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Abstract

We study trading among strategic traders who may incorrectly assess the degree of market

crowdedness. These mistakes distort equilibrium strategies and prices. When traders

underestimate market crowdedness, they target larger inventories and trade more aggressively, but

their actual profits are lower than expected because they underestimate the amount of information

already impounded into prices. Crowded markets are prone to abrupt crashes. The magnitude of

price dislocations and the speed of recovery during fire-sale events can help infer traders’ beliefs

about market crowdedness.
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I. Introduction

With the dramatic growth of the asset management industry, financial markets have become a

playing field where sophisticated institutional players trade intensively with one another. Even

though asset managers strive to differentiate their trading strategies from others, they often build

their portfolios on correlated signals, and this leads to crowded markets. Investors and regulators

are concerned about crowded markets because of their perceived fragility.

In his 2009 Presidential address to the American Finance Association, Jeremy Stein brings

the “crowded-trade” problem to the attention of researchers. He notes that “for a broad class of

quantitative trading strategies, an important consideration for each individual arbitrageur is that

he cannot know in real time exactly how many others are using the same model and taking the

same position as him” (Stein (2009), p. 1518).

Because market crowdedness is difficult to observe in real time, traders may submit orders

based on misestimated parameters of market crowdedness. Stein (2009) illustrates the

consequences of these errors by discussing market events during the change in the composition of

MSCI indices in 2001–2002. In anticipation of trading by index managers, arbitrageurs bought

stocks whose weights were known to increase and sold stocks whose weights were known to

decrease. Yet this strategy did not yield gains as expected, because too many arbitrageurs rushed

to take advantage of the opportunity and prices overreacted.

Recently, crowded trading has become an important subject of public policy discussion.

Regulators are increasingly concerned about whether some strategies and market segments may

have become crowded and may be at the risk of unwinding (e.g., Banque de France (2007)).

Menkveld (2017) warns that crowded trades and concentration on a small set of risk factors may
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create a systemic risk for a central clearing party. Basak and Pavlova (2013) discuss how

institutional investors may make markets crowded and amplify market fragility. Brown, Howard,

and Lundblad (2022) empirically document that crowdedness tends to exacerbate price crashes

during periods of distress. Kashyap, Kovrijnykh, Li, and Pavlova (2023) suggest that crowded

trades can arise due to the prevalence of benchmarking. To provide tools for assessing

crowdedness of strategies, the Morgan Stanley Capital International (MSCI) introduced its

“crowding scorecard.”

In this paper, we formally examine the impact of traders’ incorrect beliefs about market

crowdedness on equilibrium strategies, price dynamics, trading profits, and market liquidity. We

consider market crowdedness to be related to the average correlations of private signals. High

correlations of signals can stem from two sources: the correlation of noise terms and the

correlation in the information content. These two cases have different implications. If high

correlation results from the correlation of noise terms in signals, traders are more willing to

provide liquidity to each other and markets are more liquid. In contrast, if high correlation arises

from the information content of signals, traders trade less aggressively and markets are less liquid.

We focus on the latter case—high correlation in the information content of signals—because we

are interested in modeling crowdedness among sophisticated institutional investors who tend to

trade in the same direction based on similar fundamental information and take into account the

impact of their trading on prices. In particular, we analyze the effects of market crowdedness by

varying the proportion of traders with high-precision signals.

A high perceived correlation in the information content of signals suggests that traders

believe they are observing similar signals, leading them to trade in the same direction at the same

time. However, market clearing prevents this from happening, causing market prices to move in
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the direction of traders’ trades. This captures how sophisticated institutional investors typically

think of crowded markets (e.g., Banque de France (2007) and Arnott, Harvey, Kalesnik, and

Linnainmaa (2019)).

Our one-period model generates the following comparative statics results. When traders

adopt a new trading strategy, they usually don’t know in real time exactly how many others are

following a similar strategy. If traders underestimate market crowdedness and the signals are

more correlated than they believe, they tend to trade more intensively, take larger positions, and

supply more liquidity to others. Traders expect their profits to be high, but the actual profits are

lower than expected, because traders underestimate the amount of information already impounded

into prices. This is consistent with the losses experienced by arbitrageurs trading on changes in

the composition of MSCI indices in Jeremy Stein’s example.

On the other hand, if traders begin to overestimate market crowdedness as a trading

strategy becomes more popular, they are less willing to provide liquidity to each other, target

smaller inventory levels, and trade less aggressively. The market becomes less liquid. Traders

expect lower profits, but the actual profits may turn out to be higher than expected.

To study the dynamic properties of crowded markets, we extend our static model to a

dynamic model in which traders “shred orders” and trade gradually toward target inventories. We

show that when traders believe that markets are more crowded, they trade more slowly towards

their targets, thus making actual inventories deviate further away from target levels. Disagreement

about the precisions of private signals leads to positive autocorrelation (time-series momentum) in

returns. When traders underestimate market crowdedness, they trade more aggressively on

short-run profit opportunities and this makes time-series return momentum more pronounced.

This is in line with the empirical findings of Lee and Swaminathan (2000) and Cremers and
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Pareek (2014) that time-series momentum is more pronounced for stocks with higher volume and

more short-term trading.

Our paper contributes to the theoretical literature on crowded markets. Stein (2009)

suggests that crowding among arbitrageurs may cause prices to be pushed further away from

fundamentals. Callahan (2004) analyzes the model of Kyle (1985) when the total number of

informed traders is some unknown number equal to either one or two. Banerjee and Green (2015)

and Papadimitriou (2023) find that the interaction between learning about fundamentals and the

market composition makes prices react more strongly to negative news than to positive news.

Easley, O’Hara, and Yang (2014) show that ambiguity aversion of mutual funds about the trading

strategies of hedge funds may limit their ability to infer information from prices and thus have

negative effects on market outcome. Kondor and Zawadowski (2019) find that additional entrants

do not improve the efficiency of capital allocation and decrease social welfare. Extending this

literature, we study how traders’ mistakes about market crowdedness may distort equilibrium

strategies and prices.

Our model is based on the smooth trading framework of Kyle, Obizhaeva, and Wang

(2018), but we extend it to focus on a different set of questions. We assume that multiple traders,

rather than a single trader as in the original model, may observe private information with high

precision. We also allow private signals to be correlated. These modifications enable us to study

the effects of crowdedness among sophisticated institutional investors and, in particular, how their

incorrect beliefs about this parameter affect market characteristics.

Our paper also relates to the empirical literature on crowded markets. Pojarliev and

Levich (2011) measure style crowdedness in currency trades as the percentage of funds with

significant positive exposure minus the percentage of funds with significant negative exposure to
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a given style. Polk and Lou (2022) gauge the level of arbitrageurs’ crowdedness in momentum

strategies from daily and weekly abnormal return correlations among stocks in the winner or loser

portfolios. Sokolovski (2018) applies both measures to analyze dynamics in returns of carry

trades. Hong, Li, Ni, Scheinkman, and Yan (2016) use days-to-cover metrics, defined as the ratio

of a stock’s short interest to trading volume to approximate the cost of exiting crowded trades.

Yan (2013) combines the short interest ratio and the exit rate of institutional investors, defined as

the number of shares liquidated, to study momentum strategies. Consistent with our results,

researchers usually find that strategies work well as long as they are not crowded, and they tend to

crash or revert when crowdedness increases. As in our model, empirical measures of crowdedness

are related to the number of traders and correlations in their signals.

Our model offers several additional insights about possible empirical properties of

crowded markets. Elevated levels of crowdedness are likely associated with a combination of

high levels of institutional ownership, low rates of share turnover, and low market liquidity. This

is in line with the main measure of market crowdedness used by Brown et al. (2022), who define

the crowdedness of a stock as the percentage of shares owned by hedge funds relative to the

stock’s average daily volume (i.e., the number of days it would take hedge funds to exit their

collective position). Consistent with our model’s predictions, they also find that during periods of

industry distress, crowded stocks experience larger price declines followed by slower recoveries.

In addition, we propose a potential approach to infer market crowdedness. We show that

in more crowded markets, flash crashes tend to be more severe, and subsequent price recoveries

are more prolonged. This suggests that the level of market crowdedness, along with traders’

perceptions of this parameter, can be inferred by analyzing flash crash events in the context of our

dynamic model and calibrating the model’s parameters to the observed price drop and the speed

5



of price recovery. To illustrate, we show how to identify traders’ misestimation of market

crowdedness during the “quant meltdown” episode in August of 2007, when several hedge funds

following similar strategies experienced massive losses (see Khandani and Lo (2011) and

Pedersen (2009)). Similar analysis can be applied to assess market crowdedness during episodes

when certain market participants rapidly liquidate substantial positions. For example, anecdotal

evidence suggests that market crowdedness may have played a key role during the unwinding of

carry trades and during momentum crashes. Our paper indicates that analyzing these events may

shed light on how market participants assess market crowdedness.

Our analysis suggests that it is important for regulators and market participants not only to

monitor the risks of major investment strategies becoming overcrowded but also to track the

evolution of the market’s beliefs about relevant characteristics. By doing so, they can better

understand the risks of market dislocations and help ensure the stability of financial markets.

Since, as shown in our calibration exercise, even small misestimations can lead to significant

price drops, improved disclosure of asset managers’ positions would be beneficial. A better

understanding of current levels of market crowdedness can help prevent destabilizing market

movements.

The paper is structured as follows. Section II presents a one-period model of crowded

markets. Section III examines dynamic properties of prices and trading strategies in crowded

markets. Section IV discusses how to infer traders’ misestimation of market crowdedness.

Section V concludes. All proofs are in the Appendix.
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II. A Static Model

A. Model Setup

We begin with a one-period model where traders might hold incorrect beliefs regarding specific

parameters, while understanding the overall model setting. We next discuss equilibrium strategies

based on these potentially incorrect beliefs. In Section E, we use the true model parameters to

derive the actual distribution of profits.

There is one risky asset traded against a safe asset. Each trader believes that there are N

strategic traders trading the risky asset, which has a random payoff of v , v ∼ N(0,1/τv). Each

trader n is endowed with inventory Sn of the risky asset. It is common knowledge that the asset is

in zero net supply, and thus ∑N
n=1 Sn = 0.

Each trader n observes a private signal in with a perceived precision τn and a noise term.

This noise term correlates with noise terms in other traders’ private signals with a perceived

correlation coefficient of ρ,

(1) in ∶= τ
1/2
n (τ

1/2
v v)+ρ1/2z +(1−ρ)1/2en ,

where z ∼ N(0,1), en ∼ N(0,1), n = 1, 2, . . ., N , and v , z, e1, . . ., eN are independently

distributed.1 In the symmetric equilibrium, each trader believes he infers from prices the average

of other traders’ signals, denoted as i−n ,

(2) i−n ∶=
1

N−1

N

∑
m=1,m≠n

im .

To motivate speculative trading among strategic investors in the symmetric model with no

1For expositional simplicity, we assume there are no public signals in the one-period model. Including public
signals does not change any of our main results.
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noise traders, we assume that traders symmetrically agree to disagree about the precision of

private signals. Traders believe that there are NH traders with private signals of high precision τH

and NL traders with private signals of low precision τL, with τH > τL ≥ 0 and NL +NH = N .

Each trader believes that his own signal has high precision τH ,2 and that the fraction of

other traders (except trader n himself) who observe signals of high precision is given by

(3) θ ∶=
NH −1

NH +NL −1
.

Traders may hold incorrect beliefs about this fraction. The true (objective) fraction of traders who

receive high-precision signals is denoted by θ̂, which may differ from θ, as discussed in Section E.

Each trader believes that the average of others’ signals is

(4) i−n = (θτ
1/2
H +(1−θ)τ

1/2
L ) (τ

1/2
v v)+ρ1/2z +(1−ρ)1/2 1

N−1

N

∑
m=1,m≠n

em .

This average of others’ signals can be inferred from the price.

Upon observing signals in , and given his current inventory Sn , each trader n submits a

demand schedule Xn(P) ∶= Xn(in ,Sn ,P) as a function of price P to a single-price auctioneer who

clears the market at price P . Each trader n chooses his optimal demand to maximize the expected

negative exponential utility function with risk aversion A,

(5) max
Xn(P)

En[−e−A Wn],

where En denotes that trader n uses his own beliefs to calculate the expectation. Trader n’s

2Agreement to disagree about the precision of private signals is a modeling device to generate speculative trading
among strategic informed traders. If τH = τL , each trader’s target inventory is always zero, meaning they trade solely
to offload their initial inventory if the market is competitive. In the imperfectly competitive model, as explained below
after Theorem 1, when each trader believes that others may also observe informative private signals (θ ≠ 0 or τL ≠ 0),
each trader is subject to adverse selection risk. In the presence of adverse selection, an equilibrium with positive trading
volume does not exist if there is no noise demand, no endowment shocks (hedging demand), and no disagreement.
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terminal wealth is given as Wn ∶= v (Sn +Xn(P))−P Xn(P). Each trader n strategically exercises

market power by taking into account that his trading quantity xn directly affects the price P(xn)

on the residual supply schedule he believes to be facing.

B. Discussions on the Assumptions

Since we focus on crowded trading by large asset managers who exploit private information about

securities, we adopt the current setting in which traders agree to disagree about the precision of

private signals and speculate on their private information about fundamentals. Specifically, each

trader believes that he observes a signal of higher precision than others (τH > τL).

We present an alternative model without disagreement in Section B.1 of the Online

Appendix. In this alternative setting, we replace disagreement about signal precisions (different

priors) with private values (a common prior). We show that as the correlation of private values

increases, the correlation of traders’ composite signals also rises. Traders provide more (not less)

liquidity to each other, leading to a more liquid market and higher ex-ante expected trading

profits. Similar results are obtained in a model where traders share a common prior about the

precision of private signals but trade due to endowment shocks. As the correlation of endowment

shocks (which are unrelated to fundamentals) increases, traders become more willing to provide

liquidity to each other, markets become more liquid, and ex-ante expected trading profits rise.

Since our goal is to model crowdedness among sophisticated traders, we focus on

studying the effects of market crowdedness by varying the correlation in the information content

of signals, specifically by varying the fraction of traders with high-precision signals (θ). A high

correlation in the information content of signals suggests that traders believe they are observing
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similar signals. This leads them to trade in the same direction at the same time, affecting prices

and reducing trading profitability. This result reflects how sophisticated institutional investors

typically perceive crowded markets (e.g., Banque de France (2007) and Arnott et al. (2019)) and

aligns with empirical findings that trading strategies perform well when they are not crowded but

tend to revert as crowdedness increases (e.g., Pojarliev and Levich (2011), Polk and Lou (2022),

Sokolovski (2018), Hong et al. (2016), and Yan (2013)).

The assumption of disagreement about signal’s precisions and possibly incorrect beliefs

about the fraction of traders who observe high-precision signals form a coherent set of

assumptions. For example, we can assume that each trader n believes that NH traders (including

trader n) in the market observe an informative signal (τH > 0) while the remaining traders observe

pure noise (τL = 0). If each trader n believes that he observes pure noise, then he will not

participate. In a market with active institutional traders trading on their private signals, each

trader cannot know in real time exactly how many others are trading based on similar information

in the same direction. Therefore, it is likely that they might have incorrect beliefs about the

fraction of traders who observe high-precision signals.

C. Model Solution

We describe the unique equilibrium with linear trading strategies. Each trader n observes his own

private signal in , and infers a perceived average signal of others i−n from the equilibrium price.

Based on this information, he updates his estimates of the expectation and the variance of

fundamental value v , denoted En[v] and Varn[v], respectively. Define “perceived total precision”

τ as the inverse of posterior variance τ ∶= (Varn[v])−1. The projection theorem for jointly
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normally distributed random variables yields the following result:

Lemma 1. Each trader n forms the following estimates of posterior expectation and variance:

(6) τ ∶= (Varn[v])−1
= τv(1+τH +(N −1)

((θ−ρ)τ
1/2
H +(1−θ)τ

1/2
L )

2

(1−ρ)(1+(N−1)ρ) ),

(7) En[v] =
τ

1/2
v

τ
(

1−θ

1−ρ
(τ

1/2
H −τ

1/2
L ) in +

(θ−ρ)τ
1/2
H +(1−θ)τ

1/2
L

(1−ρ)(1+(N−1)ρ) (in +(N −1)i−n)).

Trader n’s terminal wealth Wn is a normally distributed random variable. Maximizing the

expected utility function (5) is equivalent to maximizing En[Wn]−
1
2 A Varn[Wn], where the mean

and variance are given by

(8) En[Wn] = En[v] (Sn +xn)−P(xn) xn , Varn[Wn] = (Sn +xn)
2 Varn[v].

Conjecturing that other traders submit symmetric linear demand schedules,

(9) Xm(im ,Sm ,P) = γI im −γP P −γS Sm , m = 1, . . . , N , m ≠n,

and believing the market-clearing condition holds in equilibrium,

(10) xn +
N

∑
m=1
m≠n

(γI im −γP P −γS Sm) = 0,

each trader n infers a residual supply schedule P(xn) that he believes to be facing as a function of

quantity xn he trades:

(11) P(xn) =
γI

γP
i−n +

γS

(N −1)γP
Sn +

1

(N −1)γP
xn .

The more trader n buys, the higher the price he has to pay. The more he sells, the lower the price

he has to accept.
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The inverse slopes of this function with respect to Sn and xn are two measures of

perceived market depth 1/λ and 1/κ, respectively:

(12)
1

λ
∶=

(N −1) γP

γS
,

1

κ
∶= (N −1) γP .

In the continuous-time model presented in Section III, λ is interpreted as the permanent

price impact and κ is interpreted as the temporary price impact; the permanent price impact

depends on the size of executed orders (Sn), and the temporary price impact depends on the

execution speed (xn).

We next plug En[Wn] and Varn[Wn] from equation (8), and P(xn) from equation (11)

into the utility maximization and solve for equilibrium quantities and prices. The following

theorem characterizes the equilibrium.

Theorem 1. One-Period Model with Imperfect Competition. An equilibrium with linear

trading strategies exists if and only if the second-order condition holds:

(13) θ < 1−( N
N−1)(

1−ρ
2+(N−2)ρ)(

τ
1/2
H

τ
1/2
H −τ

1/2
L

) < 1.

If an equilibrium with linear trading strategies exists, then:

1. The parameters γS , γI , γP defining the optimal trading strategy have unique closed-form

solutions with 0 < γS < 1, γI > 0, and γP > 0:

γS = 1− 1−ρ
1+(N−1)ρ ( N

N−1
τ

1/2
H

(1−θ)(τ
1/2
H −τ

1/2
L )

−1) , γI =
(1−θ)(τ

1/2
H −τ

1/2
L )

A(1−ρ) τ
1/2
v γS ,

γP =
τ(1+(N−1)ρ)

(1+(N−1)θ)τ
1/2
H +(N−1)(1−θ)τ

1/2
L

γI

τ
1/2
v

.(14)
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2. Trader n trades the quantity xn towards his target inventory ST I
n :

(15) ST I
n =

1

A

1−θ

1−ρ
(1− 1

N ) τ
1/2
v (τ

1/2
H −τ

1/2
L ) (in − i−n), xn = γS (ST I

n −Sn),

the equilibrium strategies (15), depend on the subjective parameter values N , θ, ρ, τH , τL, and τv

rather than on the objective parameter values, as will be discussed in Section E.

3. Traders believe that the price P is the average valuation of traders:

(16) P = 1
N

N

∑
n=1

En[v] =
γI

γP

in +(N −1)i−n

N
.

If the perceived number of traders N is correct, this perceived price corresponds to the actual

price.

If τL = 0 and θ = 0, each trader believes that he is the only one observing informative

signals, while others observe pure noise and trade based on this noise. As a result, each trader

believes that he is not subject to adverse selection risk. In this case, the existence condition (13) is

satisfied as long as N ≥ 3.

When each trader believes that others might also observe informative private signals (θ ≠ 0

or τL ≠ 0), each trader is subject to adverse selection risk. Equation (13) implies that, for an

equilibrium with positive trading volume to exist, traders must believe that the fraction θ of

traders with signals of high precision must be not too high.3 Intuitively, holding other parameters

fixed, if the fraction of traders with high precision signals (θ) is too large, the adverse selection

risk becomes too high. Alternatively, for any given θ ≥ 0, if the disagreement among traders is not

3The existence condition is reduced to τ1/2
H /τ1/2

L > 2+ 2
N−2 if ρ = 0 and θ = 0, as in the setting of Kyle et al. (2018).

This condition requires N ≥ 3 and τ1/2
H to be sufficiently more than twice as large as τ1/2

L for equilibrium to exist.
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sufficiently large, i.e., τ
1/2
L

τ
1/2
H

> 1− N(1−ρ)
(1−θ)(N−1)(2+(N−2)ρ) , the benefit of trading is not significant

enough. Due to adverse price impact costs, there is no equilibrium with positive trading volume.

To study how misestimates of crowdedness affect traders’ aggressiveness, we focus on a

setting with imperfect competition. Theorem 1 implies that each imperfectly competitive trader

sets a target inventory level, ST I
n , and partially adjusts their current inventory, Sn , toward this

target by a fraction γS , where 0 < γS < 1, as shown in equation (14).

Following Lee and Kyle (2018), we interpret the trading aggressiveness parameter γS in

equation (15) as a measure of market competitiveness because it can be shown that γS is equal to

the ratio of equilibrium quantities in the model with imperfect competition to that in an analogous

model with perfect competition. In the competitive equilibrium, the trading aggressiveness γS

equals 1. The less competitive the market is, the less aggressively traders trade, and the lower this

ratio becomes.

D. Model Implications When Traders Have Correct Beliefs

We study the effects of market crowdedness by varying the proportion of traders with

high-precision signals. As this proportion increases, the correlation between private signals about

fundamental values also rises. We first discuss the implications of the model, assuming that

traders have correct beliefs about market crowdedness.

The perceived correlation between each trader’s private signal and the average of other

traders’ private signals, based on traders’ beliefs, is given as:

(17) Corrn[in , i−n] =
τ

1/2
H (τ

1/2
L +θ(τ

1/2
H −τ

1/2
L ))+ρ

(τH+1)1/2
((τ

1/2
L +θ(τ

1/2
H −τ

1/2
L ))

2
+ρ+(1−ρ)/(N−1))

1/2 .
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A high perceived correlation in the information content of signals implies that traders

believe they observe similar signals. As a result, they often lean toward trading in the same

direction at the same time. Of course, market clearing prevents this from happening, so market

prices are inclined to move in the direction of trader n’s signals. Our model is structured to

capture this intuition, which aligns with how sophisticated institutional investors typically

perceive crowded markets.4

As shown in equation (17), the perceived correlation, Corrn
[in , i−n], depends on θ, ρ, τH ,

τL, and N . While we can alter the perceived correlation by adjusting any of these parameters, we

primarily focus on varying the perceived percentage of high-precision traders θ (holding N

constant, therefore increasing NH and decreasing NL equivalently).5 This approach aligns with

the observation of Stein (2009) that market participants might have incorrect subjective beliefs

about the number of traders who trade in the same direction, especially the more informed ones.

Comparative statics properties of trading strategies depend on perceived parameter values,

not objective parameter values. The following proposition describes how market characteristics

change when the perceived fraction of traders receiving signals of high precision increases:

Proposition 1. Comparative Statics Results of Increasing θθθ. If traders believe that the fraction

of traders with high-precision signals θ goes up (increasing NH and holding N constant), then:

1. Trading aggressiveness, γS , which also measures market competitiveness, decreases.

4The correlation between trader n’s signal and the equilibrium price P , Corrn[in ,P] is analytically proven to
increase monotonically with θ. We also calculate the correlation between trader n’s trade and the total trading of the
remaining NH −1 traders who also observe high-precision signals. This correlation initially increases with the fraction
of traders who observe high-precision signals, but after a certain point, it starts to decrease. This decrease is due to the
market-clearing condition, as there are fewer traders observing low-precision signals who tend to trade in the opposite
direction. As expected, trader n’s trade is negatively correlated with those traders who observe low-precision signals.

5Holding fixed other parameters, direct calculation shows that Corrn[in , i−n] monotonically increases in NH and
θ. It also monotonically increases in τL , but not monotonic in τH , NL , or ρ.
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2. The willingness to provide liquidity (γP ) and the willingness to demand liquidity (γI ) both

decrease.

3. A trader’s average target inventory level En[∣ST I
n ∣] decreases.

4. Perceived market depths 1/λ and 1/κ decrease.

5. Traders’ ex-ante expected trading profits, denoted as En[Profit] ∶= En[(En[v]−P)xn],

decrease when initial inventories are zero (Sn = 0).

FIGURE 1

Values of γSγSγS , E ∣ST I
n (t)∣E ∣ST I
n (t)∣E ∣ST I
n (t)∣, 1/λ1/λ1/λ, and 1/κ1/κ1/κ against θθθ by varying NHNHNH while keeping NNN fixed
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The results of Proposition 1 are quite intuitive and consistent with perceived properties of

crowded markets. As the proportion of traders with high-precision increases, the perceived
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correlation of signals rises, each trader becomes less willing to provide liquidity to others, the

level of market competitiveness decreases, traders’ target inventories decrease, perceived liquidity

decreases, and traders trade less aggressively. Each trader, believing himself to be highly

informed, has lower perceived expected profits.

FIGURE 2

Values of γSγSγS , E ∣ST I
n (t)∣E ∣ST I
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Figure 1 presents the trading aggressiveness γS , the expected size of target positions

E ∣ST I
n (t)∣, and the market depths 1/λ and 1/κ against the fraction of traders with high-precision

signals (θ).6 When traders perceive a high fraction of traders with high-precision signals, they

trade less aggressively and aim for smaller target positions, resulting in a less liquid market.

6In Figures 1, 2, and 3, the default parameter values are A = 1, τv = 2, N = 40, NI = 8, ρ = 0.1, τH = 1, and τL = 0.01.
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Conversely, a lower perceived fraction of traders with high-precision signals leads to more

aggressive trading and more liquid markets.

It is worth exploring how market characteristics change when we vary the correlation in

the noise terms of private signals, ρ. We can analytically show that market depths 1/λ and 1/κ,

trading aggressiveness γS , and the expected size of target positions E ∣ST I
n (t)∣ all increase with the

correlation in the noise terms of signals ρ, as illustrated in Figure 2. When the correlation in the

noise terms (unrelated to fundamentals) of private signals increases, traders become more willing

to provide liquidity to one another, leading to more aggressive trading and a more liquid market.

Traders’ ex-ante expected trading profits also increase with the correlation in the noise terms of

signals ρ, as illustrated in Figure 3.

FIGURE 3

Values of EnEnEn[Profit] against ρρρ
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This is the opposite of what occurs when we consider changes in the correlation in the

information content of private signals. Therefore, it is crucial to distinguish whether the increase

in signal’s correlation is due to noise or information content, as these different scenarios lead to

drastically different implications.

18



Since our goal is to model crowdedness among sophisticated traders, we focus on the

effects of market crowdedness by varying the correlation in the information content of private

signals, specifically by varying the fraction of traders with high-precision signals θ. When traders

observe similar signals about fundamentals, they tend to trade in the same direction, which affects

prices and makes trading less profitable. This is consistent with how traders typically think about

crowded markets.

E. Model Implications When Traders Have Incorrect Beliefs

We next discuss the implications of the model when traders may have incorrect beliefs about

market crowdedness. We place a “hat” over a parameter to denote its objective value when this

value is potentially different from the subjective value. Let θ̂ denote the true (objective) fraction

of traders receiving high-precision signals, which may differ from the perceived fraction θ. Next,

we consider its effects on perceived and actual trading profits.

Let E[Profit] and En[Profit] denote the objective and perceived ex-ante expected trading

profits for a trader who observes high precision signals under objective beliefs, assuming Sn = 0.

Proposition 2. Perceived and Actual Trading Profits of A Trader with High Precision

Signals. Assume traders have correct beliefs about the parameters ρ, N , τH , τL, τv . If traders

underestimate market crowdedness (θ < θ̂), then En[Profit] > E[Profit]. If traders overestimate

market crowdedness (θ > θ̂), then En[Profit] < E[Profit].

Figure 4 depicts the expected profits of a trader who observes high precision under

traders’ beliefs En[Profit] (dashed curve) and the expected profits under true beliefs E[Profit]
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(solid curve) against perceived market crowdedness.7 Both Proposition 2 and Figure 4 suggest

that when traders underestimate market crowdedness (to the left of the benchmark point, θ < θ̂),

they anticipate high trading profits, but the realized profits are lower than their expectations

(En[Profit] > E[Profit]). Conversely, when traders overestimate market crowdedness (to the right

of the benchmark point, θ > θ̂), the actual expected profits are greater than expected by traders

(En[Profit] < E[Profit]).

FIGURE 4

Trader’s ex-ante expected trading profits

This figure presents trader’s ex-ante expected trading profits under traders’ beliefs (En[Profit])
and true beliefs (E[Profit]), against θ by varying NH while keeping N fixed. The dashed line
corresponds to the case of θ = θ̂.
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Intuitively, when traders underestimate market crowdedness, they underestimate the

amount of private information already incorporated into prices. Consequently, they anticipate

higher trading profits, only to realize that their actual profits are lower. In practice, it may take a

significant amount of time for traders to recognize their errors by observing unexpectedly high or

low profits. In Section IV, we will discuss other methods traders might use to learn about market

7In Figure 4, the default parameter values are A = 1, τv = 2, N = 40, N̂H = 6 (i.e., θ̂ = 0.13), ρ = 0.1, τH = 1, and
τL = 0.01.
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crowdedness and potential mistakes about its value.

Let N̂ ∶= N̂H + N̂L denote the actual total number of traders, out of whom N̂H traders

observe high precision signals and N̂L traders observe low precision signals. We next study the

effects on perceived and actual market depth.

The actual (objective) market clearing condition,

(18) xn +
N̂

∑
m=1
m≠n

(γI im −γP P −γS Sm) = 0,

is obtained from the perceived market-clearing condition (10) by changing N to N̂ . The objective

residual supply schedule facing trader n is

(19) P̂(xn) =
γI

(N̂ −1)γP

N̂

∑
m=1
m≠n

im +
γS

(N̂ −1)γP
Sn +

1

(N̂ −1)γP
xn .

If the actual number of traders providing liquidity differs from what is perceived, then the actual

market depth will vary from the perceived market depth. Let 1/λ̂ and 1/κ̂ denote actual market

depth, we have

(20)
1

λ̂
∶=

(N̂ −1) γP

γS
,

1

κ̂
∶= (N̂ −1) γP .

The actual market depths, represented by 1/λ̂ and 1/κ̂, differ from the perceived market depths,

1/λ and 1/κ (defined in (12)) only by changing N to N̂ . The values of γS and γP depend only on

perceived parameters, including N . Notably, neither the subjective nor the objective market depth

depends on the objective values of other parameters (e.g., θ̂ and ρ̂). We have the following

proposition.

Proposition 3. Subjective and Objective Market Depth. The subjective and objective measure
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of market depth differ by a factor of (N −1)/(N̂ −1),

(21)
1

λ
=

N −1

N̂ −1

1

λ̂
,

1

κ
=

N −1

N̂ −1

1

κ̂
.

1. When traders overestimate NH while keeping NL fixed, the perceived market depth is lower

than it would be with correct beliefs, and the actual market depth is even lower (1/λ̂ < 1/λ);

2. When traders underestimate NH while keeping NL fixed, the perceived market depth is

higher than it would be with correct beliefs, and the actual market depth is even higher

(1/λ̂ > 1/λ).

If traders overestimate the true number of market participants (N > N̂ ), then while they

correctly assess the demand functions of each individual trader, they overestimate the number of

traders in the market and thus overall available liquidity. For example, in large markets, when

traders overestimate the total number of traders by 50%, the subjective estimate of market depth

is misleadingly larger than the actual market depth by about 50%. The more traders overestimate

the number of market participants, the more they overestimate available liquidity.

Due to these differences, traders could theoretically learn about the actual residual supply

schedule’s slopes by implementing a series of experiments and analyzing price responses to

trading at some off-equilibrium trading rates. In the Online Appendix B.3, we show that if traders

can learn about the actual total number of traders N̂ , they can also infer the noise correlation ρ̂ by

comparing the quadratic variation of actual price dynamics with perceived price dynamics.

Nevertheless, even if traders were able to estimate the number of traders (N̂ ) by gathering data on

residual supply schedules and subsequently deducing ρ̂, they would still be unable to learn in real

time the exact number of traders (N̂H ) trading with them in the same direction. Consequently, our
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paper primarily emphasizes the scenario where the perceived fraction θ differs from the true

fraction θ̂ of traders receiving high precision signals, while keeping N = N̂ and ρ = ρ̂ as fixed

parameters.

III. An Extension to Continuous-Time Model

When traders perceive markets to be crowded, they are concerned that others will be trading on

similar information to their own, either before, during, or after they trade. The current accuracy of

prices, which affects profitability, is a function of how much information competitors have

incorporated into prices from their previous trading. To explore how perceptions of market

crowdedness influence trading speed and price dynamics, we extend the static model to a dynamic

model where each trader “shreds orders” and gradually adjusts his inventory in the direction of a

target inventory. We then use the dynamic model to assess the implications of market

crowdedness for financial stability, particularly during fire-sale events.

A. A Continuous-Time Model

We next outline a dynamic model where all parameter values are subjective and commonly

known. Each trader believes that there are N strategic traders. There is a risky security with zero

net supply, which pays out dividends at continuous rate D(t). The dividend D(t) is publicly

observable and follows a stochastic process with unobservable stochastic growth rate G∗(t). The

dividend has a constant instantaneous volatility σD > 0 and constant rate of mean reversion

αD > 0, dD(t) ∶= −αD D(t) dt +G∗(t) dt +σD dBD(t). The growth rate G∗(t) follows an AR-1

process with mean reversion αG > 0 and volatility σG > 0, dG∗(t) ∶= −αG G∗(t) dt +σG dBG(t).
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Each trader n observes a continuous stream of private information In(t) about the scaled

growth rate,

(22) dIn(t) ∶= τ
1/2
n

G∗(t)

σG Ω1/2
dt +ρ1/2 dZ(t)+(1−ρ)1/2 dBn(t).

Since its drift is proportional to G∗(t), each increment dIn(t) in the process In(t) is a noisy

observation of G∗(t), scaled by σG Ω1/2 so that its variance is one. The parameter Ω measures the

steady-state error variance of the trader’s estimate of G∗(t) in units of time; it is defined

algebraically below in equation (25).

The precision parameter τn measures the informativeness of the signal dIn(t) as a

signal-to-noise ratio; it describes how fast new information flows into the market. The error terms

are correlated, and Cov( dIn , dIm) = ρ dt for m ≠n, where ρ < 1.

The stream of dividends contains some public information about the growth rate. Define

dI0(t) ∶= [αD D(t) dt + dD(t)]/σD and dB0 ∶= dBD . Then, public information dI0(t) can be

written in the form similar to the notation for private information dIn(t),

(23) dI0(t) ∶= τ
1/2
0

G∗(t)

σG Ω1/2
dt + dB0(t), where τ0 ∶=

Ω σ2
G

σ2
D

.

The process I0(t) is informationally equivalent to the dividend process D(t). The parameter τ0

measures the precision of information revealed by the dividend process. The Brownian motions

dB0(t), dZ(t), dB1(t),. . . , dBN(t) are independently distributed.

Similar to the one-period model, traders believe that there are NH traders with private

signals of high precision τH and NL traders with private signals of low precision τL, with

τH > τL ≥ 0 and NL +NH = N . Traders are relatively overconfident in that each trader believes his

own signal has high precision τH .
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The perceived fraction of other traders who observe signals of high precision (except

trader n himself) θ is defined as in equation (3) in the one-period model.

Let Sn(t) denote the inventory of trader n at time t . Each trader chooses a consumption

intensity cn(t) and trading intensity xn(t) to maximize an expected

constant-absolute-risk-aversion (CARA) utility function U(cn(s)) ∶= −e−A cn(s) with risk aversion

parameter A. Letting β > 0 denote a time preference parameter, trader n solves the following

maximization problem

(24) max
[cn(t),xn(t)]

En
t [∫

∞

s=t
e−β(s−t) U(cn(s)) ds] ,

where his inventories follow the process dSn(t) = xn(t) dt , and his money holdings Mn(t)

follow the process dMn(t) = (r Mn(t)+Sn(t) D(t)−cn(t)−P(t) xn(t)) dt . Each trader trades

“smoothly” in the sense that Sn(t) is a differentiable function of time with trading intensity

xn(t) = dSn(t)/ dt . Each trader explicitly takes into account how both the level of his inventory

Sn(t) and its derivative xn(t), or the speed of trading, affect the price P(t) of a risky asset.

We next solve the model. Each trader dynamically adjusts his estimate of the growth rate

and its error variance by filtering them from observables. We use En
t [. . .] to denote the expectation

of trader n calculated with respect to his information at time t . The superscript n indicates that

the expectation is taken with respect to the beliefs of trader n. The subscript t indicates that the

expectation is taken with respect to trader n’s information set at time t , which consists of both

private information as well as public information extracted from the history of dividends and

prices. Let Gn(t) ∶= En
t [G

∗(t)] denote trader n’s estimate of the growth rate.
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Lemma 2. The “total precision” τ and the steady-state scaled error variance Ω are given by

(25) τ ∶= τ0+τH +(N −1)
((θ−ρ)τ

1/2
H +(1−θ)τ

1/2
L )

2

(1−ρ)(1+(N−1)ρ) , Ω ∶=Varn [
G∗

(t)−Gn(t)
σG

] = (2 αG +τ)
−1.

Define sufficient statistics for trader n’s signals and the average of other traders’ signals as

(26) Hn(t) ∶= ∫
t

u=−∞
e−(αG+τ) (t−u) dIn(u), n = 0,1, . . . , N , H−n(t) ∶= 1

N−1

N

∑
m=1
m≠n

Hm(t).

Then, trader n’s estimate of the growth rate Gn(t) is given by

Gn(t) ∶= En
t [G

∗(t)] = σG Ω
1/2 (τ

1/2
0 H0(t)+(1−θ)(τ

1/2
H −τ

1/2
L )/(1−ρ) Hn(t)

+
(θ−ρ)τ

1/2
H +(1−θ)τ

1/2
L

(1−ρ)(1+(N −1)ρ)
(Hn(t)+(N −1)H−n(t))).

(27)

Trader n’s estimate Gn(t) of the growth rate is conveniently written in equation (27) as

the weighted sum of three sufficient statistics H0(t), Hn(t), and H−n(t), which summarize the

information content of dividends, the trader’s private information, and other traders’ private

information, respectively. Each trader places the same weight τ1/2
0 on the dividend-information

signal H0(t) and assigns a larger weight to his own signal Hn(t) and a lower weight to signals of

N −1 other traders, aggregated in variable H−n(t). The importance of each bit of information dIn

about the growth rate decays exponentially at a rate αG +τ, i.e., the sum of the decay rate αG of

fundamentals and the speed τ of learning about fundamentals, in equation (26). The steady state

error variance (25) is small when the mean-reversion rate αG and the amount of incoming

information τ are large.

To profit from his private information, trader n then exercises monopoly power in

choosing how fast to demand liquidity from other traders by conjecturing the symmetric linear
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demand schedules for other traders m (m = 1, . . . , N , and m ≠n) given by

(28) xm(t) =
dSm(t)

dt
= γD D(t)+γH H̆m(t)−γS Sm(t)−γP P(t),

where the composite sufficient statistics H̆m(t), is defined as Hm(t)+ ăH0(t). The coefficient ă

is given in equation (A-15).

The following theorem characterizes the equilibrium trading strategies and prices. Traders

calculate and dynamically update the target inventories, defined as inventory levels such that

traders do not want to trade (xn(t) = 0), and then trade toward these target levels smoothly to

optimize the market impact costs of their trading.

Theorem 2. Equilibrium of the Continuous-time Model with Imperfect Competition. There

exists a steady-state equilibrium with symmetric linear flow-strategies and positive trading

volume if and only if the six polynomial equations (A-31)–(A-36) have a solution satisfying the

second-order condition γP > 0 and the stationarity condition γS > 0. Such an equilibrium has the

following properties:

1. There is an endogenously determined constant CL > 0, defined in equation (A-29), such that

ST I
n (t) is trader n’s “target inventory” defined as ST I

n (t) =CL (Hn(t)−H−n(t)) , and

trader n’s optimal flow-strategy xn(t) is given by

(29) xn(t) =
dSn(t)

dt
= γS (ST I

n (t)−Sn(t)) ,

the equilibrium trading strategies and target inventory levels depend solely on traders’

subjective beliefs rather than objective beliefs.
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2. Traders believe that the equilibrium price is

(30) P(t) =
D(t)

r +αD
+CG

∑
N
n=1 Gn(t)

N(r +αD)(r +αG)
,

where the endogenous parameter CG > 0, defined in equation (A-29), and 1
N ∑

N
n=1 Gn(t) is

traders’ average expected growth rate.

Extensive numerical calculations suggest that the existence condition for the

continuous-time model is exactly the same as the existence condition for the one-period model,

presented in equation (13). Trader n trades smoothly from current inventories toward target

inventories, and the parameter γS sets the rate of convergence. Target inventories are dynamically

changing; they are positive if trader n’s signal is greater than the average signal of other traders,

and they are negative otherwise. The price immediately reveals the average of all private signals

by revealing the average estimate of the dividend growth rate.

If parameter CG were equal to one, then the price would be equal to the average of traders’

risk-neutral buy-and-hold valuations, consistent with the Gordon’s growth formula. The

aggregation of heterogeneous beliefs in a dynamic setting makes the multiplier CG to be less than

one. The dampening effect CG < 1 occurs because traders internalize their future disagreement

about the growth rate. Traders engage in short-term speculative trading which dampens prices

relative to the fundamental values. The equilibrium of the similar continuous-time model, but

with perfect competition, is presented in the Online Appendix B.4.
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B. Implications of Dynamic Model

The correlation between the sufficient statistics for trader n’s signals and the average signals of

others, based on traders’ beliefs, is denoted by Corrn[Hn(t), H−n(t)]. Intuitively, when traders’

private signals about the fundamental value of the asset become highly correlated, it is more likely

that traders will employ similar trading strategies, making the market more crowded. We study the

effects of market crowdedness by varying the fraction of traders with high-precision signals (θ).

Similar to the analytical results of the one-period model, when traders perceive a high

fraction of traders with high-precision signals, they trade less aggressively and aim for smaller

target positions. Conversely, a lower perceived fraction of traders with high-precision signals

leads to more aggressive trading. These results are presented in Appendix B.2.

In the dynamic model, on the one hand, traders want to trade slowly to reduce the

temporary price impact costs from adverse selection. On the other hand, they want to trade

quickly before the permanent price impact of competitors trading on similar information makes

profit opportunities go away. So each trader “shreds orders” and trades smoothly from current

inventories toward target inventories. The degree of market crowdedness affects the speed at

which traders’ inventories converge to target levels and their size.

Figure 5 plots two simulated paths for target inventories (dashed curve) and actual

inventories (solid curve) from the perspective of each trader.8 In panel (a), traders perceive a less

crowded market. Consequently, both perceived temporary and permanent price impacts are

relatively low. As a result, traders trade swiftly, set larger target inventories (as also illustrated in

8The paths are generated using equation (A-21), which describe the dynamics of composite sufficient statistics
H̆n(t), H̆−n(t), and ST I

n (t). Numerical calculations in Figure 5 are based on the exogenous parameter values r , A,
αD , αG , σD , σG , ρ, τL presented in Table 1 in Section A. Parameter values τH = 1, ρ, and N = 60 in both panels (a)
and (b); NH = 3 and NL = 57 in panel (a); NH = 20 and NL = 40 in panel (b).
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Figure B-4), exhibit higher trading aggressiveness, and their actual inventories remain close to

target levels. In panel (b), traders perceive a more crowded market. This perception leads to both

the temporary and permanent price impacts being relatively high. As a consequence, traders trade

more slowly, set smaller target inventories, show reduced trading aggressiveness, and their actual

inventories deviate significantly from target levels.

FIGURE 5

Simulated paths for target inventories ST I
n (t)ST I
n (t)ST I
n (t) and actual inventories Sn(t)Sn(t)Sn(t)
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In the model, returns exhibit time-series momentum, and the degree of perceived market

crowdedness affects its magnitude. The dampening effect CG < 1 occurs because traders

internalize their future disagreement about the growth rate. Each trader agrees to disagree with

others about how to interpret private signals at the present and how to interpret private signals in

the future. When internalized, this disagreement about future dampens price fluctuations at

present and injects predictability going forward. Each trader thinks that other traders make

erroneous interpretation of their private and public information about fundamentals. He tries to

profit on this belief by trading ahead of anticipated short-term revisions of others’ expectations.

The short-term speculative trading dampens prices relative to the average of traders’ long-term
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valuations. Price dampening effect leads to time-series momentum.

When perceived market crowdedness is low, traders tend to trade more aggressively on

short-run profit opportunities making price dampening more significant (i.e., CG is smaller) and

return momentum more pronounced.

Figure 6 depicts price dampening parameter and the autocorrelations of the cumulative

returns as perceived by traders, Corrn [R(t −T, t),R(t , t +T )], for different period T .9 The

derivations are presented in the Online Appendix Section B.5. All return autocorrelations are

positive, implying that the returns exhibit time-series return momentum. The left panel shows that

price dampening is larger (i.e., CG is smaller) when the perceived market crowdedness is low. The

right panel shows that time-series momentum, as measured by autocorrelations of cumulative

returns, is more pronounced when the perceived market crowdedness is low.10

FIGURE 6

Parameter value CGCGCG and autocorrelations of returns, Corrn[R(t −T, t),R(t , t +T )]Corrn[R(t −T, t),R(t , t +T )]Corrn[R(t −T, t),R(t , t +T )]
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This result is broadly in line with Kyle et al. (2023) who analyze a discrete-time dynamic

9In Figure 6, parameter values β = 0.05, τH = 1, and NH = 4. Parameter values r , A, N , αD , αG , σD , σG , ρ, τL are
as presented in Table 1 in Section A.

10It can be shown that return can also exhibit positive autocorrelation under objective beliefs. Kyle, Obizhaeva, and
Wang (2023) provide a detailed analysis of return autocorrelation under objective beliefs.
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trading model with competitive traders who agree to disagree about the precision of private

information and show that the price dampening is stronger and thus time-series return momentum

is more pronounced when trading opportunities are more frequent. This is also in line with Lee

and Swaminathan (2000) and Cremers and Pareek (2014) who find empirically that time-series

momentum patterns are stronger for stocks with higher volume and more short-term trading.

We place a “hat” over a parameter to denote its objective value when this value is

potentially different from the subjective value. Let θ̂ denote the true (objective) fraction of traders

receiving signals of high precision, which may differ from the perceived fraction θ.

The expected profit from trading is measured by the unconditional expected profit per unit

time, denoted as Profit ∶= (dP(t)+D(t)dt − r P(t)dt)Sn(t), where the return dynamics

dP(t)+D(t)dt − r P(t)dt is presented in equation (B-27) in the Online Appendix. The inventory

of traders, Sn(t), follows the process dSn(t) = xn(t) dt , where xn represents the optimal flow

trading, as presented in Theorem 2. We compute the expected profit of trading under traders’

beliefs (En[Profit]), and under objective beliefs, E[Profit].

Figure 7 depicts the expected profit of trading under traders’ beliefs (dashed curve) and

the expected profit of trading under true beliefs (solid curve) against perceived market

crowdedness.11 When traders underestimate market crowdedness, they underestimate the

information already impounded into prices, and as a result, the actual expected profit of trading is

lower than that expected by traders (En[Profit] > E[Profit]). When traders overestimate market

crowdedness, the actual expected profit of trading may be greater than expected by traders

(En[Profit] < E[Profit]). Thus, these results about profits continue to hold in dynamic settings.

11Parameter values r , N , A, αD , αG , σD , σG , ρ, and τL are presented in Table 1 in Section A, τH = 1, and N̂H = 4.
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FIGURE 7

Expected profit of trading

This figure presents the expected profit of trading under subjective (dashed curve) and objective
(solid curve) beliefs against θ by varying NH while keeping N fixed. The dashed line corresponds
to the case of θ = θ̂.
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IV. Market Fragility and Inferring Crowdedness

It can be difficult for traders to infer their mistakes by observing market price dynamics.12 In this

section, we discuss how the degree of market crowdedness and traders’ perceptions of it can be

inferred by examining price dynamics during fire-sale events. We also examine how market

crowdedness influences market fragility, specifically the market’s vulnerability to rapid price

changes.13

A. Inferring Market Crowdedness

Assume traders may not accurately estimate the proportion of their peers receiving high-precision

signals, i.e., θ ≠ θ̂, while keeping N constant. We then explore what insights can be learned about

12See Section B.3 of the Online Appendix for details.
13See Goldstein, Huang, and Yang (forthcoming) for a review of the theoretical literature on financial market

fragility.
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market crowdedness and traders’ mistakes by examining price dynamics during fire-sale events.

As an illustrative example, we study the Quant meltdown of 2007 under the assumption that it

occurred due to the liquidation of a large position in a “fire sale” mode. This approach can

similarly be applied to other fire-sale episodes.

The first half of August 2007 was an exceptionally volatile period for many market-neutral

quantitative equity strategies. In the preceding months, these strategies had gained popularity

among asset managers and attracted large inflows of funds. In early August, two multi-strategy

Bear Stearns hedge funds faced substantial losses due to their investments in subprime mortgages.

These hedge funds urgently needed to raise liquidity and presumably liquidated parts of their

portfolios invested in relatively liquid market-neutral quantitative equity strategies.

These fire sales led to a substantial increase in correlation across various conventional

market-neutral quantitative equity strategies, followed by a large drop in prices and a subsequent

V-shaped recovery.

Figure 8 shows the cumulative return to a long-short market-neutral value and momentum

strategy for U.S. large-cap stocks during August 3 through 14, 2007. The cumulative returns

dropped by about 27 percent from August 3 to August 9, but recovered to almost initial levels in

about 3 business days by August 14.

We calibrate the parameters of our model to match these two numbers: 27 percent and 3

days. Following the interpretation of Stein (2009), we model this event as a potential outcome

when some traders may misestimate the proportion of their peers following the same strategies.

For simplicity, suppose that at the starting point of time 0 and afterwards, the signals of all

traders except trader n, as well as dividends, are at their long-term mean of zero; that is, signals

H−n(t) = 0 and dividends D(t) = 0 with H0(t) = 0 for t ≥ 0. Trader n observes a private signal
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FIGURE 8

A Minute-by-Minute Data during the Quant Event in 2007 from Pedersen (2009)

Hn(0) > 0 at time 0 and holds a positive inventory Sn(0) equal to the target level ST I
n (0), as given

by Theorem 2:

(31) Sn(0) = ST I
n (0) =CL Hn(0) > 0.

Equation (A-19) yields the price at time t = 0,

(32) P(0) =
γS(θ)

(N −1)γP(θ)
Sn(0) > 0.

At time t = 0+, trader n receives new private information Hn(0+) = 0, and his target

inventory changes from ST I
n (0) > 0 to ST I

n (0+) = 0.14 We examine the price reaction if trader n

begins to trade toward his new target inventory at the speed of x̄n(t) starting at t = 0+, based on

14We model the shock to target inventories as a response to the arrival of new information, but it could also be
interpreted as an exogenous liquidity shock. The analysis is similar to that in Section 4.2 of Kyle et al. (2018). Our
primary objective is to identify potential misestimates of market crowdedness, a topic not studied by Kyle et al. (2018).
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his possibly incorrect beliefs about market crowdedness (θ̄):

(33) x̄n(t) = γ̄S(θ̄) (ST I
n (t)− S̄n(t)) .

The fire-sale trading intensity γ̄S(θ̄) is based on traders’ incorrect beliefs θ̄ about market

crowdedness θ̂, with θ̄ < θ̂. The fire-sale trading intensity is greater than the optimal equilibrium

trading intensity γS(θ̂) ∶= γS(θ)∣θ=θ̂. Since dS̄n(t) = x̄n(t)dt , and using equation (33), it follows

that the trader’s inventory S̄n(t) evolves along the trajectory:

(34) S̄n(t) = e−γ̄S(θ̄) t (Sn(0)+∫
t

u=0
eγ̄S(θ̄) u γ̄S(θ̄) CL (Hn(u)−H−n(u)) du).

Equation (34) implies that trader n’s expected inventory En
0 [S̄n(t)] as

(35) En
0 [S̄n(t)] = e−γ̄S(θ̄) t Sn(0).

This rushed sale, based on a possibly incorrect estimate of market crowdedness, leads to a sharp

drop in price. Using equations (A-19), (33), and (35), trader n can calculate the impulse-response

functions of how market prices En
0 [P̄(t)] are expected to change in response:

En
0 [P̄(t)] =

γS(θ)

(N −1)γP(θ)
En

0 [S̄n(t)]+
1

(N −1)γP(θ)
En

0 [x̄n(t)]

= −
γ̄S(θ̄)−γS(θ)

(N −1)γP(θ)
e−γ̄S(θ̄)t Sn(0).

(36)

If selling occurs at the optimal speed (γS(θ̂) ∶= γS(θ)∣θ=θ̂) based on true beliefs about

market crowdedness θ̂, then the price will drop to its equilibrium level of 0 instantaneously at

t = 0+ and remain at that level. If selling is speeded up, then price path will exhibit V-shaped

patterns. The fire-sale trading intensity is greater than the optimal equilibrium trading intensity
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TABLE 1

The given and calibrated parameter values

Parameter Description Value
r Risk-free rate 0.01
A Risk aversion 1
N Numbers of traders 60
ρ Correlation of noise 0.1
αD Mean-reversion rate of dividend 0.06
σD Instantaneous volatility of dividend 0.5
αG Traders’ mean-reversion rate of G(t) 0.5
σG Instantaneous volatility of G(t) 0.2
τH Precision of trader n’s signal 3.6
τL Precision of others’ signal 0.01
θ̂ Actual fraction of traders with high precision signal 8.5%

γS(θ̂) Optimal trading rate based on θ̂ 90.96
θ̄ Underestimated fraction of traders with high precision signal 5.4%

γ̄S(θ̄) Fire-sale trading rate based on θ̄ 115.52

γS(θ̂). Equations (36) and (32) then imply that

(37)
En

0 [P̄(t)]

P(0)
= (1−

γ̄S(θ̄)

γS(θ̂)
)e−γ̄S(θ̄)t , t > 0.

Next, we use equation (37) to calibrate the model parameters by matching the predicted

price path to the realized price path during the quant meltdown event. Specifically, we match the

empirical price drop of 27% and the recovery time of three business days, as depicted in Figure 8.

The half-life of recovery of 1.5 business days in equation (37) implies t = 1.5/251 = 0.006, given

that there are 251 business days in 2007. Consequently, the fire-sale rate is

γ̄S(θ̄) = ln2/0.006 = 115.52. The price drop of 27% in equation (37) implies that the execution

speed is 1.27 times faster than optimal, i .e., γ̄S(θ̄)/γS(θ̂) = 1.27. Thus, we calibrate the model

parameters to match the fire-sale rate γ̄S(θ̄) = 115.52 and the optimal execution rate

γS(θ̂) = 115.52/1.27 = 90.96.
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We first fix a set of parameters. We assume A = 1 since the risk aversion parameter A

scales trading volume but has no effect on prices.15 We assume r = 0.01 and αD = 0.06, implying

1/(r +αD) = 14.3. We also assume the dividend volatility σD = 0.5 and the instantaneous volatility

of the growth rate σG = 0.2.16 The mean-reversion rate αG = 0.5 implies that the growth rate G(t)

mean reverts in about ln(2)/0.5 ≈ 1.4 years. We assume N = 60, ρ = 0.1, τH = 3.6, τL = 0.01, and

αG = 0.5; traders are overconfident, and they actively engage in short-term trading. All exogenous

parameters are presented at the top part of Table 1.

We then use theoretical predictions of equation (37) to calibrate the remaining parameters

— traders’ incorrect beliefs about the fraction of traders with high precision signal θ̄ and its true

value θ̂—by matching empirical magnitude of price drop of 27% and recovery time of three

business days. As discussed in the previous paragraph, the half-life of recovery (1.5 business

days) in equation (37) implies a fire-sale rate of γ̄S(θ̄) = ln2/0.006 = 115.52. The execution speed

of γ̄S(θ̄) corresponds to traders’ belief of θ̄ = 5.4%. The price drop of 27% in equation (37) then

implies an optimal trading rate of γS(θ̂) = 90.96, which corresponds to a market crowdedness of

θ̂ = 0.085.

Thus, this exercise suggests that the observed price patterns could be consistent with the

market where 8.5% of traders observe high-precision signals (θ̂ = 8.5%), while traders incorrectly

believe that only 5.4% of traders observe high-precision signals (θ̄ = 5.4%). As a result, they

execute a large order, speeding up execution by about 27% relative to the optimal rate. Our

illustrative example demonstrates that market crowdedness is a critical factor, as even a small

15We show in Appendix A.7 that if risk aversion A is scaled by a factor of F to A/F , then CL changes to CL F , λ
changes to λ/F , κ changes to κ/F , ST I

n (t) changes to ST I
n (t) F , while γS , CG , and the price remain unchanged.

16If the growth rate is zero, then P(t) = D(t)/(r +αD). We assume that a firm pays out all earnings as dividends,
then the P/E ratio is approximately 1/(r +αD). The median of S&P 500 P/E ratio is 14.85. Rountree, Weston, and
Allayannis (2008) document that the average (median) standard deviation of quarterly earnings per share is 0.72 (0.19).
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misestimation can result in significant price disruption.

B. Market Crowdedness and Fragility

Many traders and regulators are concerned about fragility of crowded markets. With model

calibrated in Section A, we could study how flash-crash price patterns would depend on market

crowdedness.

Panel (a) of Figure 9 matches the empirical pattern illustrated in Figure 8 for the case

where the fraction of traders with high-precision signals is θ̂ = 0.085. If selling is at the optimal

speed, γS(θ̂) = γ
a
S = 90.96, then price drops instantaneously to its equilibrium level of 0 and

remains at that level (dashed line). When selling is rushed relative to optimal speed and

γ̄S(θ̄) = 115.52 > γa
S = 90.96, the price drops by about 27% below its equilibrium level, and it takes

about three business days for it to recover, as happened during the quant meltdown (solid line).

Suppose next that the market is more crowded, and θ̂ = 0.150 instead of θ̂ = 0.085. Then,

the optimal selling rate γS(θ̂) = γ
b
S = 61.70 instead of γS(θ̂) = 90.96. Panel (b) of Figure 9 depicts

what would be the price dynamics in this case. Suppose a trader executes his order with the same

fire-sale trading intensity γ̄S(θ̄) = 115.52 as in panel (a), then the half-life of price recovery

remains the same, but the price drop will be equal to 87 percent, i.e., several times more

pronounced than 27% (solid line). When market is more crowded, traders are more cautious

about providing liquidity to others and price drops are more pronounced.

Alternatively, one may speed up the execution of orders by the same factor relative to the

optimal rate, for example, γ̄S(θ̄) = 115.52 instead of γS(θ̂) = γ
a
S = 90.96 in panel (a) and

γ̄S(θ̄) = 78.36 instead of γS(θ̂) = γ
b
S = 61.70 in panel (b).17 Then, equation (37) implies that the

17In both cases, the execution speed is γ̄S(θ̄)/γS(θ̂) = 115.52/90.96 = 78.36/61.70 = 1.27 times faster than normal
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FIGURE 9

Price dynamics of expected prices En
0 [P̄(t)]En
0 [P̄(t)]En
0 [P̄(t)]

This figure presents the price dynamics of expected prices En
0 [P̄(t)] under optimal execution

(dashed line) and rushed execution (solid line) for markets with different levels of market crowd-
edness. Execution speed γ̄S(θ̄) = 115.52 is the same in both panels.
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(b) Price Dynamics in a More Crowded Market

initial price drop will be the same in both markets, but the rate of price recovery would be much

slower in more crowded markets in panel (b), because traders are more cautious (not depicted).

In summary, price dislocations are expected to be more pronounced and price recoveries

slower in more crowded markets. Consistent with our model’s predictions, Brown et al. (2022)

find that, during periods of industry distress, crowded stocks experience larger price declines

followed by slower recoveries.

V. Conclusion

Since the Quant Meltdown of August 2007, institutional traders have been increasingly concerned

about crowded markets, because this may impede their efforts to deliver good performance and

make them vulnerable to externalities imposed by other market participants.

speed.
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We develop a model of trading among strategic informed traders to study the phenomenon

of crowded markets, where traders may hold incorrect views about the proportion of those

observing high-precision signals. These misperceptions influence their beliefs about the

correlation of private signals related to the fundamentals observed by traders pursuing the same

strategy.

If traders underestimate the market crowdedness, traders trade intensively, take large

positions, and don’t shirk from providing liquidity to others. They underestimate the amount of

information impounded into prices, and as a result, their actual profits are lower than expected.

Our results suggest that elevated levels of market crowdedness are likely to be associated

with a combination of high levels of institutional ownership (e.g., shares held by hedge funds),

low rates of share turnover, and low market liquidity.

Traders’ misestimation of market crowdedness distorts their optimal trading strategies and

market prices. When some traders liquidate large positions at a fire sale pace based on their beliefs

about market crowdedness, flash crashes can occur. We show that flash-crash price patterns are

expected to be more pronounced and price recoveries are slower when markets are more crowded.

The magnitude of price drops and the speed of recovery during fire-sale events can help us

identify the degree of market crowdedness and traders’ perceptions of this parameter. It may be

important for regulators to monitor the risks of major investment strategies getting overcrowded

as well as pay attention on whether market participants become concerned about this possibility.
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A. Proofs

A.1. Proof of Lemma 1

Each trader n observes signal in and i−n defined in equations (1) and (4),

En[v] = E[v ∣v + ρ1/2z+(1−ρ)1/2en

τ
1/2
H τ

1/2
v

, v +
ρ1/2z+(1−ρ)1/2

/(N−1)∑N
m=1,m≠n em

(θτ
1/2
H +(1−θ)τ

1/2
L ) τ

1/2
v

],

Varn[v] =Var[v ∣v + ρ1/2z+(1−ρ)1/2en

τ
1/2
H τ

1/2
v

, v +
ρ1/2z+(1−ρ)1/2

/(N−1)∑N
m=1,m≠n em

(θτ
1/2
H +(1−θ)τ

1/2
L ) τ

1/2
v

].
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Equations (6) and (7) in Lemma 1 follow directly from the projection theorem for jointly

normally distributed random variables.

A.2. Proof of Theorem 1

Conjecturing that other traders submit symmetric linear demand schedules,

(A-1) Xm(im ,Sm ,P) = γI im −γP P −γS Sm , m = 1, . . . , N , m ≠n,

and believing the market-clearing condition holds in equilibrium,

(A-2) xn +
N

∑
m=1
m≠n

(γI im −γP P −γS Sm) = 0,

each trader n infers a perceived residual supply schedule P(xn) that he faces as a function of

quantity xn he trades:

(A-3) P(xn) =
γI

γP
i−n +

γS

(N −1)γP
Sn +

1

(N −1)γP
xn .

Substituting P(xn) from equation (A-3) into the utility maximization (5), which is

equivalent to maximizing

(A-4) En[Wn]−
1
2 A Varn[Wn],

where the mean and variance are given by

(A-5) En[Wn] = En[v] (Sn +xn)−P(xn) xn , Varn[Wn] = (Sn +xn)
2 Varn[v].

Taking the first-order derivative with respect to xn in (A-4) yields the optimal demand xn:

(A-6) xn =
En

[v]−
γI
γP

i−n−(
γS

(N−1)γP
+ A
τ ) Sn

2
(N−1)γP

+ A
τ

.
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From equation (A-3), we have

(A-7) i−n =
γP
γI

(P −
γS

(N−1)γP
Sn +

1
(N−1)γP

xn).

Substituting En[v] from equation (7) and i−n from (A-7), into equation (A-6) above, and

then solving for xn as a function of price P , in , and Sn . In a symmetric linear equilibrium, the

strategy chosen by trader n must be the same as the linear strategy (9) conjectured for the other

traders. Equating the corresponding coefficients of the variables in , P , and Sn yields a system of

four equations in terms of the three unknowns γI , γP , and γS . The unique solution is

0 < γS =
2+(N−2)ρ
1+(N−1)ρ −

N(1−ρ)τ
1/2
H

(N−1)(1−θ)(1+(N−1)ρ)(τ
1/2
H −τ

1/2
L )

< 1,(A-8)

γP =
τ(1+(N−1)ρ)

(1+(N−1)θ)τ
1/2
H +(N−1)(1−θ)τ

1/2
L

γI

τ
1/2
v

, γI =
(1−θ)(τ

1/2
H −τ

1/2
L )

A(1−ρ) τ
1/2
v γS .(A-9)

Substituting (A-8) and (A-9) into (A-6) yields trader n’s optimal demand (15). Substituting (15)

into (11) yields the equilibrium price (16). The second-order condition has the correct sign if and

only if 2
(N−1)γP

+ A
τ > 0. This is equivalent to

θ < 1−
N(1−ρ)τ

1/2
H

(N−1)(2+(N−2)ρ)(τ
1/2
H −τ

1/2
L )

< 1.

This concludes the proof.

A.3. Proof of Proposition 1

From equation (A-8), we get the partial derivative of γS with respect to θ:

(A-10) dγS
dθ = −

N(1−ρ)τ
1/2
H

(N−1)(1−θ)2(1+(N−1)ρ)(τ
1/2
H −τ

1/2
L )

< 0.
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Similarly, it is straightforward to show

dγP
dθ < 0, dλ

dθ > 0, dκ
dθ > 0, and dEn

[∣ST I
n ∣]

dθ < 0.

Assume the initial inventory Sn = 0. Trader n’s expected trading profit is

En[Profit] ∶ = En [(En[v]−P)xn]

=
τvγS(τ

1/2
H −τ

1/2
L )2(1−θ)2(N −1)2

A N 2 (1−ρ)2 τ
((τ

1/2
H −τ

1/2
L )

2
(1−θ)2+(1−ρ)(1+ 1

N−1)),

(A-11)

where En[v]−P =
τ

1/2
v (τ

1/2
H −τ

1/2
L )(N−1)(1−θ)

τN(1−ρ) (in − i−n), xn =
γSτ

1/2
v (τ

1/2
H −τ

1/2
L )(1−θ)(N−1)

A(1−ρ)N (in − i−n).

Under traders’ beliefs, En[(in − i−n)
2] = (τ

1/2
H −τ

1/2
L )

2
(1−θ)2+(1−ρ)(1+ 1

N−1) . Since dγS
dθ < 0

and direct calculation shows that 1
τ((τ

1/2
H −τ

1/2
L )

2
(1−θ)2+(1−ρ)(1+ 1

N−1)) decreases with θ, it

follows that En[Profit] decreases with θ.

To show that γS equals to the ratio of the trading quantity in the equilibrium with

imperfect competition to that with perfect competition, we now solve the competitive equilibrium.

Assume market is perfectly competitive and τH > τL. The first-order condition of utility

maximization (5) yields the optimal demand, xn = (En[v]−P) τA −Sn . The market-clearing

condition (A-2) yields that the equilibrium price, P c = 1
N ∑

N
n=1 En[v].

Therefore, there exists a unique symmetric equilibrium with linear trading strategies and

nonzero trade. Trader n chooses the quantity xc
n = ST I

n −Sn (equation (15) with γS = 1). The price

P c is the same as with imperfect competition P (equation (16)). This implies that

0 < γS = xn/xc
n < 1 equals to the ratio of the trading quantity in the equilibrium with imperfect

competition to that with perfect competition. This ratio captures the level of market

competitiveness. Since dγS/ dθ < 0, it follows that the market competitiveness decreases in θ.
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A.4. Proof of Proposition 2

From equation (A-11) and E[(in − i−n)
2] = (τ

1/2
H −τ

1/2
L )

2
(1− θ̂)2+(1−ρ)(1+ 1

N−1) . It follows

that the expected profit under objective belief is

(A-12) E[Profit] ∶= E[(En[v]−P)xn] =
(τ

1/2
H −τ

1/2
L )

2
(1−θ̂)2

+(1−ρ)(1+ 1
N−1)

(τ
1/2
H −τ

1/2
L )

2
(1−θ)2+(1−ρ)(1+ 1

N−1)

En[Profit].

Equation (A-12) implies that if traders underestimate market crowdedness (θ < θ̂), then

En[Profit] > E[Profit]; If traders overestimate market crowdedness (θ > θ̂), then

En[Profit] < E[Profit].

A.5. Proof of Proposition 3

Direction calculation shows that dλ
dNH

> 0, and dκ
dNH

> 0. From equations (20) and (12), it follows

that if traders overestimate NH while keeping NL fixed, then N > N̂ and 1/λ̂ < 1/λ. If traders

underestimate NH while keeping NL fixed, then N < N̂ and 1/λ̂ > 1/λ.

A.6. Proof of Lemma 2

Traders in the market believe that there are N traders in the market and that noise in increments of

their private signals are pairwise positively correlated with correlation coefficient ρ.

Stratonovich–Kalman–Bucy filtering implies that trader n’s estimate of the growth rate

Gn(t) satisfies the Itô differential equation

dGn(t) =−αG Gn(t) dt +τ
1/2
0 σG Ω

1/2( dI0(t)−
τ

1/2
0 dt

σG Ω1/2 Gn(t))

+
((1+(N−2)ρ)τ

1/2
H −(N−1)ρτ

1/2
L )σG Ω

1/2

(1−ρ)(1+(N−1)ρ) ( dIn(t)−
τ

1/2
H dt

σG Ω1/2 Gn(t))

+
(τ

1/2
L −ρτ

1/2
H )σG Ω

1/2

(1−ρ)(1+(N−1)ρ) (
N

∑
m=1
m≠n

dIm(t)−
(N−1)τ

1/2
L dt

σG Ω1/2 Gn(t)).
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Rearranging terms yields

dGn(t) =−(αG +τ) Gn(t) dt +τ
1/2
0 σG Ω

1/2 dI0(t)+
(τ

1/2
L −ρτ

1/2
H )σG Ω

1/2

(1−ρ)(1+(N−1)ρ)

N

∑
m=1
m≠n

dIm(t)

+
((1+(N−2)ρ)τ

1/2
H −(N−1)ρτ

1/2
L )σG Ω

1/2

(1−ρ)(1+(N−1)ρ) dIn(t),

(A-13)

where the total precision of signals τ is as defined in Lemma 2 and the mean-square filtering error

of the estimate G(t), given by σ2
G Ω(t) from equation (25), satisfies the Riccati differential

equation,

σ2
G

dΩ(t)

dt
= −2αG σ2

GΩ(t)+σ2
G −σ

2
GΩ(t) (τ0+τH +(N −1)

((θ−ρ)τ
1/2
H +(1−θ)τ

1/2
L )

2

(1−ρ)(1+(N−1)ρ) ).

Let Ω denote the steady state of the function of time Ω(t). Using the steady-state

assumption dΩ(t)/ dt = 0, we solve the Ricatti equation for the steady-state scaled error variance

Ω =Ω(t) to obtain equation (25), Ω ∶=Varn [(G∗(t)−Gn(t))/σG] = (2 αG +τ)−1. The error

variance Ω corresponds to a steady state that balances an increase in error variance due to

innovations dBG(t) in the true growth rate G∗(t) with a reduction in error variance due to (1)

mean reversion of the true growth rate at rate αG and (2) the arrival of new information with total

precision τ. Note that Ω is not a free parameter, but is instead determined as an endogenous

function of the other parameters. Equation (25) implies that Ω is the solution to the quadratic

equation Ω−1 = 2 αG +τ. In equations (22) and (23), we scaled the units with which precision is

measured by the endogenous parameter Ω. This leads to simpler filtering expressions. Define the
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processes dB n
0 , dB n

n , and dB n
m , m = 1, . . . , N , m ≠n, by

dB n
0 (t) = τ

1/2
0

G∗
(t)−Gn(t)
σG Ω1/2 dt + dB0(t),

dB n
n (t) = τ

1/2
H

G∗
(t)−Gn(t)
σG Ω1/2 dt +ρ1/2 dZ(t)+(1−ρ)1/2 dBn(t),

dB n
m(t) = (θτ

1/2
H +(1−θ)τ

1/2
L )

G∗
(t)−Gn(t)
σG Ω1/2 dt +ρ1/2 dZ(t)+(1−ρ)1/2 dBm(t).

The superscript n indicates conditioning on the beliefs of trader n. These N +1 processes are

correlated distributed Brownian motions from the perspective of trader n. Trader n believes that

signals change as follows:

dH0(t) = −(αG +τ) H0(t) dt +τ
1/2
0

Gn(t)
σG Ω1/2 dt + dB n

0 (t),

dHn(t) = −(αG +τ) Hn(t) dt +τ
1/2
H

Gn(t)
σG Ω1/2 dt + dB n

n (t),

dH−n(t) = −(αG +τ) H−n(t) dt +(θτ
1/2
H +(1−θ)τ

1/2
L )

Gn(t)
σG Ω1/2 dt + 1

N−1

N

∑
m=1
m≠n

dB n
m(t).

(A-14)

Note that each signal drifts toward zero at rate αG +τ and drifts toward the optimal forecast Gn(t)

at a rate proportional to the square root of the signal’s precision τ1/2
0 , τ1/2

H , or θτ1/2
H +(1−θ)τ

1/2
L ,

respectively. The estimate Gn(t) can be conveniently written as the weighted sum of N +1

sufficient statistics Hn(t) corresponding to N +1 information flows dIn . The sufficient statistics

Hn(t) is defined by equation (26). The trader n’s growth rate estimate Gn(t) becomes a linear

combination of sufficient statistics Hn(t) as given by equation (27).

A.7. Proof of Theorem 2

To reduce the number of state variables, it is convenient to replace the three state variables H0(t),

Hn(t), and H−n(t) with two composite state variables H̆n(t) and H̆−n(t) defined by

H̆n(t) ∶= Hn(t)+ ă H0(t), H̆−n(t) ∶= H−n(t)+ ă H0(t), where
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(A-15) ă ∶=
(1+(N−1)ρ)τ

1/2
0

(1+(N−1)θ)τ
1/2
H +(N−1)(1−θ)τ

1/2
L

.

Trader n’s estimate of the dividend growth rate can be expressed as

Gn(t) ∶=σG Ω
1/2 (τ̆

1/2
H H̆n(t)+(N −1)τ̆

1/2
L H̆−n(t)),

where τ̆1/2
H and τ̆1/2

L are defined as

(A-16) τ̆
1/2
H ∶=

(1−θ)(τ
1/2
H −τ

1/2
L )

1−ρ +
(θ−ρ)τ

1/2
H +(1−θ)τ

1/2
L

(1−ρ)(1+(N−1)ρ) , τ̆
1/2
L ∶=

(θ−ρ)τ
1/2
H +(1−θ)τ

1/2
L

(1−ρ)(1+(N−1)ρ) .

Each trader n exercises monopoly power in choosing how fast to demand liquidity from other

traders to profit from his private information. He also exercises monopoly power in choosing how

fast to provide liquidity to the other N −1 traders. Trader n conjectures that the symmetric linear

demand schedules for other traders m (m = 1, . . . , N , and m ≠n) is given by

(A-17) xm(t) =
dSm(t)

dt
= γD D(t)+γH H̆m(t)−γS Sm(t)−γP P(t).

In his view, his flow-demand xn(t) = dSn(t)/ dt must satisfy the market clearing condition,

(A-18) xn(t)+
N

∑
m=1
m≠n

(γD D(t)+γH H̆m(t)−γS Sm(t)−γP P(t)) = 0,

which depends on his belief about the total number of traders in the market N . Using zero net

supply restriction ∑N
m=1 Sm(t) = 0, he solves this equation for P(t) as a function of his own

trading speed xn(t) and infers the residual supply schedule that he implicitly faces,

(A-19) P(xn(t)) =
γD

γP
D(t)+

γH

γP
H̆−n(t)+

γS

(N −1)γP
Sn(t)+

1

(N −1)γP
xn(t).

The inverse slopes with respect to Sn(t) and xn(t) are the two measures of market depth 1/λ and

1/κ, respectively. Then, trader n solves for his optimal consumption and trading strategy by
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plugging the price impact function (A-19) into his dynamic optimization problem (24). Each

trader believes that equilibrium prices reveal the average of private signals, and thus he

implements this strategy by conditioning his trading speed directly on market prices. We

conjecture that a steady-state value function has the form V (Mn ,Sn ,D, H̆n , H̆−n),

(A-20) V (Mn ,Sn ,D, H̆n , H̆−n) ∶= max
[cn(t),xn(t)]

En
t [∫

∞

s=t
−e−β(s−t)−A cn(s) ds] ,

where P(xn(t)) is given by equation (A-19). Inventories follow dSn(t) = xn(t) dt , the change in

cash holdings dMn(t) follows dMn(t) = (r Mn(t)+Sn(t) D(t)−cn(t)−P(xn(t)) xn(t)) dt ,

and signals H̆n and H̆−n are given by

dH̆n(t) = −(αG +τ) H̆n(t) dt +
τ

1/2
H +ăτ

1/2
0

σG Ω1/2 Gn(t) dt + ă dB n
0 (t)+ dB n

n (t),

dH̆−n(t) = −(αG +τ) H̆−n(t) dt +
θτ

1/2
H +(1−θ)τ

1/2
L +ăτ

1/2
0

σG Ω1/2 Gn(t) dt + ă dB n
0 (t)+ 1

N−1

N

∑
m=1
m≠n

dB n
m(t).

(A-21)

The dynamics of H̆n and H̆−n in equation (A-21) can be derived from equation (A-14). We

conjecture and verify that the value function V (Mn ,Sn ,D, H̆n , H̆−n) has the specific form

V (Mn ,Sn ,D, H̆n , H̆−n) =−exp(ψ0+ψM Mn +
1
2ψSSS2

n +ψSD SnD

+ψSn Sn H̆n +ψSx Sn H̆−n +
1
2ψnn H̆ 2

n +
1
2ψxx H̆ 2

−n +ψnx H̆n H̆−n).

(A-22)

The nine constants ψ0, ψM , ψSS , ψSD , ψSn , ψSx , ψnn , ψxx , and ψnx have values consistent with

a steady-state equilibrium. The Hamilton–Jacobi–Bellman (HJB) equation corresponding to the
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conjectured value function V (Mn ,Sn ,D, H̆n , H̆−n) is

0 =max
cn ,xn

[U(cn)−βV + ∂V
∂Mn

(r Mn +SnD − cn −P(xn) xn)+ ∂V
∂Sn

xn]

+ ∂V
∂D (−αD D +Gn(t))+ ∂V

∂H̆n
(−(αG +τ)H̆n(t)+ τ

1/2
H +ăτ1/2

0

σG Ω1/2 Gn(t))+ 1
2
∂2V
∂D2σ

2
D

+ ∂V
∂H̆−n

(−(αG +τ)H̆−n(t)+ θτ
1/2
H +(1−θ)τ1/2

L +ăτ1/2
0

σG Ω1/2 Gn(t))+ 1
2
∂2V
∂H̆ 2

n
(1+ ă2)

+ 1
2
∂2V
∂H̆ 2
−n

(ρ+ 1−ρ
N −1

+ ă2)+( ∂2V
∂D∂H̆n

+ ∂2V
∂D∂H̆−n

) ăσD + ∂2V
∂H̆n∂H̆−n

(ρ+ ă2).(A-23)

For the specific quadratic specification of the value function, the HJB equation becomes

0 =min
cn ,xn

[− 1
V e−Acn −β+ψM(r Mn +Sn D −cn −P(xn) xn)

+ (ψSSSn +ψSD D +ψSn H̆n +ψSx H̆−n)xn]+ψSD Sn(−αD D +Gn(t))

+(ψSnSn +ψnn H̆n +ψnx H̆−n)(−(αG +τ)H̆n(t)+
τ

1/2
H +ăτ

1/2
0

σG Ω1/2 Gn(t))

+(ψSxSn +ψxx H̆−n +ψnx H̆n)(−(αG +τ)H̆−n(t)+
θτ

1/2
H +(1−θ)τ

1/2
L +ăτ

1/2
0

σG Ω1/2 Gn(t))

+ 1
2ψ

2
SD S2

nσ
2
D +

1
2 ((ψSnSn +ψnn H̆n +ψnx H̆−n)

2+ψnn) (1+ ă2)

+ 1
2 ((ψSxSn +ψxx H̆−n +ψnx H̆n)

2+ψxx) (ρ+
1−ρ
N−1 + ă2)

+((ψSn +ψSx)Sn +(ψnn +ψnx)H̆n +(ψxx +ψnx)H̆−n) ψSD Sn ăσD

+((ψSnSn +ψnn H̆n +ψnx H̆−n) (ψSxSn +ψxx H̆−n +ψnx H̆n)+ψnx) (ρ+ ă2).

The solution for optimal consumption is

(A-24) cn(t) = − 1
A log(

ψM V (t)
A ).

The optimal trading strategy is a linear function of the state variables given by

xn(t) = (N−1)γP
2ψM

((ψSD −
ψMγD
γP

) D(t)+(ψSS −
ψMγS

(N−1)γP
) Sn(t)

+ψSn H̆n(t)+(ψSx −
ψMγH
γP

) H̆−n(t)).

(A-25)
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Trader n can infer from the market-clearing condition (A-18) that H̆−n is given by

(A-26) H̆−n(t) = γP
γH

(P(t)−D(t) γD
γP

)− 1
(N−1)γH

xn(t)− γS
(N−1)γH

Sn(t).

Plugging equation (A-26) into (A-25) yields xn(t) as a linear demand schedule given by

(A-27)

xn(t) =(N−1)γP
ψM

(1+ ψSx
ψM

γP
γH

)
−1

⋅((ψSD −ψSx
γD
γH

) D(t)+(ψSS −ψSx
γS

(N−1)γH
) Sn(t)

+ψSn H̆n(t)+(ψSx
γP
γH
−ψM) P(t)).

Equating the coefficients of D(t), H̆n(t), Sn(t), and P(t) in equation (A-27) to the conjectured

coefficients γD , γH , −γS , and −γP results in the following four equations:

(N−1)γP

ψM
(1+ ψSx

ψM

γP

γH
)
−1

(ψSD −ψSx
γD

γH
) = γD , (N−1)γP

ψM
(1+ ψSx

ψM

γP

γH
)
−1

ψSn = γH ,

(N−1)γP

ψM
(1+ ψSx

ψM

γP

γH
)
−1

(ψSS −ψSx
γS

(N−1)γH
) = −γS , (N−1)γP

ψM
(1+ ψSx

ψM

γP

γH
)
−1

(ψSx
γP

γH
−ψM) = −γP .

We obtain

(A-28) ψSx =
N−2

2 ψSn , γH =
NγP
2ψM

ψSn , γS = −
(N−1)γP

ψM
ψSS , γD =

γP
ψM

ψSD .

Define the constants CL and CG by

(A-29) CL ∶= −
ψSn

2ψSS
, CG ∶=

ψSn
2ψM

N(r+αD)(r+αG)(1+(N−1)ρ)

σGΩ1/2 ((1+(N−1)θ)τ
1/2
H +(N−1)(1−θ)τ

1/2
L )

.

Substituting equation (A-28) into equation (A-25) yields the solution for optimal strategy.

xn(t) = γS (CL (Hn(t)−H−n(t))−Sn(t)).

The equilibrium price is

P(t) = D(t)
r+αD

+
CG ∑

N
n=1 Gn(t)

N(r+αD)(r+αG)
.
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Plugging (A-24) and (A-25) back into the Bellman equation and setting the constant term and the

coefficients of Mn , Sn D, S2
n , Sn H̆n , Sn H̆−n , H̆ 2

n , H̆ 2
−n , and H̆n H̆−n to be zero, we obtain nine

equations. Using the first equation (A-28) to substitute ψSn for ψSx , there are in total nine

equations in nine unknowns γP , ψ0,ψM ,ψSD ,ψSS ,ψSn ,ψnn ,ψxx , and ψnx . By setting the

constant term, coefficient of M , and coefficient of SnD to be zero, we obtain

ψM = −r A, ψSD = − r A
r+αD

,

ψ0 = 1− lnr + 1
r (−β+ 1

2(1+ ă2)ψnn +
1
2 (ă2+

1+(N−2)ρ
N−1 )ψxx +(ă2+ρ)ψnx) .

In addition, by setting the coefficients of S2
n ,Sn H̆n ,Sn H̆−n , H̆ 2

n , H̆ 2
−n and H̆n H̆−n to be zero, we

obtain six polynomial equations in the six unknowns γP ,ψSS ,ψSn ,ψnn ,ψxx , and ψnx . Defining

the constants a1, a2, a3, and a4 by

a1 ∶= −αG −τ+ τ̆
1/2
H (τ

1/2
H + ăτ

1/2
0 ), a2 ∶= −αG −τ+(N −1)τ̆

1/2
L (θτ

1/2
H +(1−θ)τ

1/2
L + ăτ

1/2
0 ),

a3 ∶= (τ
1/2
H + ăτ

1/2
0 )(N −1)τ̆

1/2
L , a4 ∶= (θτ

1/2
H +(1−θ)τ

1/2
L + ăτ

1/2
0 )τ̆

1/2
H ,

(A-30)

these six equations in six unknowns can be written

0 =− 1
2 rψSS −

γP(N−1)
r A ψ2

SS +
r 2 A2σ2

D
2(r+αD)2 +

1
2(1+ ă2)ψ2

sn+

+ 1
2 (ă2+

1+(N−2)ρ
N−1 )

(N−2)2

4 ψ2
Sn −

r A
r+αD

ăσD
N
2 ψSn +

N−2
2 ψ2

Sn(ă2+ρ),

(A-31)

0 =− rψSn −
r A

r+αD
σGΩ

1/2(
(1−θ)(τ

1/2
H −τ

1/2
L )

1−ρ +
(θ−ρ)τ

1/2
H +(1−θ)τ

1/2
L

(1−ρ)(1+(N−1)ρ) )+a1ψSn

−
γP(N−1)

r A ψSSψSn +
N−2

2 a4ψSn +(1+ ă2)ψnnψSn +
N−2

2 (ă2+
1+(N−2)ρ

N−1 )ψnxψSn

− r A
r+αD

ăσD(ψnn +ψnx)+(ă2+ρ)(ψnxψSn +
N−2

2 ψnnψSn) ,

(A-32)

55



0 =− r N−2
2 ψSn +

γP(N−1)
r A ψSSψSn −

r A
r+αD

σGΩ
1/2(N −1)

(θ−ρ)τ
1/2
H +(1−θ)τ

1/2
L

(1−ρ)(1+(N−1)ρ)

+(a3+
N−2

2 a2)ψSn +(1+ ă2)ψSnψnx +
N−2

2 (ă2+
1+(N−2)ρ

N−1 )ψxxψSn

− r A
r+αD

ăσD(ψxx +ψnx)+(ă2+ρ)(ψxxψSn +
N−2

2 ψnxψSn) ,

(A-33)

0 =− r
2ψnn −

γP(N−1)
4r A ψ2

Sn +a1ψnn +a4ψnx +
1
2(1+ ă2)ψ2

nn +(ă2+ρ)ψnnψnx

+ 1
2 (ă2+

1+(N−2)ρ
N−1 )ψ2

nx ,

(A-34)

0 =− r
2ψxx −

γP(N−1)
4r A ψ2

Sn +a2ψxx +a3ψnx +
1+ă2

2 ψ2
nx +(ă2+ρ)ψxxψnx

+ 1
2 (ă2+

1+(N−2)ρ
N−1 )ψ2

xx ,

(A-35)

0 =− rψnx +
γP(N−1)

2r A ψ2
Sn +a3ψnn +a4ψxx +(a1+a2)ψnx +(1+ ă2)ψnnψnx

+(ă2+
1+(N−2)ρ

N−1 )ψxxψnx +(ă2+ρ)(ψnnψxx +ψ
2
nx).

(A-36)

Obtaining a solution in Theorem 2 requires solving the six polynomial

equations (A-31)–(A-36). While these equations have no obvious analytical solution, they can be

solved numerically. For a solution to the six polynomial equations to define a stationary

equilibrium, a second-order condition implying γP > 0, a stationarity condition implying γS > 0,

and a transversality condition requiring r > 0.

If risk aversion A is scaled by a factor of F to A/F , then CL changes to CL F , λ changes to

λ/F , κ changes to κ/F , ST I
n (t) changes to ST I

n (t) F , while γS , CG , and the price remain

unchanged.

To see this, consider a vector (γ∗P , ψ∗
SS , ψ∗

Sn , ψ∗
nn , ψ∗

nx , ψ∗
xx) as a solution to the system

(A-31)–(A-36) for the exogenous parameters A, σD , σG , r , αG , αD , τ0, τL, and τH . If risk
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aversion is rescaled by factor F from A to A/F and other exogenous parameters remain

unchanged, it can be shown that the vector (γ∗P F, ψ∗
SS/F 2, ψ∗

Sn/F, ψ∗
nn , ψ∗

nx , ψ∗
xx) is the solution

to the system (A-31)–(A-36). From equations (A-28) and (A-29), it follows that CL changes to

CL F , λ changes to λ/F , κ changes to κ/F , but γS and CG remain unchanged.

The transversality condition for the value function V (. . .) is

lim
T→+∞

En
t [e−ρ(T−t) V (Mn(T ),Sn(T ),D(T ), H̆n(T ), H̆−n(T ))] = 0.

The transversality condition (A-37) is satisfied if r > 0. Under the assumptions γP > 0 and γS > 0,

analytical results imply γD > 0, ψM < 0, ψSD < 0, and ψSS > 0. The numerical results indicate that

γH > 0, ψSn < 0, ψSx < 0, ψnn < 0, ψxx < 0 and the sign of ψnx is intuitively and numerically

ambiguous.
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Internet Appendix for “Trading in Crowded Markets”

Section B.1 presents an alternative one-period model without disagreement. Section B.2

presents continuous-time model implications. Section B.3 discusses whether traders can learn

about their mistakes in assessing the degree of market crowdedness from observing dynamics of

market prices. Section B.4 presents the equilibrium of the continuous-time model with perfect

competition. Section B.5 provides details on return autocorrelations.

B.1. An Alternative Model of Crowded Markets

In this section, we consider an alternative one-period model, in which we replace disagreement

about signal precisions (model with different priors) with private values (model with a common

prior) as the modeling device to generate trade. We show that this alternative modelling is much

less appealing for studying crowded markets. Specifically, as the correlation of private values

rises, the correlation of traders’ composite signals increases but traders are willing to provide

more (not less) liquidity to one another, and as a result, they trade more aggressively and the

market becomes more liquid.

Similar to the one-period model with different priors, there are N strategic traders who

trade a risky asset with a random payoff v , v ∼ N(0,1/τv), against a riskless asset. Each trader n

observes a private signal in of precision τI with a noise term, in ∶= τ
1/2
I (τ

1/2
v v)+en , where

en ∼ N(0,1), n = 1,2, . . . , N , and v , e1, . . . ,eN are independently distributed. Since traders agree on

how much information each signal contains, the traders share a common prior.

Unlike in the model with disagreement, the risky asset generates privately observed

private benefits for traders owning it, and this helps to generate trade. Assume that trader n’s
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cash-equivalent of the private benefit from holding the risky asset is βhn , where

hn = ρ
1/2
h z +(1−ρh)

1/2ehn . In the expression of hn , z ∼ N(0,1), ehn ∼ N(0,1), n = 1,2, . . . , N , and

v , z, eh1, . . . ,ehN are independently distributed. Traders’ private values are correlated with

correlation coefficient of ρh . Thus, the risky asset generates a cash flow v +β hn for trader n,

where the additional component βhn is a privately observed “convenience yield,” independent of

v .

We show that each trader can infer from the equilibrium price the average of a linear

combination of other traders’ private information and private values, ∑N
m=1,m≠n(im +khm). The

private values essentially show up as noise in prices. The value of the weight k on private values

is determined endogenously in equilibrium.

Denote the linear combination of trader n’s private information and private value as In and

the average of other traders’ private information and private values as I−n ,

(B-1) In ∶= in +khn , I−n ∶=
1

N−1

N

∑
m=1,m≠n

(im +khm).

Upon observing signals in and given his current inventory Sn , each trader n submits a

demand schedule Xn(P) ∶= Xn(in ,hn ,Sn ,P) as a function of price P to a single-price auctioneer

who clears the market at price P . He chooses an optimal demand schedule to maximize the

expected negative exponential utility function with risk aversion A, as defined in equation (5).

Trader n’s terminal wealth is given as Wn ∶= (v +βhn) (Sn +Xn(P))−P Xn(P), where v +βhn

measures the cash-equivalent of the private benefit of owning the asset. As in our main model,

each trader n strategically exercises his market power by taking into account that his trading

quantity xn directly affects the price P(xn) on the residual supply schedule he faces.
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Conjecturing that other traders submit symmetric linear demand schedules,

(B-2) Xm(i0, im ,Sm ,P) = γI (im +khm)−γP P −γS Sm , m = 1, . . . , N , m ≠n,

and knowing the market-clearing condition holds in equilibrium,

xn +
N

∑
m=1
m≠n

(γI (im +khm)−γP P −γS Sm) = 0,

each trader n infers the residual supply schedule P(xn) he faces,

(B-3) P(xn) =
γI

γP
I−n +

γS

(N −1)γP
Sn +

1

(N −1)γP
xn .

The two measures of market depth are 1/λ ∶= (N −1) γP/γS and 1/κ ∶= (N −1) γP . The following

theorem characterizes the equilibrium.

Theorem B.1. One-Period Model with Private Values. The endogenous weight k on private

values is the unique real root to the cubic equation,

(B-4) kτ
1/2
I =βτ

1/2
v (1+τI +

(N −1)τI

1+k2(1+(N −2)ρh)
).

If the second-order condition, k2 > N ((N −2)((N −2)ρh +1))−1 holds, an equilibrium exists:

1. The parameters γS > 0, γI > 0, and γP > 0, defining the linear trading strategies in

equation (B-2), have unique closed-form solutions presented in equation (B-8) in the Appendix.
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2. Trader n trades the quantity xn towards his target inventory ST I
n ,

(B-5) xn = γS (ST I
n −Sn), ST I

n =
(N−1)k2

(1+(N−2)ρh)τ
1/2
I τ

1/2
v

AN(1+k2(1+(N−2)ρh))
(In − I−n),

where 0 < γS < 1, is the fraction by which trader n adjusts his position Sn .

3. The equilibrium price P is proportional to the average of traders’ composite signals ∑N
n=1 In ,

(B-6) P =
(N+k2

(1+(N−2)ρh))τ
1/2
I τ

1/2
v

N τ (1+k2((N−2)ρh+1))

N

∑
n=1

In ,

where the “total precision” is given by τ ∶= (Varn[v])−1.

Proof of Theorem B.1:

Each trader updates his estimates of the expectation and the variance of fundamental value

v , denoted as En[v] and Varn[v], respectively. Define “total precision” τ as the inverse of

posterior variance τ ∶= (Varn[v])−1. Each trader n forms the following estimates of posterior

expectation and variance,

(B-7)

τ ∶= (Varn[v])−1
= τv (1+τI +

(N−1)τI

1+k2((N−2)ρh+1)) , En[v] =
τ

1/2
v τ

1/2
I

τ
(in +

N−1
1+k2((N−2)ρh+1) I−n) .

The proof of Theorem B.1 is similar to the proof of Theorem 1. Equating the

corresponding coefficients of the variables In , P , and Sn yields a system of three equations in

terms of the three unknowns γS , γI , and γP . The second-order condition has the correct sign if

and only if 2((N −1)γP)
−1+ A Varn[v] > 0. This is equivalent to

4



k2 > N ((N −2)((N −2)ρh +1))−1 . The unique solution of γS , γI , and γP are

γS ∶=
N−2
N−1 −

N
k2(N−1)(1+(N−2)ρh)

, γI ∶=
(−N+k2

(N−2)(1+(N−2)ρh))τ
1/2
I τ

1/2
v

A(N−1)(1+k2(1+(N−2)ρh))
,

γP ∶=
(1+NτI+k2

(1+(N−2)ρh)(1+τI ))τ
1/2
v

(N+k2(1+(N−2)ρh))τ
1/2
I

γI .

(B-8)

As in our main model, we can potentially define market crowdedness as the correlation of

traders’ composite signals Corrn[In , I−n]. Extensive numerical analysis suggests that this

correlation increases in the correlation of private values, ρh , as shown in the left panel of Figure

B-1.1 In the right panel of Figure B-1, we vary ρh and depict the model’s implications about how

trade aggressiveness γS changes with market crowdedness. Figure B-2 shows model’s

implications for how market depth 1/λ and 1/κ changes with market crowdedness. The model

implies that when the market becomes more crowded, traders trade more aggressively, market

depth increases and market becomes more liquid.2

These results are exactly the opposite to those of our main model with agreement to

disagree, in which traders trade less aggressively and markets become less liquid, as crowdedness

goes up. In the setting where traders trade due to private values, private values are essentially not

related to fundamentals. When the correlation of private values goes up, the correlation of signals

increases but traders are willing to provide more (not less) liquidity to one another, and as a result,

they trade more aggressively and the market becomes more liquid. Similar results would be

observed in the model of Section A, if one increases the correlation in noise term of signals (ρ). It

is therefore important whether the correlation of signals increases due to the correlation in noise

1In both Figures B-1 and B-2, the default parameter values are τI = 0.2, β = 2, τv = 1, N = 40, and A = 1.
2If the correlation of signals (Corrn[In , I−n]) increases as a result of a higher N or a higher τI , extensive numerical

analysis also indicates that traders tend to engage in more aggressive trading, leading to increased market liquidity.
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FIGURE B-1

Corrn[In , I−n]Corrn[In , I−n]Corrn[In , I−n] against ρhρhρh and γSγSγS against ρhρhρh

0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ρh

C
o
rr
n
I n
,I
-
n
]

0.0 0.1 0.2 0.3

0.950

0.955

0.960

0.965

0.970

ρh

γ
S

FIGURE B-2

Values of 1/λ1/λ1/λ and 1/κ1/κ1/κ against ρhρhρh
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terms or the correlation in information content of signals, because these assumptions lead to

drastically different implications. Since our goal is to model crowdedness among sophisticated

traders, we chose the model where traders agree to disagree about interpretation of their private

signals and study effects of market crowdedness by essentially varying the correlation in signals’

information content.
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B.2. Continuous-time Model Implications

This section shows that when traders perceive a high proportion of others observing

high-precision signals, they trade less aggressively and target smaller positions. Conversely, a

lower perceived proportion of traders with high-precision signals leads to more aggressive trading.

Figure B-3 demonstrates numerically that the perceived correlation of private signals

increases with the fraction of traders whose signal are of high precision.3 As in the one-period

model, a higher value of θ results in a higher correlation of private signals. Additionally, the

correlation of private signals is positively associated with the total amount of information, τ, as

long as the correlation of noise terms of their private signals is not large. Intuitively, more traders

with high-precision signals bring more information to the market through their trading.

FIGURE B-3

Corrn[Hn(t), H−n(t)]Corrn[Hn(t), H−n(t)]Corrn[Hn(t), H−n(t)] against θθθ and τττ against Corrn [Hn(t), H−n(t)]Corrn [Hn(t), H−n(t)]Corrn [Hn(t), H−n(t)]
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The left panel of Figure B-4 plots the speed of trading γS against θ.4 When traders

perceive the market as highly crowded, they trade less aggressively, leading to a decrease in γS .

3In Figure B-3, parameter values β = 0.05 and τH = 1. Parameter values r , A, αD , αG , σD , σG , N , ρ, and τL are
presented in Table 1 in Section A.

4In Figures B-4 and B-5, τH = 1 and parameter values r , A, αD , αG , σD , σG , N , ρ, and τL are presented in Table
1 in Section A. We vary NH with N fixed.
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The right panel of Figure B-4 demonstrates that traders aim for smaller positions under the belief

of a crowded market, as the perceived profit diminishes.

FIGURE B-4

Values of γSγSγS and E n ∣ST I
n (t)∣E n ∣ST I
n (t)∣E n ∣ST I
n (t)∣ against θθθ by varying NHNHNH with NNN fixed
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FIGURE B-5

Market competitiveness against θθθ by varying NHNHNH with NNN fixed
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Section B.4 characterizes the equilibrium of an otherwise equivalent continuous-time

model, where the assumption of perfect competition replaces imperfect competition. Figure B-5

shows that market competitiveness decreases as the proportion of high-precision signals

increases, since each trader becomes less willing to provide liquidity to others.
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FIGURE B-6

Values of 1/λ̂1/λ̂1/λ̂, 1/λ1/λ1/λ, 1/κ̂1/κ̂1/κ̂, and 1/κ1/κ1/κ

This figure presents values of 1/λ̂, 1/λ, 1/κ̂, and 1/κ against perceived market crowdedness θ by
varying NH with NL = N̂L fixed. The dashed curves correspond to subjective liquidity metrics 1/λ
and 1/κ. The solid curves correspond to objective metrics 1/λ̂ and 1/κ̂.
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Perceived versus Actual Market Depth. The left panel of Figure B-6 plots the permanent

market depth 1/λ̂ (solid curve) and its subjective estimate 1/λ (dashed curve) against perceived

market crowdedness θ.5 The right panel of Figure B-6 presents similar plots for the temporary

market depth 1/κ̂ (solid curve) and its subjective estimate 1/κ (dashed curve). Similar to the

one-period model results, when traders overestimate the crowdedness of the market (to the right

of the benchmark point), they expect that the market depth is low, because everybody is less

willing to provide liquidity to each other. In reality, the actual market depth is even lower than

what traders think, 1/λ̂ < 1/λ and 1/κ̂ < 1/κ. In contrast, when traders underestimate the

crowdedness of the market (to the left of the benchmark point), all types of market depth increase,

because traders are more aggressive in trading on private information and providing liquidity to

others. The actual market depth is even higher than the perceived one (1/λ̂ > 1/λ and 1/κ̂ > 1/κ).

Traders could learn about the actual residual supply schedule’s slopes by implementing a series of

5In Figure B-6, parameter values r , A, αD , αG , σD , σG , ρ, and τL are presented in Table 1 in Section A, τH = 1,
and N̂H = 4. We vary NH with NL = N̂L = 50 fixed.
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experiments and analyzing price responses to trading at some off-equilibrium trading rates. Even

if traders could learn about the number of traders (N̂ ) by obtaining some data on residual supply

schedules, they still cannot learn in real time exactly how many traders (N̂H ) are trading with them

in the same direction. Therefore, we mainly focus on the case of varying NH with N = N̂ fixed.

B.3. Can Traders Learn about Their Mistakes for Price Dynamics?

Let N̂ ∶= N̂H + N̂L denote the actual total number of traders, out of whom N̂H traders observe high

precision signals and N̂L traders observe low precision signals.

It is natural to ask whether traders can learn about their mistakes in assessing the degree of

market crowdedness from observing dynamics of market prices.

Each trader observes the market price P̂(t) but thinks of it as his conjectured price P(t).

Each trader infers from the price the average of N̂ signals, but interprets it as the average of N

signals. Since in the continuous time model it is possible to accurately estimate the diffusion

variance of the process P(t) by looking at its quadratic variation, one may think that traders

would be able to learn about their mistakes from the price dynamics. For example, if traders

underestimated the total number of participants in the market (N < N̂ ), then they would expect to

observe a relatively high price volatility, because errors in private signals would not average out

as much as expected, and vice versa.

We show that, if the quadratic variation of actual price dynamics P̂(t) coincides with the

quadratic variation of perceived price dynamics P(t), then the incorrect estimates about the

number of traders (N ) cannot be easily falsified by observing the price dynamics.

Proposition B.1. Matching the quadratic variation of actual price dynamics P̂(t) and perceived

10



price dynamics P(t) yields the nonrevealing condition,

(B-9)
1+(N̂ −1)ρ̂

N̂
=

1+(N −1)ρ

N
.

Under this nonrevealing condition, we have

Varn[ dP̂(t)] =Varn[dP(t)], Covn[ dIn(t), dP̂(t)] =Covn[d In(t), dP(t)].

If the nonrevealing condition (B-9) is satisfied, then incorrect estimates about the number

of traders cannot be easily falsified by observing the price dynamics and its variance. The

condition implies that the correlation between trader n’s private signal and the actual price change

is consistent with the subjective correlation between his private signal and price change. This

nonrevealing condition imposes the specific restriction on N̂ , N , ρ̂, and ρ.

If N < N̂ , then ρ < ρ̂, and vice versa. If traders underestimate the total number of

participants in the market (N < N̂ ), they should simultaneously underestimate the correlation of

the noise terms of their private signals (ρ < ρ̂) in order to bring downward the inflated estimate of

price change volatility due to the first effect.

As discussed in Section B.2, traders might learn the true total number of traders N = N̂ by

obtaining some data on residual supply schedules and thus know ρ = ρ̂ using non-revealing

condition, they are unlikely to know in real time how many of them observe signals with high

precision (i.e., θ̂) and thus may easily be mistaken about hard-to-observe parameter θ̂. Therefore,

we mainly focus on the case of varying NH with N = N̂ and ρ = ρ̂ fixed.

Proof of Proposition B.1:
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The equilibrium price is determined based on the actual market clearing condition, which

sums up demands of the actual number of traders N̂ in the market,

(B-10)
N̂

∑
m=1

xm(t) = 0, and
N̂

∑
m=1

Sm(t) = 0.

Using equations (A-17), we obtain the actual equilibrium price

(B-11) P̂(t) =
γD(N ,θ,ρ)

γP(N ,θ,ρ)
D(t)+

γH(N ,θ,ρ)

γP(N ,θ,ρ)
ă(N ,θ,ρ)H0(t)+

γH(N ,θ,ρ)

N̂ γP(N ,θ,ρ)

N̂

∑
m=1

Hm(t).

Equation (A-19) implies that the actual permanent market depth 1/λ̂ and temporary market depth

1/κ̂, defined as inverse slopes of residual supply functions with respect to the number of shares

traded and the rate of trading, are given as

(B-12)
1

λ̂
∶=

(N̂ −1) γP

γS
,

1

κ̂
∶= (N̂ −1) γP .

By contrast, each trader uses the subjective market clearing condition in his calculation

summing up demands of the perceived number of traders N ,

(B-13)
N

∑
m=1

xm(t) = 0, and
N

∑
m=1

Sm(t) = 0.

Each trader believes that the equilibrium price is determined by

(B-14) P(t) =
γD(N ,θ,ρ)

γP(N ,θ,ρ)
D(t)+

γH(N ,θ,ρ)

γP(N ,θ,ρ)
ă(N ,θ,ρ)H0(t)+

γH(N ,θ,ρ)

N γP(N ,θ,ρ)

N

∑
m=1

Hm(t).
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The only difference between the two pricing equations (B-11) and (B-14) are indices N̂ and N

over which the summation of private signals is done.

From equation (A-19), the subjective measures of market depth 1/λ and 1/κ are

(B-15)
1

λ
∶=

(N −1) γP

γS
,

1

κ
∶= (N −1) γP .

Traders believe that markets are deep when the number of traders is large (N is high) and thus

they are more willing to provide liquidity to one another (γP is high).

The only difference between the two pricing equations (B-11) and (B-14) are indices N̂

and N over which the summation of private signals is done. For traders not to be able to learn

about their own mistakes, the quadratic variation of actual price dynamics dP̂(t) must coincide

with the quadratic variation of perceived price dynamics dP(t).

Using equations (B-11) and (B-14), we obtain the nonrevealing condition so that the

quadratic variation of ρ̂1/2 dZ(t)+(1− ρ̂)1/2 1
N̂ ∑

N̂
m=1 dBm(t) must coincide with the quadratic

variation of ρ1/2 dZ(t)+(1−ρ)1/2 1
N ∑

N
m=1 dBm(t). This implies equation (B-9).

This condition (B-9) also ensures that the correlation coefficient between a trader’s private

signal and the actual price Covn[ dÎn(t), dP̂(t)] is consistent with the correlation between his

private signal and his “subjective” price Covn[ dIn(t), dP(t)], since

(B-16)

Covn[ dÎn(t), dP̂(t)] =Covn[ρ̂1/2 dZ(t)+(1− ρ̂)1/2 dBn(t), ρ̂1/2 dZ(t)+(1− ρ̂)1/2 1
N̂

N̂

∑
m=1

dBm(t)]

=ρ̂+ 1
N̂
(1− ρ̂).
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(B-17)

Covn[ dIn(t), dP(t)] =Covn[ρ1/2 dZ(t)+(1−ρ)1/2 dBn(t), ρ1/2 dZ(t)+(1−ρ)1/2 1
N

N

∑
m=1

dBm(t)]

=ρ+ 1
N (1−ρ).

This concludes the proof.

B.4. The Equilibrium with Perfect Competition

Theorem B.2 characterizes the equilibrium of an otherwise equivalent continuous-time model in

which the assumption of perfect competition replaces imperfect competition.

Theorem B.2. Equilibrium of the Continuous-time Model with Perfect Competition. Assume

τH > τL. There exists a steady-state, Bayesian-perfect equilibrium with symmetric, linear

strategies with positive trading volume if and only if the polynomial equation system (B-26) has a

solution. Such an equilibrium has the following properties:

1. There is an endogenously determined constant C c
L > 0, defined in equation (B-24), such that

trader n’s optimal inventories Sc
n(t) are

(B-18) Sc
n(t) =C c

L (H̆n(t)− H̆−n(t)) .

2. There is an endogenously determined constant C c
G > 0, defined in equation (B-23), such that

the equilibrium price is

(B-19) P c(t) =
D(t)

r +αD
+C c

G
∑

N
n=1 Gn(t)

N(r +αD)(r +αG)
.
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Price-taking competitors do not smooth their trading. Each trader immediately adjusts

actual inventories to target levels (as if γS →∞). Equations (B-18) and (B-19) are similar to

corresponding equations (29) and (30) in Theorem 2, but the values of C c
L and C c

G are different.

Competition makes price dampening more pronounced, C c
G <CG .

Since inventories are diffusions in the continuous-time model, we can think of the ratio of

the expected holding position in the equilibrium with imperfect competition to that with perfect

competition to measure the competitiveness of the market, E ∣Sn(t)∣/E ∣Sc
n(t)∣, where Sn(t) is

given in Theorem 2 and Sc
n(t) is given in Theorem B.2.

Proof of Theorem B.2:

We conjecture that price is a linear function of D(t) and 1
N ∑

N
n=1 Gn(t),

(B-20) P(t) = D(t)
r+αD

+C c
G

∑
N
n=1 Gn(t)

N(r +αD)(r +αG)
.

We conjecture and verify that the value function V (Wn , H̆n , H̆−n) has the specific quadratic

exponential form

(B-21) V (Wn , H̆n , H̆−n) = −exp(ψ0+ψW Wn +
1
2ψnn(H̆n)

2+ 1
2ψxx(H̆−n)

2+ψnx H̆n H̆−n).

The five constants ψ0, ψW , ψnn , ψxx , and ψnx have values consistent with a steady-state

equilibrium. The terms ψnn , ψxx , and ψnx capture the value of future trading opportunities based

on current public and private information. The value of trading on innovations to future

information is built into the constant term ψ0. The Hamilton–Jacobi–Bellman (HJB)
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equation corresponding to the conjectured value function V (Wn , H̆n , H̆−n) in equation (B-21) is

0 =min
cn ,sn

− e−Acn

V
−ρ+ψW (r Wn +SnD(t)− cn − r P(t)Sn(t)− αD

r+αD
D(t)Sn

+ σGΩ
1/2

r+αD
(τ̆1/2

H H̆n(t)+(N −1)τ̆1/2
L H̆−n(t))Sn

+ C c
GσGΩ

1/2
(τ̆

1/2
H +(N−1)τ̆

1/2
L )

N(r+αD)(r+αG)
((a1+(N −1)a4)H̆n(t)+(a3+(N −1)a2)H̆−n(t))Sn)

+(ψnn H̆n(t)+ψnx H̆−n(t))(−(αG +τ)H̆n +(τ1/2
H + ăτ

1/2
0 )(τ̆1/2

H H̆n +(N −1)τ̆1/2
L H̆−n))

+(ψxx H̆−n(t)+ψnx H̆n(t))(−(αG +τ)H̆−n +(θτ1/2
H +(1−θ)τ1/2

L + ăτ
1/2
0 )(τ̆1/2

H H̆n +(N −1)τ̆1/2
L H̆−n))

+ 1
2ψ

2
W S2

n ( (C
c
G)

2
σ2

GΩ(N ă2
+(N−1)ρ+1)(τ̆

1/2
H +(N−1)τ̆

1/2
L )

2

N(r+αD)
2(r+αG)

2 + σ2
D

(r+αD)
2 +

2C c
GσGσDΩ

1/2τ
1/2
0

(r+αD)
2(r+αG)

)

+ 1
2 ((ψnn H̆n(t)+ψnx H̆−n(t))2+ψnn)(1+ ă2)+ 1

2 ((ψxx H̆−n(t)+ψnx H̆n(t))2+ψxx)( 1−ρ
N−1 +ρ+ ă2)

+ψW Sn ((ψnn +ψnx)H̆n(t)+(ψxx +ψnx)H̆−n(t))

⋅( C c
GσGΩ

1/2

N(r+αD)(r+αG)
(τ̆1/2

H +(N −1)τ̆1/2
L )(N ă2+1+(N −1)ρ)+ σD ă

r+αD
)

+((ψnn H̆n(t)+ψnx H̆−n(t)) (ψxx H̆−n(t)+ψnx H̆n(t))+ψnx) (ă2+ρ),

where constants a1, a2, a3, and a4 are defined as in equation (A-30). The solution for optimal

consumption is

cn(t) = − 1
A log(

ψW V (t)
A ).

Plugging optimal consumption and P(t) from equation (B-20) into the HJB equation yields a

quadratic function of Sn . It can be shown that the optimal trading strategy is a linear function of
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the state variables H̆n(t) and H̆−n(t),

Sn(t) =C (C c
GσGΩ

1/2(τ̆1/2
H +(N −1)τ̆1/2

L )(B-22)

⋅ ((r −a1−(N −1)a4)H̆n(t)+((N −1)(r −a2)−a3)H̆−n(t))

− σGΩ
1/2(r +αG)N(τ̆1/2

H H̆n(t)+(N −1)τ̆1/2
L H̆−n(t))

− ((ψnn +ψnx)H̆n(t)+(ψxx +ψnx)H̆−n(t))

⋅(C c
GσGΩ

1/2(τ̆1/2
H +(N −1)τ̆1/2

L )(N ă2+1+(N −1)ρ)+σD ăN(r +αG))) ,

where τ̆1/2
H and τ̆1/2

L are defined in equation (A-16) and

C =
(r+αD)(r+αG)/ψW

(C 2
G)2σ2

GΩ(τ̆
1/2
H +(N−1)τ̆

1/2
L )

2
(N ă2+1+(N−1)ρ)+Nσ2

D(r+αG)2+2N(r+αG)σDC c
GσGΩ1/2τ

1/2
0

.

Since the market clears, ∑N
n=1 Sn(t) = 0, this implies

(B-23) C c
G =

N(r+αG)(σGΩ
1/2
+σD ă(ψnn+ψxx+2ψnx)/(τ̂

1/2
H +(N−1)τ̂

1/2
L ))

σGΩ1/2(N r−a1−a3−(N−1)(a2+a4)−(1+(N−1)ρ+N ă2)(ψnn+ψxx+2ψnx))
.

Combining equations (B-22) and (B-23), we get Sn(t) =C c
L (H̆n(t)− H̆−n(t)) , where the

constant C c
L is defined as

C c
L =C(σGΩ

1/2(C c
G(τ̆1/2

H +(N −1)τ̆1/2
L )(r −a1−(N −1)a4)−N τ̆

1/2
H (r +αG))

−(ψnn +ψnx)(C c
GσGΩ

1/2(τ̆1/2
H +(N −1)τ̆1/2

L )(1+(N −1)ρ+N ă2)+σD ăN(r +αG))).

(B-24)

Plugging (B-22) back into the Bellman equation and setting the constant term and the coefficients

of Wn , (H̆n)
2, (H̆−n)

2, and H̆n H̆−n to be zero, we obtain five equations, from which we can find

five unknown parameters ψ0,ψW ,ψnn ,ψnx and ψxx . By setting the constant term and coefficient

17



of Wn to be zero, we obtain

(B-25)

ψW = −r A, ψ0 = 1− log(r )+
1

r
(−ρ+ 1

2(1+ ă2)ψnn +
1
2(ρ+

1−ρ
N−1 + ă2)ψxx +(ă2+ρ)ψnx).

By setting the coefficients of (H̆n)
2,(H̆−n)

2 and H̆n H̆−n to be zero, we obtain three polynomial

equations in the three unknowns ψnn ,ψxx , and ψnx . Defining c1, c2, c3, and c4 by

c1 =
(C c

G)
2σ2

GΩ(N ă2
+1+(N−1)ρ)(τ̆

1/2
H +(N−1)τ̆

1/2
L )

2

N(r+αD)2(r+αG)2 +
σ2

D
(r+αD)2 +

2C c
GσGσDΩ

1/2τ
1/2
0

(r+αD)2(r+αG)
,

c2 =
C c

GσGΩ
1/2

N(r+αD)(r+αG)
(τ̆

1/2
H +(N −1)τ̆

1/2
L )(N ă2+1+(N −1)ρ)+ σD ă

r+αD
,

c3 =
r AσGΩ

1/2C c
L

r+αD
(

C c
G(τ̆

1/2
H +(N−1)τ̆

1/2
L )(r−a1−(N−1)a4)

N(r+αG)
− τ̆

1/2
H ),

c4 =
r AσGΩ

1/2C c
L

r+αD
(

C c
G(τ̆

1/2
H +(N−1)τ̆

1/2
L )(r−a2−

a3
N−1)

N(r+αG)
− τ̆

1/2
L ),

these three equations in three unknowns can be written as follows:

0 = − r
2ψnn +a1ψnn +a4ψnx − r AC c

Lc2(ψnn +ψnx)+
1
2(1+ ă2)ψ2

nn

+ 1
2 (ρ+

1−ρ
N−1 + ă2)ψ2

nx +(ă2+ρ)ψnnψnx +c3+
1
2 r 2 A2c1(C c

L)
2,

0 = − r
2ψxx +a2ψxx +a3ψnx + r AC c

Lc2(ψxx +ψnx)+
1
2(1+ ă2)ψ2

nx

+ 1
2 (ρ+

1−ρ
N−1 + ă2)ψ2

xx +(ă2+ρ)ψxxψnx −(N −1)c4+
1
2 r 2 A2c1(C c

L)
2,

0 = −rψnx +(a1+a2)ψnx +a3ψnn +a4ψxx + r AC c
Lc2(ψnn −ψxx)

+(1+ ă2)ψnnψnx +(ρ+
1−ρ
N−1 + ă2)ψxxψnx +(ă2+ρ)(ψnnψxx +ψ

2
nx)

+(N −1)c4−c3− r 2 A2c1(C c
L)

2.

(B-26)

Parameters ψnn ,ψnx ,ψxx are solved numerically from the system of equation (B-26).
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B.5. Price Dampening and Return Autocorrelations

Using equation (30), we derive the holding period return R(t , t +T ) from t to t +T and show that

the return autocorrelations are positive.

In the dynamic process of sufficient statistics dHn(t) and dH−n(t) (equation (A-14)),

the coefficient τ1/2
H in the second term on the right hand side of dHn(t) is different from the

coefficient θτ1/2
H +(1−θ)τ

1/2
L in the second term on the right hand side of dH−n(t). This

difference is the key driving force behind the price-dampening effect resulting from the

Keynesian beauty contest. It captures the fact that—in addition to disagreeing about the value of

the asset in the present—traders also disagree about the dynamics of their future valuations. We

use traders’ beliefs to study return dynamics.

We assume that N = N̂ , ρ = ρ̂, but θ ≠ θ̂, i .e., traders might misestimate the fraction of

traders who are trading in the same strategy space. From equations (22) and (A-13), trader n

believes that the dynamics of Ḡ(t) ∶= 1
N ∑

N
n=1 Gn(t), Gn(t), and G−n(t) ∶= 1

N−1∑
N
m=1,m≠n Gm(t)

are given by

dḠ(t) =−(αG +τ)Ḡ(t) dt +(τ0+N(1+(N −1)ρ)τ̆I)Gn(t) dt

+σGΩ
1/2 (τ̆1/2

I dB n
n (t)+τ1/2

0 dB n
0 (t)+ τ̆1/2

I

N

∑
m=1,m≠n

dB n
m(t)) ,

dGn(t) =−αGGn(t) dt +σGΩ
1/2 (τ̆1/2

H dB n
n (t)+τ1/2

0 dB n
0 (t)+ τ̆1/2

L

N

∑
m=1,m≠n

dB n
m(t)) ,

dG−n(t) =−(αG + (1−θ)
2

1−ρ (τ1/2
H −τ

1/2
L )

2
)G−n(t) dt +(τ− (1−θ)

2

1−ρ (τ1/2
H −τ

1/2
L )

2
)(Gn(t)−G−n(t)) dt

+σGΩ
1/2 (τ1/2

0 dB n
0 (t)+ τ̆1/2

L dB n
n (t)+ τ̆

1/2
H +(N−2)τ̆

1/2
L

N−1

N

∑
m=1,m≠n

dB n
m(t)) , where

τ̆
1/2
H ∶=

(1−θ)(τ
1/2
H −τ

1/2
L )

1−ρ +
(θ−ρ)τ

1/2
H +(1−θ)τ

1/2
L

(1−ρ)(1+(N−1)ρ) , τ̆
1/2
L ∶=

(θ−ρ)τ
1/2
H +(1−θ)τ

1/2
L

(1−ρ)(1+(N−1)ρ) , τ̆
1/2
I ∶= 1

N τ̆
1/2
H + N−1

N τ̆
1/2
L .

19



Using equation (30), it can be shown that trader n believes that the instantaneous returns

process is a linear combination of Gn(t) and Ḡ(t):

dP(t)+D(t) dt − r P(t) dt

=( 1
r+αD

+
CG(τ0+N(1+(N−1)ρ)τ̆I )

(r+αD)(r+αG)
)Gn(t) dt −CG( 1

r+αD
+ τ

(r+αD)(r+αG)
)Ḡ(t) dt + dBr (t),

(B-27)

where dBr (t) is defined as follows:

(B-28) dBr (t) ∶= σD
r+αD

dB n
0 (t)+ σGCGΩ

1/2

(r+αD)(r+αG)
(τ

1/2
0 dB n

0 (t)+ τ̆
1/2
I ( dB n

n (t)+
N

∑
m=1,m≠n

dB n
m(t))) .

Integrating equation (B-27) over time yields the holding period return from t to t +T :

(B-29) R(t , t +T ) = ∫

t+T

u=t
er(t+T−u)( dP(u)+D(u) du− r P(u) du).

Define a continuous 2-vector stochastic process yG(t) = [Gn(t) , Ḡ(t)]′. It can be shown that

yG(t) satisfies the linear stochastic differential equation

dyG(t) =KG yG(t) dt +CZ dZG(t),

where KG is a 2×2 matrix and CZ is a 2×3 matrix given by

KG =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−αG 0

τ0+N(1+(N −1)ρ)τ̆I −(αG +τ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CZ =σGΩ
1/2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

τ
1/2
0 τ̆

1/2
H (N −1)1/2τ̆

1/2
L

τ
1/2
0 τ̆

1/2
I (N −1)1/2τ̆

1/2
I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The vector dZG(t) = [ dB n
0 (t) , dB n

n (t) , (N −1)−1/2∑
N
m=1,m≠n dB n

m(t)]′ is a 3×1-dimensional
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Brownian motion. We can then obtain recursive formulas for the stochastic vector

yG(u) = [Gn(u) , Ḡ(u)]′ for time u ≥ t as a function of yG(t) = [Gn(t) , Ḡ(t)]′.

Plugging these recursive formulas into equation (B-29), we obtain the cumulative holding

period return R(t , t +T ) over period T between time t and t +T as a linear function of Gn(t) and

Ḡ(t):

(B-30) R(t , t +T ) = ζ2(T )Gn(t)−ζ1(T )Ḡ(t)+ B̄(t , t +T ).

The coefficients ζ1(T ) > 0 and ζ2(T ) > 0 in the equation above are defined as

ζ1(T ) ∶=
CG

(r+αG)(r+αD)
(er T −e−(αG+τ)T ) ,

ζ2(T ) ∶= e−(αG+τ)T

(r+αG)(r+αD)τ
((e(r+αG+τ)T −eτT )τ+CG (τ0+N(1+(N −1)ρ)τ̆I)(eτT −1)) ,

(B-31)

and the Brownian motion term B̄(t , t +T ) is defined as

(B-32)

B̄(t , t +T ) ∶= ∫

t+T

s=t
∫

t+T

u=s
[a,−b]er(t+T−u)+KG(u−s)CZ du dZG(s)+∫

t+T

s=t
er(t+T−s) dBr (s),

where constants a and b are defined as follows:

a ∶= 1
r+αD

+
CG(τ0+N(1+(N−1)ρ)τ̆I )

(r+αD)(r+αG)
, b ∶=CG( 1

r+αD
+ τ

(r+αD)(r+αG)
).

We then derive the autocorrelations of the cumulative returns, Corrn [R(t −T, t),R(t , t +T )]. We

numerically show that the return autocorrelations are positive for a wide range of parameter

values, implying that the return exhibits time-series return momentum.
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