
Price-Path Convexity and Short-Horizon Return
Predictability

Huseyin Gulen and Michael Woeppel∗

Abstract

We document a strong negative relation between the curvature of stock price paths (i.e.,
price-path convexity) and future short-horizon returns at both the aggregate and firm levels.
This relation obtains regardless of the cumulative return during the convexity estimation
period. At the aggregate level, convexity is a better predictor of future returns than
many commonly used predictors. At the firm level, this effect is not explained by known
return predictors, microstructure frictions, or illiquidity. Using survey-based expectations
of short-horizon returns, we show that the negative relation between convexity and future
returns is driven in part by overextrapolation of past returns.

JEL Classification: G02, G12, G14
Keywords : Price paths, convexity, overextrapolation, short-horizon return predictability

∗Gulen, hgulen@purdue.edu, Purdue University Daniels School of Business; Woeppel, mwoeppel@iu.edu,
Indiana University Kelley School of Business. We thank an anonymous referee, Adem Atmaz, Nick
Barberis, Stefano Cassella, Zhi Da, Logan Emery, Thierry Foucault (editor), Allaudeen Hameed, Craig
Holden, Lawrence Jin, Mitchell Johnston, Ulas Misirli, Fangcheng Ruan, Kaushik Vasudevan, and seminar
participants at Indiana University and Purdue University for helpful comments.



I. Introduction

Short-horizon stock return predictability – in the form of short-term return reversal

– is one of the oldest documented and most robust stock return anomalies (Rosenberg and

Rudd (1982), Rosenberg, Reid, and Lanstein (1985), Jegadeesh (1990), Lehmann (1990)).

Two potential explanations for this anomaly exist, and they are not necessarily mutually

exclusive. One explanation suggests that short-term reversal reflects compensation for

liquidity provision (Campbell, Grossman, and Wang (1993), Pástor and Stambaugh (2003),

Avramov, Chordia, and Goyal (2006), Nagel (2012)). The other explanation suggests that

reversal is driven by overreaction to fads, overreaction to new information, or cognitive

biases (Shiller (1984), Black (1986), Stiglitz (1989), Summers and Summers (1989),

Subrahmanyam (2005)).

While past returns contain information about future returns, they also serve as a

measure of the first-order derivative of the recent price path. However, there is reason to

believe that the second-order derivative, or the curvature of the recent price path, also

holds predictive power. For example, Greenwood, Shleifer, and You (2019) examine

industry-level bubbles and find that price run-ups ending in crashes tend to exhibit greater

price-path acceleration than price run-ups that do not.

In this paper, we show that the curvature of the stock price path, which we refer to

as ‘price-path convexity,’ contains information about future returns. Specifically, we find

that convexity negatively and significantly predicts future returns at both the aggregate

and firm levels. This relation holds regardless of the cumulative return during the
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convexity estimation period and is not driven by known return predictors, microstructure

frictions, or illiquidity. Our evidence suggests that the negative relation between convexity

and future returns is at least partially due to the overextrapolation of past returns.

To understand convexity, one can refer to Jensen’s inequality.1 We empirically

estimate price-path convexity in three steps. First, we calculate the midpoint of the closing

prices on the first and last trading days of the convexity estimation period. Second, we

subtract from this midpoint the average of all daily closing prices over the same period.

Third, to standardize convexity across stocks, we divide this difference by the midpoint

from the first step. Positive convexity reflects a convex price path, and negative convexity

reflects a concave price path.

We begin our analysis by demonstrating that convexity has significant return

predictive power at the aggregate level. In-sample tests show that a one standard deviation

increase in convexity is associated with a 0.40% decrease in future one-month returns.

Moreover, convexity’s predictive power surpasses that of 15 commonly used predictor

variables (Welch and Goyal (2008)). When we exclude the onset of the COVID-19

pandemic, the coefficient on convexity increases by 50%, and its associated R2 estimate

more than doubles. Out-of-sample R2 estimates for convexity range from 0.39% to 0.61%,

depending on the forecast period. In contrast, out-of-sample R2 estimates for nearly all

other predictors are negative. When we exclude the onset of the pandemic, convexity’s

out-of-sample R2 estimates roughly quadruple.

After establishing the strength of the convexity-future return relation at the

aggregate level, we examine the same relation at the firm level. We find that a

1A function g(x) is convex if g
(
λx+ (1− λ)y

)
≤ λg(x) + (1− λ)g(y),∀x, y and 0 < λ < 1.
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value-weighted portfolio that buys stocks in the lowest convexity quintile and sells short

stocks in the highest convexity quintile earns an average monthly return of 0.84%

(t-statistic of 6.29).

This relation holds across different look-back horizons and holding periods. For

instance, a zero-investment portfolio that buys stocks in the lowest ten-day convexity

quintile and sells short stocks in the highest ten-day convexity quintile earns an average

ten-day return of 0.64% (t-statistic of 7.31). Similarly, for a five-day look-back horizon and

five-day holding period, the same strategy yields an average five-day return of 0.37%

(t-statistic of 4.94). These results indicate that convexity negatively predicts future returns

regardless of the short-term look-back horizon.

Importantly, convexity’s return predictability is distinct from that of short-term

return reversal. In a double sort of observations into convexity and return quintiles, we find

that future average monthly returns decline significantly as convexity increases, regardless

of past return quintile. Specifically, the average return difference between the lowest and

highest convexity quintiles ranges from 0.78% to 0.97% (t-statistics between 4.60 and 5.69)

across return quintiles. We obtain similar results when conducting double sorts using

convexity and lagged returns over the final ten days or final five days before portfolio

formation.

When we regress monthly returns from the zero-investment convexity portfolio on

factor models incorporating market return, size, book-to-market ratio, profitability, asset

growth, momentum, short-term reversal, long-term reversal, and illiquidity, the resulting

alphas range from 0.81% to 0.96% (t-statistics between 5.63 and 6.41). Not only are the

returns of the convexity portfolio uncorrelated with those of commonly used factors, but

3



they also exceed them in magnitude. The portfolio’s average return (0.84% per month) and

Sharpe ratio (0.23) are more than double those of most factors. During recessions, this

outperformance is even more pronounced, with an average return of 1.60% (t-statistic of

3.18) and a Sharpe ratio of 0.34.

To ensure that convexity is not simply capturing information contained in known

return predictors, we use a cross-sectional regression approach that controls for firm

characteristics (Fama and MacBeth (1973)). The negative convexity-future return relation

remains robust after accounting for size, book-to-market ratio, profitability, asset growth,

momentum, one-month returns (i.e., short-term reversal), illiquidity, idiosyncratic

volatility, skewness, and maximum daily return. When all controls are included in the same

specification, a one standard deviation increase in convexity is associated with a 45 basis

point decline in future returns (robust t-statistic of -11.15).

Since convexity places greater emphasis on more recent price changes, one concern is

that its predictive power stems solely from end-of-month returns. However, we find that the

negative relation between convexity and subsequent one-month returns remains significant

even after controlling for lagged one-day, five-day, or ten-day returns. These results suggest

that convexity’s predictive power is not merely short-term return reversal in disguise.

To understand why price-path convexity negatively predicts future returns, we

consider three explanations, starting with risk considerations. Although time-varying risk

can generate efficient yet predictable returns, it is unlikely to explain our findings. As

discussed above, our results (i) persist over very short horizons, during which risk-based

explanations are less plausible (Lehmann (1990)); (ii) remain unchanged after accounting

for asset pricing models that include systematic risk factors; and (iii) strengthen during
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economic downturns, contradicting risk-based interpretations (Lakonishok, Shleifer, and

Vishny (1994)). Moreover, convexity predicts only short-horizon returns, suggesting that

risk is unlikely to drive the negative convexity-future return relation (Baba-Yara, Boons,

and Tamoni (2024)).

We then examine whether liquidity provision explains our findings. Returns from

the zero-investment convexity portfolio do not strongly correlate with a traded liquidity

factor, and convexity’s predictive power remains robust after controlling for firm-specific

illiquidity. Furthermore, our aggregate results are stronger when illiquidity is low, and our

firm-level results remain strong even among the most liquid stocks. These findings suggest

that illiquidity is unlikely to be the primary driver.

Finally, we consider the role of mispricing. At the aggregate level, convexity’s

predictive power strengthens following months in which mispricing is more likely. At the

firm level, the negative convexity-future return relation is stronger among younger firms

and less-followed firms – groups that tend to be mispriced (Hirshleifer, Hsu, and Li (2013)).

These findings suggest that mispricing is a driver of the negative relation between

convexity and future returns.

In the final section of the paper, we investigate the behavioral biases that may be

driving this mispricing. By decomposing convexity, we show that it is a function of a

weighted average of price changes, with more recent price changes receiving greater weight.

Since this type of weighted average is commonly used to model the beliefs of extrapolative

investors (Barberis (2018)), we then examine whether the negative relation between

convexity and future returns is driven by overextrapolation.

To explore this relation, we rely on survey-based expectations of short-term returns.
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At the aggregate level, we analyze expectations of one-month returns for the Dow Jones

Industrial Average. We find that short-term return expectations are positively related to

past returns, suggesting that investors extrapolate past returns when forming these

expectations.

Using a non-linear regression framework commonly employed in the literature (e.g.,

Greenwood and Shleifer (2014), Cassella and Gulen (2018), Da, Huang, and Jin (2021)), we

decompose expectations into the predicted component, which represents the extrapolative

part of raw expectations, and the residual component.2 We find that the extrapolative

component is negatively associated with future returns, suggesting that greater emphasis

on recent returns leads to overextrapolation. This finding indicates that overextrapolation

partly explains the negative relation between convexity and future returns. Supporting this

conclusion, we find a strong positive relation between convexity and the extrapolative

component, but not the residual component, of expectations. In univariate orinary least

squares regressions of the extrapolative component on convexity, our R2 estimates exceed

40%.

At the firm level, we replicate this analysis using rankings from Forcerank, a

crowdsourcing platform that ranks stocks based on expected returns for the following week.

Consistent with prior research (Da et al. (2021)), we find that Forcerank rankings are

positively related to past returns. When regressing future realized returns on each

component of raw rankings, we again find a strong, negative relation between the

extrapolative component and future returns, with R2 estimates reaching up to 34%. Taken

together, the results at both the aggregate and firm levels suggest that the negative

2Our decomposition follows from Cassella, Chen, Gulen, and Petkova (2023).

6



relation between convexity and future returns is at least partially driven by return

overextrapolation.

Our paper contributes to the extensive literature on short-term return

predictability. At the aggregate level, we extend the literature on extrapolation and

aggregate stock return predictability, which links overextrapolation to long-term returns

(e.g., Greenwood and Shleifer (2014), Cassella and Gulen (2018)). We make a novel

contribution by being the first to link overextrapolation to short-term returns at the

aggregate level. While it is well-established that investors focus on long-term returns

(measured quarterly) when forming expectations over horizons ranging from six months to

one year, we show that they focus on very short-term returns (i.e., recent weekly returns)

when forecasting short-term returns.

At the firm level, we demonstrate that convexity has significant explanatory power

for future short-term returns. Specifically, we show that the second-order derivative, or

curvature, of recent price movements contains important information about future returns

not captured by the first-order derivative, or return, of the recent price path. Our focus on

short horizons, during which risk-based explanations are less relevant, and our finding that

only the extrapolative component of expectations is related to future short-term returns,

provide strong evidence that behavioral biases play a significant role in short-term return

predictability.

Since convexity predicts returns at both the aggregate and firm levels, our study

also relates to Engelberg, McLean, Pontiff, and Ringgenberg (2023), who study whether

cross-sectional predictors contain systematic information. We calculate convexity at the

aggregate level using S&P 500 closing prices, but unreported tests show that this measure
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is over 99% correlated with a value-weighted firm-level measure of convexity. This high

correlation suggests that, unlike most cross-sectional predictors in Engelberg et al. (2023),

firm-level convexity may indeed contain information about the systematic component of

returns.

Finally, we contribute to the literature on extrapolative expectations of stock prices.

Much of the prior research has focused on extrapolative expectations over longer time

periods.3 An exception is Da et al. (2021), who examine data on about 300 stocks from

Forcerank to study how investors form expectations about very short-term stock returns.

They find that investors extrapolate from past returns, and that the extrapolative

component of these expectations is strongly negatively related to future returns. Our work

complements theirs by providing evidence of overextrapolation of recent price changes over

short horizons in the entire U.S. cross-section over a 60-year period.

II. Convexity

In this paper, our goal is to determine whether the curvature of stock price paths

contains important information about future returns. To this end, we develop a variable

designed to capture this curvature, which we call price-path convexity, or simply convexity.

We calculate convexity in three steps. To fix ideas, assume we are calculating

one-month convexity. First, we calculate the midpoint of the closing prices on the first and

last trading days of the month. Next, we subtract the average of all daily closing prices in

3See Bacchetta, Mertens, and van Wincoop (2009); Amromin and Sharpe (2014); Greenwood and Shleifer
(2014); Barberis, Greenwood, Jin, and Shleifer (2015, 2018); Hirshleifer, Li, and Yu (2015); Koijen,
Schmeling, and Vrugt (2015); Cassella and Gulen (2018); Choi and Mertens (2019); and Jin and Sui (2022)
for examples.
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that month from the average in the first step. Lastly, to standardize convexity across all

stocks, we divide this difference by the midpoint in the first step.4 The equation is as

follows:

(1) Convexityit =

P1it + PNit

2
− P1it + P2it + ...+ PNit

Nit

P1it + PNit

2

,

in which P1it is the first daily closing price of stock i in month t, PNit
is the last daily

closing price of stock i in month t, and P1it
+P2it

+...+PNit

Nit
is the average of all daily closing

prices of stock i in month t. When the midpoint is greater (less) than the average,

convexity is positive (negative), and the price path is convex (concave).

When calculating convexity, we adjust for stock splits and stock dividends but not

cash dividends. When a firm splits its stock or distributes stock dividends, all historical

stock prices are adjusted for the corresponding stock split or stock dividend. However,

when a firm distributes cash dividends, the stock price is adjusted for the dividend only on

its ex-dividend date; historical prices are not adjusted. In this respect, we view stock splits

and stock dividends as permanent price changes, which we argue are the most salient.5

We estimate convexity using price changes rather than returns for two reasons.

First, recent work shows that investors at least partially think about stock price changes in

dollar units rather than percentage units (Shue and Townsend (2021)). Second, using price

changes better captures the price-path dynamics we are interested in studying.

4Alternatively, we could standardize by the average of all daily closing prices of month t. In unreported tests,
we find that our results are nearly identical when doing so.

5For further support of the salience of permanent price changes, Hartzmark and Solomon (2019, 2022) find
that investors tend to focus on capital gains rather than on total returns. Regardless, as shown in the Internet
Appendix, we find that our results are nearly identical when we also adjust prices for cash dividends.
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Consider the following stylized example. Suppose a stock starts the month at $20,

drops $1 per day for ten days, and then increases $1 per day for the next ten days. The

stock ends the month at $20, and its estimated convexity is 0.24. If we instead define

convexity as in (Greenwood et al. (2019)) (i.e., one-month return minus the return of the

first two weeks), convexity would be 0.50 (i.e., 0% one-month return minus -50% return in

the first two weeks).

Now, suppose the same $20 stock drops $1.50 per day for the first ten days and then

increases $1 per day for the last ten days. The stock ends the month at $15, and its

estimated convexity is 0.42. If we use returns, convexity again equals 0.50 (i.e., -25%

cumulative return minus -75% return in the first two weeks). Although the price paths

differ significantly, the return-based definition fails to capture the sharper decline and

recovery in the second scenario, whereas the price-change definition captures these

dynamics accurately.

To be clear, we do not disagree that the return-based definition successfully

captures the acceleration of price paths of bubbles. However, since we are interested in

studying the price paths of stocks with positive returns or negative returns, we argue that

a convexity measure based on price changes is better suited for our study.6

III. Aggregate-Level Results

In this section, we examine the relation between convexity and future returns at the

aggregate level using the S&P 500 index. Specifically, we calculate convexity using S&P

6A similar argument can be made for a return-based measure that more heavily weighs more recent returns.
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500 closing prices from CRSP (spindx) and obtain data for the other 15 predictor variables

from Amit Goyal’s website. Our sample covers the period from July 1963 to December

2022.

Table IA1 in the Internet Appendix provides summary statistics for convexity and

its correlations with the other predictor variables. Panel A shows that convexity is

approximately symmetric, with a mean and median slightly below zero. Panel B indicates

that, aside from its correlation with volatility, convexity exhibits little correlation with the

other variables.7

A. In-Sample

Panel A of Table 1 presents results from a standard aggregate stock return

predictive regression of the following form:

(2) rt+1 = α + βxt + εt+1,

in which rt+1 is the S&P 500 log excess return next month, and xt is a predictor variable.

Theory often provides guidance on the sign of β under predictability, so we follow

Inoue and Kilian (2005) and use a one-sided alternative hypothesis. To ensure

comparability across predictors, we take two steps. First, we take the negative of CON

(convexity), NTIS (net equity expansion), TBL (interest rate on three-month T-bill), LTY

(long-term government bond yield), and INFL (inflation) so that the hypotheses for all

7Unreported tests show that the positive correlation between convexity and volatility is driven by months
with negative S&P 500 returns and positive convexity. That is, these months are characterized by steep
declines early in the month followed by partial recoveries, reflecting heightened volatility.
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predictors are consistent (i.e., H0: β = 0 against HA: β > 0). Second, we standardize all

predictors to have a mean of zero and a standard deviation of one.

We estimate equation (2) using OLS and adjust t-statistics (reported below the

coefficients) for heteroskedasticity and autocorrelation (Newey and West (1987)). To

determine the number of lags for standard error adjustment, we apply the rule 4(T/100)2/9,

in which T is the number of months in the sample (Andrews (1991), Newey and West

(1994)). We use this rule throughout the paper, which typically results in setting the

number of lags to six. In unreported tests, we confirm that our findings are highly robust

to alternative lag selections.

[Insert Table 1 Here]

The first column in Panel A of Table 1 shows that a one-standard-deviation increase

in convexity is associated with a 0.40% decrease in future one-month returns. TBL, LTR

(return on long-term government bonds), TMS (long-term government bond yield minus

T-bill rate), and INFL also exhibit significant in-sample (IS) return predictability.

However, the coefficient on convexity is the largest among all predictors in Panel A (tied

with LTR). Moreover, the bottom row of Panel A indicates that the R2 for convexity is

0.85%, the highest among all predictors. Although all R2 values are small in absolute

terms, any estimate of 0.50% or higher is considered economically significant for predicting

monthly returns (Campbell and Thompson (2008)).
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B. Out-of-Sample

Strong in-sample predictive performance does not necessarily translate into strong

out-of-sample (OS) predictive performance (Welch and Goyal (2008)). To assess OS

performance, Panel B of Table 1 reports OS R2 estimates. For each predictor, we estimate

the following predictive regression:

(3) r̂t+1 = α̂t + β̂txt,

in which α̂ and β̂ are the OLS estimates of α and β from equation (2) based on data

available through month t. We compare each predictor’s performance to that of the

unconditional mean excess return through month t. OS R2 is calculated as follows

(Campbell and Thompson (2008)):

(4) R2
OS = 1−

∑T
t=1(rt − r̂t)

2∑T
t=1(rt − r̄t)2

,

in which r̂t is the fitted value from a predictive regression estimated through period t-1,

and r̄t is the unconditional mean excess return through period t-1. A predictor has a

positive OS R2 if its mean squared prediction error (MSPE) is lower than that of the

unconditional mean excess return. We use the MSPE-adjusted test statistic of Clark and

West (2007) to test the null hypothesis that OS R2 is not positive (i.e., H0 : R
2
OS ≤ 0

against HA : R2
OS > 0).

Panel B of Table 1 presents OS R2 estimates for each predictor. A range of window

13



sizes should be used for determining OS significance (Hansen and Timmerman (2012),

Rossi and Inoue (2012)), so we present results for forecast periods beginning January 1975,

January 1980, and January 1985. Across all forecast periods, OS R2 estimates for

convexity are positive. Although they are not significant at conventional levels, all three

estimates are significant at least at the 88% level. In contrast, nearly all OS R2 estimates

for other predictors are negative, and none of the positive estimates approach significance.

C. Forecast Encompassing

Next, we use forecast encompassing tests to determine whether convexity contains

stronger return predictive information than each of the other 15 predictor variables. We

define the optimal combination forecast of aggregate returns as a weighted average of the

OS forecast based on convexity and the OS forecast based on one of the other predictors:

(5) r̂t+1 = (1− λ)r̂it+1 + λr̂CON
t+1 ,

in which r̂it is the predictive regression forecast based on one of the 15 predictors, r̂CON
t is

the predictive regression forecast based on convexity, and 0 ≤ λ ≤ 1. If λ = 0, then the

forecast based on predictor i fully encompasses the forecast based on convexity, implying

that convexity provides no additional predictive information. If λ > 0, then convexity

contains information about aggregate returns beyond what predictor i captures.

Harvey, Leybourne, and Newbold (1998) develop a test statistic for evaluating

whether the forecast based on predictor i encompasses the forecast based on convexity (i.e.,

H0 : λ = 0 against HA : λ > 0). We use the modified version of this statistic (Rapach,
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Strauss, and Zhou (2010)) to assess the significance of λ and report λ̂ estimates in Panel C

of Table 1. With only one exception, λ̂ estimates are highly significant across all predictors

and forecast periods. When the forecast period begins in January 1985 and predictor i is

LTY, λ̂ = 0.72, which is significant at the 89% level. These results indicate that convexity

provides unique information about future returns.

D. COVID-19 Pandemic

Despite the strong significance of our results in nearly every instance in the first

three panels of Table 1, the last three panels indicate that price action during the onset of

the COVID-19 pandemic had a disproportionately negative effect. Specifically, these panels

show that our results become substantially stronger when excluding March and April 2020

from the sample.

Panel A2 demonstrates that in IS tests, the coefficient on convexity increases by

nearly 50%, while both the associated t-statistic and R2 estimate more than double

compared to Panel A. Panel B2 shows that all out-of-sample R2 estimates increase by a

factor of approximately four when omitting the first two months of the pandemic. Panel

C2 reveals that in nearly every forecast encompassing test, 100% of the weight should be

assigned to convexity with almost all estimated weights highly significant at the 99% level.

In summary, Table 1 provides strong evidence that convexity is negatively

associated with future aggregate returns and serves as a more effective predictor than a

range of commonly studied return predictors.
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IV. Firm-Level Results

In this section, we examine the relation between convexity and future returns at the

firm level. We obtain price, return, and price-adjustment factor data from CRSP and

firm-specific accounting data from the CRSP/Compustat Merged annual file. Our analysis

includes only domestic ordinary common shares (shrcd 10 or 11) traded on the NYSE,

AMEX, or NASDAQ (exchcd 1, 2, or 3). The primary sample period spans July 1963

through December 2022. We follow Shumway (1997) in accounting for missing delisting

returns and exclude observations with an unadjusted month-end price below five dollars.

To ensure there is a full month’s worth of trading, we eliminate observations in the

portfolio formation month in which a firm first enters or exits the database or if any daily

closing price is missing.

Table IA2 in the Internet Appendix presents summary statistics for convexity and

its correlations with control variables. Panel A shows that convexity is approximately

symmetrically distributed, with a mean and median near zero. Panel B indicates that

convexity exhibits low correlations with control variables, suggesting it provides unique

information beyond those variables.

A. Portfolio Returns

To assess the predictive power of convexity at the firm level, we sort stocks into

quintiles based on convexity at the end of each month, beginning in June 1963. We then

form value-weighted portfolios held for one month, ten days, or five days. The lowest
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(highest) convexity quintile is labeled CON1 (CON5).

Panel A of Table 2 reports returns and Sharpe ratios for portfolios sorted by

one-month convexity. Stocks in the lowest convexity quintile earn an average return of

1.24% per month, and stocks in the highest convexity quintile earn 0.41%. The

zero-investment portfolio that buys CON1 and shorts CON5 yields an average return of

0.84% per month (t-statistic of 6.29) and a Sharpe ratio of 0.23, which annualizes to 0.80.

[Insert Table 2 Here]

Panels B and C of Table 2 demonstrate that convexity retains predictive power over

shorter horizons. The zero-investment portfolio earns 0.64% per ten-day period (t-statistic

of 7.31) and 0.37% per five-day period (t-statistic of 4.94). These returns annualize to 16%

and 18.5%, respectively. In the Internet Appendix, Table IA3 shows that our results are

nearly identical when also adjusting convexity for cash dividends, and Table IA4 shows

that our results are even stronger when forming equal-weighted portfolios.

Overall, Table 2 shows that price-path convexity contains significant information

about future returns across multiple horizons.

B. Short-Term Reversal

In this test, we examine how the negative relation between convexity and future

returns varies between the best-performing (winner) and worst-performing (loser) stocks.

Table 3 presents future returns after sorting stocks into convexity and lagged return

quintiles.

Panel A of Table 3 reports future one-month returns for portfolios sorted by
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one-month convexity and lagged one-month returns. CON1 (SREV1) represents the future

returns of stocks in the lowest convexity (lagged return) quintile, while CON5 (SREV5)

represents those in the highest convexity (lagged return) quintile. Within each lagged

return quintile, future returns decline nearly monotonically as convexity increases. The

zero-investment portfolio, CON1–CON5, which buys CON1 and shorts CON5, exhibits a

highly significant decline in future returns. Stocks with the lowest convexity earn between

0.78% and 0.97% (t-statistics between 4.60 and 5.69) more per month than those with the

highest convexity.

The relation between lagged returns and future returns is less consistent. The first

row in Panel A shows that across lagged return quintiles, future returns are relatively

similar. In particular, SREV1–SREV5, which captures the future returns of the

zero-investment portfolio that buys losers (SREV1) and shorts winners (SREV5), indicates

that among stocks in CON1, lagged returns do not predict future returns. Some relation

emerges in CON2, CON3, and CON4, but none is evident in CON5. Thus, when sorting on

convexity, lagged one-month returns are not always negatively associated with future

one-month returns.

[Insert Table 3 Here]

Panels B and C of Table 3 confirm that the negative relation between convexity and

future returns holds among both winners and losers when considering shorter horizons.

These panels show that when stocks are double-sorted on ten-day convexity and lagged

ten-day returns (Panel B) or five-day convexity and lagged five-day returns (Panel C),

future returns vary significantly across convexity quintiles.
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In summary, Table 3 shows that the second-order derivative, or the curvature of the

recent price path, contains important information about future returns that is distinct from

that in the first-order derivative, or the return, of the recent price path.

C. Factor-Model Adjusted Returns

To ensure that our results are not driven by factors known to predict returns, Table

4 presents factor model-adjusted returns of value-weighted portfolios. CAPM, FF3, and

FF5 are average monthly alphas from regressing excess portfolio returns on excess market

return, the Fama and French (1993) three-factor model (excess market return plus size

(SMB) and value (HML)), and the Fama and French (2015) five-factor model (three-factor

model plus profitability (RMW) and asset growth (CMA)). Other alphas are from

regressions that augment the five-factor model with factors for momentum (UMD)

(Carhart (1997)), short-term reversal (SREV) (Lehmann (1990), Jegadeesh (1990)),

long-term reversal (LREV) (De Bondt and Thaler (1985)), or liquidity (LIQ) (traded

liquidity factor of Pástor and Stambaugh (2003), which begins January 1968). This table

shows that regardless of the factor model used, the zero-investment portfolio earns at least

0.81% per month, which is just a few basis points below the average raw return of the

zero-investment portfolio. Table IA5 in the Internet Appendix shows that our alphas

remain similarly unchanged when regressing returns from equal-weighted portfolios on the

same factor models. In summary, these factor models explain essentially none of the

returns earned by the zero-investment portfolio.

[Insert Table 4 Here]
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D. Portfolio Characteristics

Next, we compare the characteristics of the zero-investment convexity portfolio with

those of several commonly studied factors. Panel A of Table 5 shows that the average

return of the convexity portfolio exceeds that of the best-performing factor (UMD) by 20

basis points and is more than twice the return of six other factors (SMB, HML, RMW,

CMA, LREV, and LIQ). Although the standard deviation of the convexity portfolio is

higher than that of most factors, its Sharpe ratio is more than 50% higher than the

second-highest Sharpe ratio and more than double that of four factors.

[Insert Table 5 Here]

Understanding how the zero-investment convexity portfolio performs in downturns

is particularly important. Panel B of Table 5 reports its characteristics during recessions.

The first row shows that its average return is 1.60% per month in recessions, nearly double

its full-sample average and substantially higher than that of commonly studied factors

during recessions. Again, while its standard deviation exceeds that of most factors, its

Sharpe ratio remains the highest and at least double that of seven factors.

Overall, Table 5 demonstrates that the zero-investment convexity portfolio delivers

higher returns and a superior Sharpe ratio than those of several commonly studied factors.

E. Robustness

In this subsection, we briefly describe the results of a battery of robustness tests.
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1. Subsamples

Table IA6 in the Internet Appendix reports the future one-month returns of the

zero-investment convexity portfolio across various subsamples. Panel A shows that the

portfolio’s returns remain highly significant in both the first and second halves of the

sample period. Panel B confirms that the results hold in an earlier U.S. sample (July 1926

through June 1963), mitigating concerns about data snooping (Schwert (2003)). Panel C

indicates that while returns are highest among smaller firms, the portfolio still earns 0.76%

per month (t-statistic of 5.29) among large firms, which is only slightly below its full-sample

average. Panel D shows that although the effect is stronger in January – consistent with

short-term reversal patterns (Jegadeesh (1990)) – the portfolio continues to generate 0.75%

per month (t-statistic of 5.40) from February through December. Collectively, these results

confirm that our findings are robust across different sample periods and firm sizes.

2. Bid-Ask Bounce

Since the relation between convexity and future returns is short term in nature, one

concern is that the observed negative relation could be driven by a bid-ask bounce.

However, our analysis suggests this is not the case.

Table IA7 presents results from two tests designed to address this concern. In Panel

A, we examine portfolio returns after skipping the first day following portfolio formation.

Even after excluding first-day returns, the zero-investment portfolio continues to earn

0.66% per month (t-statistic of 4.93). In Panel B, we compute returns using the bid-ask

midpoint instead of closing prices and find only a slight reduction in the magnitude of the
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relation.

3. Acceleration

In Section II, we distinguish convexity from the acceleration variable in Greenwood

et al. (2019). However, since they argue that acceleration “measures the convexity of the

price path,” it is important to clarify the relation between these two measures.8

As an initial step, we examine the correlation between convexity and acceleration.

We compute one-month acceleration as the cumulative one-month return minus the

cumulative ten-day return at the beginning of the month. At the firm level, these two

measures exhibit a correlation of 54.3%. Given this high correlation, we analyze future

returns after sorting stocks into convexity quintiles and acceleration quintiles.

Table IA8 in the Internet Appendix shows that the future returns of these 25

portfolios closely resemble those obtained from double sorting stocks into convexity and

lagged return quintiles (Table 3). While convexity strongly predicts future returns across

all acceleration quintiles, acceleration exhibits predictive power within only a few convexity

quintiles. Overall, although convexity and acceleration are conceptually related and exhibit

strong correlation, they capture distinct information about future returns.

F. Fama-MacBeth Regressions

To determine whether price-path convexity predicts future returns beyond firm-level

characteristics, we estimate cross-sectional regressions for each month in our sample (Fama

and MacBeth (1973)). The dependent variable is the future one-month return, and

8We thank an anonymous referee for urging us to explore this relation.
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independent variables are standardized to have a mean of zero and a standard deviation of

one. To reduce the influence of small firms, we use weighted least squares with market

capitalization as the weight (Hou, Xue, and Zhang (2020)).

Panel A of Table 6 shows that when future one-month returns are regressed on

convexity alone, the coefficient is -0.42 (t-statistic of -6.91) This estimate indicates that a

one standard deviation increase in convexity is associated with a 0.42% decline in future

returns. The second column shows that adding controls for firm-level characteristics that

are commonly used in factor models (i.e., market capitalization, book-to-market ratio,

profitability, asset growth, and momentum) increases the coefficient’s magnitude to -0.44

(t-statistic of -9.12). The third column adds lagged one-month returns, yet the coefficient

on convexity remains virtually unchanged. This result reinforces the above finding that

convexity’s predictive power is distinct from short-term reversal.

[Insert Table 6 Here]

In the next four columns, we include controls for price movements from the previous

month (illiquidity, idiosyncratic volatility, skewness, and maximum daily return). Including

these controls does not affect the significance of the convexity coefficient. The last column

shows that when including all controls, the coefficient on convexity is at its most significant.

Panel B of Table 6 demonstrates that the predictive power of convexity is distinct

from that of one-day, five-day, and ten-day returns at the end of the month. Although

controlling for one-day returns slightly weakens the negative relation between convexity

and future returns, the coefficient on convexity remains highly significant. Specifically, a

one standard deviation increase in convexity is associated with a 0.35% decline in future
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one-month returns. Similar patterns appear when controlling for other short-term returns.

The modest reduction in magnitude is expected given that convexity partially reflects

month-end price changes.

Overall, Table 6 shows that convexity maintains a strong negative relation with

future returns even after accounting for firm-level characteristics known to predict returns.

While convexity is influenced by price movements in the latter half of the month,

controlling for very short-term returns does not eliminate its predictive power.

V. Potential Explanations

Thus far, we have shown that convexity is negatively associated with future returns

at both the aggregate and firm levels. In this section, we explore three potential

explanations for this negative relation.

A. Risk

We first consider time-varying risk, which can lead to returns that are both efficient

and predictable.9 This explanation is often applied to return predictability at the aggregate

level (e.g., Fama and French (1988), Campbell and Cochrane (1999)). However, we argue

that it is unlikely to account for our findings for several reasons.

First, our results obtain even over very short-horizons (Table 2), during which

systematic changes in firm valuations are less likely (Lehmann (1990)). Second, our results
9Models consistent with this explanation include, for example, rational learning (Timmermann (1993), Pastor
and Veronesi (2009)), changing risk aversion (Campbell and Cochrane (1999)), long-run risk (Bansal and
Yaron (2004), Bansal, Kiku, and Yaron (2012)), risk-sharing opportunities (Lustig and Van Nieuwerburgh
(2005)), and rare-disaster risk (Gabaix (2008), Gabaix (2012), Wachter (2013)). See Campbell (2018) for a
review of rational models of asset prices.
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are largely unaffected when regressed on factors typically argued to be associated with risk

(Table 4). Third, the stronger relative outperformance of the zero-investment portfolio

during bad states of the world (Table 5) contradicts a risk-based explanation (Lakonishok

et al. (1994)). Lastly, Table IA9 in the Internet Appendix shows that our results do not

hold over long horizons, where risk – rather than mispricing – is more likely to explain

return predictability (Baba-Yara et al. (2024)). Overall, we find it unlikely that risk

considerations drive our results.

B. Illiquidity and Mispricing

The next two potential explanations we consider are illiquidity and mispricing. We

consider each explanation at the aggregate level before doing so at the firm level.

1. Aggregate Level

To test these explanations at the aggregate level, we regress future S&P 500 log

excess return on convexity after interacting convexity with dummies that indicate whether

proxies for illiquidity or mispricing are below or above their time-series median. Following

Da, Liu, and Schaumburg (2014), we use a detrended Amihud (2002) measure and realized

volatility (RV) as illiquidity proxies. For investor optimism, which can contribute to

mispricing, we use the number of initial public offerings (NIPO) and the monthly equity

share in new issues (S).

[Insert Table 7 Here]

The first two columns of Table 7 focus on illiquidity proxies. The results suggest
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that the negative relation between convexity and future log excess returns is stronger in

months with below-median, not above-median, illiquidity. In contrast, the last two columns

show that this negative relation holds only during months of above-median investor

optimism. Taken together, Table 7 suggests that the negative relation between convexity

and future returns at the aggregate level is driven by mispricing rather than illiquidity.

2. Firm Level

To test these explanations at the firm level, we independently double sort

observations into convexity quintiles and focal proxy quintiles and analyze the future

one-month returns of the zero-investment convexity portfolio.

Panels A and B of Table 8 present results based on illiquidity proxies. In Panel A,

we measure illiquidity using the Amihud (2002) measure, and in Panel B, we use the

bid-ask spread. The bottom two rows of each panel show that although the relation

between convexity and future returns is strongest among the most illiquid stocks, it remains

highly significant even among the most liquid stocks. This finding contrasts somewhat with

our above results, which indicate that the negative convexity–future return relation is

unaffected when controlling for the traded liquidity factor of Pástor and Stambaugh (2003)

in a portfolio setting (Table 4) or for the Amihud (2002) illiquidity measure in a regression

setting (Table 6). Considering these results together, we conclude that while illiquidity is

not the primary driver of our findings, it may play a secondary or even tertiary role.

[Insert Table 8 Here]

Panels C and D of Table 8 present results based on mispricing proxies. In Panel C,
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we focus on investor attention. Stocks that receive less attention are more likely to be

mispriced, for their prices may not fully reflect available information (Hirshleifer et al.

(2013)). Using the total number of IBES analyst estimates over the previous twelve months

as a proxy for investor attention, we find that returns of the zero-investment convexity

portfolio are indeed higher for stocks that garner less attention.

In Panel D, we examine whether the negative convexity-future return relation varies

with firm age, as measured by the number of months since entering the CRSP database.

Due to limited publicly available information, younger firms typically have higher valuation

uncertainty (Kumar (2009), Hirshleifer et al. (2013)). We find that returns of the

zero-investment convexity portfolio decrease with firm age, and thus, increase with

valuation uncertainty.

Overall, the results in Table 8 support the view that mispricing contributes to the

negative relation between convexity and future returns.

VI. Behavioral Biases

The preceding results suggest that mispricing contributes to the negative relation

between convexity and future returns. This finding naturally raises the question: what

behavioral biases might drive this mispricing? To explore this question, we first examine a

decomposition of convexity.
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A. Decomposition

Ignoring subscripts, convexity can be loosely defined as the difference between two

average daily price changes:

Convexity =
P1+PN

2
− P1+P2+···+PN

N
P1+PN

2

(6)

=
PN − P1+P2+···+PN

N
− PN−P1

2
P1+PN

2

=
N∆PN+(N−1)∆PN−1+···+∆P1

N
− PN−P1

2
P1+PN

2

=
N

P1 + PN

N∆PN + (N − 1)∆PN−1 + · · ·+∆P1

N + (N − 1) + · · ·+ 1︸ ︷︷ ︸
weighted avg ∆P

− PN − P1

N︸ ︷︷ ︸
avg ∆P


The first average is a weighted average of daily price changes, in which the weights decrease

linearly from more recent to older days. This type of weighted average is commonly used to

model the beliefs of an extrapolative investor (Barberis (2018)). The second average is a

simple mean of daily price changes, which approximates the cumulative return over the

same period. Since convexity is a function of a weighted average often used to represent

extrapolative beliefs, we next examine its relation to survey-based expectations, which

prior research has identified as extrapolative (e.g., Greenwood and Shleifer (2014), Da et al.

(2021)).
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B. Aggregate Level

Before discussing the relation between convexity and expectations, we first need to

characterize the extent to which expectations about short-horizon returns are (i)

extrapolative and (ii) associated with future returns. We begin at the aggregate level.

Specifically, we focus on survey expectations of one-month returns for the Dow Jones

Industrial Average (DJIA), which we obtain from the Yale International Center for

Finance.10 The survey question posed to respondents is as follows: “How much of a change

in percentage terms do you expect in the following one month?”

Data on individual investor expectations begin in January 1999, and data for

institutional investor expectations begin in August 1993. Both datasets extend to February

2022. For both groups, there are some days with multiple observations. We consider any

observation with an absolute expected return of 50% or more to be erroneous and exclude

these observations (0.14% of the total). Our return data, which we calculate for the DJIA,

are derived from historical price data obtained from the Wall Street Journal website.11

Table IA10 in the Internet Appendix presents summary statistics of our

expectations data. Panel A displays statistics for all expectations. For both investor types,

the mean expected one-month return is just above 0%, with the median slightly higher

than the mean. Panel B shows statistics for expectations after averaging those on days

with multiple observations. The statistics for average expectations are similar to those for

raw expectations. We use the averaged expectations for all subsequent tests. In unreported

tests, we find that our results remain qualitatively similar when using all expectations.

10We thank Robert Shiller for kindly providing us the data.
11See https://www.wsj.com/market-data/quotes/index/DJIA/historical-prices for more details.
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1. Expectations and Past Returns

Building on previous research on survey expectations and extrapolation (Greenwood

and Shleifer (2014), Cassella and Gulen (2018), Da et al. (2021)), we use an exponential

decay function to estimate the extent to which investors extrapolate past returns when

forming expectations about future returns. Specifically, we estimate a non-linear least

squares regression of daily average expectations on past weekly returns using the following

model:

Expt = a+ b
N∑
j=1

wjR
W
t−j,t−j+1 + εExp

it(7)

wj =
λj∑N
k=1 λ

k
,

in which Expt is the average one-month return expectation on day t, N is the number of

weekly lags, and RW
t−j,t−j+1 is the j-lagged weekly return. The weight parameter wj is

defined by λ, which estimates the extent to which past returns are weighted. A higher b

suggests that investor expectations respond strongly to past returns, and a higher λ implies

that relatively less weight is placed on recent returns. We estimate this model using weekly

returns of the DJIA over periods of four, eight, twelve, and sixteen weeks.

The results in Table 9 show that both individual and institutional investors

extrapolate past returns when forming expectations about future short-horizon returns.

Specifically, the positive and significant estimates of b in each column indicate that

investors significantly respond to past returns when forming expectations. Instead of

presenting λ, which is inversely related to the weight placed on recent returns, we report
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DOX. DOX is defined as 1− λ, and it is positively related to the weight placed on recent

returns (Cassella and Gulen (2018)). Our findings show that DOX is positive and

significant for both investor types and for all lag periods. These results suggest that

investors place relatively more weight on recent returns when forming expectations about

future returns.

[Insert Table 9 Here]

Another notable result is the difference in the estimates of b and DOX between

investor types. Since b captures a level effect and DOX captures a slope effect, Da et al.

(2021) argue that the appropriate measure for the degree of extrapolation is b × DOX.

Using this measure, we find that regardless of the number of lags, individual investors

extrapolate more than institutional investors.

Overall, the results from the non-linear regression model in Table 9 indicate that

both individual and institutional investors extrapolate past returns when forming

expectations about future one-month returns.

2. Expectations and Future Returns

Next, we analyze how these expectations relate to future realized returns. To do so,

we regress future one-month DJIA returns, estimated over a 21-day period, on average

expectations from the prior day.

The first three columns in Panel A of Table 10 show that raw average expectations

are negatively associated with future returns, albeit insignificantly so. In the last six

columns of Panel A, we use the non-linear regression model discussed above to decompose
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raw expectations into fitted values and a residual component. For this panel, we

decompose raw expectations using the past four weekly returns. As in Cassella et al.

(2023), we interpret the fitted values (i.e., predicted expectations) as the extrapolative

component of raw expectations. By decomposing raw expectations, we can identify which

component drives the slightly negative relation between expectations and future returns.12

The middle three columns in Panel A of Table 10 present results from regressions of

future returns on the extrapolative component of expectations. All three coefficients are

statistically significant, and each is at least twice as large in magnitude as their

counterparts in the first three columns. The R2 estimates in the middle three columns are

also at least six times higher than those in the first three columns. In contrast, the last

three columns in Panel A show that the residual component of expectations is not

associated with future returns. All coefficients and R2 estimates are close to zero.

[Insert Table 10 Here]

In Panels B, C, and D of Table 10, we estimate the same specifications but vary the

number of past weekly returns used to estimate the two components of raw expectations.

The middle three columns in these panels show that the coefficients and R2 estimates

associated with the extrapolative component are qualitatively similar to those in Panel A.

The last three columns show that, regardless of the number of past weekly returns used to

decompose raw expectations, the coefficients and R2 estimates associated with the residual

component remain close to zero.
12To ensure that no future information is used in the decomposition, we use an expanding window of

observations through the date of the expectation to obtain the parameters used to estimate the extrapolative
and residual components. To alleviate concerns related to small sample sizes, the first estimation window
includes the first 500 observations for individual and institutional investor expectations and the first 700
observations for all investor expectations (i.e., about 20% of the overall sample for each).
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Overall, the results in Table 10 show that the extrapolative component of

expectations is negatively associated with future one-month returns. This negative relation

suggests that the extrapolative component is overextrapolative in nature. Since convexity

is also negatively associated with future returns, the results imply that overextrapolation of

past returns may also be partially responsible for the negative relation between convexity

and future returns.

3. Expectations and Convexity

To assess whether the relation between convexity and future returns aligns with

overextrapolation, we regress expectations on convexity. In Panel A of Table 11, we

estimate convexity using daily data in the four weeks (i.e., 21 days) leading up to the

record date of expectations in the survey. In the first three columns, we find a positive

relation between convexity and raw expectations. The coefficient in the third column

suggests that a one standard deviation change in convexity is associated with a 0.26

percentage point change in expectations.

In the last six columns of Panel A, we present regression results for the

extrapolative and residual components of expectations, which we estimate using four lags

of weekly returns. The middle three columns in Panel A show that convexity has

substantially greater explanatory power for the extrapolative component than for raw

expectations. For instance, the fourth column indicates that convexity explains over 9% of

the variation in the extrapolative component of individual investor expectations, which is

nearly nine times more than in raw expectations. In contrast, the last three columns show

that convexity has little explanatory power for the residual component of expectations.
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[Insert Table 11 Here]

In the bottom three panels of Table 11, we present similar results with two changes:

(1) we adjust the number of past weekly returns used to estimate the two components of

raw expectations, and (2) we extend the estimation of convexity to the past eight, twelve,

and sixteen weeks to match the lag structure used for decomposing raw returns. These

panels show that the relation between the extrapolative component and convexity

strengthens with the number of lags. For example, Panels B and C show R2 estimates

climb to 32.44% and 42.85% when using eight and twelve weekly lags, respectively. The

last three columns in these panels confirm that despite using more weekly lags, there is still

no relation between the residual component and convexity.

In summary, Table 11 shows that convexity is strongly positively correlated with the

extrapolative component of expectations. Since overextrapolation often coincides with

future return reversals (e.g., Barberis et al. (2015)), this finding supports the idea that

overextrapolation may partly explain the negative relation between convexity and future

returns.

C. Firm Level

We now examine the relation between expectations and convexity at the firm level.

Since we are unaware of any survey data on one-month ahead returns at the individual

stock level, we use rankings from Forcerank, which is an online crowdsourcing platform.

Forcerank organizes weekly contests in which participants rank ten stocks based on their

expected returns over the following week.

34



These data include nearly 250,000 rankings across 1,433 unique contests (or over

14,000 average rankings per contest) and span from March 2016 to February 2018.

1. Rankings and Past Returns

We again use an exponential decay function to estimate the extent to which

investors extrapolate past returns. However, we substitute return expectations with contest

average Forcerank rankings:

Rankitc = a+ b
N∑
j=1

wjAR
W
t−j,t−j+1 + εExp

itc(8)

wj =
λj∑N
k=1 λ

k
,

in which Rankitc represents the contest average Forcerank ranking of stock i with start

date t in contest c. Since these rankings are contest specific, we follow Da et al. (2021) and

use contest-adjusted past returns (ARW
t−j,t−j+1). We estimate our model using past weekly

returns spanning four, eight, and twelve weeks.

[Insert Table 12 Here]

The results from this non-linear regression, presented in Table 12, show that

Forcerank participants extrapolate past returns when forming expectations about future

one-week rankings. Specifically, the estimates for both DOX and b are positive and

significant across all three lag levels. Importantly, our coefficient estimates align

qualitatively with those of Da et al. (2021).13

13The high t-statistic for the coefficient on a reflects that a represents the average ranking for each stock,
which is always between one and ten, ensuring it is significantly far from zero.
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2. Rankings and Future Returns

Next, we analyze the relation between these rankings and future one-week returns

by regressing future returns on contest average rankings.

The first column in Panel A of Table 13 shows that raw contest average rankings are

not significantly related to future one-week returns. In the last two columns of Panel A, we

decompose raw rankings into the extrapolative and residual components using the

non-linear model described above. We begin with the past four weekly returns for the

decomposition and use an expanding window of observations up to the contest start date to

estimate the parameters for each component. The first estimation window includes the first

ten start dates (i.e., 920 observations). The second column shows that the extrapolative

component is significantly negatively associated with future returns, and the third column

shows that the residual component has no relation to future returns. These results are

consistent with those observed at the aggregate level.

[Insert Table 13 Here]

In Panels B and C of Table 13, we use eight and twelve lags to decompose rankings

into their extrapolative and residual components. The results for the extrapolative

component in these panels are not as significant as those in Panel A, but they are

qualitatively similar.

In summary, the results in Table 13 show that the extrapolative component of

Forcerank rankings is negatively associated with future one-week returns. The negative

sign of this relation suggests that the extrapolative component is overextrapolative in
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nature. These findings suggest that the negative relation between convexity and future

returns at the firm level may also be driven, in part, by overextrapolation of past returns.

3. Rankings and Convexity

We now use the non-linear regression model to examine the relation between

convexity and the extrapolative component of Forcerank rankings. Table 14 presents

results from regressions of Forcerank rankings on convexity. As before, we estimate

convexity using daily data over the same time period used to decompose the rankings.

In Panel A of Table 14, we estimate convexity using daily data from the month (i.e.,

21 days) leading up to the start of the Forcerank contest and decompose rankings using the

past four weeks. The first column shows that convexity is positively and significantly

associated with raw rankings. In the second column, we present results from a regression of

the extrapolative component of Forcerank rankings on convexity. The coefficient on

convexity in this column is the same as in the first column, but its statistical significance

and explanatory power are much larger. For example, the average R2 estimate in the

second column (27.96%) is almost ten times higher than in the first column (2.93%). The

last column shows no relation between the residual component of Forcerank rankings and

convexity.

[Insert Table 14 Here]

In Panels B and C of Table 14, we estimate the same specification but construct

convexity and decompose Forcerank rankings using the past eight or twelve weeks of data.

The relations between convexity and raw rankings, the extrapolative component, and the

37



residual component are roughly the same as in Panel A. If anything, the relation between

convexity and the extrapolative component is stronger in these panels.

Overall, the results in Table 14 show that convexity is highly correlated with the

extrapolative component of Forcerank rankings. Although these expectations are for

one-week ahead returns and are ordinal, we argue that these results still provide evidence

that convexity captures the extrapolative component of return expectations at the firm

level. This component is negatively associated with future returns, which suggests that it is

overextrapolative in nature.

VII. Conclusion

In this paper, we show that the curvature of stock price paths contains information

about future returns at both the aggregate and firm levels. Specifically, we find that

price-path convexity, which we construct using daily closing prices, is negatively related to

future returns. At the aggregate level, convexity outperforms many commonly used

predictors. At the firm level, this relation holds regardless of the cumulative return during

the period in which convexity is estimated and remains robust across a range of tests.

We argue that this relation is driven primarily by mispricing rather than risk

considerations or illiquidity. Our empirical evidence suggests that this mispricing largely

stems from investors overextrapolating past returns. We conclude that behavioral biases

play a significant role in short-horizon return predictability.
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Table 1. Aggregate Stock Returns

This table presents results associated with predicting one-month aggregate stock returns.
Panels A and A2 present in-sample results from ordinary least squares regressions of future
excess returns (ERET) on predictor variables. Independent variables are standardized to
mean zero and unit standard deviation. Panels B and B2 present out-of-sample R2 estimates
(Campbell and Thompson (2008)) for forecast periods beginning January 1975, January
1980, or January 1985. Statistical significance of the out-of-sample R2 estimate is determined
by the mean squared prediction error-adjusted test statistic of Clark and West (2007). Panels
C and C2 present the estimated weight placed on a predictive regression forecast based on
convexity and a predictive regression forecast based on one of the other 15 predictors (i.e.,
forecast encompassing tests). Statistical significance of λ, which is the weight placed on
convexity in the forecast encompassing tests, is determined by the forecast encompassing test
statistic of Harvey et al. (1998). CON (convexity) is estimated using one month of S&P 500
daily closing prices, ERET is the S&P 500 log excess return, DP is the log dividend-to-price
ratio, DY is the log dividend yield, EP is the log earnings-to-price ratio, DE is the log
dividend payout ratio, BM is the book-to-market value ratio for the Dow Jones Industrial
Average, VOL is the sum of squared daily returns on the S&P 500, NTIS is net equity
expansion, TBL is the interest rate on a three-month Treasury bill, LTY is the long-term
government bond yield, LTR is the return on long-term government bonds, TMS is the
long-term government bond yield minus the Treasury bill rate, DFY is the difference between
Moody’s BAA- and AAA-rated corporate bond yields, DFR is the long-term corporate bond
return minus the long-term government bond return, and INFL is inflation calculated from
the CPI for all urban consumers. For all panels, holding periods are from July 1963 through
December 2022, but in Panels A2, B2, and C2, holding periods exclude the onset of the
COVID-19 pandemic (i.e., March and April 2020). t-statistics below coefficients are adjusted
for heteroskedasticity and autocorrelation using six lags (Newey and West (1987)). *, **, and
*** indicate significance at the 90%, 95%, and 99% levels. All R2 estimates are percentages.
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Table 2. Portfolio Returns

This table presents future returns of convexity portfolios. Stocks are sorted into convexity
quintiles (CON1, CON2, etc.) at the end of each month. Panel A presents future one-month
returns after sorting by one-month convexity. Panel B presents future ten-day returns
after sorting by ten-day convexity. Panel C presents future five-day returns after sorting
by five-day convexity. All returns are from value-weighted portfolios. Holding periods
are from July 1963 through December 2022. t-statistics below returns are adjusted for
heteroskedasticity and autocorrelation using six lags (Newey and West (1987)).

Panel A: One-Month Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 1.24 1.06 0.97 0.83 0.41 0.84

(5.88) (6.44) (6.10) (4.84) (1.79) (6.29)
Sharpe ratio 0.16 0.16 0.15 0.11 0.01 0.23

Panel B: Ten-Day Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 0.81 0.62 0.57 0.48 0.17 0.64

(4.72) (4.63) (4.50) (3.59) (0.99) (7.31)
Sharpe ratio 0.16 0.14 0.13 0.10 0.00 0.26

Panel C: Five-Day Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 0.54 0.45 0.41 0.39 0.17 0.37

(4.65) (5.00) (4.89) (4.18) (1.55) (4.94)
Sharpe ratio 0.16 0.16 0.15 0.13 0.03 0.19
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Table 3. Short-Term Reversal

This table presents future returns of portfolios that are independently double sorted into
convexity quintiles (CON1, CON2, etc.) and lagged return quintiles (SREV1, SREV2,
etc.) at the end of each month. Panel A presents future one-month returns after sorting
by one-month convexity and lagged one-month returns. Panel B presents future ten-day
returns after sorting by ten-day convexity and lagged ten-day returns. Panel C presents
future five-day returns after sorting by five-day convexity and lagged five-day returns.
CON1-CON5 (SREV1-SREV5) presents future returns of the zero-investment portfolio that
buys CON1 (SREV1) and sells short CON5 (SREV5) within each column (row). All returns
are from value-weighted portfolios. Holding periods are from July 1963 through December
2022. t-statistics below returns are adjusted for heteroskedasticity and autocorrelation
using six lags (Newey and West (1987)).

Panel A: One-Month Convexity and One-Month Returns

SREV1 SREV2 SREV3 SREV4 SREV5 SREV1-SREV5
CON1 1.25 1.37 1.28 1.26 1.14 0.10

(4.55) (5.68) (6.00) (5.86) (4.53) (0.52)
CON2 1.34 1.17 1.15 1.12 0.67 0.67

(6.11) (6.17) (7.01) (6.19) (3.21) (4.10)
CON3 1.40 1.24 0.95 0.81 0.79 0.61

(6.15) (7.20) (5.76) (4.93) (4.08) (3.28)
CON4 1.00 1.01 0.91 0.76 0.43 0.57

(4.52) (5.44) (5.29) (3.97) (2.14) (3.36)
CON5 0.27 0.54 0.48 0.35 0.34 -0.06

(0.94) (2.16) (2.32) (1.51) (1.40) (-0.35)
CON1-CON5 0.97 0.83 0.78 0.92 0.81

(5.56) (5.01) (4.60) (5.69) (5.08)

Panel B: Ten-Day Convexity and Ten-Day Returns

SREV1 SREV2 SREV3 SREV4 SREV5 SREV1-SREV5
CON1 1.20 1.05 0.81 0.70 0.57 0.63

(5.77) (5.93) (4.76) (4.15) (3.16) (5.14)
CON2 1.10 0.83 0.66 0.44 0.18 0.93

(5.92) (5.96) (5.18) (2.97) (1.14) (7.36)
CON3 1.00 0.72 0.60 0.41 0.10 0.91

(5.77) (5.35) (4.76) (3.06) (0.60) (6.81)
CON4 0.81 0.70 0.45 0.40 -0.01 0.82

(4.66) (4.90) (3.36) (2.88) (-0.07) (6.48)
CON5 0.39 0.34 0.22 0.11 -0.19 0.58

(1.86) (1.90) (1.24) (0.62) (-1.03) (4.38)
CON1-CON5 0.81 0.71 0.59 0.59 0.76

(6.37) (5.83) (4.90) (5.65) (6.65)
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Panel C: Five-Day Convexity and Five-Day Returns

SREV1 SREV2 SREV3 SREV4 SREV5 SREV1-SREV5
CON1 1.00 0.65 0.65 0.43 0.23 0.76

(7.12) (5.08) (5.63) (3.65) (1.74) (7.49)
CON2 0.88 0.57 0.43 0.35 0.04 0.85

(7.39) (6.05) (4.66) (3.69) (0.37) (9.19)
CON3 0.80 0.52 0.39 0.29 0.06 0.74

(6.93) (5.66) (4.66) (3.12) (0.65) (8.36)
CON4 0.80 0.53 0.38 0.34 0.06 0.74

(6.55) (5.47) (3.99) (3.72) (0.48) (7.82)
CON5 0.56 0.40 0.18 0.12 -0.12 0.68

(4.19) (3.31) (1.55) (1.01) (-1.01) (6.92)
CON1-CON5 0.44 0.25 0.47 0.32 0.35

(5.02) (2.49) (5.37) (3.55) (3.78)
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Table 4. Factor-Model Adjusted Returns

This table presents future factor model-adjusted returns of convexity portfolios. Stocks
are sorted into convexity quintiles (CON1, CON2, etc.) at the end of each month, and
value-weighted portfolios are held for one month. Convexity is estimated using one month
of daily closing prices. CAPM, FF3, and FF5 are average monthly alphas from regressing
excess portfolio returns on excess market return, the Fama and French (1993) three-factor
model (excess market return plus size (SMB) and value (HML)), and the Fama and French
(2015) five-factor model (three-factor model plus profitability (RMW) and asset growth
(CMA)). Other alphas are from regressions that augment the five-factor model with factors
for momentum (UMD), short-term reversal (SREV), long-term reversal (LREV), or liquidity
(LIQ). Holding periods are from July 1963 through December 2022. t-statistics below
returns are adjusted for heteroskedasticity and autocorrelation using six lags (Newey and
West (1987)).

CON1 CON2 CON3 CON4 CON5 CON1-CON5
CAPM 0.25 0.17 0.11 -0.05 -0.59 0.83

(2.97) (3.54) (2.90) (-1.02) (-6.60) (5.99)
FF3 0.24 0.16 0.09 -0.05 -0.57 0.81

(3.08) (3.42) (2.46) (-1.10) (-6.17) (5.63)
FF5 0.34 0.15 0.05 -0.08 -0.54 0.88

(4.35) (3.18) (1.17) (-1.53) (-6.05) (6.16)
FF5+UMD 0.35 0.15 0.02 -0.09 -0.52 0.87

(4.21) (3.13) (0.40) (-1.60) (-5.51) (5.64)
FF5+SREV 0.38 0.15 0.04 -0.09 -0.58 0.96

(4.65) (3.26) (1.00) (-1.69) (-6.31) (6.41)
FF5+LREV 0.34 0.15 0.05 -0.08 -0.54 0.88

(4.35) (3.17) (1.17) (-1.53) (-6.11) (6.21)
FF5+LIQ 0.34 0.19 0.05 -0.09 -0.60 0.94

(4.14) (3.73) (1.09) (-1.69) (-6.45) (6.31)
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Table 5. Portfolio Characteristics

This table presents one-month return characteristics of the zero-investment convexity
portfolio and several commonly-studied factors. The zero-investment convexity portfolio is
value-weighted and is formed by sorting convexity into quintiles at the end of each month,
buying stocks in the lowest convexity quintile, and selling short stocks in the highest
convexity quintile. Convexity is estimated using one month of daily closing prices. Factors
include excess market return (Market), size (SMB), value (HML), profitability (RMW),
asset growth (CMA), momentum (UMD), short-term reversal (SREV), long-term reversal
(LREV), and liquidity (LIQ). Panel A presents results for all holding periods. Panel B
presents results from holding periods during recessions (as identified by the NBER). Holding
periods are from July 1963 through December 2022. t-statistics below returns are adjusted
for heteroskedasticity and autocorrelation using six lags in Panel A and four lags in Panel
B (Newey and West (1987)).

Panel A: Full Sample

Portfolio Mean (%) Std dev (%) Sharpe ratio Skewness Kurtosis
Convexity 0.84 3.57 0.23 -0.30 7.08

(6.29)
Market 0.55 4.50 0.12 -0.50 4.74

(3.19)
SMB 0.22 3.02 0.07 0.34 6.12

(1.82)
HML 0.31 2.97 0.10 0.12 5.33

(2.30)
RMW 0.28 2.22 0.13 -0.28 14.24

(3.06)
CMA 0.30 2.06 0.15 0.32 4.38

(3.38)
UMD 0.64 4.19 0.15 -1.28 12.88

(3.99)
SREV 0.46 3.13 0.15 0.44 8.81

(4.29)
LREV 0.25 2.65 0.09 0.64 5.50

(2.20)
LIQ 0.33 3.49 0.10 -0.15 4.22

(2.32)
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Panel B: Recession Periods

Portfolio Mean (%) Std dev (%) Sharpe ratio Skewness Kurtosis
Convexity 1.60 4.65 0.34 -0.03 3.19

(3.18)
Market -0.88 6.51 -0.13 0.07 2.67

(-1.22)
SMB 0.06 3.66 0.02 0.59 4.11

(0.17)
HML 0.56 3.71 0.15 -0.61 3.66

(1.51)
RMW 0.37 2.24 0.17 0.36 3.22

(1.40)
CMA 0.83 2.58 0.32 -0.12 2.63

(2.55)
UMD 0.54 6.59 0.08 -1.80 10.06

(0.76)
SREV 0.48 4.61 0.10 0.52 3.86

(1.07)
LREV 0.94 3.54 0.26 0.48 4.42

(2.60)
LIQ 0.30 5.08 0.06 -0.44 3.51

(0.51)
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Table 6. Fama-MacBeth Regressions

This table presents time-series averages of coefficient estimates from monthly cross-sectional
regressions of future one-month returns on convexity and controls. Regressions are estimated
using weighted least squares with market capitalization as the weight. Convexity is estimated
using one month of daily closing prices. Size is the natural log of market capitalization, which
is stock price multiplied by shares outstanding. Book-to-market is book equity divided
by market capitalization (Davis, Fama, and French (2000)). Profitability is income before
extraordinary items scaled by book equity (Hou, Xue, and Zhang (2015)). Asset growth is
the percentage change in total assets over the last two fiscal years (Cooper, Gulen, and Schill
(2008)). Momentum is the cumulative raw return beginning twelve months ago through the
month before last (Jegadeesh and Titman (1993, 2001)). 1M ret. is one-month return
(i.e., short-term reversal). Illiquidity is the absolute stock return in the month divided by
trading volume in the same month (Amihud (2002)). IV is idiosyncratic volatility, which is
the standard deviation of residuals from a regression of daily stock returns in excess of the
risk-free rate on the Fama and French (1993) three-factor model in the previous month (Ang,
Hodrick, Xing, and Zhang (2006)). Skewness is the total skewness of daily stock returns over
the previous twelve months. Max return is the maximum daily return in the month (Bali,
Cakici, and Whitelaw (2011)). 1D return, 5D return, and 10D return in Panel B are lagged
one-day, five-day, and ten-day returns. Specifications in Panel B include all control variables
from the last column in Panel A. Holding periods are from July 1963 through December
2022. All independent variables are as of the end of the previous month, winsorized at the
1% and 99% levels each month, and standardized to mean zero and unit standard deviation.
t-statistics below coefficients are adjusted for heteroskedasticity and autocorrelation using
six lags (Newey and West (1987)). All R2 estimates are percentages.
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Panel A: Firm-Specific Characteristics

1 2 3 4 5 6 7 8
Convexity -0.42 -0.44 -0.45 -0.44 -0.44 -0.44 -0.43 -0.45

(-6.91) (-9.12) (-9.89) (-9.05) (-9.85) (-9.32) (-9.78) (-11.15)
Size -0.10 -0.11 -0.12 -0.17 -0.10 -0.14 -0.19

(-1.55) (-1.65) (-1.68) (-2.82) (-1.55) (-2.24) (-3.07)
Book-to-market 0.21 0.17 0.21 0.19 0.21 0.19 0.15

(3.76) (3.03) (3.72) (3.34) (3.65) (3.38) (2.68)
Profitability 0.19 0.17 0.19 0.18 0.19 0.18 0.15

(4.74) (4.06) (4.73) (4.54) (4.57) (4.58) (3.86)
Asset growth -0.07 -0.08 -0.08 -0.06 -0.08 -0.07 -0.07

(-1.81) (-1.90) (-1.92) (-1.50) (-2.01) (-1.67) (-1.85)
Momentum 0.48 0.47 0.48 0.51 0.51 0.49 0.52

(4.44) (4.13) (4.41) (4.95) (4.54) (4.81) (4.77)
1M return -0.37 -0.44

(-6.70) (-6.90)
Illiquidity 0.00 0.16

(0.00) (0.54)
IV -0.23 -0.48

(-3.24) (-5.82)
Skewness -0.08 -0.07

(-2.24) (-2.09)
Max return -0.19 0.36

(-3.02) (4.35)

Average R2 1.62 10.86 12.16 11.13 11.86 11.44 11.82 14.50
Observations 2,436,978 1,875,358 1,875,358 1,782,120 1,875,357 1,875,355 1,875,357 1,782,118

Panel B: Partial-Month Return Controls

1 2 3
Convexity -0.35 -0.26 -0.42

(-8.36) (-4.98) (-6.96)
1D return -0.31

(-7.81)
5D return -0.30

(-4.38)
10D return -0.04

(-0.47)

Controls Yes Yes Yes
Average R2 15.02 15.21 15.17
Observations 1,782,118 1,782,118 1,782,118
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Table 7. Aggregate-Level Explanations

This table presents results from regressions of future one-month aggregate stock returns on
convexity after interacting convexity with dummies indicating whether the illiquidity proxy
(Amihud or RV) or investor optimism proxy (NIPO or S) is below or above its time-series
median. Future one-month return is the S&P 500 log excess return. Convexity is estimated
using one month of S&P 500 daily closing prices. Amihud is the difference between the
average Amihud (2002) illiquidity measure and its moving average in the previous 12
months. RV is the realized volatility on the S&P 500 index. NIPO is the number of initial
public offerings. S is the share of equity issues in total equity and debt issues. Low is
a dummy that equals one if the value of the proxy is below the time-series median and
zero otherwise. High is one minus Low. t-statistics below coefficients are adjusted for
heteroskedasticity and autocorrelation using six lags (Newey and West (1987)). All R2

estimates are percentages.

1 2 3 4
Convexity × low -1.05 -0.68 -0.26 -0.14

(-3.34) (-1.83) (-0.98) (-0.33)
Convexity × high -0.12 -0.34 -0.65 -0.63

(-0.38) (-1.20) (-1.61) (-2.53)

Proxy Amihud RV NIPO S
R2 1.78 0.94 1.77 1.16
Observations 714 714 714 714
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Table 8. Firm-Level Explanations

This table presents future one-month returns of portfolios that are independently double
sorted on convexity (CON1, CON2, etc.) and a proxy for illiquidity or mispricing. In Panel
A, we sort stocks into convexity quintiles and illiquidity quintiles (ILLIQ1, ILLIQ2, etc.).
We proxy for illiquidity using the measure of Amihud (2002). In Panel B, we sort stocks into
convexity quintiles and bid-ask spread quintiles (SPRD1, SPRD2, etc.). We estimate the
bid-ask spread as the difference between the ask and the bid scaled by price. In Panel C, we
sort stocks into convexity quintiles and attention quintiles (ATT1, ATT2, etc.). We proxy
for attention with the number of IBES analyst estimates over the previous twelve months.
In Panel D, we sort stocks into convexity quintiles and valuation uncertainty quintiles (VU1,
VU2, etc.). We proxy for valuation uncertainty with the number of months since entering
the CRSP database. CON1-CON5 presents future one-month returns of the zero-investment
portfolio that buys portfolio CON1 and sells short portfolio CON5 within each column. All
returns are from value-weighted portfolios. Holding periods are from July 1963 through
December 2022 in Panels A and D, January 1993 through December 2022 in Panel B, and
January 1984 through December 2022 in Panel C. t-statistics below coefficients are adjusted
for heteroskedasticity and autocorrelation using six lags (Newey and West (1987)).
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Table 12. Forcerank Rankings and Past Returns

This table presents results from non-linear least squares regressions of contest average
Forcerank rankings of one-week returns on past weekly returns. Our non-linear model is
of the following form:

Rankitc = a+ b
N∑
j=1

wjAR
W
t−j,t−j+1 + εExp

itc

wj =
λj∑N
k=1 λ

k
,

in which Rankitc represents the contest average Forcerank ranking of stock i with start date
t in contest c. N is the number of weekly lags, and RW

t−j,t−j+1 is the j-lagged weekly return.
The weight parameter wj is defined by λ, which estimates the extent to which past returns
are weighted. Weekly returns are estimated using returns over a five-day period. DOX is
the degree of extrapolative weighting (Cassella and Gulen (2018)). Forcerank rankings are
from March 2016 through February 2018. t-statistics below coefficients are adjusted for
clustering standard errors by contest start date. *, **, and *** indicate significance at the
90%, 95%, and 99% levels. All R2 estimates are percentages.

1 2 3
DOX (1-λ) 0.55*** 0.46*** 0.45***

(11.20) (11.23) (11.40)
a 5.51*** 5.51*** 5.51***

(6666) (6665) (6665)
b 9.79*** 11.63*** 11.93***

(12.28) (12.21) (11.88)

Lags 4 8 12
R2 4.34 4.46 4.47
Observations 14,202 14,202 14,202
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Table 13. Forcerank Rankings and Future Returns

This table presents time-series averages of coefficient estimates from weekly cross-sectional
regressions of realized future one-week returns on contest average Forcerank rankings of the
same. The first column of each panel presents results using raw expectations. The middle
column of each panel presents results using the predicted component of expectations of
future one-week returns from the non-linear regression model described in Table 12. The
last column in each panel presents results using the residual between the raw expectation
and the predicted component of expectations. In Panels A, B, and C, we use four, eight,
and twelve lags of weekly returns to estimate the extrapolative and residual components.
Forcerank rankings are from March 2016 through February 2018. t-statistics below
coefficients are adjusted for heteroskedasticity and autocorrelation using four lags (Newey
and West (1987)). *, **, and *** indicate significance at the 90%, 95%, and 99% levels. All
R2 estimates are percentages.

Panel A: Past Four Weekly Returns

Raw Extrapolative Residual
1 2 3

Forecast -0.03 -0.66** -0.02
(-0.77) (-2.21) (-0.52)

Average R2 1.12 1.58 1.03
Observations 13,462 13,462 13,462

Panel B: Past Eight Weekly Returns

Raw Extrapolative Residual
1 2 3

Forecast -0.03 -0.48 -0.03
(-0.77) (-1.59) (-0.69)

Average R2 1.12 1.67 2.22
Observations 13,462 13,462 13,462

Panel C: Past Twelve Weekly Returns

Raw Extrapolative Residual
1 2 3

Forecast -0.03 -0.48 -0.03
(-0.77) (-1.58) (-0.69)

Average R2 1.12 1.67 1.00
Observations 13,462 13,462 13,462
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Table 14. Forcerank Rankings and Convexity

This table presents time-series averages of coefficient estimates from weekly cross-sectional
regressions of contest average Forcerank rankings of future one-week returns on convexity.
The first column of each panel presents results using raw expectations. The middle column
of each panel presents results using the predicted component of expectations of future
one-week returns from the non-linear regression model described in Table 12. The last
column presents results using the residual between the raw expectation and the predicted
component of expectations. In Panels A, B, and C, we estimate convexity and decompose
expectations using four, eight, and twelve lags of weekly data and returns, respectively.
Forcerank rankings are from March 2016 through February 2018. t-statistics below
coefficients are adjusted for heteroskedasticity and autocorrelation using four lags (Newey
and West (1987)). *, **, and *** indicate significance at the 90%, 95%, and 99% levels. All
R2 estimates are percentages.

Panel A: Past Four Weekly Returns

Raw Extrapolative Residual
1 2 3

Convexity 0.12*** 0.12*** 0.00
(3.76) (13.67) (0.03)

Average R2 2.93 27.96 1.74
Observations 13,462 13,462 13,462

Panel B: Past Eight Weekly Returns

Raw Extrapolative Residual
1 2 3

Convexity 0.11*** 0.13*** -0.02
(4.58) (13.30) (-0.84)

Average R2 2.36 34.21 1.32
Observations 13,462 13,462 13,462

Panel C: Past Twelve Weekly Returns

Raw Extrapolative Residual
1 2 3

Convexity 0.11*** 0.13*** -0.02
(5.34) (13.58) (-0.73)

Average R2 2.20 31.34 1.02
Observations 13,462 13,462 13,462

64



Internet Appendix

Table IA1. Summary Statistics: Aggregate-Level

This table presents summary statistics of convexity and its correlations with the other 15
predictor variables at the aggregate level. Convexity (multiplied by 100) is estimated using
one month of S&P 500 daily closing prices, ERET is the S&P 500 log excess return, DP is
the log dividend-to-price ratio, DY is the log dividend yield, EP is the log earnings-to-price
ratio, DE is the log dividend payout ratio, BM is the book-to-market value ratio for the
Dow Jones Industrial Average, VOL is the sum of squared daily returns on the S&P 500,
NTIS is net equity expansion, TBL is the interest rate on a three-month Treasury bill,
LTY is the long-term government bond yield, LTR is the return on long-term government
bonds, TMS is the long-term government bond yield minus the Treasury bill rate, DFY is
the difference between Moody’s BAA- and AAA-rated corporate bond yields, DFR is the
long-term corporate bond return minus the long-term government bond return, and INFL
is inflation calculated from the CPI for all urban consumers. Sample is from July 1963
through December 2022.

Panel A: Convexity

P1 P10 P25 P50 P75 P90 P99 Mean
-3.01 -1.43 -0.74 -0.12 0.65 1.39 3.71 -0.03

Panel B: Correlations with Convexity

ERET DP DY EP DE
-0.15 0.00 -0.01 0.00 0.00

BM VOL NTIS TBL LTY
-0.03 0.35 -0.07 0.01 0.02

LTR TMS DFY DFR INFL
0.12 0.03 -0.07 -0.18 -0.07
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Table IA2. Summary Statistics: Firm-Level

This table presents summary statistics of convexity and its correlations with our control
variables. Convexity (multiplied by 100) is estimated using one month of daily closing
prices. Size is the natural log of market capitalization, which is stock price multiplied by
shares outstanding. Book-to-market is book equity divided by market capitalization (Davis
et al. (2000)). Profitability is income before extraordinary items scaled by book equity
(Hou et al. (2015)). Asset growth is the percentage change in total assets over the last
two fiscal years (Cooper et al. (2008)). Momentum is the cumulative raw return beginning
twelve months ago through the month before last (Jegadeesh and Titman (1993, 2001)).
1M ret. is one-month return (i.e., short-term reversal). Illiquidity is the absolute stock
return in the month divided by trading volume in the same month (Amihud (2002)). IV
is idiosyncratic volatility, which is the standard deviation of residuals from a regression of
daily stock returns in excess of the risk-free rate on the Fama and French (1993) three-factor
model in the previous month (Ang et al. (2006)). Skewness is the total skewness of daily
stock returns over the previous twelve months. Max return is the maximum daily return
in the month (Bali et al. (2011)). Sample is from July 1963 through December 2022. All
independent variables are winsorized at the 1% and 99% levels each month.

Panel A: Convexity

P1 P10 P25 P50 P75 P90 P99 Mean
-8.88 -3.43 -1.54 0.04 1.60 3.44 8.55 0.01

Panel B: Correlations with Convexity

Size Book-to-market Profitability Asset growth Momentum
0.00 -0.01 0.00 0.01 0.01

1M ret. Illiquidity IV Skewness Max return
-0.02 0.02 0.01 0.00 0.01
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Table IA3. Cash Dividends-Adjusted Convexity

This table presents future returns of convexity portfolios after also adjusting for cash
dividends. Stocks are sorted into convexity quintiles (CON1, CON2, etc.) at the end
of each month. Panel A presents future one-month returns after sorting by one-month
convexity. Panel B presents future ten-day returns after sorting by ten-day convexity. Panel
C presents future five-day returns after sorting by five-day convexity. All returns are from
value-weighted portfolios. Holding periods are from July 1963 through December 2022.
t-statistics below returns are adjusted for heteroskedasticity and autocorrelation using six
lags (Newey and West (1987)).

Panel A: One-Month Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 1.24 1.08 0.96 0.83 0.40 0.84

(5.84) (6.61) (6.04) (4.79) (1.77) (6.33)
Sharpe ratio 0.16 0.16 0.14 0.10 0.01 0.23

Panel B: Ten-Day Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 0.81 0.63 0.57 0.48 0.16 0.65

(4.75) (4.66) (4.49) (3.59) (0.93) (7.47)
Sharpe ratio 0.16 0.14 0.13 0.10 0.00 0.26

Panel C: Five-Day Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 0.54 0.46 0.41 0.39 0.17 0.37

(4.68) (5.05) (4.75) (4.19) (1.56) (4.93)
Sharpe ratio 0.16 0.16 0.15 0.13 0.03 0.19

3



Table IA4. Portfolio Returns: Equal-Weighted Portfolios

This table presents future returns of convexity portfolios. Stocks are sorted into convexity
quintiles (CON1, CON2, etc.) at the end of each month, at which point equal-weighted
portfolios are formed. Panel A presents future one-month returns after sorting by one-month
convexity. Panel B presents future ten-day returns after sorting by ten-day convexity. Panel
C presents future five-day returns after sorting by five-day convexity. Holding periods
are from July 1963 through December 2022. t-statistics below returns are adjusted for
heteroskedasticity and autocorrelation using six lags (Newey and West (1987)).

Panel A: One-Month Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 1.44 1.26 1.20 1.03 0.36 1.07

(5.84) (6.08) (6.10) (4.91) (1.38) (9.21)
Sharpe ratio 0.17 0.18 0.18 0.13 0.00 0.38

Panel B: Ten-Day Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 0.98 0.69 0.64 0.55 0.08 0.90

(5.27) (4.54) (4.25) (3.43) (0.40) (10.35)
Sharpe ratio 0.18 0.15 0.14 0.11 -0.02 0.43

Panel C: Five-Day Returns

CON1 CON2 CON3 CON4 CON5 CON1-CON5
Raw returns 0.71 0.47 0.38 0.39 0.14 0.58

(6.11) (5.01) (4.37) (4.11) (1.15) (7.96)
Sharpe ratio 0.21 0.16 0.14 0.13 0.02 0.37

4



Table IA5. Factor-Model Adjusted Returns: Equal-Weighted portfolios

This table presents future factor model-adjusted returns of convexity portfolios. Stocks are
sorted into convexity quintiles (CON1, CON2, etc.) at the end of each month. Convexity
is estimated using one month of daily closing prices. CAPM, FF3, and FF5 are average
monthly alphas from regressing excess portfolio returns on excess market return, the
Fama and French (1993) three-factor model (excess market return plus size (SMB) and
value (HML)), and the Fama and French (2015) five-factor model (three-factor model plus
profitability (RMW) and asset growth (CMA)). Other alphas are from regressions that
augment the five-factor model with factors for momentum (UMD), short-term reversal
(SREV), long-term reversal (LREV), or liquidity (LIQ). All returns are from equal-weighted
portfolios. Holding periods are from July 1963 through December 2022. t-statistics below
returns are adjusted for heteroskedasticity and autocorrelation using six lags (Newey and
West (1987)).

CON1 CON2 CON3 CON4 CON5 CON1-CON5
CAPM 0.41 0.35 0.32 0.11 -0.67 1.08

(3.05) (3.26) (3.20) (1.16) (-5.07) (9.21)
FF3 0.32 0.20 0.16 -0.02 -0.75 1.08

(4.85) (4.35) (3.75) (-0.48) (-9.78) (8.70)
FF5 0.41 0.17 0.11 -0.04 -0.69 1.10

(5.80) (3.66) (2.47) (-0.77) (-8.65) (8.44)
FF5+UMD 0.43 0.19 0.13 -0.00 -0.65 1.08

(5.50) (4.52) (3.41) (-0.08) (-8.91) (8.12)
FF5+SREV 0.42 0.15 0.08 -0.09 -0.74 1.16

(5.94) (3.24) (1.79) (-1.51) (-8.74) (8.55)
FF5+LREV 0.41 0.17 0.11 -0.04 -0.69 1.10

(5.77) (3.74) (2.57) (-0.80) (-8.99) (8.56)
FF5+LIQ 0.43 0.17 0.11 -0.06 -0.71 1.13

(5.63) (3.57) (2.31) (-1.05) (-8.44) (8.28)
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Table IA6. Subsamples

This table shows the future one-month returns of the zero-investment convexity portfolio
across various subsample cuts. The zero-investment convexity portfolio is value-weighted
and is formed by sorting convexity into quintiles at the end of each month, buying stocks
in the lowest convexity quintile, and selling short stocks in the highest convexity quintile.
Convexity is estimated using one month of daily closing prices. In Panels A and B, holding
periods are as defined in that row. In Panels C and D, holding periods are from July 1963
through December 2022. t-statistics below returns are adjusted for heteroskedasticity and
autocorrelation (Newey and West (1987)). The number of lags used is determined using the
rule 4(T/100)2/9, in which T is the number of months in the sample.

Panel A: Main Sample

Time period Mean (%) Std dev (%) Sharpe ratio Skewness Kurtosis
July 1963 - December 2022 0.84 3.57 0.23 -0.30 7.08

(6.45)
July 1963 - December 1992 0.97 2.78 0.35 0.03 4.23

(6.66)
January 1993 - December 2022 0.70 4.21 0.17 -0.32 6.46

(3.33)

Panel B: Earlier U.S. Sample

Time period Mean (%) Std dev (%) Sharpe ratio Skewness Kurtosis
July 1926 - June 1963 0.62 4.91 0.13 0.25 24.57

(2.74)
July 1926 - December 1945 0.71 6.49 0.11 0.17 15.28

(1.75)
January 1946 - June 1963 0.51 2.03 0.25 0.08 4.33

(3.46)

Panel C: Size

Time period Mean (%) Std dev (%) Sharpe ratio Skewness Kurtosis
Small 1.11 3.02 0.37 0.55 10.59

(8.27)
Medium 0.98 3.28 0.30 0.04 6.82

(7.76)
Large 0.76 3.94 0.19 -0.35 6.46

(5.29)

Panel D: Season

Time period Mean (%) Std dev (%) Sharpe ratio Skewness Kurtosis
January 1.83 4.06 0.45 -0.18 4.07

(3.79)
February-December 0.75 3.51 0.21 -0.34 7.54

(5.40)
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Table IA7. Bid-Ask Bounce

This table presents future one-month returns of the zero-investment convexity portfolio after
accounting for a bid-ask bounce. The zero-investment convexity portfolio is value-weighted
and is formed by sorting convexity into quintiles at the end of each month, buying stocks
in the lowest convexity quintile, and selling short stocks in the highest convexity quintile.
Convexity is estimated using one month of daily closing prices. Panel A presents results
after skipping the first day after portfolio formation. Panel B presents results using the
bid-ask midpoint. Holding periods are from July 1963 through December 2022 in Panel
A and January 1993 through December 2022 in Panel B. t-statistics below returns are
adjusted for heteroskedasticity and autocorrelation using six lags in Panel A and and five
lags in Panel B (Newey and West (1987)).

Panel A: Skip First Day

Portfolio Mean (%) Std dev (%) Sharpe ratio Skewness Kurtosis
Full month 0.84 3.57 0.23 -0.30 7.08

(6.29)
Skip first day 0.66 3.59 0.18 -0.44 7.99

(4.93)

Panel B: Bid-Ask Bounce

Portfolio Mean (%) Std dev (%) Sharpe ratio Skewness Kurtosis
Close-price returns 0.70 4.21 0.17 -0.32 6.46

(3.33)
Bid-ask midpoint returns 0.62 4.30 0.14 -0.27 6.34

(2.97)
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Table IA8. Acceleration

This table presents future one-month returns of portfolios that are independently double
sorted into convexity quintiles (CON1, CON2, etc.) and acceleration quintiles (ACCEL1,
ACCEL2, etc.) at the end of each month. Acceleration is cumulative one-month return
minus the cumulative ten-day return to begin the month. CON1-CON5 (ACCEL1-ACCEL5)
presents future returns of the zero-investment portfolio that buys CON1 (ACCEL1) and
sells short CON5 (ACCEL5) within each column (row). All returns are from value-weighted
portfolios. Holding periods are from July 1963 through December 2022. t-statistics below
returns are adjusted for heteroskedasticity and autocorrelation using six lags (Newey and
West (1987)).

ACCEL1 ACCEL2 ACCEL3 ACCEL4 ACCEL5 ACCEL1-ACCEL5
CON1 1.34 1.30 1.24 1.00 0.93 0.42

(5.74) (6.26) (5.81) (3.90) (3.11) (1.75)
CON2 1.32 1.16 0.98 0.99 0.82 0.50

(6.43) (6.89) (5.73) (5.33) (3.37) (2.66)
CON3 1.37 1.20 1.04 0.76 0.86 0.51

(5.88) (6.94) (6.33) (4.55) (4.33) (2.73)
CON4 0.77 1.24 0.89 0.81 0.57 0.20

(2.75) (6.22) (4.97) (4.33) (2.93) (0.84)
CON5 0.49 0.53 0.59 0.58 0.25 0.24

(1.17) (1.78) (2.27) (2.70) (1.06) (0.80)
CON1-CON5 0.85 0.77 0.65 0.42 0.68

(2.86) (3.91) (3.17) (2.27) (2.92)
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Table IA9. Long-Run Returns

This table presents results from regressions of future one-month returns on convexity. In
Panel A, we present results from ordinary least squares regressions of the future one-month
S&P 500 log excess return on convexity estimated using one month of S&P 500 daily closing
prices. In Panel B, we present time-series averages of coefficient estimates from monthly
cross-sectional regressions of future one-month returns on convexity. Cross-sectional
regressions are estimated using weighted least squares with market capitalization as the
weight. Sample is from July 1963 through December 2022. t-statistics below coefficients are
adjusted for heteroskedasticity and autocorrelation using six lags (Newey and West (1987)).
All R2 estimates are percentages.

Panel A: Aggregate Stock Returns

1Q ahead 2Q ahead 3Q ahead 4Q ahead
1 2 3 4

Convexity -0.24 0.02 0.11 -0.01
(-1.97) (0.17) (1.01) (-0.14)

R2 0.94 0.00 0.20 0.00
Observations 712 709 706 703

Panel B: Firm Stock Returns

1Q ahead 2Q ahead 3Q ahead 4Q ahead
1 2 3 4

Convexity -0.12 0.01 0.005 -0.06
(-3.31) (0.34) (0.14) (-1.47)

Average R2 1.40 1.44 1.43 1.33
Observations 2,410,620 2,373,713 2,337,970 2,301,595
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Table IA10. Expectations of One-Month Returns

This table presents summary statistics of expectations of future one-month returns of the
Dow Jones Industrial Average. Panel A presents statistics on all expectations. Panel B
presents statistics on daily average expectations.

Panel A: All Expectations

Period Mean Median Minimum Maximum Obs.
Individual January 1999 - February 2022 0.06% 0.50% -30% 25% 6,407
Institutional August 1993 - February 2022 0.05% 0.10% -30% 20% 5,686
All August 1993 - February 2022 0.05% 0.50% -30% 25% 12,093

Panel B: Daily Average Expectations

Period Mean Median Minimum Maximum Obs.
Individual January 1999 - February 2022 0.15% 0.50% -30% 22% 2,538
Institutional August 1993 - February 2022 0.09% 0.33% -20% 15% 2,529
All August 1993 - February 2022 0.13% 0.33% -20% 22% 3,572
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