference between the annualized expected out-of-sample utility of the two-fund and
three-fund rules that are wrongly calibrated to the multivariate normal distribution with the annualized
utility of the optimal two-fund and three-fund rules. We assume the returns are multivariate t-distributed,
γ = 1, (ψ,θ) = (0.2,0.3) or (0.4,0.5), T = 100, N = (10,25,50), and the number of degrees of freedom ν

is between 3 and 10.
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Figure 6: Boxplots of Estimates of the Parameters η and ϕ .

This figure depicts boxplots of estimates of the parameters η and ϕ defined in Proposition 3. The estimates
η̂ and ϕ̂ in (56)–(57) assume returns are multivariate t-distributed, and the number of degrees of freedom ν

is estimated by maximum likelihood. The estimates η̃ and ϕ̃ in (58)–(59) use the sample distribution of τt by
El Karoui (2010, 2013) in (60). The boxplots are obtained by simulating 10,000 return vectors of size T from
a multivariate t-distribution with (µ,Σ) = (0N , IN), N = 25, ν = (4,6,8), and T = (60,120,240). The
dashed horizontal lines depict the true value of η and ϕ . The star symbol in each boxplot depicts the average
estimated value.
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Figure 7: Parameters (η ,ϕ) and (k1,k2,k3)Calibrated to the Multivariate t and Elliptical Distributions.

This figure depicts boxplots of the estimates of the parameters (η ,ϕ) and (k1,k2,k3). These parameters are
calibrated either to the multivariate t-distribution whose number of degrees of freedom ν is estimated by
maximum likelihood, which corresponds to (η̂ , ϕ̂) and (k̂1, k̂2, k̂3), or to the multivariate elliptical
distribution using the sample distribution of τt by El Karoui (2010, 2013), which corresponds to (η̃ , ϕ̃) and
(k̃1, k̃2, k̃3). The boxplots depict the variability of these parameters across all the estimation windows. We
consider the dataset of 25 portfolios of firms sorted on size and book-to-market spanning July 1926 to July
2023, and a sample size T = 60, 120, and 240 months.
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Figure 8: Net-of-Cost Annualized Out-of-Sample Utility of the Two-Fund and Three-Fund Rules.

This figure depicts, across the six datasets described in Section VI.B, the net-of-cost annualized
out-of-sample utility delivered by the two-fund and three-fund rules calibrated to 1) the multivariate normal
distribution, 2) the multivariate t-distribution whose number of degrees of freedom ν is estimated by
maximum likelihood, 3) the multivariate elliptical distribution using the sample distribution of τt by
El Karoui (2010, 2013). We compute the combination coefficients by using the exact finite-sample formula
in Proposition 7, and we use sample sizes T = 60, 120, and 240 months. Formulas for the estimated
two-fund and three-fund combination coefficients are available in Table 1. The utilities are net of
proportional transaction costs of 10 basis points.
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Table 1: Formulas for Estimated Two-Fund and Three-Fund Combination Coefficients

This table reports formulas for the estimators of the optimal combination coefficients in the two-fund rule (ĉ)
and the three-fund rule (ĉ1, ĉ2). The combination coefficients are calibrated either to the multivariate normal,
t, or elliptical distribution using the asymptotic formula of the exact finite-sample formula. The different
inputs entering the formulas for ĉ and (ĉ1, ĉ2) are defined in Section V.

Calibration method Two-fund coefficient Three-fund coefficients

Normal (exact) ĉ = (T−N−1)(T−N−4)
T (T−2)

(
θ̂ 2

a
θ̂ 2

a+
N
T

)
(ĉ1, ĉ2) =

(T−N−1)(T−N−4)
T (T−2)

(
ψ̂2

a
ψ̂2

a+
N
T
,

µ̂g
N
T

ψ̂2
a+

N
T

)
t (asymp) ĉ =

(
1− N

T

)2 θ̂ 2
a

(ϕ̂/η̂)θ̂ 2
a+

N
T

(ĉ1, ĉ2) =
(
1− N

T

)2
(

ψ̂2
a

(ϕ̂/η̂)ψ̂2
a+

N
T
,

µ̂g(η̂/ϕ̂)N
T

(ϕ̂/η̂)ψ̂2
a+

N
T

)
t (exact) ĉ = (T−N−1)(T−N−4)

T (T−2)

(
k̂1θ̂ 2

a
k̂2θ̂ 2

a+k̂3
N
T

)
(ĉ1, ĉ2) =

(T−N−1)(T−N−4)
T (T−2)

(
k̂1ψ̂2

a
k̂2ψ̂2

a+k̂3
N
T
,

µ̂gk̂1(k̂3/k̂2)
N
T

k̂2ψ̂2
a+k̂3

N
T

)
Elliptical (asymp) ĉ =

(
1− N

T

)2 θ̂ 2
a

(ϕ̃/η̃)θ̂ 2
a+

N
T

(ĉ1, ĉ2) =
(
1− N

T

)2
(

ψ̂2
a

(ϕ̃/η̃)ψ̂2
a+

N
T
,

µ̂g(η̃/ϕ̃)N
T

(ϕ̃/η̃)ψ̂2
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Table 2: Out-of-Sample Performance with Simulated Multivariate t-Distributed Data.

This table reports the annualized expected out-of-sample utility (EU) and the mean value of the combination
coefficients for the two-fund and three-fund rules. We simulate multivariate t-distributed returns with ν = 4,
6, and 8 degrees of freedom and (µg,ψ,θ) calibrated to a dataset of 25 portfolios of firms sorted on size and
book-to-market spanning July 1926 to July 2023. The risk-aversion coefficient is γ = 1 and the sample size is
T = 60, 120, and 240 months. The combination coefficients are calibrated to 1) the multivariate normal
distribution, 2) the multivariate t-distribution with ν estimated by maximum likelihood, and 3) the
multivariate elliptical distribution using the sample distribution of τt by El Karoui (2010, 2013), and 4) a
five-fold cross-validation method. For the second and third case, the combination coefficients are computed
using the fixed N/T asymptotic formula and the exact finite-sample formula. Formulas for the estimated
two-fund and three-fund combination coefficients are available in Table 1. We also report the EU for the case
in which the optimal combination coefficients are known. The largest EU for the case with estimated
combination coefficients is depicted in bold.

Known combination coefficients Estimated combination coefficients

Normal t t Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (exact) (asymp) (exact) (asymp) (exact) validation

A) ννν === 444
Two-fund rule
T = 60 EU 0.071 0.071 0.072 −0.155 −0.075 −0.029 0.004 0.045 −0.001

Mean ĉ 0.054 0.054 0.049 0.092 0.084 0.075 0.071 0.056 0.035
T = 120 EU 0.145 0.148 0.149 0.043 0.092 0.100 0.125 0.128 0.081

Mean ĉ 0.184 0.167 0.161 0.221 0.194 0.186 0.161 0.152 0.124
T = 240 EU 0.232 0.237 0.237 0.183 0.209 0.211 0.219 0.219 0.190

Mean ĉ 0.369 0.329 0.322 0.385 0.339 0.333 0.292 0.285 0.262
Three-fund rule
T = 60 EU 0.076 0.118 0.120 −0.284 −0.099 −0.038 0.013 0.058 −0.014

Mean ĉ1 0.039 0.041 0.036 0.082 0.076 0.068 0.065 0.051 0.028
Mean ĉ2/µ̂g 0.264 0.160 0.139 0.221 0.134 0.116 0.083 0.053 0.055

T = 120 EU 0.170 0.198 0.198 0.011 0.109 0.120 0.152 0.154 0.089
Mean ĉ1 0.139 0.130 0.126 0.190 0.170 0.163 0.143 0.135 0.100
Mean ĉ2/µ̂g 0.465 0.298 0.282 0.415 0.265 0.250 0.163 0.149 0.152

T = 240 EU 0.258 0.273 0.273 0.188 0.231 0.234 0.243 0.243 0.201
Mean ĉ1 0.296 0.270 0.265 0.318 0.286 0.280 0.251 0.246 0.220
Mean ĉ2/µ̂g 0.495 0.348 0.337 0.472 0.334 0.324 0.236 0.228 0.227

B) ννν === 666
Two-fund rule
T = 60 EU 0.063 0.062 0.063 −0.087 −0.081 −0.039 0.016 0.035 0.000

Mean ĉ 0.054 0.058 0.051 0.087 0.089 0.079 0.069 0.059 0.036
T = 120 EU 0.138 0.138 0.138 0.071 0.085 0.091 0.115 0.117 0.078

Mean ĉ 0.184 0.179 0.172 0.207 0.199 0.192 0.164 0.157 0.127
T = 240 EU 0.229 0.230 0.230 0.194 0.202 0.203 0.211 0.211 0.187

Mean ĉ 0.369 0.353 0.347 0.366 0.350 0.343 0.303 0.297 0.274
Three-fund rule
T = 60 EU 0.108 0.117 0.119 −0.159 −0.119 −0.055 0.032 0.054 0.000

Mean ĉ1 0.039 0.042 0.038 0.079 0.081 0.072 0.063 0.054 0.028
Mean ĉ2/µ̂g 0.264 0.211 0.185 0.224 0.184 0.162 0.086 0.068 0.061

T = 120 EU 0.191 0.198 0.198 0.073 0.105 0.116 0.148 0.150 0.091
Mean ĉ1 0.139 0.137 0.132 0.179 0.173 0.167 0.145 0.140 0.102
Mean ĉ2/µ̂g 0.465 0.377 0.359 0.425 0.347 0.331 0.202 0.190 0.160

T = 240 EU 0.271 0.275 0.275 0.218 0.231 0.233 0.242 0.242 0.205
Mean ĉ1 0.296 0.287 0.282 0.303 0.292 0.287 0.257 0.253 0.223
Mean ĉ2/µ̂g 0.495 0.424 0.413 0.488 0.421 0.411 0.293 0.285 0.278
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Table 2: Out-of-Sample Performance with Simulated Multivariate t-Distributed Data (continued).

Known combination coefficients Estimated combination coefficients

Normal t t Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (exact) (asymp) (exact) (asymp) (exact) validation

C) ννν === 888
Two-fund rule
T = 60 EU 0.060 0.060 0.060 −0.069 −0.084 −0.042 0.017 0.032 −0.004

Mean ĉ 0.054 0.059 0.053 0.086 0.092 0.082 0.069 0.061 0.037
T = 120 EU 0.135 0.135 0.135 0.071 0.085 0.092 0.116 0.118 0.076

Mean ĉ 0.184 0.183 0.176 0.209 0.200 0.193 0.165 0.158 0.129
T = 240 EU 0.229 0.229 0.229 0.197 0.201 0.202 0.210 0.210 0.186

Mean ĉ 0.369 0.361 0.355 0.362 0.354 0.348 0.308 0.302 0.279
Three-fund rule
T = 60 EU 0.115 0.118 0.120 −0.124 −0.126 −0.062 0.035 0.052 −0.010

Mean ĉ1 0.039 0.043 0.038 0.077 0.083 0.074 0.063 0.056 0.029
Mean ĉ2/µ̂g 0.264 0.234 0.208 0.226 0.208 0.184 0.090 0.076 0.060

T = 120 EU 0.196 0.199 0.199 0.092 0.107 0.117 0.147 0.149 0.089
Mean ĉ1 0.139 0.140 0.135 0.175 0.174 0.168 0.147 0.141 0.098
Mean ĉ2/µ̂g 0.465 0.410 0.392 0.429 0.381 0.365 0.220 0.208 0.178

T = 240 EU 0.274 0.275 0.276 0.224 0.231 0.233 0.242 0.242 0.201
Mean ĉ1 0.296 0.292 0.287 0.300 0.295 0.290 0.262 0.257 0.227
Mean ĉ2/µ̂g 0.495 0.451 0.442 0.490 0.449 0.440 0.315 0.306 0.286
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Table 3: Out-of-Sample Performance of Two-Fund and Three-Fund Rules with Empirical Data.

This table reports the annualized out-of-sample utility (EU) and the mean value of the combination
coefficients for the two-fund and three-fund rules, across the six datasets described in Section VI.B. The EU
is either gross or net of proportional transaction costs of 10 basis points. The risk-aversion coefficient is
γ = 1 and the sample size is T = 60, 120, and 240 months. The combination coefficients are calibrated to 1)
the multivariate normal distribution, 2) the multivariate t-distribution with ν estimated by maximum
likelihood, 3) the multivariate elliptical distribution using the sample distribution of τt by El Karoui (2010,
2013), and 4) a five-fold cross-validation method. For the second and third case, the combination coefficients
are computed using the fixed N/T asymptotic formula and the exact finite-sample formula. Formulas for the
estimated two-fund and three-fund combination coefficients are available in Table 1. The largest EU in each
case is depicted in bold. For each dataset, we report the number of degrees of freedom estimated by
maximum likelihood, ν̂ .

Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (asymp) (exact) validation

A) 10MOM dataset (ν̂ = 4.15)
Two-fund rule
T = 60 Gross EU 0.052 0.057 0.105 0.186 0.202 0.139

Net EU −0.021 −0.017 0.035 0.122 0.142 0.061
Mean ĉ 0.284 0.288 0.267 0.233 0.215 0.155

T = 120 Gross EU 0.254 0.270 0.282 0.313 0.317 0.267
Net EU 0.206 0.223 0.236 0.272 0.278 0.217
Mean ĉ 0.445 0.435 0.420 0.375 0.360 0.337

T = 240 Gross EU 0.267 0.279 0.285 0.302 0.306 0.289
Net EU 0.234 0.248 0.254 0.273 0.277 0.256
Mean ĉ 0.626 0.606 0.594 0.548 0.536 0.489

Three-fund rule
T = 60 Gross EU 0.003 0.008 0.070 0.185 0.206 0.137

Net EU −0.073 −0.066 −0.001 0.121 0.146 0.050
Mean ĉ1 0.242 0.246 0.229 0.202 0.187 0.124
Mean ĉ2/µ̂g 0.406 0.363 0.331 0.217 0.193 0.143

T = 120 Gross EU 0.298 0.315 0.326 0.354 0.356 0.280
Net EU 0.252 0.270 0.282 0.315 0.318 0.227
Mean ĉ1 0.361 0.357 0.345 0.311 0.299 0.281
Mean ĉ2/µ̂g 0.455 0.398 0.379 0.288 0.271 0.181

T = 240 Gross EU 0.309 0.310 0.317 0.329 0.333 0.311
Net EU 0.279 0.281 0.288 0.302 0.307 0.279
Mean ĉ1 0.498 0.489 0.480 0.447 0.438 0.402
Mean ĉ2/µ̂g 0.408 0.355 0.344 0.292 0.282 0.211
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Table 3: Out-of-Sample Performance of Two-Fund and Three-Fund Rules with Empirical Data (con-
tinued).

Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (asymp) (exact) validation

B) 16ANOM dataset (ν̂ = 5.46)
Two-fund rule
T = 60 Gross EU −0.198 −0.228 −0.145 0.012 0.043 0.108

Net EU −0.350 −0.380 −0.290 −0.108 −0.068 −0.021
Mean ĉ 0.203 0.215 0.197 0.169 0.150 0.098

T = 120 Gross EU 0.242 0.258 0.267 0.291 0.294 0.213
Net EU 0.163 0.181 0.192 0.227 0.233 0.150
Mean ĉ 0.402 0.348 0.335 0.317 0.304 0.180

T = 240 Gross EU 0.458 0.488 0.493 0.500 0.500 0.406
Net EU 0.400 0.433 0.438 0.451 0.453 0.352
Mean ĉ 0.618 0.575 0.564 0.500 0.489 0.449

Three-fund rule
T = 60 Gross EU −0.385 −0.428 −0.292 0.010 0.057 0.108

Net EU −0.538 −0.577 −0.437 −0.111 −0.056 −0.031
Mean ĉ1 0.146 0.173 0.159 0.129 0.118 0.067
Mean ĉ2/µ̂g 0.348 0.305 0.277 0.174 0.154 0.091

T = 120 Gross EU 0.189 0.235 0.252 0.272 0.279 0.155
Net EU 0.110 0.158 0.177 0.209 0.219 0.087
Mean ĉ1 0.285 0.288 0.278 0.246 0.238 0.139
Mean ĉ2/µ̂g 0.442 0.376 0.359 0.268 0.254 0.105

T = 240 Gross EU 0.528 0.560 0.565 0.549 0.550 0.426
Net EU 0.474 0.507 0.513 0.503 0.505 0.366
Mean ĉ1 0.552 0.486 0.477 0.461 0.452 0.400
Mean ĉ2/µ̂g 0.307 0.306 0.298 0.201 0.194 0.075

C) 25SBETA dataset (ν̂ = 7.92)
Two-fund rule
T = 60 Gross EU −0.073 −0.153 −0.060 0.125 0.140 0.039

Net EU −0.266 −0.358 −0.250 −0.011 0.017 −0.119
Mean ĉ 0.107 0.117 0.104 0.074 0.066 0.043

T = 120 Gross EU −0.105 −0.108 −0.085 0.052 0.061 0.021
Net EU −0.211 −0.213 −0.188 −0.032 −0.020 −0.055
Mean ĉ 0.232 0.232 0.223 0.177 0.170 0.089

T = 240 Gross EU 0.045 0.050 0.054 0.098 0.100 0.118
Net EU −0.018 −0.012 −0.007 0.046 0.049 0.069
Mean ĉ 0.355 0.350 0.344 0.291 0.286 0.180

Three-fund rule
T = 60 Gross EU −0.235 −0.367 −0.183 0.175 0.191 0.035

Net EU −0.452 −0.589 −0.395 0.032 0.062 −0.153
Mean ĉ1 0.082 0.090 0.081 0.061 0.055 0.028
Mean ĉ2/µ̂g 0.221 0.225 0.199 0.079 0.068 0.059

T = 120 Gross EU −0.234 −0.212 −0.171 0.066 0.077 −0.054
Net EU −0.337 −0.313 −0.270 −0.016 −0.002 −0.139
Mean ĉ1 0.175 0.176 0.170 0.140 0.135 0.064
Mean ĉ2/µ̂g 0.429 0.390 0.373 0.200 0.189 0.094

T = 240 Gross EU 0.156 0.169 0.173 0.201 0.202 0.150
Net EU 0.098 0.112 0.117 0.155 0.156 0.101
Mean ĉ1 0.259 0.256 0.252 0.218 0.214 0.143
Mean ĉ2/µ̂g 0.532 0.491 0.481 0.325 0.316 0.165
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Table 3: Out-of-Sample Performance of Two-Fund and Three-Fund Rules with Empirical Data (con-
tinued).

Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (asymp) (exact) validation

D) 25SBTM dataset (ν̂ = 4.03)
Two-fund rule
T = 60 Gross EU −0.044 −0.130 −0.030 0.143 0.157 0.097

Net EU −0.196 −0.283 −0.179 0.022 0.047 −0.046
Mean ĉ 0.103 0.113 0.101 0.075 0.066 0.042

T = 120 Gross EU 0.366 0.378 0.392 0.421 0.418 0.379
Net EU 0.262 0.274 0.291 0.338 0.339 0.280
Mean ĉ 0.262 0.259 0.249 0.193 0.185 0.154

T = 240 Gross EU 0.259 0.285 0.294 0.381 0.384 0.392
Net EU 0.195 0.222 0.231 0.323 0.328 0.327
Mean ĉ 0.440 0.423 0.415 0.343 0.336 0.282

Three-fund rule
T = 60 Gross EU −0.149 −0.247 −0.097 0.176 0.191 0.100

Net EU −0.323 −0.415 −0.264 0.048 0.074 −0.075
Mean ĉ1 0.085 0.093 0.083 0.065 0.058 0.031
Mean ĉ2/µ̂g 0.218 0.220 0.195 0.075 0.065 0.052

T = 120 Gross EU 0.342 0.366 0.384 0.441 0.439 0.379
Net EU 0.237 0.262 0.282 0.361 0.361 0.269
Mean ĉ1 0.205 0.205 0.197 0.160 0.154 0.126
Mean ĉ2/µ̂g 0.399 0.354 0.339 0.176 0.166 0.089

T = 240 Gross EU 0.290 0.316 0.328 0.400 0.404 0.394
Net EU 0.228 0.255 0.267 0.345 0.350 0.325
Mean ĉ1 0.356 0.347 0.341 0.292 0.286 0.235
Mean ĉ2/µ̂g 0.434 0.374 0.366 0.231 0.224 0.169

E) 25OPINV dataset (ν̂ = 7.35)
Two-fund rule
T = 60 Gross EU −0.248 −0.375 −0.227 0.070 0.099 0.099

Net EU −0.414 −0.539 −0.390 −0.068 −0.027 −0.058
Mean ĉ 0.103 0.113 0.101 0.073 0.065 0.047

T = 120 Gross EU 0.030 0.037 0.063 0.211 0.217 0.196
Net EU −0.089 −0.081 −0.053 0.119 0.129 0.087
Mean ĉ 0.261 0.260 0.250 0.186 0.179 0.143

T = 240 Gross EU −0.271 −0.253 −0.233 0.016 0.028 0.111
Net EU −0.333 −0.314 −0.294 −0.044 −0.031 0.052
Mean ĉ 0.435 0.426 0.418 0.342 0.336 0.233

Three-fund rule
T = 60 Gross EU −0.300 −0.445 −0.245 0.130 0.161 0.088

Net EU −0.493 −0.628 −0.432 −0.014 0.029 −0.096
Mean ĉ1 0.082 0.091 0.081 0.062 0.056 0.034
Mean ĉ2/µ̂g 0.220 0.228 0.202 0.076 0.066 0.057

T = 120 Gross EU 0.231 0.274 0.300 0.362 0.361 0.303
Net EU 0.109 0.153 0.181 0.272 0.274 0.183
Mean ĉ1 0.200 0.202 0.195 0.151 0.146 0.108
Mean ĉ2/µ̂g 0.404 0.370 0.354 0.184 0.174 0.141

T = 240 Gross EU −0.097 −0.071 −0.051 0.132 0.138 0.218
Net EU −0.160 −0.132 −0.112 0.076 0.082 0.151
Mean ĉ1 0.313 0.310 0.305 0.256 0.251 0.158
Mean ĉ2/µ̂g 0.478 0.436 0.427 0.282 0.274 0.303
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Table 3: Out-of-Sample Performance of Two-Fund and Three-Fund Rules with Empirical Data (con-
tinued).

Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (asymp) (exact) validation

F) 30IND dataset (ν̂ = 5.42)
Two-fund rule
T = 60 Gross EU −0.197 −0.253 −0.168 −0.085 −0.043 −0.007

Net EU −0.277 −0.342 −0.248 −0.159 −0.110 −0.063
Mean ĉ 0.052 0.059 0.051 0.049 0.042 0.015

T = 120 Gross EU 0.035 0.033 0.040 0.050 0.053 0.048
Net EU −0.003 −0.005 0.004 0.016 0.021 0.017
Mean ĉ 0.119 0.122 0.117 0.110 0.105 0.050

T = 240 Gross EU −0.042 −0.041 −0.039 −0.032 −0.029 −0.010
Net EU −0.060 −0.060 −0.057 −0.049 −0.046 −0.021
Mean ĉ 0.163 0.163 0.160 0.152 0.150 0.047

Three-fund rule
T = 60 Gross EU −0.307 −0.381 −0.248 −0.094 −0.042 0.043

Net EU −0.413 −0.496 −0.352 −0.181 −0.120 −0.034
Mean ĉ1 0.047 0.053 0.046 0.044 0.039 0.011
Mean ĉ2/µ̂g 0.170 0.180 0.155 0.094 0.081 0.039

T = 120 Gross EU 0.047 0.056 0.068 0.097 0.103 0.067
Net EU 0.003 0.013 0.027 0.060 0.068 0.027
Mean ĉ1 0.097 0.099 0.095 0.091 0.087 0.030
Mean ĉ2/µ̂g 0.444 0.405 0.387 0.269 0.256 0.143

T = 240 Gross EU 0.004 0.007 0.011 0.026 0.029 0.019
Net EU −0.016 −0.013 −0.009 0.009 0.012 0.002
Mean ĉ1 0.104 0.105 0.103 0.100 0.099 0.012
Mean ĉ2/µ̂g 0.649 0.593 0.582 0.460 0.450 0.362
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Table 4: Out-of-Sample Performance of Additional Benchmark Portfolios with Empirical Data.

This table reports the annualized out-of-sample utility (EU) for the equally weighted portfolio (EW), the
optimal combination of the equally weighted portfolio with the risk-free asset in (68) (EWRF), the sample
global minimum-variance portfolio in (69) (SGMV), and the sample mean-variance portfolio in (15) (SMV),
across the six datasets described in Section VI.B. The EU is either gross or net of proportional transaction
costs of 10 basis points. The risk-aversion coefficient is γ = 1 and the sample size is T = 60, 120, and 240
months.

T = 60 T = 120 T = 240
Gross EU Net EU Gross EU Net EU Gross EU Net EU

10MOM EW 0.074 0.073 0.065 0.065 0.065 0.065
EWRF −0.067 −0.071 0.067 0.065 0.034 0.032
SGMV 0.089 0.082 0.080 0.077 0.086 0.084
SMV −2.770 −2.812 −0.389 −0.466 0.040 −0.003

16ANOM EW 0.045 0.045 0.059 0.059 0.058 0.057
EWRF −0.214 −0.218 −0.027 −0.029 0.046 0.045
SGMV 0.075 0.062 0.079 0.073 0.106 0.103
SMV −8.548 −8.021 −1.356 −1.481 0.010 −0.070

25SBETA EW 0.068 0.067 0.083 0.083 0.080 0.079
EWRF −0.156 −0.160 0.025 0.023 0.106 0.104
SGMV 0.068 0.049 0.059 0.051 0.075 0.071
SMV −26.56 −21.11 −4.537 −4.511 −0.995 −1.105

25SBTM EW 0.086 0.086 0.085 0.084 0.078 0.077
EWRF −0.038 −0.043 0.087 0.085 0.064 0.062
SGMV 0.087 0.064 0.090 0.080 0.097 0.092
SMV −25.64 −19.62 −3.099 −3.091 −0.771 −0.846

25OPINV EW 0.064 0.063 0.079 0.078 0.075 0.074
EWRF −0.157 −0.161 0.007 0.005 0.088 0.087
SGMV 0.080 0.057 0.099 0.088 0.105 0.100
SMV −33.03 −24.11 −4.702 −4.553 −2.368 −2.362

30IND EW 0.076 0.075 0.076 0.076 0.071 0.071
EWRF −0.040 −0.045 0.101 0.099 0.049 0.047
SGMV 0.048 0.033 0.053 0.047 0.057 0.054
SMV −52.81 −42.79 −4.700 −4.699 −1.469 −1.533
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This supplementary material to the main paper contains four sections. Section I illustrates

the estimation accuracy of the number of degrees of freedom ν and the distribution of τt .

Section II studies the impact of fat tails on the accuracy of the adjusted estimators of θ 2 and ψ2.

Section III reports the tables containing the results for the additional empirical tests. Section IV

contains the proofs of all theoretical results in the main body of the paper.

I. Accuracy of Estimators of ν and τt

In this section, we illustrate the estimation accuracy of the number of degrees of freedom ν

and the distribution of τt , which underlie the two calibration methods proposed in Section V in the

main body of the paper to estimate the optimal two-fund and three-fund combination coefficients.

Figure 1 studies the estimation accuracy for ν , which we estimate by maximum likelihood.

We set N = 25, a population value of ν = (4,6,8), and we depict boxplots of ν̂ across 10,000

simulations of multivariate t-distributed returns for a sample size T = (60,120,240). We set

(µ,Σ) = (0N , IN) without loss of generality because ν does not depend on (µ,Σ). Figure 1 shows

that as ν increases, and thus the returns are closer to multivariate normal, it becomes more

difficult to estimate ν . Specifically, the boxplots get wider as ν increases. However, in comparison

to the volatility of ν̂ , the bias of ν̂ is more reasonable, and close to zero for T = 120 and 240.

Figure 2 illustrates how the sample distribution of τt by El Karoui (2010, 2013), τ̂t in (60),

converges to the true distribution of τt as N increases. We assume returns are multivariate

t-distributed, in which case we can show that the exact density function of τt in (2) is

fτt (x) =
(ν/2−1)

ν

2 e−
ν−2
2x

Γ(ν/2)x
ν+2

2
.(A1)

2



Figure 1: Boxplots of Estimates of the Number of Degrees of Freedom ν .

This figure depicts boxplots of maximum-likelihood estimates of the number of degrees of freedom ν of the
multivariate t-distribution. The boxplots are obtained by simulating 10,000 times T return vectors from a
multivariate t-distribution with (µ,Σ) = (0N , IN), N = 25, ν = (4,6,8), and T = (60,120,240). The dotted
horizontal lines depict the true value of ν .

Figure 2: Comparison of the True Distribution of τt with the Sample Distribution.

This figure compares the sample distribution of τt by El Karoui (2010, 2013), τ̂t in (60), with the true
distribution of τt . We assume returns are multivariate t-distributed, in which case the exact density function
of τt is given by (A1). The density function of τ̂t is found using a kernel density estimator. We set T = 120,
ν = 6, and an increasing number of assets N that goes from 10 to 100.
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Then, we set T = 120, ν = 6, and we compare the true density function of τt in (A1) with that of

τ̂t found using a kernel density estimator. We do the comparison for an increasing number of

assets N that goes from 10 to 100. Figure 2 shows indeed that the sample distribution and the true

distribution get closer to one another as N increases even for a finite T . Moreover, the sample

distribution is reasonably accurate even for rather small values of N such as N = 25.

II. Impact of Fat Tails on Adjusted Estimators of θ 2 and ψ2

In the main body of the paper, we estimate θ 2 and ψ2 via their adjusted estimators θ 2
a and

ψ2
a in (54)–(55). These estimators are proposed by Kan and Zhou (2007) and are designed to have

minimum root mean square error (RMSE). Unlike the unbiased estimators θ̂ 2
unb and ψ̂2

unb, given by

the first term in (54)–(55), the adjusted estimators are non-negative. Moreover, the adjusted

estimators deliver a lower RMSE than the trimmed estimators max(θ̂ 2
unb,0) and max(ψ̂2

unb,0).

However, the adjusted estimators are derived under the multivariate normal distributional

assumption, whereas we assume that returns are multivariate elliptical. Therefore, it is of interest

to study how fat tails impact the RMSE of θ̂ 2
a and ψ̂2

a . For that purpose, we conduct the following

simulation. We simulate M = 1,000,000 times T returns from a multivariate t-distribution with ν

degrees of freedom and (µ,Σ) calibrated to a dataset of N = 25 portfolios of firms sorted on size

and book-to-market spanning July 1926 to July 2023. This choice of (µ,Σ) yields θ = 0.302 and

ψ = 0.250 in the population. For each simulation m = 1, . . . ,M, we obtain adjusted estimates θ̂ 2
a,m

and ψ̂2
a,m, and compute the RMSE as

RMSE(θ̂ 2
a ) =

√
1
M

M

∑
m=1

(θ̂ 2
a,m −θ 2)2 and RMSE(ψ̂2

a ) =

√
1
M

M

∑
m=1

(ψ̂2
a,m −ψ2)2.(A2)
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Figure 3: Root Mean Squared Error of θ 2
a and ψ2

a

This figure depicts the root mean squared error (RMSE) of the adjusted estimators θ̂ 2
a and ψ̂2

a when the asset
returns are multivariate t-distributed with ν degrees of freedom, where ν varies between 4 and 20. We
consider a sample size T = 60, 120, and 240 months. We calibrate the population value of θ and ψ to a
dataset of N = 25 portfolios of firms sorted on size and book-to-market spanning July 1926 to July 2023,
which yields θ = 0.302 and ψ = 0.250. The RMSE is obtained over one million simulations.

Figure 3 depicts RMSE(θ̂ 2
a ) and RMSE(ψ̂2

a ) for ν varying between 4 and 20 and T = 60, 120, and

240 months. Figure 3 shows that the RMSE does not increase much as ν gets smaller and tails get

fatter. For example, when going from ν = 20 (close to normal) to ν = 6 (excess kurtosis of three),

RMSE(θ̂ 2
a ) goes from 0.171 to 0.180 for T = 60, 0.078 to 0.084 for T = 120, and 0.049 to 0.052

for T = 240, respectively. The conclusion is similar for RMSE(ψ̂2
a ). Moreover, Figure 3 shows

that the RMSE of θ̂ 2
a and ψ̂2

a is particularly large when T = 60 months, which worsens the

estimation accuracy for the two-fund and three-fund combination coefficients. This partly explains

why, in Figure 3 of the main body of the manuscript, the empirical performance is generally much

worse (and sometimes negative) when T = 60 months relative to T = 120 and 240 months.
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III. Tables for the Additional Empirical Tests

In this section, we report tables containing additional empirical results. Specifically,

Table 1 reports the skewness and excess kurtosis of the two-fund and three-fund rules, Table 2

reports the in-sample versus out-of-sample performance of the two-fund and three-fund rules

discussed in Section VI.C.1 in the main body of the paper, Table 3 reports the results for the

combination of the sample GMV portfolio with the risk-free asset discussed in Section VI.C.2,

and Table 4 reports the results for daily data discussed in Section VI.C.3.
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Table 1: Skewness and Excess Kurtosis of Two-Fund and Three-Fund Rules.

This table reports the monthly skewness and excess kurtosis of the net-of-cost out-of-sample returns of the
two-fund and three-fund rules across the six datasets described in Section VI.B in the main body of the
paper. The combination coefficients are calibrated either to the multivariate normal distribution or to the
multivariate elliptical distribution using the exact finite-sample formula. Formulas for the estimated
two-fund and three-fund combination coefficients are available in Table 1 in the main body of the paper. See
the notes of Table 3 in the main body of the paper for details.

10MOM 16ANOM 25SBETA
Normal Elliptical Normal Elliptical Normal Elliptical

Two-fund rule
T = 60 Skewness 1.675 0.722 0.263 0.281 −0.912 −0.832

Exc. kurtosis 18.60 9.977 4.266 4.774 16.98 12.40
T = 120 Skewness 0.727 0.662 0.381 0.460 −0.285 −0.509

Exc. kurtosis 5.334 4.554 3.224 3.575 12.62 8.634
T = 240 Skewness −0.153 −0.171 0.829 0.794 −0.914 −0.975

Exc. kurtosis 4.179 3.952 3.310 3.088 4.483 4.742
Three-fund rule
T = 60 Skewness 1.255 0.635 0.115 0.181 −0.126 −0.692

Exc. kurtosis 12.74 7.936 4.508 5.508 13.28 10.289
T = 120 Skewness 0.472 0.480 −0.259 −0.172 −0.448 −0.716

Exc. kurtosis 3.558 3.465 3.860 3.904 10.26 7.234
T = 240 Skewness −0.237 −0.240 0.307 0.384 −1.046 −1.102

Exc. kurtosis 3.298 3.391 2.089 2.134 3.502 4.122

25SBTM 25OPINV 30IND
Normal Elliptical Normal Elliptical Normal Elliptical

Two-fund rule
T = 60 Skewness 0.786 1.101 −0.990 −0.666 −1.547 0.185

Exc. kurtosis 16.90 15.61 17.08 15.06 49.79 25.36
T = 120 Skewness 0.833 0.691 −0.560 −0.298 0.756 0.730

Exc. kurtosis 5.131 4.794 7.867 7.259 7.602 7.398
T = 240 Skewness 0.433 0.393 −0.868 −1.001 −0.716 −0.704

Exc. kurtosis 7.349 6.358 10.62 10.12 7.515 7.364
Three-fund rule
T = 60 Skewness 0.157 0.945 −0.811 −0.639 −0.966 0.252

Exc. kurtosis 15.54 15.32 12.12 14.20 22.06 16.17
T = 120 Skewness 0.461 0.386 0.079 0.015 0.733 0.926

Exc. kurtosis 3.342 3.261 3.703 3.416 8.738 10.25
T = 240 Skewness 0.368 0.345 −0.408 −0.601 −0.151 −0.226

Exc. kurtosis 4.445 4.656 6.241 6.555 4.297 5.007
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Table 2: In-Sample versus Out-of-Sample Performance of Two-Fund and Three-Fund Rules.

This table reports, for the two-fund and three-fund rules and across the six datasets described in
Section VI.B in the main body of the paper, the difference between 1) the average in-sample annualized
mean return, volatility, and utility over all estimation windows of size T = 60, 120, and 240 months versus 2)
the corresponding out-of-sample realized statistic. The difference for the volatility is always negative and we
report it positively. Thus, the lower the differences, the better. The combination coefficients are calibrated
either to the multivariate normal, t, or elliptical distribution using the exact finite-sample formula. Formulas
for the estimated two-fund and three-fund combination coefficients are available in Table 1 in the main body
of the paper. See the notes of Table 3 in the main body of the paper for details.

10MOM 16ANOM 25SBETA
Normal t Elliptical Normal t Elliptical Normal t Elliptical

Two-fund rule
T = 60 Mean 0.757 0.704 0.577 1.483 1.391 0.961 1.152 1.124 0.672

Vol 0.567 0.523 0.352 0.609 0.581 0.388 0.716 0.704 0.391
Utility 1.209 1.092 0.776 1.976 1.839 1.180 1.676 1.629 0.839

T = 120 Mean 0.567 0.529 0.449 0.867 0.808 0.636 0.887 0.848 0.639
Vol 0.326 0.308 0.244 0.317 0.281 0.241 0.489 0.479 0.299
Utility 0.792 0.728 0.583 1.081 0.981 0.768 1.245 1.188 0.793

T = 240 Mean 0.425 0.401 0.364 0.638 0.593 0.504 0.650 0.629 0.508
Vol 0.238 0.230 0.206 0.196 0.168 0.157 0.219 0.212 0.165
Utility 0.615 0.573 0.504 0.848 0.758 0.642 0.773 0.744 0.586

Three-fund rule
T = 60 Mean 0.797 0.740 0.592 1.452 1.362 0.900 1.076 1.050 0.613

Vol 0.554 0.515 0.347 0.778 0.735 0.474 0.952 0.926 0.425
Utility 1.325 1.186 0.809 2.299 2.100 1.218 2.033 1.942 0.817

T = 120 Mean 0.531 0.493 0.422 0.859 0.797 0.634 0.863 0.813 0.610
Vol 0.276 0.267 0.217 0.343 0.291 0.249 0.600 0.575 0.320
Utility 0.759 0.693 0.554 1.142 1.010 0.787 1.445 1.334 0.797

T = 240 Mean 0.395 0.381 0.347 0.562 0.520 0.456 0.487 0.472 0.393
Vol 0.183 0.191 0.177 0.169 0.146 0.139 0.224 0.213 0.162
Utility 0.566 0.541 0.479 0.751 0.670 0.581 0.676 0.639 0.491

25SBTM 25OPINV 30IND
Normal t Elliptical Normal t Elliptical Normal t Elliptical

Two-fund rule
T = 60 Mean 1.093 1.063 0.672 1.196 1.165 0.706 0.719 0.704 0.553

Vol 0.771 0.767 0.426 0.906 0.897 0.510 0.637 0.610 0.459
Utility 1.662 1.620 0.860 1.928 1.880 0.952 1.044 1.006 0.731

T = 120 Mean 0.840 0.801 0.582 1.099 1.054 0.717 0.442 0.432 0.388
Vol 0.542 0.506 0.338 0.567 0.545 0.344 0.332 0.324 0.285
Utility 1.269 1.176 0.769 1.562 1.477 0.908 0.566 0.550 0.481

T = 240 Mean 0.679 0.645 0.523 0.809 0.780 0.615 0.321 0.316 0.293
Vol 0.484 0.451 0.336 0.630 0.618 0.427 0.203 0.199 0.183
Utility 1.125 1.036 0.755 1.474 1.409 0.956 0.374 0.367 0.337

Three-fund rule
T = 60 Mean 1.075 1.021 0.635 1.108 1.074 0.644 0.781 0.750 0.563

Vol 0.898 0.881 0.450 1.036 1.012 0.531 0.769 0.726 0.513
Utility 1.923 1.820 0.851 2.165 2.068 0.921 1.304 1.219 0.797

T = 120 Mean 0.757 0.719 0.538 0.851 0.809 0.593 0.349 0.338 0.309
Vol 0.581 0.541 0.344 0.565 0.524 0.305 0.457 0.437 0.358
Utility 1.298 1.181 0.739 1.397 1.270 0.765 0.629 0.588 0.470

T = 240 Mean 0.610 0.586 0.486 0.631 0.606 0.503 0.258 0.253 0.235
Vol 0.461 0.434 0.330 0.549 0.537 0.385 0.226 0.223 0.199
Utility 1.065 0.983 0.719 1.272 1.196 0.823 0.383 0.366 0.319
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Table 3: Out-of-Sample Performance of the Combination of the Sample GMV Portfolio with the Risk-
Free Asset.

This table reports the annualized gross and net-of-cost out-of-sample utility (EU), and the mean value of the
combination coefficient, for the scaled GMV portfolio in Section VI.C.2 across the six datasets described in
Section VI.B in the main body of the paper. The largest EU in each case is depicted in bold. See the notes of
Table 3 in the main body of the paper for details.

Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (asymp) (exact) validation

A) 10MOM dataset
T = 60 Gross EU 0.041 0.043 0.068 0.108 0.115 0.090

Net EU 0.000 0.003 0.031 0.079 0.088 0.054
Mean ĉ 0.648 0.609 0.560 0.419 0.380 0.236

T = 120 Gross EU 0.124 0.131 0.136 0.145 0.147 0.121
Net EU 0.105 0.113 0.119 0.130 0.133 0.102
Mean ĉ 0.816 0.755 0.724 0.599 0.570 0.374

T = 240 Gross EU 0.078 0.069 0.072 0.077 0.079 0.055
Net EU 0.068 0.059 0.062 0.069 0.071 0.045
Mean ĉ 0.906 0.844 0.825 0.739 0.720 0.524

B) 16ANOM dataset
T = 60 Gross EU −0.270 −0.303 −0.209 0.028 0.061 0.029

Net EU −0.350 −0.377 −0.282 −0.030 0.007 −0.033
Mean ĉ 0.494 0.480 0.438 0.288 0.260 0.090

T = 120 Gross EU 0.070 0.110 0.120 0.123 0.129 0.090
Net EU 0.037 0.079 0.090 0.100 0.106 0.066
Mean ĉ 0.727 0.677 0.650 0.491 0.468 0.200

T = 240 Gross EU 0.262 0.281 0.283 0.268 0.267 0.207
Net EU 0.242 0.263 0.265 0.253 0.252 0.190
Mean ĉ 0.859 0.811 0.795 0.660 0.644 0.470

C) 25SBETA dataset
T = 60 Gross EU −0.148 −0.242 −0.113 0.154 0.155 0.053

Net EU −0.293 −0.387 −0.251 0.075 0.084 −0.045
Mean ĉ 0.303 0.315 0.280 0.140 0.123 0.077

T = 120 Gross EU −0.178 −0.156 −0.124 0.054 0.059 −0.070
Net EU −0.231 −0.206 −0.174 0.018 0.023 −0.104
Mean ĉ 0.604 0.566 0.543 0.340 0.324 0.128

T = 240 Gross EU 0.141 0.151 0.153 0.169 0.168 0.055
Net EU 0.111 0.122 0.125 0.148 0.147 0.031
Mean ĉ 0.791 0.747 0.733 0.543 0.530 0.275
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Table 3: Out-of-Sample Performance of the Combination of the Sample GMV Portfolio with the Risk-
Free Asset (continued).

Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (asymp) (exact) validation

D) 25SBTM dataset
T = 60 Gross EU −0.021 −0.072 0.020 0.181 0.180 0.133

Net EU −0.150 −0.200 −0.103 0.107 0.114 0.036
Mean ĉ 0.303 0.312 0.277 0.140 0.123 0.077

T = 120 Gross EU 0.221 0.240 0.251 0.268 0.266 0.215
Net EU 0.157 0.179 0.192 0.227 0.226 0.166
Mean ĉ 0.604 0.559 0.536 0.335 0.319 0.191

T = 240 Gross EU 0.204 0.215 0.219 0.237 0.237 0.227
Net EU 0.168 0.182 0.186 0.211 0.212 0.198
Mean ĉ 0.791 0.721 0.707 0.522 0.510 0.382

E) 25OPINV dataset
T = 60 Gross EU −0.090 −0.144 −0.042 0.147 0.151 0.045

Net EU −0.242 −0.297 −0.187 0.063 0.075 −0.063
Mean ĉ 0.303 0.319 0.284 0.138 0.122 0.082

T = 120 Gross EU 0.160 0.203 0.217 0.246 0.242 0.161
Net EU 0.088 0.133 0.149 0.201 0.199 0.099
Mean ĉ 0.604 0.572 0.549 0.336 0.320 0.223

T = 240 Gross EU 0.245 0.266 0.269 0.269 0.269 0.243
Net EU 0.203 0.225 0.229 0.239 0.239 0.206
Mean ĉ 0.791 0.746 0.732 0.537 0.525 0.449

F) 30IND dataset
T = 60 Gross EU −0.119 −0.140 −0.080 0.009 0.022 0.034

Net EU −0.194 −0.221 −0.152 −0.043 −0.023 −0.013
Mean ĉ 0.217 0.233 0.201 0.138 0.119 0.047

T = 120 Gross EU 0.058 0.069 0.079 0.104 0.107 0.079
Net EU 0.029 0.041 0.052 0.083 0.087 0.056
Mean ĉ 0.541 0.504 0.482 0.360 0.344 0.170

T = 240 Gross EU 0.041 0.044 0.047 0.061 0.063 0.025
Net EU 0.025 0.030 0.033 0.049 0.051 0.011
Mean ĉ 0.754 0.698 0.685 0.561 0.549 0.374
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Table 4: Out-of-Sample Performance with Daily Data.

This table reports the gross and net-of-cost annualized out-of-sample utility (EU), and the mean value of the
combination coefficients, for the scaled GMV portfolio, the two-fund rule, and the three-fund rules across
the six datasets described in Section VI.B in the main body of the paper. We use sample sizes of T = 5, 10,
and 20 years of daily returns. The largest EU in each case is depicted in bold. See the notes of Table 3 in the
main body of the paper for details.

Normal t Elliptical Normal t Elliptical
(exact) (asymp) (asymp) (exact) (asymp) (asymp)

A) 10MOM dataset B) 25SBTM dataset
(ν̂ = 3.42) (ν̂ = 2.99)

Scaled GMV portfolio
T = 5 years Gross EU 2.348 2.400 2.582 3.085 3.220 3.894

Net EU 2.232 2.285 2.472 2.835 2.973 3.657
Mean ĉ 0.982 0.953 0.896 0.958 0.936 0.810

T = 10 years Gross EU 2.267 2.312 2.381 3.665 3.701 4.154
Net EU 2.190 2.236 2.306 3.489 3.526 3.983
Mean ĉ 0.991 0.966 0.932 0.979 0.958 0.871

T = 20 years Gross EU 2.328 2.367 2.446 3.045 3.077 3.441
Net EU 2.258 2.297 2.377 2.849 2.882 3.254
Mean ĉ 0.995 0.971 0.959 0.990 0.963 0.918

Two-fund rule
T = 5 years Gross EU 2.159 2.200 2.401 2.843 2.905 3.687

Net EU 1.968 2.011 2.220 2.500 2.563 3.352
Mean ĉ 0.541 0.536 0.508 0.459 0.456 0.407

T = 10 years Gross EU 2.312 2.350 2.438 3.424 3.454 3.970
Net EU 2.192 2.231 2.321 3.157 3.188 3.710
Mean ĉ 0.586 0.579 0.559 0.518 0.515 0.473

T = 20 years Gross EU 2.464 2.508 2.606 2.568 2.600 3.024
Net EU 2.359 2.403 2.503 2.299 2.332 2.765
Mean ĉ 0.681 0.675 0.660 0.639 0.637 0.603

Three-fund rule
T = 5 years Gross EU 2.209 2.267 2.479 2.814 2.956 3.769

Net EU 2.039 2.098 2.317 2.490 2.635 3.453
Mean ĉ1 0.342 0.340 0.326 0.281 0.280 0.259
Mean ĉ2/µ̂g 0.640 0.613 0.570 0.678 0.657 0.551

T = 10 years Gross EU 2.350 2.400 2.477 3.684 3.725 4.236
Net EU 2.241 2.292 2.371 3.435 3.478 3.993
Mean ĉ1 0.409 0.407 0.395 0.358 0.356 0.335
Mean ĉ2/µ̂g 0.581 0.558 0.537 0.621 0.602 0.536

T = 20 years Gross EU 2.514 2.560 2.651 2.875 2.911 3.326
Net EU 2.417 2.464 2.557 2.615 2.653 3.077
Mean ĉ1 0.527 0.524 0.514 0.488 0.486 0.466
Mean ĉ2/µ̂g 0.469 0.446 0.445 0.502 0.477 0.451

11



Table 4: Out-of-Sample Performance with Daily Data (continued).

Normal t Elliptical Normal t Elliptical
(exact) (asymp) (asymp) (exact) (asymp) (asymp)

C) 25OPINV dataset D) 30IND dataset
(ν̂ = 6.27) (ν̂ = 3.86)

Scaled GMV portfolio
T = 5 years Gross EU 5.951 6.064 7.248 2.499 2.685 3.453

Net EU 5.511 5.627 6.829 2.291 2.479 3.256
Mean ĉ 0.958 0.944 0.810 0.951 0.923 0.822

T = 10 years Gross EU 4.928 4.994 5.871 2.771 2.906 3.243
Net EU 4.593 4.660 5.550 2.643 2.778 3.119
Mean ĉ 0.979 0.968 0.866 0.975 0.952 0.883

T = 20 years Gross EU −0.539 −0.470 0.430 3.057 3.167 3.461
Net EU −0.855 −0.785 0.132 2.943 3.054 3.350
Mean ĉ 0.990 0.982 0.912 0.988 0.967 0.927

Two-fund rule
T = 5 years Gross EU 5.758 5.835 7.012 2.100 2.246 3.007

Net EU 5.157 5.236 6.437 1.790 1.936 2.708
Mean ĉ 0.621 0.617 0.540 0.477 0.472 0.435

T = 10 years Gross EU 4.725 4.766 5.671 2.650 2.739 3.059
Net EU 4.300 4.343 5.260 2.452 2.542 2.867
Mean ĉ 0.681 0.677 0.612 0.530 0.525 0.496

T = 20 years Gross EU −0.692 −0.633 0.300 2.699 2.789 3.084
Net EU -1.068 -1.008 −0.059 2.548 2.638 2.936
Mean ĉ 0.750 0.747 0.695 0.600 0.595 0.574

Three-fund rule
T = 5 years Gross EU 5.866 5.982 7.296 2.217 2.412 3.247

Net EU 5.339 5.458 6.786 1.949 2.145 2.989
Mean ĉ1 0.313 0.312 0.283 0.228 0.228 0.218
Mean ĉ2/µ̂g 0.645 0.632 0.527 0.722 0.695 0.603

T = 10 years Gross EU 4.718 4.789 5.752 2.754 2.888 3.226
Net EU 4.331 4.403 5.377 2.594 2.729 3.070
Mean ĉ1 0.361 0.360 0.329 0.200 0.200 0.195
Mean ĉ2/µ̂g 0.618 0.608 0.537 0.775 0.752 0.689

T = 20 years Gross EU −0.954 −0.882 0.084 2.938 3.049 3.346
Net EU -1.308 -1.235 −0.253 2.812 2.923 3.223
Mean ĉ1 0.477 0.476 0.452 0.159 0.158 0.157
Mean ĉ2/µ̂g 0.513 0.507 0.461 0.829 0.809 0.770
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IV. Proofs of Theoretical Results

Proof of Proposition 1

The expected out-of-sample utility of the two-fund rule ŵ2 f (c) is

E[U(ŵ2 f (c))] =
c
γ

µ̃1 −
c2

2γ
σ̃

2
1 ,(A3)

which yields the optimal c⋆ in (21). The expected out-of-sample utility of the three-fund rule

ŵ3 f (c1,c2) is

E[U(ŵ3 f (c1,c2))] =
c1

γ
µ̃1 +

c2

γ
µ̃2 −

c2
1

2γ
σ̃

2
1 −

c2
2

2γ
σ̃

2
2 −

c1c2

γ
σ̃12,(A4)

which yields the optimal (c⋆1,c⋆2) in (22) and completes the proof.

Proof of Proposition 2

Part 1. Because µ̂ and Σ̂ are asymptotically unbiased for a fixed N, the sample mean-variance

portfolio ŵ is asymptotically unbiased too. To find its asymptotic covariance matrix, we write ŵ as

a function of µ̂ and vec(Σ̂−1) as

ŵ =
1
γ
(µ̂⊤⊗ IN)vec(Σ̂−1).(A5)

13



Moreover, the derivative of vec(Σ̂−1) with respect to vec(Σ̂) is

∂vec(Σ̂−1)

∂vec(Σ̂)⊤
=−Σ̂

−1 ⊗ Σ̂
−1.(A6)

Therefore, using the delta method, we can find the asymptotic covariance matrix of ŵ from the

asymptotic covariance matrix of (µ̂,vec(Σ̂)), which from Muirhead (1982, p.82, 89) is

Avar

 µ̂

vec(Σ̂)

=

 Σ 0N×N2

0N2×N (1+κ)(IN2 +KN)(Σ⊗Σ)+κ vec(Σ)vec(Σ)⊤

,(A7)

where KN is an N2 ×N2 commutation matrix such that KNvec(A) = vec(A⊤) for an N ×N matrix

A. Specifically, given (A5)–(A6), we have

∂ ŵ
∂ µ̂⊤ =

1
γ

Σ̂
−1,(A8)

∂ ŵ
∂vec(Σ̂)⊤

=−1
γ
(Σ̂−1

µ̂)⊗ Σ̂
−1,(A9)

and therefore the asymptotic covariance matrix of ŵ is

Avar[ŵ] =
1
γ2

[
Σ
−1,−(Σ−1

µ)⊗Σ
−1]Avar

 µ̂

vec(Σ̂)

[Σ−1,−(Σ−1
µ)⊗Σ

−1]⊤,(A10)

which after simplification corresponds to the desired result in (23).

Part 2. Given that ŵ is asymptotically unbiased as shown in part 1, µ̃p and σ̃2
p are asymptotically

unbiased too. To find the asymptotic covariance matrix of µ̃p and σ̃2
p , we use the delta method. Let

h(w) = [w⊤µ,w⊤Σw]⊤. Then, the Jacobian of h evaluated at w⋆ is

14



∇h(w⋆) = [µ⊤,2w⋆⊤Σ]⊤ = [µ⊤,2µ⊤/γ]⊤. Therefore, the asymptotic covariance matrix of µ̃p and

σ̃2
p is Avar[µ̃p, σ̃

2
p ] = ∇h(w⋆)⊤Avar[ŵ]∇h(w⋆), where Avar[ŵ] is given by (23), which corresponds

to the desired result in (24).

Part 3. Given ŵ = 1
γ
Σ̂−1µ̂ and U(ŵ) = ŵ⊤µ − ŵ⊤Σŵ, we have

D =
∂U(ŵ)

∂ ŵ

∣∣∣∣
ŵ=w∗

= µ − γΣw⋆ = 0N ,(A11)

H =
∂ 2U(ŵ)
∂ ŵ∂ ŵ⊤

∣∣∣∣
ŵ=w∗

=−γΣ.(A12)

Because D = 0N , it holds that

T [U(ŵ)−U(w⋆)]
d−→

N

∑
i=1

λiXi,(A13)

where the Xi’s are independent χ2
1 random variables and the λi’s are the eigenvalues of HS/2,

where S is the asymptotic covariance matrix of ŵ in (23):

S =
1
γ2

(
(1+(1+κ)θ 2)Σ−1 +(1+2κ)Σ−1

µµ
⊤

Σ
−1
)
.(A14)

The matrix HS/2 is

1
2

HS =−1+(1+κ)θ 2

2γ

(
IN +

1+2κ

1+(1+κ)θ 2 µµ
⊤

Σ
−1
)
.(A15)

All the eigenvalues of IN are one, and µµ⊤Σ−1 has N −1 zero eigenvalues and one eigenvalue

equal to the trace of µµ⊤Σ−1, i.e., θ 2. Therefore, we have λ1 = · · ·= λN−1 =−1+(1+κ)θ 2

2γ
and

15



λN =−1+(1+κ)θ 2

2γ

(
1+ (1+2κ)θ 2

1+(1+κ)θ 2

)
=−1+(2+3κ)θ 2

2γ
, which yields the desired result in (25).

Part 4. Let the risk-aversion coefficient γ = 1 for notational simplicity, which is without loss of

generality because it is clear that µ̃p, σ̃2
p , and U(ŵ) are proportional to 1/γ , 1/γ2, and 1/(2γ),

respectively. Let φ = [µ⊤,w⋆⊤]⊤ and φ̂ = [µ̂⊤, ŵ⊤]⊤. Note that φ̂ can be written as the

generalized-method-of-moments estimator of φ based on the following moment conditions:

(A16) E[gt(φ)] = E

 rt −µ

Ctw⋆−µ

= 02N ,

where Ct = (rt −µ)(rt −µ)⊤.

We derive the first-order bias of φ̂ by using a stochastic expansion of φ̂ based on the results

of Bao and Ullah (2007, 2009), which suggest

(A17) φ̂ = φ +a−1/2 +a−1 +a−3/2 +Op(T−2),

where

a−1/2 =−E[H1]
−1ḡ,(A18)

a−1 =−E[H1]
−1V1a−1/2 −

1
2
E[H1]

−1E[H2](a−1/2 ⊗a−1/2),(A19)

a−3/2 =−E[H1]
−1V1a−1 −

1
2
E[H1]

−1V2(a−1/2 ⊗a−1/2)

− 1
2
E[H1]

−1E[H2](a−1/2 ⊗a−1 +a−1 ⊗a−1/2)

− 1
6
E[H1]

−1E[H3](a−1/2 ⊗a−1/2 ⊗a−1/2),(A20)
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with ḡ = 1
T ∑

T
t=1 gt(φ), Hi = ∇iḡ, and Vi = Hi −E[Hi].1

We now provide explicit expressions of a−1/2 and a−1. For a−3/2, we can show that its

expectation is O(T−2).2 For a−1/2, we have

(A21) H1 =

 −IN 0N×N

−ztIN − (rt −µ)w⋆⊤− IN Ct

,

where zt = (rt −µ)⊤w⋆, and thus,

E[H1] =

 −IN 0N×N

−IN Σ

,(A22)

E[H1]
−1 =

 −IN 0N×N

−Σ−1 Σ−1

.(A23)

It follows that a−1/2 is equal to

(A24) a−1/2 =
1
T

T

∑
t=1

 rt −µ

at

,

where

(A25) at = Σ
−1(rt −µ)(1− zt)+w∗,

1∇iḡ is the matrix of i-th order partial derivative of ḡ(φ) and is obtained recursively. Specifically, If ḡ(φ) is a

k-vector function of φ , the j-th element of the l-th row of Ai ≡ ∇iḡ (a k× ki matrix) is the 1× k vector

ai
l j = ∂ai−1

l j /∂φ⊤.
2An explicit expression of E[a−3/2] is available upon request.
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and it is obvious that E[a−1/2] = 02N .

For a−1, we have from (A21) and (A22) that

V1 =
1
T

T

∑
t=1

 0N×N 0N×N

−ztIN − (rt −µ)w⋆⊤ Ct −Σ

.(A26)

Moreover,

H2 =
1
T

T

∑
t=1

 0N×2N2 0N×2N2

At Bt

,(A27)

where

At = IN ⊗ [w⋆⊤, −(rt −µ)⊤]+w⋆⊤⊗D⊤
1 − (rt −µ)vec(D2)

⊤,(A28)

Bt =−(rt −µ)⊤⊗D⊤
1 − (rt −µ)vec(D1)

⊤,(A29)

with

D1 =

 IN

0N×N

,(A30)

D2 =

 0N×N

IN

.(A31)
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Therefore,

E[H2] =

 0N×2N2 0N×2N2

IN ⊗ [w⋆⊤, 0⊤N ]+w⋆⊤⊗D⊤
1 0N×2N2

.(A32)

It follows that a−1 is equal to

a−1 =
1

T 2

T

∑
s=1

T

∑
t=1

 0N

zsΣ
−1(rt −µ)−Σ−1(Cs −Σ)at

.(A33)

Using the fact that rs is independent of rt if s ̸= t, E[zt ] = 0, E[at ] = 0N , and E[Ct −Σ] = 0N×N , the

expectation of a−1 is

E[a−1] =
1
T

 0N

E[ztΣ
−1(rt −µ)]−E[Σ−1(Ct −Σ)at ]

.(A34)

Let yt = Σ−1/2(rt −µ). Then,

E[ztΣ
−1(rt −µ)] = E[yty⊤t ]w

⋆ = w⋆,(A35)

E[Σ−1(Ct −Σ)at ] = E[yty⊤t ]w
⋆−E[(y⊤t yt)yty⊤t ]w

⋆ = [1− (N +2)(1+κ)]w⋆,(A36)

where we use the fact that E[(y⊤t yt)yty⊤t ] = (N +2)(1+κ)IN under the multivariate elliptical

distribution assumption. Therefore,

E[a−1] =

 0N

1
T (N +2)(1+κ)w⋆

.(A37)
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Using E[a−1/2] = 02N and E[a−1] in (A37), the first-order bias of ŵ is

(A38) E[ŵ]−w⋆ =
(N +2)(1+κ)w⋆

T
+O(T−2).

It follows that

E[µ̃p]−µp =
(N +2)(1+κ)µp

T
+O(T−2),(A39)

which corresponds to the desired result in (26) after adding back 1/γ .

Turning to the first-order bias of σ̃2
p , we use (A17) to obtain

(A40) E[σ̃2
p ]−σ

2
p = 2w⋆⊤

ΣE[ã−1]+E[ã⊤−1/2Σã−1/2]+O(T−2),

where ã−1/2 and ã−1 are the last N elements of a−1/2 and a−1, respectively. Given E[ã−1]

in (A37), we have

2w⋆⊤
ΣE[ã−1] =

2(N +2)(1+κ)θ 2

T
.(A41)

Moreover, given ã−1/2 in (A24), we have

ã⊤−1/2Σã−1/2 =
1

T 2

T

∑
s=1

T

∑
t=1

a⊤s Σat .(A42)
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Therefore,

E[ã⊤−1/2Σã−1/2] =
1
T
E[a⊤t Σat ]

=
1
T

(
θ

2 +2E[(1− zt)(rt −µ)⊤Σ
−1

µ]+E[(1− zt)
2(rt −µ)⊤Σ

−1(rt −µ)]
)
.(A43)

It holds that

E[(1− zt)(rt −µ)⊤Σ
−1

µ] =−θ
2,(A44)

E[(1− zt)
2(rt −µ)⊤Σ

−1(rt −µ)] = E[y⊤t yt ]+E[µ⊤
Σ
−1/2(y⊤t yt)yty⊤t Σ

−1/2
µ]

= N +(N +2)(1+κ)θ 2,(A45)

and thus,

(A46) E[ã⊤−1/2Σã−1/2] =
N +[(N +2)(1+κ)−1]θ 2

T
.

It follows that

E[σ̃2
p ]−σ

2
p =

N +[3(N +2)(1+κ)−1]θ 2

T
+O(T−2),(A47)

which corresponds to the desired result in (27) after adding back 1/γ2. Finally, the first-order bias

of U(ŵ) in (28) is directly obtained from (26)–(27). This completes the proof.
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Proof of Proposition 3

Part 1. This result is a direct consequence of El Karoui (2010, equation (9)) after defining the

parameter η as (1−ρ)s, where s is defined in El Karoui (2010, equation (4)). El Karoui (2010)

shows in p. 3506 that s≥ 1/(1−ρ), and thus η ≥ 1. Finally, we show in part 4 of this proposition

that limρ→1 η = E[1/τt ].

Part 2. From El Karoui (2013, equation (3.4)), we have

σ̃
2
p =

1
γ2 µ̂

⊤
Σ̂
−1

ΣΣ̂
−1

µ̂
p−→ 1

γ2 µ
⊤

Σ̂
−1

ΣΣ̂
−1

µ +
ηρ

γ2(1−ρ)3 .(A48)

Moreover, using the last equation in p. 748 of El Karoui (2013), we obtain

µ
⊤

Σ̂
−1

ΣΣ̂
−1

µ
p−→ ϕθ 2

(1−ρ)3 ,(A49)

where ϕ is defined as (1−ρ)3ξ with ξ defined in El Karoui (2013, equation (3.2)). El Karoui

(2013, fact 3.1) shows that ξ ≥ s2/(1−ρ), which in our notation is equivalent to ϕ ≥ η2. Finally,

we show in part 4 of this proposition that limρ→1 ϕ = (E[1/τt ])
2.

Part 3. Equation (33) is a direct consequence of (29)–(31). As shown in part 4 of this proposition,

the case of multivariate normally distributed returns corresponds to η = ϕ = 1. Therefore, the

limit of U(ŵ) in (33) is smaller than that under normality if

2η

1−ρ
− ϕ

(1−ρ)3 ≤ 2
1−ρ

− 1
(1−ρ)3 ,(A50)
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which is equivalent to

ρ ≥ 1−

√
ϕ −1

2(η −1)
.(A51)

Condition (A51) always holds because the right-hand side of (A51) is negative:

1−

√
ϕ −1

2(η −1)
≤ 1−

√
η2 −1

2(η −1)
= 1−

√
η +1

2
≤ 0,(A52)

where the first and last inequalities hold because ϕ ≥ η2 and η ≥ 1, respectively.

Part 4. El Karoui (2010, p. 3506) and El Karoui (2013, Fact 3.1) show that η = ϕ = 1 when

returns are multivariate normally distributed. Moreover, when ρ → 0 we recover the fixed N

asymptotic regime in Proposition 2, in which case η = ϕ = 1 too because µ̃p and σ̃2
p are

asymptotically unbiased. Finally, we show that limρ→1 η = E[1/τt ] and limρ→1 ϕ = (E[1/τt ])
2.

For η , it is direct from its definition in (30). For ϕ , we apply L’Hopital’s rule to obtain

lim
ρ→1

ϕ =

 lim
ρ→1

2
η3

∂η

∂ρ
+E

[
τ2

(1−ρ +ρητt)2

]
+2ρE

τ2
t (1− τt(η +ρ

∂η

∂ρ
))

(1−ρ +ρητt)3

−1

.(A53)

We apply implicit differentiation on (30) to obtain

∂η

∂ρ
=

E
[

1−ητt
(1−ρ+ρητt)2

]
E
[

ρτt
(1−ρ+ρητt)2

] ,(A54)

whose limit as ρ → 1 is

lim
ρ→1

∂η

∂ρ
=

E[1/τ2
t ]

E[1/τt ]
−E[1/τt ].(A55)
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Finally, using (A55) and limρ→1 η = E[1/τt ], the limit in (A53) simplifies to (E[1/τt ])
2. This

completes the proof.

Proof of Proposition 4

Using the results in the proof of Proposition 3, the quantities needed in Proposition 1 to

identify the optimal combination coefficients are

µ̃1 =
ηθ 2

1−ρ
,(A56)

µ̃2 =
η

1−ρ

θ 2
g

µg
,(A57)

σ̃
2
1 =

ϕθ 2 +ηρ

(1−ρ)3 ,(A58)

σ̃
2
2 =

ϕ

(1−ρ)3

θ 2
g

µ2
g
,(A59)

σ̃12 =
ϕ

(1−ρ)3

θ 2
g

µg
.(A60)

Plugging (A56)–(A60) into (21)–(22) delivers the optimal two-fund and three-fund combination

coefficients in (34)–(36). Finally, these combination coefficients are smaller than those under

normally distributed returns because ϕ ≥ η2 ≥ η . This completes the proof.

Proof of Proposition 5

Part 1. Given µ̃1 and σ̃2
1 in (A56) and (A58), we have from (A3) that the out-of-sample utility of

the two-fund rule ŵ2 f (c) converges to

U(ŵ2 f (c))
p→ c

γ

ηθ 2

1−ρ
− c2

2γ

ϕθ 2 +ηρ

(1−ρ)3 .(A61)
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Plugging the limit of c⋆ in (34) into (A61) yields the desired result in (37). This utility is larger

than that under the multivariate normal distribution if and only if

ηθ 2

ϕ

η
θ 2 +ρ

>
θ 2

θ 2 +ρ
,(A62)

which is equivalent to the condition θ 2 < ρη(η −1)/(ϕ −η2).

Part 2. Given µ̃1, µ̃2, σ̃2
1 , σ̃2

2 , and σ̃12 in (A56)–(A60), we have from (A4) that the out-of-sample

utility of the three-fund rule ŵ3 f (c) converges to

U(ŵ3 f (c1,c2))
p→ c1

γ

ηθ 2

1−ρ
+

c2

γ

η

1−ρ

θ 2
g

µg
−

c2
1

2γ

ϕθ 2 +ηρ

(1−ρ)3 −
c2

2
2γ

ϕ

(1−ρ)3

θ 2
g

µ2
g
− c1c2

γ

ϕ

(1−ρ)3

θ 2
g

µg
.

(A63)

Plugging the limit of (c⋆1,c⋆2) in (35)–(36) into (A63) yields the desired result in (38). This utility

is larger than that under the multivariate normal distribution if and only if

ηψ2

ϕ

η
ψ2 +ρ

(
1+

ηρθ 2
g

ϕθ 2ψ2

)
>

ψ2

ψ2 +ρ

(
1+

ρθ 2
g

θ 2ψ2

)
,(A64)

which is equivalent to the condition η(ψ2 +ρ)(θ 2ψ2 + η

ϕ
θ 2

g ρ)> (ϕ

η
ψ2 +ρ)(θ 2ψ2 +θ 2

g ρ). This

completes the proof.
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Proof of Proposition 6

Part 1. Given the distribution of τt in (2), the expectation in (30) evaluates to

E
[
(1−ρ +ρητt)

−1]= ν

2(1−ρ)
eyE ν

2 +1(y),(A65)

where y = (ν −2)ρη/[2(1−ρ)]. Using the recursive relation on the exponential integral,

E ν

2 +1(y) =
e−y − yE ν

2
(y)

ν/2
.(A66)

Therefore, (A65) simplifies to

E
[
(1−ρ +ρητt)

−1]= 1− yeyE ν

2
(y)

1−ρ
,(A67)

and thus condition (30) means that η is the solution to (39). Finally, E[1/τt ] = ν/(ν −2), and thus

1 ≤ η ≤ ν/(ν −2) from Proposition 3.

Part 2. Given the distribution of τt in (2), the expectation in (32) evaluates to

E
[

τ2
t

(1−ρ +ρητt)2

]
=

1
(1−ρ)2

[
−
(

ν −2
2

)
+

(
ν −2

2

)2(
1+

ρη

1−ρ

)
eyE ν

2 −1(y)

]
,(A68)

where y = (ν −2)ρη/[2(1−ρ)]. Using the recursive relation on the exponential integral,

E ν

2 −1(y) =
e−y − (ν

2 −1)E ν

2
(y)

y
.(A69)
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Moreover, it holds that eyE ν

2
(y) = ρ/y from (39). Therefore,

eyE ν

2 −1(y) =
1
y
−

ρ(ν

2 −1)
y2 .(A70)

Plugging (A70) and y = (ν−2)ρη

2(1−ρ) into (A68) yields

E
[

τ2
t

(1−ρ +ρητt)2

]
=

(ν −2)(η −1)
2ρη2 .(A71)

Plugging (A71) into (32) delivers the desired formula for ϕ in (40). Finally,

(E[1/τt ])
2 = ν2/(ν −2)2, and thus η2 ≤ ϕ ≤ ν2/(ν −2)2 from Proposition 3. This completes the

proof.

Proof of Proposition 7

Given the definition of Y , Λ, M, and the stochastic representation for the multivariate

elliptical distribution in (1), we can write the sample mean and covariance matrix as

µ̂ = µ +
1
T

Σ
1/2Y⊤

Λ1T ,(A72)

Σ̂ =
1
T

Σ
1/2Y⊤

ΛMΛY Σ
1/2.(A73)

Therefore, the out-of-sample mean and variance of the sample mean-variance portfolio ŵ are

µ̃p =
1
γ

[
T µ

⊤
Σ
−1/2(Y⊤

ΛMΛY )−1
Σ
−1/2

µ +1⊤T ΛY (Y⊤
ΛMΛY )−1

Σ
−1/2

µ

]
,(A74)

σ̃
2
p =

1
γ2

[
T 2

µ
⊤

Σ
−1/2(Y⊤

ΛMΛY )−2
Σ
−1/2

µ +2T 1⊤T ΛY (Y⊤
ΛMΛY )−2

Σ
−1/2

µ
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+1⊤T ΛY (Y⊤
ΛMΛY )−2Y⊤

Λ1T

]
.(A75)

By symmetry, the expectation of the second terms in (A74)–(A75) is zero because Y has zero

mean. Therefore, the expected out-of-sample mean and variance are

E[µ̃p] =
1
γ

T µ
⊤

Σ
−1/2E

[
(Y⊤

ΛMΛY )−1
]
Σ
−1/2

µ,(A76)

E[σ̃2
p ] =

1
γ2 T 2

µ
⊤

Σ
−1/2E

[
(Y⊤

ΛMΛY )−2
]
Σ
−1/2

µ +
1
γ2E

[
1⊤T ΛY (Y⊤

ΛMΛY )−2Y⊤
Λ1T

]
.(A77)

By definition of k3, the second term in (A77) is equal to

1
γ2E

[
1⊤T ΛY (Y⊤

ΛMΛY )−2Y⊤
Λ1T

]
=

NT (T −2)
(T −N −1)(T −N −2)(T −N −4)

k3

γ2 .(A78)

Moreover, Y⊤ΛMΛY = T Σ−1/2Σ̂Σ−1/2, and thus by symmetry E[(Y⊤ΛMΛY )−1] and

E[(Y⊤ΛMΛY )−2] are both proportional to the identity matrix IN . If we denote the proportionality

constants by a1 and a2, then

1
γ

T µ
⊤

Σ
−1/2E

[
(Y⊤

ΛMΛY )−1
]
Σ
−1/2

µ = Ta1µp,(A79)

1
γ2 T 2

µ
⊤

Σ
−1/2E

[
(Y⊤

ΛMΛY )−2
]
Σ
−1/2

µ = T 2a2σ
2
p ,(A80)

which proves (44)–(45) because k1 = (T −N −2)a1 and k2 =
(T−N−1)(T−N−2)(T−N−4)

T−2 a2 by

definition. Finally, it is known from Kan and Zhou (2007) that when asset returns are multivariate

normally distributed, the expectations of µ̃p and σ̃2
p evaluate to (44) and (45), respectively, with

k1 = k2 = k3 = 1. This completes the proof.
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Proof of Proposition 8

Using the results in the proof of Proposition 7, the quantities needed in Proposition 1 to

identify the optimal combination coefficients are

µ̃1 =
T

T −N −2
k1θ

2,(A81)

µ̃2 =
T

T −N −2
k1

θ 2
g

µg
,(A82)

σ̃
2
1 =

T 2(T −2)
(T −N −1)(T −N −2)(T −N −4)

(
k2θ

2 + k3
N
T

)
,(A83)

σ̃
2
2 =

T 2(T −2)
(T −N −1)(T −N −2)(T −N −4)

k2
θ 2

g

µ2
g
,(A84)

σ̃12 =
T 2(T −2)

(T −N −1)(T −N −2)(T −N −4)
k2

θ 2
g

µg
.(A85)

Plugging (A81)–(A85) into (21)–(22) delivers the optimal two-fund and three-fund combination

coefficients in (50)–(52). This completes the proof.

Proof of Proposition 9

The proof of this proposition is similar to that for the optimal three-fund combination

coefficients in Propositions 4 and 8 when we constrain the combination coefficient on the sample

mean-variance portfolio to be c1 = 0.
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