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Abstract 

We show theoretically and empirically that the cross-section of stock return idiosyncratic 

volatilities contains useful information about the ICAPM. We construct a proxy cross-sectional 

bivariate idiosyncratic volatility (CBIV) for the covariance risk between the market and the 

unobserved hedge portfolio under the ICAPM. Consistent with the ICAPM pricing relation, 

CBIV is a robust and significant predictor of the equity risk premium. We further show that the 

return predictability of the tail index in Kelly and Jiang (2014) can be explained by the ICAPM 

covariance risk. 
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I.   Introduction 

The seminal works by Merton (1973), Long (1974), Cox, Ingersoll, and Ross (1985), and 

Campbell (1993) build a solid theoretical background of the intertemporal capital asset pricing 

model (ICAPM). As an extension of the CAPM, the ICAPM involves additional factors 

corresponding to state variables that are related to time-varying investment opportunities. An 

important implication of the ICAPM is that the equity risk premium is determined by the 

variance of the market portfolio as well as the covariance between the market portfolio and an 

aggregate hedge portfolio (i.e., the ICAPM covariance risk).  

A large literature has proposed different ways to estimate the market variance, but less 

work has been undertaken on the covariance risk. A key challenge in measuring the ICAPM 

covariance risk is that the hedge portfolio is unobservable. This paper proposes a new way to 

estimate the ICAPM covariance risk using the cross-section of stock idiosyncratic volatilities. 

We theoretically demonstrate that stock return idiosyncratic volatility under the market model 

(which is misspecified relative to the true ICAPM) contains useful information about the 

covariance between the market portfolio and the hedge portfolio. A proxy of the ICAPM 

covariance risk can be obtained from two differentially weighted average idiosyncratic 

volatilities. Such covariance proxy should be positively related to the equity risk premium, if the 

ICAPM pricing relation holds.  

 Empirically, we employ a dual-predictor system consisting of two differentially weighted 

average idiosyncratic volatilities (which we name 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ) to forecast aggregate stock 

returns. We find 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ jointly have strong and significant forecasting power for future 

stock market returns with an out-of-sample 𝑅ଶ of 0.78% (resp. 8.85%) at three-month (resp. one-

year) forecast horizon. In addition, the ratio of 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ, which we term the cross-sectional 
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bivariate idiosyncratic volatility (CBIV), serves as a proxy of the ICAPM covariance risk and 

also has a strong predictive power for the stock market returns with an out-of-sample 𝑅ଶ of 

2.80% (13.68%) for three-month (one-year) forecast horizon. Our results are robust to variations 

in the constructions of covariance risk proxy. The return predictive power of our ICAPM 

covariance risk remains significant with little changes in magnitudes after controlling for 

alternative conditional covariance measures (e.g., Guo and Whitelaw (2006), Rossi and 

Timmermann (2015)) as well as existing predictors of stock market returns.  

Our paper contributes to the estimation of the ICAPM covariance risk. Unlike previous 

studies, our approach is model free in the sense that it does not need to specify a proxy of the 

hedge portfolio or the state variables that drive the conditional covariance between the market 

portfolio and the hedge portfolio.1 Our estimation of the covariance risk from the cross-section 

of stock idiosyncratic volatilities is motivated by the ICAPM theory and does not require any 

additional data beyond stock returns. Our approach can be applied at high frequencies such as 

daily and weekly. Moreover, results from both in-sample and out-of-sample tests show that 

compared to existing conditional covariance measures in the literature, our covariance risk proxy 

contains substantial new information about future stock market returns.  

Our paper contributes to a large literature on stock market return predictability. Several 

recent studies document that stock market returns are predictable although most of the predictors 

either lose their significance in recent years or are only available for relatively short sample 

periods (Goyal, Welch, and Zafirov (2024)). In contrast, the stock return predictive power by our 

 
1 Guo and Whitelaw (2006) assume that the conditional covariance is a linear function of some observed state variables. Bali 
(2008) applies a bivariate GARCH model to estimate a portfolio's conditional covariance with the market. Bali and Engle (2010) 
apply the dynamic conditional correlation model of Engle (2002) to estimate the time-varying covariances between individual 
stock returns and market returns. Rossi and Timmermann (2015) propose a method for constructing the conditional covariance 
risk using a summary measure of economic activity to track time-varying investment opportunities. 
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covariance proxy CBIV is robust over a long sample period from 1960 to 2022 and holds for 

both short- and long-term forecast horizons. The significant market return predictability by 

CBIV is consistent with the ICAPM pricing relations. Formal specification tests using our 

covariance risk measure suggest that the ICAPM is correctly specified. Moreover, incorporating 

the covariance risk in forecasting stock market returns leads to robust evidence for a significantly 

positive relationship between the equity risk premium and the market variance as well as 

reasonable magnitudes of risk aversion estimates.  

Our paper provides an alternative interpretation of the findings in Kelly and Jiang (2014). 

Motivated by the power law distribution, Kelly and Jiang (2014) construct a tail index using the 

cross-section of idiosyncratic stock returns. Their measure has a strong predictive power for 

stock market returns, which they interpret as evidence that tail risk matters for asset pricing. It 

remains one of the best time-series predictors in recent periods (Goyal et al. (2024)). We show 

theoretically that the Kelly and Jiang (2014) tail index is approximately proportional to the 

covariance risk under the ICAPM. Empirically, the Kelly and Jiang (2014) tail index and CBIV 

track each other closely with a correlation of 0.818. Both significantly forecast stock market 

returns in univariate predictive regressions, but the Kelly and Jiang (2014) tail index loses 

significance in the presence of CBIV in predictive regressions. Thus, the Kelly and Jiang (2014) 

index could manifest the ICAPM covariance risk rather than the tail risk. This sheds new light on 

the interpretation of the Kelly and Jiang (2014) tail index. 

Idiosyncratic volatilities can matter for asset pricing due to market frictions, behavioral 

biases, or common factor in idiosyncratic volatilities, as pointed out by the literature. Our paper 

does not rely on any of these considerations. Our paper differs markedly from several recent 

studies showing that average or common idiosyncratic volatility is a priced risk factor (e.g., Chen 
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and Petkova (2012), Herskovic, Kelly, Lustig, and Nieuwerburgh (2016)). We are agonistic 

about the source of priced risks captured by the unobserved hedge portfolio. Our insight is that 

the idiosyncratic volatilities serve as instruments for the covariance risk under the ICAPM. We 

show that the cross-section of idiosyncratic volatility can be used to estimate the covariance risk 

between the market and the unobserved hedge portfolio. This link and the ICAPM pricing 

relation underly the ability of our novel measures based on stock idiosyncratic volatilities to 

forecast stock market returns.  

The remainder of this paper is organized as follows. Section II derives theoretically the 

relationship between idiosyncratic volatility and the conditional covariance risk under the 

ICAPM. Section III presents robust evidence on the stock return predictive power by our 

covariance risk proxy derived from the cross-section of idiosyncratic volatilities. Our results hold 

for both in-sample and out-of-sample tests. Section IV conducts ICAPM specification tests. 

Section V examines the relationship between the covariance risk under the ICAPM and the tail 

index of Kelly and Jiang (2014). Section VI concludes the paper. All proofs are provided in the 

appendix. 

 

II.   Theoretical Framework 

We start with the ICAPM under which the conditional expected return of a risky security 

i is given by (see, e.g., Merton (1973), Long (1974), Cox et al. (1985), and Campbell (1993)): 

ሺ1ሻ 𝐸௧൫𝑅,௧ାଵ൯ ൌ 𝛾ெ𝐶𝑜𝑣௧൫𝑅,௧ାଵ,𝑅ெ,௧ାଵ൯ 𝛾𝐶𝑜𝑣௧൫𝑅,௧ାଵ,Δ𝑍,௧ାଵ൯



ୀଵ

, 𝑖 ൌ 1, … ,𝑁,  
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where 𝑅,௧ାଵ is the excess return (rates of return minus a risk-free rate) for security i, 𝑅ெ,௧ାଵ is 

the market excess return, and the 𝑍′s are relevant state variables that contain information about 

future investment opportunities. 𝛾ெ is the relative risk aversion of the representative agent. 𝛾 is 

the weighted average across investors of their state-variable aversions. 𝐸௧ and 𝐶𝑜𝑣௧ denote the 

conditional expectation and the conditional covariance based on information at time t. Equation 

(1) gives the following conditional equity risk premium: 

ሺ2ሻ 𝐸௧൫𝑅ெ,௧ାଵ൯ ൌ 𝛾ெ𝑉𝑎𝑟௧൫𝑅ெ,௧ାଵ൯ 𝛾𝐶𝑜𝑣௧൫𝑅ெ,௧ାଵ,Δ𝑍,௧ାଵ൯



ୀଵ

.  

Unlike the one-factor CAPM model, the ICAPM states that the conditional equity risk 

premium is determined not only by the conditional variance of the market portfolio but also by 

the conditional covariance of the market portfolio with innovations of the relevant state 

variables. By utilizing the concept of factor mimicking portfolio or hedge portfolio “H” of traded 

securities whose return is maximally correlated with the innovation of the state variables, 

equations (1) and (2) can be simplified to give the following expressions for the risk premia 

under the ICAPM:  

ሺ3ሻ 𝜇,௧ ൌ 𝛾ெ𝜎ெ,௧  𝛾ு𝜎ு,௧ .  

ሺ4ሻ 𝜇ெ,௧ ൌ 𝛾ெ𝜎ெ,௧
ଶ  𝛾ு𝜎ெு,௧ .       

ሺ5ሻ 𝜇ு,௧ ൌ 𝛾ெ𝜎ெு,௧  𝛾ு𝜎ு,௧
ଶ .       

Here and in the rest of the paper, we use 𝜇 to denote expected returns and 𝜎ଶ to denote 

variance-covariance terms. Specifically, 𝜇,௧ ,𝜇ெ,௧ , 𝜇ு,௧ ሺ𝜎,௧ ,𝜎ெ,௧ ,𝜎ு,௧ሻ are the conditional 

expected excess returns (volatilities) of security 𝑖, the market portfolio, and the hedge portfolio at 
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time t. 𝜎ெ,௧ ,𝜎ு,௧ ,𝜎ெு,௧ represent the corresponding covariance terms. Following the literature 

(e.g., Bali (2008), Bali and Engle (2010), and Rossi and Timmermann (2015)), we refer to the 

covariance term 𝜎ெு,௧ as the ICAPM covariance risk.  

Based on Ingersoll ((1987), p.218), a beta representation of equation (3) can be written 

as: 

ሺ6ሻ 𝜇,௧ ൌ 𝛽ெ,௧𝜇ெ,௧  𝛽ு,௧𝜇ு,௧ ,  

where 𝛽ெ,௧ and 𝛽ு,௧ are the exposures of security i to the market and hedge portfolios given by 

the following regression model: 

ሺ7ሻ 𝑅,௧ାଵ ൌ 𝛽ெ,௧𝑅ெ,௧ାଵ  𝛽ு,௧𝑅ு,௧ାଵ  𝜀,௧ାଵ,     

where 𝑅ெ,௧ାଵ and 𝑅ு,௧ାଵ are the excess returns of the market portfolio and the hedge portfolio, 

and 𝜀,௧ାଵ is the true idiosyncratic return of security i. Despite the importance of the ICAPM 

covariance risk 𝜎ெு,௧, it is difficult to estimate since the hedge portfolio 𝐻 is unobserved. We 

propose a new approach to estimate 𝜎ெு,௧ that differs markedly from previous studies that model 

it as a function of some observed state variables (e.g., Rossi and Timmermann (2015)). Our 

approach relies on the ICAPM pricing relationships. The insight is that, under the ICAPM, the 

idiosyncratic variance relative to the misspecified one-factor market model contains useful 

information about the covariance risk.  

Assume that econometricians only use the single-index model:   

ሺ8ሻ 𝑅,௧ାଵ ൌ 𝑏ெ,௧𝑅ெ,௧ାଵ  𝜂,௧ାଵ,  
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where 𝑏ெ,௧ ൌ
ఙಾ,

ఙಾ,
మ  is the market beta, and 𝜂,௧ାଵ is the (misspecified) idiosyncratic return of 

security i under the one-factor market model. Proposition 1 demonstrates that both the first and 

the second conditional moments of the idiosyncratic return 𝜂,௧ାଵ can be expressed as a 

combination of the conditional variance of the hedge portfolio and the conditional covariance 

between the market portfolio and the ICAPM hedge portfolio. 

Proposition 1. The time-t conditional mean and variance of the misspecified firm idiosyncratic 

return 𝜂,௧ାଵ obtained from the single-index model in equation (8) are related to the conditional 

variance 𝜎ு,௧
ଶ  of the hedge portfolio H and the conditional covariance 𝜎ெு,௧ under the ICAPM 

by: 

ሺ9ሻ 𝐸௧൫𝜂,௧ାଵ൯ ൌ 𝛾ு𝑏ு,௧𝜎ு,௧
ଶ െ 𝛾ு𝑏ெ,௧𝜎ெு,௧ ,  

ሺ10ሻ 𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯ ൌ 𝛽ு,௧𝑏ு,௧𝜎ு,௧
ଶ െ 𝛽ு,௧𝑏ெ,௧𝜎ெு,௧  𝜎ఌ,௧

ଶ ,  

where  ൞
𝛽ெ,௧ ൌ

ఙಾ,ఙಹ,
మ ିఙಹ,ఙಾಹ,

ఙಹ,
మ ఙಾ,

మ ିఙಾಹ,
మ

𝛽ு,௧ ൌ
ఙಹ,ఙಾ,

మ ିఙಾ,ఙಾಹ,

ఙಹ,
మ ఙಾ,

మ ିఙಾಹ,
మ

 𝑎𝑛𝑑   ቐ
𝑏ெ,௧ ൌ

ఙಾ,

ఙಾ,
మ

𝑏ு,௧ ൌ
ఙಹ,

ఙಹ,
మ

 . 

Proposition 1 reveals that the idiosyncratic variance under the market model contains 

useful information about 𝜎ெு,௧ which is a key determinant of the equity risk premium under the 

ICAPM as shown by equation (4). This argument for why idiosyncratic variance matters for 

asset pricing is different from related studies in the literature.  

Proposition 1 suggests that individual stock idiosyncratic variance could be useful for 

forecasting stock market returns via its correlation with 𝜎ெு,௧ , but it is likely a noisy predictor 

because idiosyncratic variance also depends on the variance 𝜎ு,௧
ଶ  of the hedge portfolio which is 
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irrelevant for predicting stock market returns. Pooling idiosyncratic variances across stocks to 

estimate 𝜎ெு,௧ can help improve the information-noise ratio. For example, one can attempt to 

extract the relevant information (i.e., about 𝜎ெு,௧) from the individual stock idiosyncratic 

variances using principal component analysis or the three-pass regression filter as in Kelly and 

Pruitt (2015). Below, we propose a simple alternative method to estimate the conditional 

covariance 𝜎ெு,௧ using two differentially weighted average idiosyncratic variances. 

Corollary 1.1. Under the ICAPM, the conditional variance of the hedge portfolio H and the 

conditional covariance between the market portfolio M and the hedge portfolio H can be 

expressed in terms of two cross-sectional average idiosyncratic variances 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ with 

different weights 𝑤,௧
ி   𝑎𝑛𝑑  𝑤,௧

ௌ : 

ሺ11ሻ 𝜎ு,௧
ଶ ൌ

𝐵௧
ௌ

𝐴௧
ி𝐵௧

ௌ െ 𝐴௧
ௌ𝐵௧

ி 𝐼𝑉෪௧
ி െ

𝐵௧ி

𝐴௧
ி𝐵௧

ௌ െ 𝐴௧
ௌ𝐵௧

ி 𝐼𝑉෪௧
ௌ,  

ሺ12ሻ 𝜎ெு,௧ ൌ
𝐴௧
ௌ

𝐴௧
ி𝐵௧

ௌ െ 𝐴௧
ௌ𝐵௧

ி 𝐼𝑉෪௧
ி െ

𝐴௧ி

𝐴௧
ி𝐵௧

ௌ െ 𝐴௧
ௌ𝐵௧

ி 𝐼𝑉෪௧
ௌ,  

where  ൝
𝐴௧
ி ൌ ∑ 𝑤,௧

ி 𝛽ு,௧𝑏ு,௧
ே
ୀଵ

𝐴௧
ௌ ൌ ∑ 𝑤,௧

ௌ 𝛽ு,௧𝑏ு,௧
ே
ୀଵ

, ൝
𝐵௧
ி ൌ ∑ 𝑤,௧

ி 𝛽ு,௧𝑏ெ,௧
ே
ୀଵ

𝐵௧
ௌ ൌ ∑ 𝑤,௧

ௌ 𝛽ு,௧𝑏ெ,௧
ே
ୀଵ

, ൝
𝐼𝑉௧

ி ൌ ∑ 𝑤,௧
ி 𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯

ே
ୀଵ

𝐼𝑉௧
ௌ ൌ ∑ 𝑤,௧

ௌ 𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯
ே
ୀଵ

, 

 ൝
Ω𝑡

F ൌ ∑ 𝑤𝑖,𝑡
𝐹 𝜎𝜀𝑖,𝑡

2𝑁𝑡
𝑖ൌ1

Ω𝑡
𝑆 ൌ ∑ 𝑤𝑖,𝑡

𝑆 𝜎𝜀𝑖,𝑡
2𝑁𝑡

𝑖ൌ1

 ,   𝑎𝑛𝑑  ൝
𝐼𝑉෪𝑡

𝐹
ൌ 𝐼𝑉𝑡

𝐹 െ Ω𝑡
𝐹

𝐼𝑉෪𝑡
𝑆
ൌ 𝐼𝑉𝑡

𝑆 െ Ω𝑡
𝑆

 .   

Theoretically, 𝜎ெு,௧ is a combination of 𝐼𝑉෪௧
ி and  𝐼𝑉෪௧

ௌ instead of 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ. The 

difference between 𝐼𝑉෪௧
ி and 𝐼𝑉௧ி (or 𝐼𝑉෪௧

ௌ and 𝐼𝑉௧
ௌሻ is given by weighted average of the true 

idiosyncratic variances. Since the true idiosyncratic variances are not related to the equity risk 

premium, we can effectively use 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ when predicting stock market returns. Proposition 
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1 equation (9) suggests that 𝐸௧൫𝜂,௧ାଵ൯, the mean of the idiosyncratic return 𝜂,௧ାଵ under the 

CAPM, also contains useful information about the ICAPM covariance risk 𝜎ெு,௧. We explore 

this in Section V when linking 𝜎ெு,௧ to the Kelly and Jiang (2014) tail index.  

The next proposition follows from the ICAPM pricing relationships in equations (4)-(5) 

together with Corollary 1.1.  

Proposition 2. Under the ICAPM, the conditional equity risk premium can be expressed as: 

ሺ13ሻ 𝜇ெ,௧ ൌ 𝛾ெ ൈ 𝜎ெ,௧
ଶ  𝐶௧ி ൈ 𝐼𝑉෪௧

ி െ 𝐶௧
ௌ ൈ 𝐼𝑉෪௧

ௌ ൎ 𝛾ெ𝜎ெ,௧
ଶ  𝜓 lnቆ

𝐶௧ி

𝐶௧
ௌቇ  𝜓 lnቆ

𝐼𝑉෪௧
ி

𝐼𝑉෪௧
ௌቇ ,  

where  𝐶௧ி ൌ
ఊಹ

ೄ


ಷ

ೄି
ೄ

ಷ , 𝐶௧
ௌ ൌ ఊಹ

ಷ


ಷ

ೄି
ೄ

ಷ , 𝑎𝑛𝑑  𝜓 ൌ
ா൫

ಷூ
ಷ൯ାா൫

ೄூ
ೄ൯

ଶ
. 

Proposition 2 highlights that under the ICAPM, two average idiosyncratic variances with 

different weights can be used to predict stock market returns. This dual-predictor system can be 

further simplified to a single predictor which is the log-ratio of two average idiosyncratic 

variances.2 Equation (13) is equivalent to the following relation: 

ሺ14ሻ 𝜎ெு,௧ ൎ
1
𝛾ு

ቈ𝜓 ln ቆ
𝐶௧ி

𝐶௧
ௌቇ  𝜓 lnቆ

𝐼𝑉෪௧
ி

𝐼𝑉෪௧
ௌቇ .  

Equation (14) suggests that the logarithm of the ratio of two different weighted average 

idiosyncratic variances can proxy for the covariance risk under the ICAPM. Given logarithm is a 

monotonically increasing function, in the empirical analyses we simply use the ratio of two 

 
2 In deriving Proposition 2, we apply the technique of log approximation which has been used by Campbell and Shiller (1988) 
and other studies. 
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different weighted average idiosyncratic variances as a proxy for 𝜎ெு,௧. We name this proxy of 

the covariance risk the “cross-sectional bivariate idiosyncratic volatility” (CBIV): 

ሺ15ሻ 𝐶𝐵𝐼𝑉௧ ≡
𝐼𝑉෪௧

ி

𝐼𝑉෪௧
ௌ .  

In Section III, we show that CBIV captures the same information as the dual-predictor system of 

idiosyncratic volatilities when predicting stock market returns.  

 

III.   ICAPM Covariance and the Equity Risk Premium 

A.   New Proxies of the ICAPM Covariance Risk 

We construct proxies of the ICAPM covariance risk using the cross-section of stock 

idiosyncratic volatilities (i.e., CBIV). Then we test the ability of our covariance risk measure to 

forecast stock market returns, as suggested by the ICAPM pricing relation. The testing period is 

from 1960 to 2022. To make our empirical results comparable to related papers in the literature, 

we use idiosyncratic volatility instead of idiosyncratic variance. We compute idiosyncratic 

volatility as the standard deviation of residuals from the one-factor market model. For each stock 

in each month, we use daily returns over the past 60 trading days (we require at least 20 return 

observations) to fit the market model. Our empirical results do not change materially if 

idiosyncratic volatility based on different benchmarks (e.g., Fama-French three- or five-factor 

model), estimation window based on different trading days, or idiosyncratic variance of stock 

returns are used. We obtain from the Center for Research in Security Prices (CRSP) data on 

stock returns, stock prices, and shares outstanding. We download the stock market excess returns 

(MKTRF) and the Fama-French factors from Kenneth French’s website.  
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 We have shown theoretically that two different idiosyncratic volatilities can be used to 

estimate the ICAPM covariance risk 𝜎ெு,௧ (Corollary 1.1) and forecast stock market returns 

(Proposition 2). To ensure the robustness of our empirical results, we try all combinations of two 

percentiles (from the 1st to the 99th percentile) of the cross-section of individual stock 

idiosyncratic volatilities. When defining each percentile of idiosyncratic volatilities, we first 

subtract the cross-sectional mean of idiosyncratic volatility in order to isolate the potential effect 

of the time-series trend in the aggregate idiosyncratic volatility (e.g., Campbell, Lettau, Malkiel, 

and Xu (2001), Bekaert, Hodrick, and Zhang (2012)): 

ሺ16ሻ 𝐼𝑉,௧ ൌ 𝑄௧
൫𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯,𝑛-𝑡ℎ൯ െ 𝐸௧

 ቀ𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯ቁ ,  

where 𝑄௧
൫𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯,𝑛-𝑡ℎ൯ is the 𝑛-𝑡ℎ quantile of the cross-sectional distribution of 

individual stock idiosyncratic volatility in month 𝑡, and 𝐸௧
 ቀ𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯ቁ is the equal-weighted 

average idiosyncratic volatility across all stocks. Since all individual idiosyncratic volatilities 

satisfy equation (10) in Proposition 1, the demeaned 𝐼𝑉,௧ above still contains useful information 

about the covariance risk 𝜎ெு,௧. We then use the ratio of a pair of 𝐼𝑉,௧ as a proxy for 𝜎ெு,௧: 

ሺ17ሻ 𝐶𝐵𝐼𝑉௧ ൌ
𝐼𝑉,௧

𝐼𝑉,௧
,  

where ሺ𝑛,𝑚ሻ ∈ ሼ1, 2, 3, … , 99ሽ and 𝑛  𝑚. Across all 4,851 such combinations, we find 

consistent and robust evidence of significant stock market return predictability by either two 

predictors 𝐼𝑉,௧ and 𝐼𝑉,௧ given in equation (16) or by a single predictor 𝐶𝐵𝐼𝑉௧ (see Section 

III.D). 
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For our main reported results, we pick two representative idiosyncratic volatilities 𝐼𝑉௧ி 

and 𝐼𝑉௧
ௌ as follows. In each month 𝑡, and for each pair of ሺ𝑛,𝑚ሻ, we run a univariate predictive 

regression of monthly stock market returns on the lagged value of the corresponding CBIV given 

in equation (17) using an expanding window of the data:3 

ሺ18ሻ 𝑅ெ,௦ ൌ 𝑎,  𝑏, ൈ 𝐶𝐵𝐼𝑉௦ିଵ  𝜖ெ,௦ ൌ 𝑎,  𝑏, ൈ
𝐼𝑉,௦ିଵ

𝐼𝑉,௦ିଵ
 𝜖ெ,௦, 𝑠 ൌ 2, … , 𝑡.  

To ensure all CBIVs forecast stock market returns with a positive sign, we take the 

negative value of 𝐼𝑉,௧ if 𝑏, ൏ 0: 

ሺ19ሻ 𝐼𝑉,௧
∗ ൌ

ห𝑏,ห
𝑏,

ൈ 𝐼𝑉,௧ .  

We define 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ respectively as the median of 𝐼𝑉,௧’s and 𝐼𝑉,௧

∗ ’s across all pairs 

of ሺ𝑛,𝑚ሻ ∈ ሼ1, 2, 3, … , 99ሽ and 𝑛  𝑚: 

ሺ20ሻ

⎩
⎪
⎨

⎪
⎧𝐼𝑉௧

ி ൌ 𝑄𝑡
𝐶൫𝐼𝑉,௧ , 50-𝑡ℎ൯

𝐼𝑉௧
ௌ ൌ 𝑄𝑡

𝐶൫𝐼𝑉,௧
∗ , 50-𝑡ℎ൯

𝐶𝐵𝐼𝑉௧ ൌ
𝐼𝑉௧ி

𝐼𝑉௧
ௌ

.  

Taking the median can reduce the effect of extreme values from the data and generate 

more robust predictors than taking the mean, especially given the distribution of volatility is 

highly positively skewed.4  

 
3 To ensure we have enough observations to run the regressions at the beginning of our testing period (i.e., 1960), we start the 
expanding window from 1950. Our empirical results are robust to alternative choices of starting point for the expanding window. 
4 Our empirical results remain significant if we take the cross-sectional mean, though the 𝑅ଶ’s and t-statistics are somewhat 
smaller than the reported results using median in equation (20).  
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Figure 1 plots the monthly time series of ten quantiles of the cross-section of 

idiosyncratic volatilities, as well as two selected idiosyncratic volatilities 𝐼𝑉௧ி, 𝐼𝑉௧
ௌ, and the 

corresponding CBIV. To compare CBIV with alternative measures of conditional covariance 

documented in the literature, we replicate two conditional covariance measures proposed by Guo 

and Whitelaw (2006) and Rossi and Timmermann (2015). We also compute the Kelly and Jiang 

(2014) tail index (KJ tail index) and collect the aggregate disagreement index (HLW Disp) by 

Huang, Li, and Wang (2021). Table 1 provides their summary statistics. 

[Insert Figure 1 and Table 1 approximately here] 

Table 1 Panel B reports the correlations among key variables. CBIV has a correlation of 

0.282 with the covariance measure of Guo and Whitelaw (2006) and a correlation of 0.215 with 

the covariance measure of Rossi and Timmermann (2015). Huang et al. (2021) propose an 

aggregate disagreement measure based on multiple volume- and volatility-based variables, one 

of which is aggregate idiosyncratic volatility. However, CBIV and HLW Disp are largely 

independent with a correlation of -0.056, suggesting that they do not capture similar information. 

Furthermore, CBIV has a correlation of only -0.042 with the realized stock market volatility 

(SMV) based on the past 30-day daily returns of MKTRF. On the contrary, CBIV tracks the KJ 

tail index with a correlation of 0.818. In Section V, we will conduct a comprehensive empirical 

analysis to show that KJ tail index captures largely overlapping information as CBIV. 

 

B.   In-sample Return Predictability 
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Motivated by Proposition 2 and following the literature (e.g., Bali and Engle (2010), 

Rossi and Timmermann (2015), Rapach et al. (2016), and Huang et al. (2021)), we run the multi-

period predictive regressions below: 

ሺ21ሻ

⎩
⎪
⎨

⎪
⎧

𝑟௧ା
𝐾



ୀଵ

≡ 𝑟௧,௧ା ൌ 𝑎  𝑏ଵ ൈ 𝐼𝑉௧ி  𝑏ଶ ൈ 𝐼𝑉௧
ௌ  𝜖௧,௧ା


𝑟௧ା
𝐾



ୀଵ

≡ 𝑟௧,௧ା ൌ 𝑎  𝑏 ൈ 𝐶𝐵𝐼𝑉௧  𝜖௧,௧ା

,  

where 𝑟௧ା is the value-weighted market excess return (MKTRF) at time 𝑡  𝑘, 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ are 

two differentially weighted average idiosyncratic volatilities, and 𝐾 represents the forecast 

horizon (in number of months). When 𝐾  1, we adjust for serial correlation and conditional 

heteroskedasticity using the Newey-West correction with 𝐾 െ 1 lags (Newey and West (1987)). 

To make the coefficients comparable, we scale all independent variables to have zero mean and 

one standard deviation. In addition to using two idiosyncratic volatilities as regressors, we also 

run the univariate predictive regression using CBIV defined in equation (20). The results are 

reported in Table 2. 

[Insert Table 2 approximately here] 

Table 2 Panel A provides convincing evidence that 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ together significantly 

predict stock market returns. The in-sample three-month and one-year adjusted 𝑅ଶ’s are 2.63% 

and 12.88% respectively. The joint predictive power of 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ are not driven by 

multicollinearity. In the bivariate regressions, the estimated coefficients of 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ are both 

statistically significant with small standard errors while in the univariate regressions, neither 

coefficient is significantly different from zero. This is opposite to the pattern of multicollinearity. 
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Table 2 Panel B provides consistent evidence that CBIV by itself is also a significant 

predictor of future stock market returns, especially over longer horizons. For example, the in-

sample univariate regression with three-month (one-year) forecast horizon has an adjusted 𝑅ଶ of 

2.78% (11.80%) and a t-statistic of 3.40 (3.53) for the estimated CBIV coefficient. The 

explanatory power of the univariate regression using CBIV is comparable in magnitude to that of 

the corresponding bivariate regression using two idiosyncratic volatilities 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ.  

In contrast to the strong and robust stock market return predictability by 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ 

jointly, neither variable alone can significantly predict stock market returns over our sample 

period from 1960 to 2022. This is consistent with findings in the previous studies that a single 

average idiosyncratic volatility does not reliably forecast stock market returns. For example, 

Goyal and Santa-Clara (2003) find that equal-weighted idiosyncratic volatility (EWIV) can 

significantly forecast future stock market returns, but Bali, Cakici, Yan, and Zhang (2005) and 

Wei and Zhang (2005) show that the predictive power of EWIV does not hold in an extended 

sample period. Several studies document that value-weighted idiosyncratic volatility (VWIV) is 

negatively related to future aggregate stock returns, although the predictive power is marginal 

when used alone.5  

To confirm that our results are novel and robust, we run the following multiple predictive 

regressions of stock market returns on two different weighted average idiosyncratic volatilities or 

our covariance risk proxy CBIV, controlling for existing predictors (𝑋,௧ ሻ of the stock market 

returns: 

 
5 The relevant studies include Guo and Savickas (2008), Pollet and Wilson (2010), Chen and Petkova (2012), and Huang et al. 
(2021).  
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ሺ22ሻ

⎩
⎪
⎨

⎪
⎧𝑟௧,௧ା ൌ 𝑎  𝑏ଵ ൈ 𝐼𝑉௧ி  𝑏ଶ ൈ 𝐼𝑉௧

ௌ 𝑐

ெ

ୀଵ

ൈ 𝑋,௧  𝜖௧,௧ା

𝑟௧,௧ା ൌ 𝑎  𝑏 ൈ 𝐶𝐵𝐼𝑉௧ 𝑐

ெ

ୀଵ

ൈ 𝑋,௧  𝜖௧,௧ା

 .  

The control variables include two alternative conditional covariance measures proposed 

by Guo and Whitelaw (2006) and Rossi and Timmermann (2015), the first three principal 

components of 14 predictors in Goyal and Welch (2008), aggregate stock illiquidity following 

Amihud (2002) and Chen, Eaton, and Paye (2018), and the average stock correlation according 

to Pollet and Wilson (2010).6 We also collect data on investor sentiment (PLS Sentiment) by 

Huang, Jiang, Tu, and Zhou (2015) and aggregate disagreement index (HLW Disp) by Huang et 

al. (2021) from the corresponding authors’ websites as control variables.7  

[Insert Table 3 approximately here] 

Table 3 shows that after controlling for these existing predictors, both 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ retain 

significance in predicting stock market returns. The signs and magnitudes of the coefficients of 

𝐼𝑉௧ி and 𝐼𝑉௧
ௌ in Table 3 are about the same as the corresponding ones in Table 2. We also run 

similar multiple predictive regressions using CBIV instead of both 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ but the same set 

of controls. Table 3 shows that CBIV remains a significant predictor of stock market returns in 

 
6 We follow Rapach, Ringgenberg, and Zhou (2016) to construct the three principal components. The raw data is collected from 
Amit Goyal’s website. 
7 We consider other predictors of stock market returns such as investor sentiment by Baker and Wurgler (2007), market variance 
risk premium by Bollerslev, Tauchen, and Zhou (2009), market risk-neutral volatility index by Martin (2017), and aggregate 
implied volatility spread by Han and Li (2021). Since those predictors have shorter available sample periods, they are not 
included in our reported empirical results. In untabulated results, we confirm that our findings are robust to controlling for those 
predictors. 
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the presence of existing stock market return predictors. In particular, our new covariance risk 

measure CBIV remains a robust predictor of stock market returns after controlling for the two 

alternative measures of conditional covariance. We find that the conditional covariance measure 

in Rossi and Timmermann (2015) is a strong and significant predictor of the equity risk premium 

(beyond their sample period), while the conditional covariance based on Guo and Whitelaw 

(2006) does not significantly forecast stock market returns. These findings are consistent with 

Rossi and Timmermann (2015).  

 

C.   Out-of-sample Forecast Performance 

We conduct out-of-sample tests by splitting the data sample (1960 to 2022) into two 

parts: 1960 to 1979 as the in-sample estimation period and 1980 to 2022 as the out-of-sample 

performance evaluation period. Starting in January 1980, we recursively run various predictive 

regressions each month using historical data from January 1960 and then compare the out-of-

sample forecast errors (i.e., differences between the realized market returns and the predicted 

returns) with those from the benchmark model that uses the historical average as the forecast. 

Similar out-of-sample tests are used by Campbell and Thompson (2008), Goyal and Welch 

(2008), and Rapach, Strauss, and Zhou (2010). We adopt the Clark and West (2007) test of equal 

accuracy between the predictive regression in equation (23) and the unconditional benchmark 

model in equation (24) which can be nested as a special case of equation (23) that includes only 

an intercept in the regression: 

ሺ23ሻ ቊ
𝑟௧,௧ା ൌ 𝛼  𝛽 ൈ 𝑥௧  𝜖௧,௧ା,    𝑡 ൌ 1, … ,𝑇 െ 𝐾.

�̂�௧,௧ା ൌ 𝛼ො  𝛽መ ൈ 𝑥௧ ,                    𝑡 ൌ 𝑇, … ,𝑇.
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ሺ24ሻ  Benchmark:       𝑟௧,௧ା
 ൌ ଵ

௧ି
∑ 𝑟௦,௦ା
௧ି
௦ୀଵ ,    𝑡 ൌ 𝑇, … ,  𝑇,      

where K is the forecast horizon, 𝑟௧,௧ା is the stock market excess return from time 𝑡 to 𝑡  𝐾, 𝑥௧ 

is the value of the predictor at time 𝑡, and �̂�௧,௧ା is the forecasted return based on 𝑥௧ from the 

recursive regression. The out-of-sample 𝑅ଶ statistic is defined as one minus the ratio of the mean 

squared forecast error of the larger model to that of the benchmark model:  

ሺ25ሻ 𝑅ைௌ
ଶ ൌ 1 െ ൬

𝑀𝑆𝐹𝐸ଵ
𝑀𝑆𝐹𝐸

൰  ,  

where 𝑇 െ 𝑇 is the number of out-of-sample evaluation periods, 𝑀𝑆𝐹𝐸ଵ ൌ
ଵ

்ି బ்
∑ ൫𝑟௧,௧ା െ்
௧ୀ బ்

�̂�௧,௧ା൯
ଶ
 and 𝑀𝑆𝐹𝐸 ൌ

ଵ

்ି బ்
∑ ൫𝑟௧,௧ା െ 𝑟௧,௧ା

 ൯
ଶ்

௧ୀ బ்
. We test the hypothesis 𝐻: 𝑀𝑆𝐹𝐸 

𝑀𝑆𝐹𝐸ଵ 𝑣𝑠.  𝐻ଵ:𝑀𝑆𝐹𝐸  𝑀𝑆𝐹𝐸ଵ, or equivalently 𝐻: 𝑅ைௌ
ଶ  0  𝑣𝑠.  𝐻ଵ:𝑅ைௌ

ଶ  0. Following the 

Clark and West (2007) test for nested models, we adjust the point estimate of the difference 

between two MSFEs for the noise associated with the larger model’s forecast and define:   

ሺ26ሻ 𝑓መ௧,௧ା ൌ ൫𝑟௧,௧ା െ 𝑟௧,௧ା
 ൯

ଶ
െ ቂ൫𝑟௧,௧ା െ �̂�௧,௧ା൯

ଶ
െ ൫𝑟௧,௧ା

 െ �̂�௧,௧ା൯
ଶ
ቃ .  

The test of equal predictive accuracy is conducted by regressing 𝑓መ௧,௧ା  on a constant and 

using the resulting z-statistic for a zero coefficient. The null hypothesis is rejected (i.e., 

equivalent to 𝑅ைௌ
ଶ  as statistically significant) if this statistic is greater than 1.282 for a one-sided 

test at 10% confidence, 1.645 for a one-sided test at 5% confidence, or 2.334 for a one-sided test 

at 1% confidence. When the forecast horizon 𝐾 is greater than one, we adjust for serial 

correlation and conditional heteroskedasticity using the Newey and West (1987) correction with 

𝐾 െ 1 lags. 

[Insert Table 4 approximately here] 
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Table 4 Panel A reports the 𝑅ைௌ
ଶ  statistics for various predictors and forecast horizons. 

The out-of-sample 𝑅ைௌ
ଶ  for the combination of 𝐼𝑉௧ி and 𝐼𝑉௧

ௌ (resp. CBIV) is as high as 0.78% 

(resp. 2.80%) for three months ahead, 5.48% (resp. 7.46%) for six months ahead, and 8.85% 

(resp. 13.68%) for a one-year ahead forecast horizon. All of them are statistically significant at 

the 1% level. Interestingly, the single predictor CBIV consistently performs better in out-of-

sample tests than the dual predictor system 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ. 

The time-series predictability of stock market returns has important implications for 

market timing by guiding investors to optimally allocate wealth between stock investments and a 

risk-free asset (e.g., Kandel and Stambaugh (1996), Campbell and Thompson (2008), and 

Rapach et al. (2010)). Following the literature, we consider a mean-variance-utility investor who 

allocates wealth between the market portfolio and T-bills. Given an investment horizon of K 

periods, her optimal weight on the market portfolio is: 

ሺ27ሻ 𝑤௧,௧ା ൌ
1
𝛾
�̂�௧,௧ା

𝜎ො௧,௧ା
ଶ ,   

where �̂�௧,௧ା is the conditional expected market excess return (i.e., forecast based on a predictor) 

given by equation (23), 𝜎ො௧,௧ା
ଶ  is estimated from the historical monthly returns over the past five 

years, and the relative risk aversion 𝛾 is set to three. The portfolio is rebalanced every month. 

The corresponding Sharpe ratio of the investor’s optimal portfolio is given by: 

ሺ28ሻ 𝑆𝑅 ൌ
𝑅ത
𝜎

,  

where 𝑅ത and 𝜎 are the mean and the standard deviation of the portfolio return. The average 

utility gain or the certainty equivalent return (CER) is computed as: 



20 

 

ሺ29ሻ 𝐶𝐸𝑅 ൌ 𝑅ത െ 0.5𝛾𝜎ଶ.   

To gauge the economic benefit of a predictor to the mean-variance investor, we compare 

the CER above associated with the optimal portfolio based on the forecasts provided by the 

predictor to 𝐶𝐸𝑅തതതതതത, the certainty equivalent return of a benchmark portfolio formed based on the 

average return and the standard deviation estimated from historical returns. The difference is 

defined as the CER gain: 

ሺ30ሻ 𝐶𝐸𝑅 𝐺𝑎𝑖𝑛 ൌ 𝐶𝐸𝑅 െ 𝐶𝐸𝑅തതതതതത.  

Table 4 Panel B reports the economic value of using out-of-sample forecasts by either 

𝐼𝑉௧ி or 𝐼𝑉௧
ௌ individually, as well as the economic value of using the two predictors together or 

CBIV to form the optimal portfolio. Consistent with the results in Table 4 Panel A, using the 

forecasts of the stock market returns provided by 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ together or by CBIV alone leads 

to large and positive certainty equivalent gain at all horizons from one month to two years. In 

contrast, there is no apparent certainty equivalent gain to using the forecast based on only one 

average idiosyncratic variance as predictor.  

As an additional check of the out-of-sample forecast performance of our covariance risk 

measure CBIV, we adopt the forecast encompassing test to evaluate the incremental predictive 

power by CBIV relative to the alternative conditional covariance measures in Guo and Whitelaw 

(2006) and Rossi and Timmermann (2015). Motivated by Fair and Shiller (1989) and Harvey, 

Leybourne, and Newbold (1998), the idea is to form an optimal forecast �̂�௧,௧ା
∗  by combining the 

predicted value based on CBIV and that based on an existing predictor 𝑖:  

ሺ31ሻ �̂�௧,௧ା
∗ ൌ ሺ1 െ 𝜆ሻ�̂�௧,௧ା

  𝜆�̂�௧,௧ା
ூ ,   0  𝜆  1.  
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We want to find a 𝜆 so that the corresponding combined forecast in equation (31) is 

unbiased and most efficient among all such combined forecasts (i.e., the associated forecast error 

has a zero mean and the lowest possible variance). If CBIV contains extra information beyond 

the existing predictor, this optimal weight 𝜆 on the CBIV predicted value should be statistically 

and economically different from zero.  

Given the forecast errors associated with CBIV and an existing predictor 𝑖, 𝑒௧,௧ା
 ൌ

൫𝑟௧,௧ା െ �̂�௧,௧ା
 ൯ and 𝑒௧,௧ା

ூ ൌ ൫𝑟௧,௧ା െ �̂�௧,௧ା
ூ൯, the forecast error corresponding to �̂�௧,௧ା

∗  is:  

ሺ32ሻ 𝜖௧,௧ା ൌ ሺ1 െ 𝜆ሻ𝑒௧,௧ା
  𝜆𝑒௧,௧ା

ூ .  

To estimate the optimal weight 𝜆, we follow Harvey et al. (1998) by running the regression: 

ሺ33ሻ 𝑒௧,௧ା
 ൌ 𝜆൫𝑒௧,௧ା

 െ 𝑒௧,௧ା
ூ ൯  𝜖௧,௧ା .  

       The hypothesis testing is 𝐻: 𝜆 ൌ 0  𝑣𝑠.  𝐻ଵ: 𝜆  0. The t-statistic is calculated following 

Harvey et al. (1998). The results of forecast encompassing tests reported in Table 4 Panel C are 

consistent with those from the in-sample predictive regressions in Table 3. In all cases (except 

for CBIV against the Rossi and Timmermann (2015) covariance measure for the one-month 

forecast horizon), the optimal weight 𝜆 is significantly positive. This indicates that CBIV 

contains substantial new information about future stock market returns beyond existing 

conditional covariance measures in the literature. 

 

D.   Robustness Checks 

In this subsection, we conduct a comprehensive examination of the robustness of our 

main empirical findings to variations in constructing our covariance risk proxy CBIV. First, for 
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each combination of two percentiles 𝐼𝑉,௧  and 𝐼𝑉,௧ of the cross-section of individual stock 

idiosyncratic volatilities (for ሺ𝑛,𝑚ሻ ∈ ሼ1, 2, 3, … , 99ሽ,𝑛  𝑚), we construct the corresponding 

CBIV index by the ratio 
ூ,

ூ,
 as in equation (17), and use it to forecast future stock market 

returns. Table 5 presents the empirical results using a matrix where the ሺ𝑛,𝑚ሻ entry reports the 

absolute value of 𝑡-statistics and adjusted 𝑅ଶ’s (in parentheses) when regressing future stock 

market returns on the corresponding CBIV index. To save space, we only list 10 percentiles from 

5th to 95th with 10 percentiles per increment (i.e., {5th, 15th, 25th, …, 95th}) and report the 

forecast performance of CBIV at one-month and six-month horizons. The more general results 

are similar to Table 5 and available upon request. 

[Insert Table 5 approximately here] 

 Consistent with Proposition 2, the significant stock market return predictability by CBIV 

is robust to alternative choices of two idiosyncratic volatilities. For example, for 78% of the 

combinations in Table 5, the absolute value of the t-statistic for the corresponding CBIV is 

greater than 2 when forecasting one-month ahead stock market returns. At the six-month forecast 

horizon, the coefficient of CBIV comes out significant in 91% of the cases. Similarly, when we 

pick two out of 99 percentiles to define CBIV, 3,620 out of 4,851 (i.e., 74.62%) cases are 

significant for the one-month forecast horizon and 4,131 out of 4,851 (i.e., 85.16%) cases are 

significant for the six-month horizon. Thus, it is a general and robust finding that the ratio of two 

idiosyncratic volatilities from the whole cross-section of idiosyncratic volatilities possesses a 

significant predictive power for the stock market returns.   

[Insert Table 6 approximately here] 
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 Second, we take equal-weighted idiosyncratic volatility (EWIV) as 𝐼𝑉௧ி and either value-

weighted idiosyncratic volatility (VWIV) or price-weighted idiosyncratic volatility (PWIV) as 

𝐼𝑉௧
ௌ. We construct CBIV as the ratio between 𝐼𝑉௧ி and 𝐼𝑉௧

ௌ. Table 6 shows that EWIV together 

with VWIV (or PWIV) or the corresponding CBIV have also significant power predicting stock 

market returns, although the performance is weaker than the combination of 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ using 

equations (16) to (20). 

 

IV.   ICAPM Specification Tests  

            In this section, we conduct specification tests of the ICAPM using our covariance risk 

proxy and provide evidence on the importance of our covariance risk proxy. Our first ICAPM 

specification test regresses future stock market excess returns on both the conditional market 

variance and our ICAPM conditional covariance proxy, following equation (14) in Rossi and 

Timmermann (2015): 

ሺ34ሻ 
𝑟௧ା
𝐾



ୀଵ

≡ 𝑟௧,௧ା ൌ 𝑎  𝑏ଵ ൈ 𝜎ොெ,௧
ଶ  𝑏ଶ ൈ 𝜎ොெு,௧  𝜖௧,௧ା.  

We estimate the conditional market variance (𝜎ොெ,௧
ଶ ) using the EGARCH model as in Rossi and 

Timmermann (2015).  

[Insert Table 7 approximately here] 

Table 7 shows that incorporating the conditional covariance risk in forecasting stock 

market returns leads to robust evidence on the traditional risk-return tradeoff, namely a positive 

relationship between the equity risk premium and the market variance. The coefficient of the 
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market variance is statistically significant in Table 7 Panel A. Our estimate of the relative risk 

aversion (i.e., 𝑏ଵሻ falls between 3 and 4, which is reasonable in magnitude and similar to the 

results in Rossi and Timmermann (2015) using an alternative covariance measure. The 

coefficients of relative risk aversion for the conditional covariance (i.e., 𝑏ଶ) are also comparable 

to those in Rossi and Timmermann (2015).8  

Rossi and Timmermann (2015) show that adding the conditional covariance to the market 

variance when forecasting one month ahead stock market return increases the regression 𝑅ଶ from 

0.6% to 2.8%. Our Table 7 Panel A provides similar evidence. The improvement is especially 

significant for the longer forecast horizons.  For example, at semiannual (annual) horizon in 

Table 7 Panel A, the 𝑅ଶ increases from 5.50% (5.13%) by market variance alone to 13.81% 

(19.55%) when our ICAPM covariance proxy is included as a predictor. Similar results hold for 

out-of-sample 𝑅ଶ tests in Table 7 Panel B. The semiannual (annual) out-of-sample 𝑅ଶ increases 

from 2.56% (0.88%) by market variance alone to 11.23% (15.52%) when our covariance proxy 

CBIV is added as a regressor. These results illustrate the importance of our covariance risk proxy 

for explaining the equity risk premium as suggested by the ICAPM.  

To further evaluate the ICAPM model, we conduct the Ramsey RESET specification test 

suggested by Rossi and Timmermann (2015). We regress stock market excess returns one month 

ahead on the conditional variance and covariance and obtain the corresponding residuals. If the 

ICAPM is correctly specified, these residuals should be uncorrelated with squares of the 

conditional variance and covariance, or other transformations. We test this implication by 

 
8 For example, when we scale our CBIV to have the same standard deviation of the conditional covariance in Rossi and 
Timmermann (2015), the estimated coefficient of CBIV in equation (34) is 0.08, which is close to 0.11 in Table 2 of Rossi and 
Timmermann (2015). 
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regressing the ICAPM residuals on the squared values of the conditional variance and 

covariance. Following Rossi and Timmermann (2015), we report a Wald test for their joint 

significance. The results are provided in Table 7 Panel C. Our results from the Ramsey test are 

consistent with Rossi and Timmermann (2015). For example, we cannot reject the null 

hypothesis that ICAPM is correctly specified under our covariance risk proxy CBIV or the 

covariance measure by Rossi and Timmermann (2015). In contrast, Table 7 Panel C shows that 

when the covariance measure by Guo and Whitelaw (2006) is used in the Ramsey test, the null 

hypothesis can be rejected at the 10% level (p-value is 0.0791). This highlights the importance of 

covariance risk proxy in testing the ICAPM model.  

 

V.   Alternative Interpretation of Kelly and Jiang (2014) Tail Index 

In this section, we show theoretically and empirically that the conditional covariance risk 

𝜎ெு,௧ is closely linked to the Kelly and Jiang (2014) tail index. They construct a new measure of 

tail risk using the cross-section of stock returns under the assumption that individual stock 

returns are well described by a dynamic power law with a common component. Specifically, the 

KJ tail index is defined as: 

ሺ35ሻ 𝜆௧
ு ൌ

1
𝐾௧
 𝑙𝑛 ൬

𝜂,௧

𝑢௧
൰



ୀଵ

,  

where 𝑢௧ is the 5th percentile of the cross-section distribution of residual stock returns,  𝜂,௧ is 

the 𝑘𝑡ℎ daily residual return that falls below an extreme value threshold 𝑢௧ during month 𝑡, and 

𝐾௧ is the total number of these exceedances within month 𝑡. The residual returns are obtained by 
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removing the exposures to common return factors under a benchmark factor model such as the 

CAPM, the Fama-French three or five factor model.9  

The KJ tail index has a strong predictive power for aggregate stock returns, which Kelly 

and Jiang (2014) interpret as evidence that firm-level tail risk can influence asset prices under 

structural models with heavy-tailed distributions of firm-level fundamental growth rate shocks. 

However, Chapman, Gallmeyer, and Martin (2018) raise some issues about the tail risk 

interpretation. For example, the KJ tail index has no statistically significant correlation with 

theoretically motivated measures of macroeconomic uncertainty and systemic risk (e.g., Allen, 

Bali, and Tang (2012), Bloom (2014), and Jurado, Ludvigson, and Ng (2015)) that should 

connect to tail risk and thus expected returns. The tail measure also has no apparent conditional 

correlation with future aggregate dividend growth. Chapman et al. (2018) find that the predictive 

power of the KJ tail index for stock market returns comes through the discount rate channel and 

not the cash flow channel. This finding appears inconsistent with a structural model, such as a 

modified long-run risk model or the disaster risk model, which generates tail outcomes through 

large real cash flow effects.10   

We provide an alternative explanation under the ICAPM framework for why KJ’s tail 

index can predict stock market returns without the need to link it to macroeconomic uncertainty 

and systemic risk or tail risk. Our explanation works through the discount rate channel and does 

not need any cash flow assumptions. Central to our explanation, we show that the KJ tail index 

can be capturing the ICAPM covariance risk 𝜎ெு,௧. As shown in Proposition 1 equation (9), the 

 
9 Residual returns in our paper are computed using the CAPM as the benchmark model, although all the empirical results are 
similar and significant if we use the Fama-French three or five factors model. 
10 These models are motivated through the cash flow channel (see, e.g., Bansal and Yaron (2004), Barro (2006), Bansal and 
Shaliastovich (2011), Drechsler and Yaron (2011), Gabaix (2012), and Wachter (2013)).  
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mean of the idiosyncratic returns (i.e., 𝜂,௧ in equation (8)) contains useful information about 

𝜎ெு,௧, which is a key determinant of the equity risk premium under the ICAPM. The average of 

𝜂,௧ across stocks belonging to the lowest five percentiles is used to construct KJ’s tail index. 

Therefore, it is not surprising that there is a close link between the KJ tail index and the ICAPM 

covariance 𝜎ெு,௧, as described by the following Proposition: 

Proposition 3. Under the ICAPM, the Kelly and Jiang (2014) tail index 𝜆௧ାଵ
ு is a linear function 

of the covariance risk 𝜎ெு,௧: 

ሺ36ሻ 𝜆௧ାଵ
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1
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.    

Proposition 3 shows that the KJ tail index is approximately proportional to the ICAPM 

covariance risk 𝜎ெு,௧ up to a constant and 𝑒௧ାଵ, which is a mean zero random variable of true 

idiosyncratic stock returns (see the proof in the appendix). This provides an alternative theoretic 

explanation for the ability of the KJ tail index 𝜆௧
ு to predict stock market returns via its relation 

to the covariance risk 𝜎ெு,௧ and the ICAPM pricing relation in equation (4).  

Empirically, we first replicate the tail index 𝜆௧
ு and confirm that it is a robust predictor 

for stock market returns from 1960 to 2022 which extends the finding in Kelly and Jiang (2014). 

Consistent with Kelly and Jiang (2014), Table 8 Panel A confirms that the return predictive 
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power of  𝜆௧
ு is significant both statistically and economically at horizons from one month to 

two years.  

[Insert Table 8 approximately here] 

 We then compare the KJ tail index and CBIV, our proxy for the ICAPM covariance 

risk. Consistent with Proposition 3, the KJ tail index is highly correlated with CBIV, with a 

correlation of 0.818 over the sample period from 1960 to 2022. Figure 2 illustrates that the two 

variables closely track each other.  

[Insert Figure 2 approximately here] 

Table 8 Panel A also shows that both CBIV and the KJ tail index are significant 

predictors of stock market returns in univariate predictive regressions. But when they are used 

together in a bivariate predictive regression, the KJ tail index loses its significance to forecast 

stock market returns while the coefficient of CBIV becomes larger and more significant. Several 

factors can contribute to the better performance of CBIV compared with the KJ tail index. First, 

although both the mean and the variance of misspecified idiosyncratic returns contain 

information about the ICAPM covariance risk (Proposition 1), the first moment (as captured by 

KJ index) is estimated with more noise than the second moment (CBIV). Second, the KJ tail 

index only uses information in the tail part of the cross-sectional residual returns, while CBIV 

utilizes information from the whole cross-section of idiosyncratic volatilities. Thus, CBIV is a 

better proxy of the ICAPM covariance risk, which explains the superior predictive performance 

of CBIV for stock market return predictability.  

Table 8 Panel B reports the correlations between 𝜆௧
ு and alternative proxies of the 

ICAPM covariance risk proxy obtained as the ratio of two percentiles 𝐼𝑉,௧ and 𝐼𝑉,௧ of the 



29 

 

cross-section of stock idiosyncratic volatilities. It is noteworthy that the KJ tail index has very 

high correlations with CBIVs that are constructed using percentiles that are not in the tail part of 

the cross-sectional idiosyncratic volatilities. For example, one can choose the two quantiles of 

45th and 65th percentiles of the cross-sectional idiosyncratic volatilities to construct CBIV, 

which is also closely related to the KJ tail index with a correlation of 0.83. In an unreported table 

using 99 percentiles for different combinations, we find similar evidence that 3,607 out of 4,851 

(i.e., 74.36%) combinations have the absolute values of the correlations above 0.6 and most of 

them are not from the tail part of the cross-sectional idiosyncratic volatilities. Thus, despite the 

construction of the KJ tail index, its information content about the equity premium does not 

originate from the tail of the cross-section of stock returns.  

Chapman et al. (2018) find that the KJ tail index can forecast the future dividend-price 

ratio, but it has no link to future dividend growth rates. To reinforce our interpretation of Kelly 

and Jiang (2014) tail index, we examine the ability of CBIV to forecast cash flow news or 

discount rate news. Following Huang et al. (2015) and Chapman et al. (2018), we use dividend 

growth (dividend-price ratio) as a proxy for cash flow news (discount rate news):  

ሺ37ሻ
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 ,  

where DG (DP) stands for dividend growth (divide-price ratio). Following Chapman et al. 

(2018), when running regressions, we control for the lagged DG, DP, and stock market excess 

returns. The results are provided in Table 9. 

[Insert Table 9 approximately here] 



30 

 

Table 9 shows that CBIV is able to forecast not only the equity risk premium, but also the 

dividend-price ratio, which is a standard proxy for discount rate news. On the contrary, CBIV 

does not predict dividend growth rate at any forecast horizons. These results are consistent with 

the finding of Chapman et al. (2018) since CBIV is highly correlated with the KJ tail index. Our 

results support a discount rate channel underlying CBIV’s return predictive power, which is 

consistent with our ICAPM covariance risk interpretation of CBIV. Moreover, Kelly and Jiang 

(2014) tail index could proxy for the ICAPM covariance risk instead of tail risk.  

 

VI.   Conclusion 

Whether and how idiosyncratic volatility matters for asset pricing is a fundamental and 

hotly debated topic due to its important implications for both investment theory and practice. We 

make several novel contributions on this topic, both theoretically and empirically. Grounded in 

the ICAPM framework, we show that the conditional mean and variance of idiosyncratic stock 

returns under the one-factor market model can be used to identify the conditional covariance 

between the market and the hedge portfolio, which predicts the equity risk premium under the 

ICAPM.  

Empirically, we construct a proxy (CBIV) of the ICAPM covariance risk using only the 

cross-section of idiosyncratic volatilities. We document significant stock market return 

predictability by CBIV in both in-sample and out-of-sample tests. Our results are robust to 

variations in the constructions of the covariance risk proxy and to controlling for existing 

predictors in the literature. Our covariance risk proxy compares well with existing conditional 

covariance measures. Specifications tests support the ICAPM pricing relations under our 

covariance risk measure. We also find that two different average idiosyncratic volatilities jointly 
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are strong and robust predictors of aggregate stock returns at both short and long horizons. Our 

results help reconcile the mixed findings in the literature about the time-series stock market 

return predictability by average idiosyncratic volatility.  

 Our paper sheds new light on the economic mechanism underlying the return predictive 

power of Kelly and Jiang (2014) tail index. We show theoretically their tail index is 

approximately proportional to the ICAPM covariance risk. Empirically, their tail index and our 

CBIV track each other closely. While both CBIV and the tail index are significant predictors of 

stock market returns in univariate predictive regressions, the tail index loses its significance after 

controlling for CBIV, our proxy of the ICAPM covariance risk. This provides a new 

interpretation of Kelly and Jiang (2014) tail index.  

Our work highlights the idea that idiosyncratic returns under a misspecified factor model 

contains useful information about the true stochastic discount factor. Further studies along this 

line should yield more insights.   
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FIGURE 1  

Time Series of Key Variables 

Figure 1 depicts the monthly time series of 10 quantiles of cross-sectional distribution of demeaned idiosyncratic 

volatility (Ivol), 𝐼𝑉௧ி, 𝐼𝑉௧
ௌ, and cross-sectional bivariate idiosyncratic volatility (CBIV) from 1960 to 2022. The 10 

quantiles of the cross-sectional distribution of stock idiosyncratic volatility are selected from 5th to 95th percentiles 

with 10 percentiles as the step size (i.e., {5th, 15th, 25th, …, 95th}). Each quantile idiosyncratic volatility is 

subtracted by the cross-sectional mean of idiosyncratic volatility. 𝐼𝑉௧ி, 𝐼𝑉௧
ௌ, and CBIV are defined by equations (18) 

to (20). In particular, for each possible combination of two percentiles 𝐼𝑉,௧ and 𝐼𝑉,௧ defined in equation (16) with 

ሺ𝑛,𝑚ሻ ∈ ሼ1, 2, 3, … , 99ሽ,𝑛  𝑚, we regress stock market returns next month on the ratio between 𝐼𝑉,௧ and 𝐼𝑉,௧ 

using an expanding window starting from 1950. If the regression coefficient is negative, 𝐼𝑉,௧ is then adjusted by 

multiplying it with െ1. We take the cross-sectional median of all 𝐼𝑉,௧’s as of 𝐼𝑉௧ிand the cross-sectional median of 

all adjusted 𝐼𝑉,௧’s as 𝐼𝑉௧
ௌ. CBIV plotted in the bottom panel is defined to be the ratio between of 𝐼𝑉௧ி and 𝐼𝑉௧

ௌ. The 

grey areas indicate the National Bureau of Economic Research (NBER) recession periods. 
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FIGURE 2  

Time Series of Tail Risk and Conditional Covariance Risk 

Figure 2 compares the monthly time series of the ICAPM covariance risk proxied by the cross-sectional bivariate 

idiosyncratic volatility (CBIV) and tail risk proposed by Kelly and Jiang (2014). The tail risk measure (KJ Tail 

Index) is constructed following Kelly and Jiang (2014). Cross-sectional bivariate idiosyncratic volatility (CBIV) is 

the ratio of two idiosyncratic volatilities from the cross-section of stock idiosyncratic volatilities as given in equation 

(20). For ease of comparison, we scale the value of both variables to have zero mean and one standard deviation. 

The sample period is from 1960 to 2022. The grey areas indicate the National Bureau of Economic Research 

(NBER) recession periods. 
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TABLE 1 

Summary Statistics of Key Variables 

Table 1 reports the descriptive statistics for the monthly time series of some key variables in our study including our 

covariance risk measures obtained from the cross-section of stock idiosyncratic volatilities ሺ𝐼𝑉௧
ி, 𝐼𝑉௧

ௌ, and CBIV as given in 

equations (18) to (20)), stock market volatility (SMV), and stock market excess returns (MKTRT) in Panel A, as well as the 

correlations among them and other important predictors in Panel B. The summary statistics include mean, standard deviation 

(STD), and autocorrelations with various numbers of lagged months. MKTRF is obtained from Kenneth French’s website. 

SMV is calculated using the past 30-day daily MKTRF. GW Index and RT Index are the alternative conditional covariance 

measures proposed by Guo and Whitelaw (2006) and Rossi and Timmermann (2015). KJ Index is the tail measure proposed 

by Kelly and Jiang (2014), while HLW Disp is an aggregate disagreement measure constructed by Huang et al. (2021). All 

variables are expressed as monthly values and computed at monthly frequency.  

Panel A. Summary Statistics 

 Autocorrelation at Lag (Number of Months) 

Variable Mean STD 1 3 6 12 24 
𝐼𝑉௧ி 0.020 0.008 0.954 0.826 0.757 0.610 0.382 
𝐼𝑉௧

ௌ -0.049 0.019 0.982 0.910 0.827 0.772 0.649 
CBIV -0.427 0.158 0.958 0.869 0.824 0.737 0.559 
SMV 0.040 0.025 0.752 0.404 0.311 0.169 0.074 

MKTRF 0.005 0.045 0.050 0.028 -0.059 0.022 -0.0003 
Panel B. Pearson Correlation Matrix 

Variable 𝑰𝑽𝒕𝑭 𝑰𝑽𝒕
𝑺 CBIV SMV GW Index RT Index KJ Index 

𝐼𝑉௧
ௌ -0.582       

CBIV -0.356 -0.475      
SMV 0.442 -0.340 -0.042     

GW Index 0.177 -0.406 0.282 -0.033    
RT Index -0.058 -0.117 0.215 0.025 0.167   
KJ Index -0.159 -0.472 0.818 0.013 0.223 0.195  

HLW Disp 0.291 -0.200 -0.056 0.260 0.013 -0.021 -0.061 
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TABLE  2 

 In-sample Predictive Regressions 

This table reports the results of univariate and bivariate monthly predictive time-series regressions in equation (21). The 

dependent variables are average monthly stock market excess returns (MKTRF) over the relevant forecast horizons K (in number 

of months). All predictors are normalized to have zero mean and one standard deviation. “b” is the slope coefficient on the 

predictor multiplied by 100. When 𝐾  1, to adjust for the overlapping dependent variable, the t-stat is computed using the 

GMM standard errors with 𝐾 െ 1 Newey-West lag correction. The sample period is from 1960 to 2022 in Panel A and specified 

in each row in Panel B. 

Panel A. Univariate and Bivariate Predictive Regression by 𝑰𝑽𝒕𝑭 and 𝑰𝑽𝒕
𝑺 

  K=1 K=2 K=3 

Predictor Coefficient I II III I II III I II III 

𝐼𝑉௧ி b -0.114  -0.378 -0.110  -0.382 -0.156  -0.455 
 t-stat (-0.62)  (-1.76) (-0.70)  (-2.08) (-1.10)  (-2.70) 

𝐼𝑉௧
ௌ b  -0.235 -0.455  -0.246 -0.469  -0.250 -0.515 

 t-stat  (-1.38) (-2.34)  (-1.62) (-2.74)  (-1.79) (-3.29) 
 adj. 𝑅ଶ (%) -0.07 0.14 0.48 -0.02 0.44 1.23 0.22 0.77 2.63 

Predictor Coefficient K=6 K=12 K=24 
𝐼𝑉௧ி b -0.233  -0.556 -0.230  -0.534 -0.200  -0.463 

 t-stat (-1.80)  (-3.69) (-1.72)  (-3.65) (-1.48)  (-3.46) 
𝐼𝑉௧

ௌ b  -0.233 -0.556  -0.215 -0.523  -0.180 -0.450 
 t-stat  (-1.72) (-3.69)  (-1.50) (-3.62)  (-1.23) (-3.71) 
 adj. 𝑅ଶ (%) 1.38 1.37 6.93 2.81 2.45 12.88 4.89 3.95 21.59 

Panel B. Univariate Predictive Regression by Cross-sectional Bivariate Idiosyncratic Volatility (CBIV) 

Predictor Coefficient K=1 K=2 K=3 K=6 K=12 K=24 
CBIV b 0.455 0.443 0.445 0.419 0.396 0.271 

1960-1991 t-stat (2.04) (2.23) (2.36) (2.24) (2.15) (1.99) 
 adj. 𝑅ଶ (%) 0.74 1.50 2.40 4.24 8.39 10.67 

CBIV b 0.305 0.325 0.444 0.604 0.582 0.528 
1992-2022 t-stat (1.25) (1.56) (2.35) (3.94) (3.86) (4.16) 

 adj. 𝑅ଶ (%) 0.21 0.79 2.80 10.47 17.91 28.51 
CBIV b 0.399 0.411 0.449 0.482 0.461 0.389 

1960-2022 t-stat (2.51) (2.90) (3.40) (3.65) (3.53) (3.67) 
 adj. 𝑅ଶ (%) 0.66 1.48 2.78 6.33 11.80 19.00 
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TABLE  3  

Multiple Regressions Controlling for Existing Predictors 

Table 3 reports the results of multiple predictive regressions in equation (22) where the regressors include our covariance 

measures based on the cross-section of stock idiosyncratic volatilities (𝐼𝑉௧
ி, 𝐼𝑉௧

ௌ, and CBIV) and various stock market return 

predictors in the literature as controls. The dependent variables are average monthly stock market excess returns (MKTRF), 

and the forecast horizons are six months (𝐾 ൌ 6) and one year (𝐾 ൌ 12). GW PCA 1/2/3 are the first three principal 

components of the 14 predictors based on Goyal and Welch (2008). Other control variables include stock market volatility 

(SMV), alternative conditional covariance measures GW Index by Guo and Whitelaw (2006) and RT Index by Rossi and 

Timmermann (2015), aggregate disagreement measure (HLW Disp, Huang et al. (2021)), average stock correlation (Pollet 

and Wilson (2010)), aggregate stock illiquidity (Chen et al. (2018)), and aggregate investor sentiment index (PLS Sentiment, 

Huang et al. (2015)). The sample period is from 1970 to 2019 (due to the availability of some control variables). We 

normalize all predictors to have zero mean and one standard deviation. K represents the forecast horizon in the number of 

months. “b” is the slope coefficient on the corresponding predictor multiplied by 100. When 𝐾  1, to adjust for the 

overlapping dependent variable, the t-stat is computed using the GMM standard errors with 𝐾 െ 1 Newey-West correction.  

Predictor Coefficient K=6 K=12 K=6 K=12 

CBIV b   0.441 0.487 
 t-stat   (2.79) (3.12) 

𝐼𝑉௧ி b -0.303 -0.387   
 t-stat (-1.94) (-2.67)   

𝐼𝑉௧
ௌ b -0.546 -0.522   

 t-stat (-3.33) (-3.23)   

SMV b -0.216 -0.113 -0.056 -0.011 
 t-stat (-1.07) (-1.14) (-0.35) (-0.11) 

GW Index b -0.061 -0.015 -0.009 0.006 
 t-stat (-0.52) (-0.16) (-0.08) (0.06) 

RT Index b 0.284 0.263 0.273 0.254 
 t-stat (1.86) (2.05) (1.83) (2.07) 

GW PCA 1 b -0.060 -0.133 0.032 -0.079 
 t-stat (-0.29) (-0.73) (0.17) (-0.43) 

GW PCA 2 b -0.279 -0.181 -0.283 -0.178 
 t-stat (-1.36) (-1.41) (-1.36) (-1.38) 

GW PCA 3 b -0.020 0.004 -0.039 -0.011 
 t-stat (-0.19) (0.08) (-0.36) (-0.18) 

HLW Disp b -0.403 -0.256 -0.397 -0.261 
 t-stat (-2.71) (-2.10) (-2.72) (-2.15) 

Average b 0.419 0.276 0.258 0.168 
Correlation t-stat (2.36) (2.85) (1.85) (1.71) 

Aggregate b 0.313 0.178 0.421 0.279 
Illiquidity t-stat (1.28) (0.98) (1.66) (1.47) 

PLS b -0.227 -0.163 -0.186 -0.130 
Sentiment t-stat (-1.50) (-1.09) (-1.20) (-0.85) 

 adj. 𝑅ଶ (%) 18.91 27.26 18.02 26.76 



42 

 

  

TABLE 4 

Out-of-sample Tests 

We split the test sample into two parts: 1960 to 1979 as the in-sample estimation period and 1980 to 2022 as the out-of-

sample performance evaluation period to compute the statistics in the table. The forecast targets are average monthly stock 

market excess returns (MKTRF). In Panel A, the out-of-sample 𝑅ைௌ
ଶ  statistics are calculated based on equation (25). The 

predictors are specified in the first column. “𝐼𝑉௧
ி  𝐼𝑉௧

ௌ” stands for using both 𝐼𝑉௧
ி and 𝐼𝑉௧

ௌ together in a bivariate regression 

to forecast MKTRF. The z-stat is computed based on Clark and West (2007). In Panel B, the Sharpe ratio and certainty 

equivalent return (CER) are specified in equations (28) and (29) respectively. “Historical Average” stands for using the 

historical average of MKTRF recursively since 1960 to forecast MKTRF. K represents the forecast horizon in the number of 

months. All the statistics in Panel B are expressed as annual values. In Panel C, the forecast encompassing test is  𝐻: 𝜆 ൌ

0;𝐻ଵ: 𝜆  0, where 𝜆 measures the extra information from CBIV relative to an alternative predictor 𝑖. It is defined as the 

weight on the predicted market return based on CBIV in the optimal combined forecast: �̂�௧,௧ା
∗ ൌ ሺ1 െ 𝜆ሻ�̂�௧,௧ା

  𝜆�̂�௧,௧ା
ூ . The 

optimal weight 𝜆 is estimated from regression 𝑒௧,௧ା
 ൌ 𝜆൫𝑒௧,௧ା

 െ 𝑒௧,௧ା
ூ ൯  𝜖௧,௧ା, following Harvey et al. (1998). The t-stat 

of 𝜆 is calculated from the t-distribution of one-tail hypothesis test. *, **, and *** indicate significance at the 10%, 5%, and 

1% level, respectively. 

Panel A. Out-of-sample 𝑹𝟐 Statistics 

Predictor Statistic K=1 K=2 K=3 K=6 K=12 K=24 

𝐼𝑉௧ி 
𝑅ைௌ
ଶ  (%) -0.309 -0.583 -0.598 -0.736 -3.020 -12.547 
z-stat -0.072 0.039 0.192 0.152 -0.429 -1.075 

𝐼𝑉௧
ௌ 

𝑅ைௌ
ଶ  (%) -0.458 -0.823 -0.832 -0.318 -0.487 -4.743 
z-stat 1.238 1.401 1.572 1.553 1.275 0.820 

𝐼𝑉௧ி  𝐼𝑉௧
ௌ 

𝑅ைௌ
ଶ  (%) -0.370 -0.420 0.783 5.480 8.847 7.437 
z-stat 1.532 1.835 2.460 3.748 4.290 3.350 

CBIV 
𝑅ைௌ
ଶ  (%) 0.524 1.254 2.801 7.456 13.676 23.141 
z-stat 1.775 2.240 3.085 4.185 4.647 5.497 

Panel B. Optimal Portfolio Sharpe Ratio and Certainty Equivalent Return (CER) Gain 

Predictor Statistic K=1 K=2 K=3 K=6 K=12 K=24 

𝐼𝑉௧ி 
Sharpe Ratio 0.411 0.383 0.466 0.475 0.479 0.491 

CER Gain (%) -0.017 -0.191 0.338 0.493 0.215 0.113 

𝐼𝑉௧
ௌ 

Sharpe Ratio 0.433 0.426 0.462 0.489 0.525 0.583 
CER Gain (%) -0.183 -0.226 0.126 0.599 0.835 1.437 

𝐼𝑉௧ி  𝐼𝑉௧
ௌ 

Sharpe Ratio 0.471 0.466 0.571 0.573 0.597 0.612 
CER Gain (%) 0.600 0.711 2.190 2.225 2.416 2.202 

CBIV 
Sharpe Ratio 0.512 0.490 0.582 0.549 0.561 0.591 

CER Gain (%) 1.539 1.450 2.317 1.769 1.687 1.918 
Historical 
Average 

Sharpe Ratio 0.410 0.392 0.443 0.443 0.470 0.491 
CER Gain (%) - - - - - - 
Panel C. Comparison with Existing Conditional Covariance Measures 

Out-of-Sample 𝑹𝟐 Statistic (%) Forecast Encompassing Test (𝝀) 
Predictor K=1 K=6 K=12 Predictor K=1 K=6 K=12 

CBIV 0.524** 7.456** 13.676*** CBIV - - - 

GW Index -0.387 -1.419 -3.007 GW Index 1.236*** 1.525*** 1.503*** 

RT Index 0.619** 0.593* 0.836* RT Index 0.402 1.369*** 1.365*** 
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TABLE 5  

Predictive Regressions using Alternative Constructions of CBIV 

Table 5 reports the results of the univariate predictive regressions of average monthly stock market excess returns (MKTRF) 

on various covariance risk proxies CBIV obtained as the ratio between two quantiles in the cross-section of stock idiosyncratic 

volatilities. Each matrix element is a pair of the absolute value of the 𝑡-statistic and the corresponding adjusted 𝑅ଶ (in 

parentheses, expressed as percentage) for the univariate regressions with the regressor 𝐶𝐵𝐼𝑉௧ ൌ
ூ,

ூ,
  where 𝑛 (resp. 𝑚) is 

labeled by the row (resp. column). In Panel A (B), the forecast horizon K is one-month (six-month). All the 𝑡-statistics are 

computed using the GMM standard errors with 𝐾 െ 1 Newey-West correction. The test sample is monthly data from 1960 to 

2022. 

Panel A. One-month Forecast Horizon 
Percentile 5th 15th 25th 35th 45th 55th 65th 75th 85th 

15th 1.64 
(0.28) 

        

25th 2.02 
(0.44) 

2.32 
(0.60) 

       

35th 2.29 
(0.57) 

2.52 
(0.69) 

2.53 
(0.66) 

      

45th 2.40 
(0.65) 

2.57 
(0.73) 

2.59 
(0.73) 

2.51 
(0.71) 

     

55th 2.51 
(0.70) 

2.63 
(0.76) 

2.64 
(0.77) 

2.64 
(0.78) 

2.58 
(0.74) 

    

65th 2.51 
(0.66) 

2.58 
(0.71) 

2.60 
(0.73) 

2.61 
(0.75) 

2.51 
(0.70) 

2.00 
(0.16) 

   

75th 2.17 
(0.45) 

2.45 
(0.61) 

2.54 
(0.69) 

2.61 
(0.73) 

2.51 
(0.71) 

2.12 
(0.17) 

0.67 
(-0.06) 

  

85th 0.46 
(-0.11) 

0.99 
(-0.00) 

1.94 
(0.39) 

2.46 
(0.65) 

2.47 
(0.70) 

2.15 
(0.17) 

0.71 
(-0.05) 

2.56 
(0.66) 

 

95th 2.41 
(0.61) 

2.17 
(0.49) 

1.46 
(0.16) 

0.30 
(-0.12) 

2.22 
(0.56) 

2.18 
(0.16) 

0.80 
(-0.04) 

2.56 
(0.64) 

2.26 
(0.49) 

Panel B. Six-month Forecast Horizon 
Percentile 5th 15th 25th 35th 45th 55th 65th 75th 85th 

15th 1.91 
(2.05) 

        

25th 2.55 
(3.60) 

3.25 
(5.45) 

       

35th 3.03 
(4.67) 

3.48 
(5.92) 

3.45 
(5.41) 

      

45th 3.42 
(5.58) 

3.75 
(6.43) 

3.80 
(6.33) 

3.82 
(6.31) 

     

55th 3.74 
(6.15) 

3.88 
(6.59) 

3.87 
(6.55) 

3.78 
(6.47) 

3.53 
(6.00) 

    

65th 3.97 
(6.64) 

3.98 
(6.76) 

3.96 
(6.81) 

3.85 
(6.71) 

3.64 
(6.30) 

2.11 
(1.40) 

   

75th 3.19 
(4.65) 

3.36 
(5.32) 

3.52 
(5.87) 

3.49 
(5.98) 

3.40 
(5.83) 

2.08 
(1.26) 

3.66 
(0.35) 

  

85th 0.44 
(-0.02) 

1.12 
(0.59) 

2.69 
(3.28) 

3.42 
(5.01) 

3.58 
(5.73) 

2.10 
(1.30) 

3.60 
(0.34) 

4.13 
(6.43) 

 

95th 3.53 
(5.60) 

3.39 
(5.41) 

2.50 
(2.82) 

0.11 
(-0.13) 

3.00 
(4.22) 

2.10 
(1.26) 

3.43 
(0.31) 

4.03 
(6.20) 

3.40 
(4.79) 
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TABLE 6 

Predictive Regressions using Weighted Average Idiosyncratic Volatilities 

This table reports the results of univariate and bivariate predictive time-series regressions as in equation (21). The dependent variables are 

average monthly stock market excess returns (MKTRF) over the relevant forecast horizons K (in number of months). The predictors are 

equal-weighted idiosyncratic volatility (EWIV), value-weighted idiosyncratic volatility (VWIV) using stock market capitalization as weight, 

price-weighted idiosyncratic volatility (PWIV) using stock price as weight, and the corresponding covariance risk (CBIV) proxy obtained by 

taking the ratio between EWIV and VWIV (or PWIV). All predictors are normalized to have zero mean and one standard deviation. “b” is 

the slope coefficient on the predictor multiplied by 100. When 𝐾  1, to adjust for the overlapping dependent variable, the t-stat is 

computed using the GMM standard errors with 𝐾 െ 1 Newey-West lag correction. The test sample is monthly data from 1960 to 2022. 

 

 
 
 
 
 
 
 
 
 
 
  

Panel A. Bivariate Predictive Regressions 
  K=1 K=6 K=12 

Predictor Coefficient I II III I II III I II III 
EWIV b 0.109  0.814 0.091  0.685 0.052  0.597 

 t-stat (0.62)  (2.91) (0.69)  (3.01) (0.37)  (2.82) 
VWIV b  -0.149 -0.836  -0.126 -0.704  -0.140 -0.644 

 t-stat  (-0.75) (-2.53)  (-0.85) (-2.76)  (-0.91) (-2.75) 
 adj. 𝑅ଶ (%) -0.07 -0.02 0.80 0.10 0.31 3.93 0.02 0.97 6.55 

Predictor Coefficient K=1 K=6 K=12 
EWIV b 0.109  1.025 0.091  0.992 0.052  1.042 

 t-stat (0.62)  (2.55) (0.69)  (3.35) (0.37)  (3.99) 
PWIV b  -0.079 -1.009  -0.093 -0.995  -0.146 -1.094 

 t-stat  (-0.44) (-2.43)  (-0.72) (-3.38)  (-1.05) (-4.51) 
 adj. 𝑅ଶ (%) -0.07 -0.10 0.69 0.10 0.10 4.79 0.02 1.06 11.69 

Panel B. Univariate Predictive Regressions 

Predictor Coefficient K=1 K=2 K=3 K=6 K=12 K=24 
CBIV= b 0.398 0.388 0.380 0.345 0.289 0.234 

𝐸𝑊𝐼𝑉/𝑉𝑊𝐼𝑉 t-stat (2.71) (2.97) (2.95) (2.77) (2.46) (2.29) 
 adj. 𝑅ଶ (%) 0.66 1.30 1.95 3.17 4.49 6.64 

CBIV= b 0.444 0.450 0.448 0.431 0.433 0.393 
𝐸𝑊𝐼𝑉/𝑃𝑊𝐼𝑉 t-stat (2.72) (3.12) (3.37) (3.38) (3.53) (3.93) 

 adj. 𝑅ଶ (%) 0.85 1.79 2.76 5.00 10.34 19.36 
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TABLE 7 

ICAPM Specification Test  

Panel A reports the results of ICAPM specification test in equation (34) that regresses the stock market excess returns on both the 

conditional market variance and our covariance risk proxy CBIV. The conditional market variance is estimated using the 

EGARCH model based on Rossi and Timmermann (2015). The independent variables are all annualized and based on raw 

values, while the dependent variables are average annualized monthly stock market excess returns over various future horizons K 

(in number of months). “b” is the slope coefficient on the corresponding predictor. When 𝐾  1, to adjust for the overlapping 

dependent variable, the t-stat is computed using the GMM standard errors with 𝐾 െ 1 Newey-West correction. In Panel B, we 

split the test sample (monthly data from 1960 to 2022) into two parts: 1960 to 1979 as the in-sample estimation period and 1980 

to 2022 as the out-of-sample performance evaluation period to compute the statistics in the table. The forecast targets are stock 

market excess returns over various future horizons K. The out-of-sample 𝑅ைௌ
ଶ  statistics are calculated based on equation (25). The 

predictors are specified in the first column. “EGARCH+CBIV” stands for using both EGARCH and CBIV together in a bivariate 

regression to forecast stock market excess returns. The z-stat is computed based on Clark and West (2007). Panel C reports the 

results of the Ramsey RESET specification test following Rossi and Timmermann (2015). We first regress stock market excess 

returns one month ahead on the market variance and the covariance risk proxy. We then project the residuals of the ICAPM 

regression on the squared values of the regressors (i.e., conditional market variance and covariance risk) and conduct a Wald test 

for the null that they are jointly insignificant. Each row of Panel C corresponds to using the market variance and one proxy of 

covariance risk (our CBIV, GW Index by Guo and Whitelaw (2006), or RT Index from Rossi and Timmermann (2015)) as the 

regressors in Ramsey RESET specification test of ICAPM.  

  

Panel A. In-sample Predictive Regression  
  K=1 K=6 K=12 

Predictor Coefficient I II I II I II 
EGARCH b 3.383 3.860 3.340 3.915 2.270 2.802 

 t-stat (2.30) (2.60) (4.11) (5.11) (3.15) (4.29) 
CBIV b  0.359  0.423  0.391 

 t-stat  (2.92)  (4.39)  (4.19) 
 adj. 𝑅ଶ (%) 0.92 1.88 5.50 13.81 5.13 19.55 

Panel B. Out-of-sample 𝑹𝟐 

Predictor Statistic K=1 K=6 K=12 

EGARCH 
𝑅ைௌ
ଶ  (%) 0.587 2.563 0.875 
z-stat 1.547 2.025 1.229 

CBIV 
𝑅ைௌ
ଶ  (%) 0.524 7.456 13.676 
z-stat 1.775 4.185 4.647 

EGARCH + CBIV 
𝑅ைௌ
ଶ  (%) 1.192 11.225 15.518 
z-stat 2.167 3.718 3.789 

Panel C. Ramsey RESET Test 
Predictor Wald-Test p-value 

CBIV 0.3481 0.5552 
GW Index 3.0833 0.0791 
RT Index 0.1732 0.6773 
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TABLE 8 

Tail Risk and Conditional Covariance Risk 

Panel A reports the results of univariate and bivariate monthly time-series predictive regressions where the dependent variables 

are average monthly stock market excess returns (MKTRF) over the relevant forecast horizons. 𝜆௧
ு is the Kelly and Jiang 

(2014) tail index (KJ index) given in equation (35). CBIV is our covariance risk proxy given in equations (16) to (20). All 

predictors are normalized to have zero mean and one standard deviation. K represents the forecast horizon in the number of 

months. “b” is the coefficient on the predictor multiplied by 100. When 𝐾  1, to adjust for the overlapping dependent variable, 

the t-stat is computed using the GMM standard errors with 𝐾 െ 1 Newey-West lag correction. Panel B presents the absolute 

value of the Pearson correlation coefficient between the KJ tail index and the covariance risk proxy CBIV obtained as the ratio of 

two percentiles of the cross-section of stock idiosyncratic volatilities 𝐼𝑉,௧ and 𝐼𝑉,௧ where 𝑛 (resp. 𝑚) is labeled by the row 

(resp. column). The sample period is from 1960 to 2022. 

 

 

  

Panel A. Comparison between KJ Tail Index and the Covariance Risk CBIV 

Predictor Coefficient K=1 K=2 K=3 K=6 K=12 K=24 
CBIV 
Only 

b 0.399 0.411 0.449 0.482 0.461 0.389 
t-stat (2.51) (2.90) (3.40) (3.65) (3.53) (3.67) 

adj. 𝑅ଶ (%) 0.66 1.48 2.78 6.33 11.80 19.00 
𝜆௧
ு   

Only 
b 0.271 0.309 0.336 0.341 0.360 0.370 

t-stat (1.82) (2.32) (2.60) (2.73) (3.14) (4.09) 
adj. 𝑅ଶ (%) 0.23 0.77 1.49 3.08 7.11 17.01 

CBIV b 0.536 0.482 0.529 0.620 0.509 0.267 
t-stat (1.90) (2.08) (2.46) (2.82) (2.43) (1.76) 

𝜆௧
ு b -0.168 -0.086 -0.099 -0.169 -0.059 0.149 

t-stat (-0.63) (-0.40) (-0.47) (-0.82) (-0.34) (1.30) 
 adj. 𝑅ଶ (%) 0.58 1.37 2.70 6.47 11.74 19.79 

Panel B. Pearson Correlation Coefficients between KJ Tail Index and Alternative Covariance Proxies 
Percentile 5th 15th 25th 35th 45th 55th 65th 75th 85th 

15th 0.55         
25th 0.64 0.69        
35th 0.72 0.75 0.75       
45th 0.76 0.78 0.79 0.79      
55th 0.80 0.81 0.82 0.82 0.83     
65th 0.80 0.81 0.82 0.82 0.83 0.52    
75th 0.68 0.76 0.80 0.82 0.83 0.51 0.02   
85th 0.13 0.35 0.63 0.75 0.81 0.51 0.02 0.75  
95th 0.76 0.70 0.52 0.02 0.65 0.50 0.02 0.74 0.70 
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TABLE 9 

Economic Channels Underlying the Return Predictive Power of Covariance Risk 

This table reports the results of multiple predictive regressions in equation (37). The dependent variable is dividend growth (DP) 

over various future horizons in Panel A and dividend-price ratio (DG) over various future horizons in Panel B. The independent 

variables include our lagged covariance risk proxy CBIV and lagged stock market excess returns (MKTRF). The sample period is 

from 1960 to 2022. We normalize all predictors to have zero mean and one standard deviation. K represents the forecast horizon 

in the number of months. “b” is the slope coefficient on the corresponding predictor and expressed in percent (raw value 

multiplied by 100). When 𝐾  1, to adjust for the overlapping dependent variable, the t-stat is computed using the GMM 

standard errors with 𝐾 െ 1 Newey-West correction.  

 
 
 

Panel A. Forecast Discount Rate News (Dividend-Price Ratio) 
Predictor Coefficient K=1 K=2 K=3 K=6 K=12 K=24 

CBIV b -0.412 -0.647 -0.904 -1.683 -3.043 -4.900 
 t-stat (-2.66) (-3.19) (-3.59) (-4.06) (-3.97) (-3.62) 

DG b 0.773 1.132 1.478 2.418 3.793 4.633 
 t-stat (4.67) (5.61) (5.94) (5.71) (5.50) (4.24) 

DP b 39.803 39.636 39.449 38.862 37.770 36.213 
 t-stat (230.42) (183.87) (145.20) (83.86) (43.85) (23.83) 

MKTRF b -0.112 0.010 0.032 -0.009 0.249 0.867 
 t-stat (-0.55) (0.04) (0.13) (-0.03) (0.84) (2.44) 

 adj. 𝑅ଶ (%) 98.84 98.54 98.22 97.14 95.02 91.21 

Panel B. Forecast Cash Flow News (Dividend Growth) 

Predictor Coefficient K=1 K=2 K=3 K=6 K=12 K=24 
CBIV b 0.006 0.011 0.015 0.023 0.046 0.076 

 t-stat (0.83) (1.04) (1.14) (1.22) (1.77) (2.50) 

DG b 0.505 0.482 0.458 0.416 0.329 0.177 
 t-stat (36.68) (26.54) (18.83) (10.64) (7.36) (5.45) 

DP b -0.009 -0.012 -0.014 -0.016 -0.009 0.031 
 t-stat (-1.12) (-1.11) (-1.06) (-0.89) (-0.31) (0.62) 

MKTRF b 0.008 0.015 0.024 0.037 0.053 0.050 
 t-stat (1.03) (1.60) (2.05) (2.23) (2.13) (2.15) 

 adj. 𝑅ଶ (%) 84.54 80.63 76.04 68.72 51.19 25.70 
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Idiosyncratic Volatility and the ICAPM Covariance Risk 

 

Appendix 

A.   Proof of Proposition 1 

Assume the true stock excess return generating process for security i: 

ሺA. 1ሻ 𝑅,௧ାଵ ൌ 𝛽ெ,௧𝑅ெ,௧ାଵ  𝛽ு,௧𝑅ு,௧ାଵ  𝜀,௧ାଵ,

where 𝑅ெ,௧ାଵ is the market excess return, 𝑅ு,௧ାଵ is the return of the hedge portfolio, 𝜀,௧ାଵ is the 

true idiosyncratic shock for security i (which has mean zero by definition) and 𝛽ெ,௧ and 𝛽ு,௧ are 

the corresponding loadings: 

ሺA. 2ሻ 𝛽ெ,௧ ൌ
ఙಾ,ఙಹ,

మ ିఙಹ,ఙಾಹ,

ఙಹ,
మ ఙಾ,

మ ିఙಾಹ,
మ ,    𝛽ு,௧ ൌ

ఙಹ,ఙಾ,
మ ିఙಾ,ఙಾಹ,

ఙಹ,
మ ఙಾ,

మ ିఙಾಹ,
మ .   

Suppose that econometricians only use a simple (misspecified) CAPM model to estimate 

the idiosyncratic risk:  

ሺA. 3ሻ 𝑅,௧ାଵ ൌ 𝑏ெ,௧𝑅ெ,௧ାଵ  𝜂,௧ାଵ,  

where 𝑏ெ,௧ is the market beta for security 𝑖 defined as 𝑏ெ,௧ ൌ
ఙಾ,

ఙಾ,
మ  and 𝜂,௧ାଵ is the misspecified 

idiosyncratic return. It can be shown that: 

ሺA. 4ሻ 𝛽ெ,௧ െ 𝑏ெ,௧ ൌ
𝜎ெ,௧𝜎ு,௧

ଶ െ 𝜎ு,௧𝜎ெு,௧

𝜎ு,௧
ଶ 𝜎ெ,௧

ଶ െ 𝜎ெு,௧
ଶ െ

𝜎ெ,௧

𝜎ெ,௧
ଶ ൌ െ𝛽ு,௧

𝜎ெு,௧

𝜎ெ,௧
ଶ .  

The conditional mean of the misspecified stock idiosyncratic return is given by: 
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ሺA. 5ሻ                                𝐸𝑡 ቀ𝜂𝑖,𝑡1ቁ ൌ 𝜇𝑖,𝑡 െ 𝑏𝑖𝑀,𝑡𝜇𝑀,𝑡

                                                              ൌ 𝛽𝑖𝑀,𝑡𝜇𝑀,𝑡  𝛽𝑖𝐻,𝑡𝜇𝐻,𝑡 െ ቆ𝛽𝑖𝑀,𝑡  𝛽𝑖𝐻,𝑡

𝜎𝑀𝐻,𝑡

𝜎𝑀,𝑡
2 ቇ𝜇𝑀,𝑡

                                                              ൌ 𝛽𝑖𝐻,𝑡𝜇𝐻,𝑡 െ 𝛽𝑖𝐻,𝑡

𝜎𝑀𝐻,𝑡

𝜎𝑀,𝑡
2 𝜇𝑀,𝑡.                                     

 

Based on the ICAPM, the risk premia associated with the market portfolio and the hedge 

portfolio are given by: 

ሺA. 6ሻ ቊ
𝜇ெ,௧ ൌ 𝛾ெ𝜎ெ,௧

ଶ  𝛾ு𝜎ெு,௧

𝜇ு,௧ ൌ 𝛾ெ𝜎ெு,௧  𝛾ு𝜎ு,௧
ଶ   .  

Equations (A.5) and (A.6) imply the following relation:  

 ሺA. 7ሻ               𝐸௧൫𝜂,௧ାଵ൯ ൌ 𝛽ு,௧൫𝛾ெ𝜎ெு,௧  𝛾ு𝜎ு,௧
ଶ ൯ െ 𝛽ு,௧

𝜎ெு,௧

𝜎ெ,௧
ଶ ൫𝛾ெ𝜎ெ,௧

ଶ  𝛾ு𝜎ெு,௧൯

                                              ൌ 𝛾ு𝛽ு,௧
𝜎ு,௧
ଶ 𝜎ெ,௧

ଶ െ 𝜎ெு,௧
ଶ

𝜎ெ,௧
ଶ

                                     
         ൌ 𝛾ு

𝜎ு,௧

𝜎ு,௧
ଶ 𝜎ு,௧

ଶ െ 𝛾ு
𝜎ெ,௧

𝜎ெ,௧
ଶ 𝜎ெு,௧

         ൌ 𝛾ு𝑏ு,௧𝜎ு,௧
ଶ െ 𝛾ு𝑏ெ,௧𝜎ெு,௧ .

 

Similarly, the conditional variance of the misspecified firm idiosyncratic return is given by:  

 

ሺA. 8ሻ           𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯ ൌ 𝑉𝑎𝑟௧൫𝑅,௧ାଵ െ 𝑏ெ,௧𝑅ெ,௧ାଵ൯

                                              ൌ 𝛽ு,௧
ଶ ቆ

𝜎ெு,௧

𝜎ெ,௧
ଶ ቇ

ଶ

𝜎ெ,௧
ଶ  𝛽ு,௧

ଶ 𝜎ு,௧
ଶ െ 2𝛽ு,௧𝛽ு,௧

𝜎ெு,௧
ଶ

𝜎ெ,௧
ଶ  𝜎ఌ,௧

ଶ

                                     
         ൌ 𝛽ு,௧

𝜎ு,௧

𝜎ு,௧
ଶ 𝜎ு,௧

ଶ െ 𝛽ு,௧
𝜎ெ,௧

𝜎ெ,௧
ଶ 𝜎ெு,௧  𝜎ఌ,௧

ଶ

         ൌ 𝛽ு,௧𝑏ு,௧𝜎ு,௧
ଶ െ 𝛽ு,௧𝑏ெ,௧𝜎ெு,௧  𝜎ఌ,௧

ଶ  .                                                

 

This completes the proof. 
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B.   Proof of Corollary 1.1 

Based on Proposition 1, the average idiosyncratic variances 𝐼𝑉௧ி and 𝐼𝑉௧
ௌ corresponding 

to two different sets of weights, 𝑤,௧
ி  and 𝑤,௧

ௌ , can be expressed as different combinations of 

𝜎ு,௧
ଶ  and 𝜎ெு,௧: 

ሺA. 9ሻ 𝐼𝑉௧ி ൌ𝑤,௧
ி 𝑉𝑎𝑟௧൫𝜂,௧ାଵ൯

ே

ୀଵ

ൌ 𝐴௧ி𝜎ு,௧
ଶ െ 𝐵௧ி𝜎ெு,௧  Ω௧,  

where 𝐴௧ி ൌ ∑ 𝑤,௧
ி 𝛽ு,௧𝑏ு,௧

ே
ୀଵ , 𝐵௧ி ൌ ∑ 𝑤,௧

ி 𝛽ு,௧𝑏ெ,௧
ே
ୀଵ , Ω௧ ൌ ∑ 𝑤,௧

ி 𝜎ఌ,௧
ଶே

ୀଵ ; and 

ሺA. 10ሻ 𝐼𝑉௧
ௌ ൌ 𝐴௧

ௌ𝜎ு,௧
ଶ െ 𝐵௧

ௌ𝜎ெு,௧  Ω௧
ௌ,  

where 𝐴௧
ௌ ൌ ∑ 𝑤,௧

ௌ 𝛽ு,௧𝑏ு,௧
ே
ୀଵ , 𝐵௧

ௌ ൌ ∑ 𝑤,௧
ௌ 𝛽ு,௧𝑏ெ,௧

ே
ୀଵ , Ω௧

ௌ ൌ ∑ 𝑤,௧
ௌ 𝜎ఌ,௧

ଶே
ୀଵ . From (A.9) and 

(A.10), we can express 𝜎ு,௧
ଶ  and 𝜎ெு,௧ as linear combinations of 𝐼𝑉෪௧

ி and 𝐼𝑉෪௧
ௌ defined as: 

ሺA. 11ሻ ቊ
𝐼𝑉෪௧

ி ≡ 𝐼𝑉௧ி െ Ω௧ி ൌ 𝐴௧ி𝜎ு,௧
ଶ െ 𝐵௧ி𝜎ெு,௧

𝐼𝑉෪௧
ௌ ≡ 𝐼𝑉௧

ௌ െ Ω௧
ௌ ൌ 𝐴௧

ௌ𝜎ு,௧
ଶ െ 𝐵௧

ௌ𝜎ெு,௧
.

Specificially,  

ሺA. 12ሻ ൞
𝜎ு,௧
ଶ ൌ 

ೄ


ಷ

ೄି
ೄ

ಷ 𝐼𝑉෪௧
ி െ 

ಷ


ಷ

ೄି
ೄ

ಷ 𝐼𝑉෪௧
ௌ

𝜎ெு,௧ ൌ

ೄ


ಷ

ೄି
ೄ

ಷ 𝐼𝑉෪௧
ி െ 

ಷ


ಷ

ೄି
ೄ

ಷ 𝐼𝑉෪௧
ௌ

.

This completes the proof. 

 

C.   Proof of Proposition 2 
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The proposition can be derived from Corollary 1.1 and the ICAPM pricing relationships. 

Plugging the expression for 𝜎ெு,௧  in equation (12) to the right-hand side of equation (4), we 

obtain the following expression for the conditional equity risk premium:  

ሺA. 13ሻ 𝜇ெ,௧ ൌ 𝛾ெ𝜎ெ,௧
ଶ  𝛾ு𝜎ெு,௧ ൌ 𝛾ெ ൈ 𝜎ெ,௧

ଶ  𝐶௧ி ൈ 𝐼𝑉෪௧
ி െ 𝐶௧

ௌ ൈ 𝐼𝑉෪௧
ௌ,  

where  𝐶௧ி ൌ
ఊಹ

ೄ


ಷ

ೄି
ೄ

ಷ  and  𝐶௧
ௌ ൌ ఊಹ

ಷ


ಷ

ೄି
ೄ

ಷ .  

This completes the proof of the first equality in Proposition 2.  

As to the second approximate equality, the proof makes use of the first order Taylor 

expansion of 𝑙𝑛ሺ𝑥ሻ: 

ሺA. 14ሻ 𝑙𝑛ሺ𝑥ሻ ൌ 𝑙𝑛ሺ𝑥ሻ 
ଵ

௫బ
ሺ𝑥 െ 𝑥ሻ  𝑂ሺ𝑥ଶሻ,  

when 𝑥 is close to 𝑥. We apply (A.14) to 𝑥 =𝐶௧ி ൈ 𝐼𝑉෪௧
ி  or 𝑥 =𝐶௧

ௌ ൈ 𝐼𝑉෪௧
ௌ around the following 

point 𝜓 as 𝑥: 

ሺA. 15ሻ 𝜓 ≡
ா൫

ಷൈூ෪
ಷ൯ାா൫

ೄൈூ෪
ೄ൯

ଶ
.   

When estimating 𝐶௧ி and 𝐶௧
ௌ using an expanding window, we find that 𝐶௧ி ൈ 𝐼𝑉෪௧

ி is on 

average close to 𝐶௧
ௌ ൈ 𝐼𝑉෪௧

ௌ. For example, the average 𝐶௧ி ൈ 𝐼𝑉෪௧
ி over the sample period is -

0.0146, while the average 𝐶௧
ௌ ൈ 𝐼𝑉෪௧

ௌ is -0.0098. Their time-series standard deviations are 0.0061 

and 0.0044 respectively. The Taylor expansion gives: 

ሺA. 16ሻ

⎩
⎨

⎧𝑙𝑛൫𝐶௧ி ൈ 𝐼𝑉෪௧
ி൯ ൎ 𝑙𝑛ሺ𝜓ሻ 

1
𝜓

𝐶௧ி ൈ 𝐼𝑉෪௧
ி െ 1

𝑙𝑛൫𝐶௧
ௌ ൈ 𝐼𝑉෪௧

ௌ൯ ൎ 𝑙𝑛ሺ𝜓ሻ 
1
𝜓

𝐶௧
ௌ ൈ 𝐼𝑉෪௧

ௌ െ 1
 .  
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Taking the difference between the two equations above: 

ሺA. 17ሻ 𝐶௧ி ൈ 𝐼𝑉෪௧
ி െ 𝐶௧

ௌ ൈ 𝐼𝑉෪௧
ௌ ൎ 𝜓 lnቆ

𝐶௧ி

𝐶௧
ௌቇ  𝜓 lnቆ

𝐼𝑉෪௧
ி

𝐼𝑉෪௧
ௌቇ .  

Plugging (A.17) into (A.13), we obtain equation (13) stated in Proposition 2. This completes the 

proof. 

 

D.   Proof of Proposition 3 

The tail index proposed by Kelly and Jiang (2014) is: 

ሺA. 18ሻ 𝜆௧ାଵ
ு ൌ

1
𝐾௧ାଵ

 𝑙𝑛 ൬
𝜂,௧ାଵ

𝑢௧ାଵ
൰

శభ

ୀଵ

,  

where 𝜂,௧ାଵ is the kth daily residual return that falls below an extreme value threshold 𝑢௧ାଵ 

during month t+1, 𝑢௧ାଵ is the 5th percentile of the cross-section of individual stock residual 

returns, and 𝐾௧ାଵ is the total number of these exceedances within month t+1. The residual 

returns are obtained after removing the exposures individual stock returns to common return 

factors under a benchmark factor model such as the CAPM. Based on (A.1), (A.3), and 

Proposition 1, we have: 

ሺA. 19ሻ        ቊ
𝜂,௧ାଵ ൌ 𝐸௧൫𝜂,௧ାଵ൯  𝑒,௧ାଵ ൌ 𝛾ு𝑏ு,௧𝜎ு,௧

ଶ െ 𝛾ு𝑏ெ,௧𝜎ெு,௧  𝑒,௧ାଵ

𝑢௧ାଵ ൌ 𝐸௧ሺ𝑢௧ାଵሻ  𝑒௨,௧ାଵ ൌ 𝛾ு𝑏௨ு,௧𝜎ு,௧
ଶ െ 𝛾ு𝑏௨ெ,௧𝜎ெு,௧  𝑒௨,௧ାଵ

,  

where 𝑒,௧ାଵ is a random variable with mean zero. The mean of �̅�௧ାଵ ൌ
ଵ

శభ
∑ 𝜂,௧ାଵ
శభ
ୀଵ  and 

𝑢௧ାଵ are both linear in 𝜎ு,௧
ଶ  and 𝜎ெு,௧:  
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ሺA. 20ሻ   

⎩
⎨

⎧
𝐸௧ሺ�̅�௧ାଵሻ ൌ

1
𝐾௧ାଵ

 𝐸௧൫𝜂,௧ାଵ൯

శభ

ୀଵ

ൌ 𝐷௧
ఎഥ𝜎ு,௧

ଶ െ 𝐺௧
ఎഥ𝜎ெு,௧

𝐸௧ሺ𝑢௧ାଵሻ ൌ 𝐷௧
௨𝜎ு,௧

ଶ െ 𝐺௧
௨𝜎ெு,௧

,  

where  ൝
𝐷𝑡
𝜂ത ൌ

1

𝐾𝑡1
∑ 𝛾𝐻𝑏𝑘𝐻,𝑡 
𝐾𝑡1
𝑘ൌ1

 𝐷𝑡
𝑢 ൌ 𝛾𝐻𝑏𝑢𝐻,𝑡

,    ൝
𝐺𝑡
𝜂ത ൌ

1

𝐾𝑡1
∑ 𝛾𝐻𝑏𝑘𝑀,𝑡
𝐾𝑡1
𝑘ൌ1

 𝐺𝑡
𝑢 ൌ 𝛾𝐻𝑏𝑢𝑀,𝑡

.  

From the two equations in (A.20), the covariance risk 𝜎ெு,௧ can be identified from 

𝐸௧ሺ�̅�௧ାଵሻ and 𝐸௧ሺ𝑢௧ାଵሻ: 

ሺA. 21ሻ 𝜎ெு,௧ ൌ 𝐽௧
ఎഥ𝐸௧ሺ�̅�௧ାଵሻ െ 𝐽௧

௨𝐸௧ሺ𝑢௧ାଵሻ ൌ 𝐽௧
ఎഥ�̅�௧ାଵ െ 𝐽௧

௨𝑢௧ାଵ  ൫𝐽௧
௨𝑒௨,௧ାଵ െ 𝐽௧

ఎഥ𝑒ఎഥ,௧ାଵ൯,  

where 𝐽௧
ఎഥ ൌ 

ೠ


ആഥீ

ೠି
ೠ

ீ
ആഥ  and  𝐽௧

௨ ൌ

ആഥ


ആഥீ

ೠି
ೠ

ீ
ആഥ. To link the right-hand side of (A.18) to (A.21), we 

apply the first order Taylor expansion of 𝑙𝑛ሺ𝑥ሻ in (A.14) with 𝑥 =𝐽௧
ఎഥ�̅�௧ାଵ  or 𝑥 =𝐽௧

௨𝑢௧ାଵ around 

the following point 𝜓 as 𝑥: 

ሺA. 22ሻ 𝜓 ≡
ாቀ

ആഥఎഥశభቁାாሺ
ೠ௨శభሻ

ଶ
.   

When estimating 𝐽௧
ఎഥand 𝐽௧

௨ using an expanding window, we find that, 𝐽௧
ఎഥ�̅�௧ାଵ is on 

average close to 𝐽௧
௨𝑢௧ାଵ. For example, the average 𝐽௧

ఎഥ�̅�௧ାଵ over the sample period is 0.0328, 

while the average 𝐽௧
௨𝑢௧ାଵ is 0.0335. Their time-series standard deviations are 0.0320 and 0.0288 

respectively. The Taylor expansion gives: 
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ሺA. 23ሻ ቐ
𝑙𝑛൫𝐽௧

ఎഥ�̅�௧ାଵ൯ ൎ 𝑙𝑛ሺ𝜓ሻ 
ଵ

టబ
𝐽௧
ఎഥ�̅�௧ାଵ െ 1

𝑙𝑛ሺ𝐽௧
௨𝑢௧ାଵሻ ൎ 𝑙𝑛ሺ𝜓ሻ 

ଵ

టబ
𝐽௧
௨𝑢௧ାଵ െ 1

 .

Taking the difference between the two equations above gives: 

ሺA. 24ሻ 𝐽௧
ఎഥ�̅�௧ାଵ െ  𝐽௧

௨𝑢௧ାଵ ൎ 𝜓 𝑙𝑛 ൬

ആഥ

 
ೠ൰  𝜓 𝑙𝑛 ቀ

ఎഥశభ
 ௨శభ

ቁ .  

From (A.21) and (A.24), the conditional covariance risk can be approximated by: 

 ሺA. 25ሻ                        𝜎ெு,௧ ൌ 𝐽௧
ఎഥ�̅�௧ାଵ െ 𝐽௧

௨𝑢௧ାଵ  ൫𝐽௧
௨𝑒௨,௧ାଵ െ 𝐽௧

ఎഥ𝑒ఎഥ,௧ାଵ൯

                                                  ൎ 𝜓 𝑙𝑛 ቆ
𝐽௧
ఎഥ

 𝐽௧
௨ቇ  𝜓 𝑙𝑛 ൬

�̅�௧ାଵ
 𝑢௧ାଵ

൰  ൫𝐽௧
௨𝑒௨,௧ାଵ െ 𝐽௧

ఎഥ𝑒ఎഥ,௧ାଵ൯.
 

Similar Taylor expansion gives:  

ሺA. 26ሻ 𝑙𝑛 ൬
𝜂,௧ାଵ

𝑢௧ାଵ
൰ ൎ 𝑙𝑛൫𝜙,௧൯ 

1
𝜙,௧

൬
𝜂,௧ାଵ

𝑢௧ାଵ
െ 𝜙,௧൰ ,   

where 𝜙,௧ ൌ 𝐸௧ ቀ
ఎೖ,శభ

௨శభ
ቁ. Thus, the tail index of Kelly and Jiang (2014) can be approximated as: 

ሺA. 27ሻ                        𝜆𝑡1
𝐻𝑖𝑙𝑙 ൎ

1
𝐾𝑡1

 ቌ𝑙𝑛ቀ𝜙0,𝑡ቁ 
1
𝜙0,𝑡

൬
𝜂𝑘,𝑡1

𝑢𝑡1
െ𝜙0,𝑡൰ቍ

𝐾𝑡1

𝑘ൌ1

                                              ൌ 𝑙𝑛 ቀ𝜙0,𝑡ቁ 
1
𝜙0,𝑡

ቆ
𝜂ഥ𝑡1

𝑢𝑡1
െ𝜙0,𝑡ቇ

                                              ൎ 𝑙𝑛ቆ
𝜂ഥ𝑡1

𝑢𝑡1
ቇ.                                                                                                     

 

(A.25) and (A.27) lead to the following relationship between the conditional covariance 𝜎ெு,௧ 

and the tail index of Kelly and Jiang (2014): 
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ሺA. 28ሻ                       𝜎ெு,௧ ൎ 𝜓 𝑙𝑛 ൬

ആഥ

 
ೠ൰  𝜓 𝑙𝑛 ቀ

ఎഥశభ
 ௨శభ

ቁ  ൫𝐽௧
௨𝑒௨,௧ାଵ െ 𝐽௧

ఎഥ𝑒ఎഥ,௧ାଵ൯

                                                ൎ 𝜓 𝑙𝑛 ൬

ആഥ


ೠ൰  𝜓𝜆௧ାଵ

ு  ൫𝐽௧
௨𝑒௨,௧ାଵ െ 𝐽௧

ఎഥ𝑒ఎഥ,௧ାଵ൯.
  

This is equivalent to Proposition 3: 

ሺA. 29ሻ 𝜆௧ାଵ
ு ൎ 𝑙𝑛 ൬


ೠ


ആഥ൰ 

ଵ

టబ
𝜎ெு,௧  𝑒௧ାଵ,

where 𝑒௧ାଵ has mean zero. Thus, the tail index of Kelly and Jiang (2014) is proportional to the 

conditional covariance 𝜎ெு,௧ under the ICAPM. This completes the proof.  

 


