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I. Introduction

Rietz (1988) hypothesized that rare and severe macroeconomic disasters could help

resolve the equity premium puzzle (Mehra and Prescott, 1985), an idea later revitalized by Barro

(2006). Since then, rare disasters have garnered significant attention from both academic

researchers and market participants.1 Recent research has emphasized the importance of modeling

the time variation in disaster risk. Unlike models assuming a constant probability of disasters,

frameworks that allow for time-varying disaster probabilities can generate a volatile equity

premium and account for several macro-finance puzzles, such as excess volatility and return

predictability (Gabaix, 2012; Gourio, 2012; Wachter, 2013). However, empirical estimation of

time-varying probabilities of consumption disasters (henceforth, TVPCD) remains highly

challenging, which in turn undermines a critical foundation of rare disaster models.

To date, most of the literature has relied on indirect measures of disaster risk inferred from

asset prices (Bollerslev and Todorov, 2011; Wachter, 2013; Barro and Liao, 2021). However,

these measures often reflect investors’ subjective perceptions rather than the actual probability of

disasters and may also incorporate risk factors unrelated to disaster risk. More importantly,

inferring disaster probabilities from asset prices introduces a circularity problem, making it

difficult to establish an independent, objective estimate of disaster risk. Consequently, disaster

risk has been described as “dark matter for economists” (Campbell, 2017; Chen, Dou, and Kogan,

1A survey conducted in 2016 as part of the RAND American Life Panel provides empirical evidence that

concerns about economic disasters significantly influence investors’ equity allocation decisions (Choi and Robertson,

2020): “Moving to motives coming from representative-agent asset pricing models, we find particularly strong

support for rare disaster theories, with 45% of all respondents describing concern about economic disasters as a very

or extremely important factor.”
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2024). Given these limitations, researchers have sought to construct direct measures of disaster

risk using proxy variables that predict consumption disasters (Berkman, Jacobsen, and Lee, 2011;

Manela and Moreira, 2017; Baron, Xiong, and Ye, 2022). In this paper, we propose an alternative

method that directly estimates the physical (or ”real”) probability of time-varying consumption

disasters from historical consumption data. As an immediate demonstration, Figure 1 compares

our estimated disaster probabilities for the United States with those implied by Wachter (2013)

and Barro and Liao (2021). Our estimates yield results comparable to those in the existing

literature and, for key historical macroeconomic events such as World War I, World War II, and

the Great Depression, our model produces disaster probability levels and dynamics that align

more closely with common historical narratives.

[Insert Figure 1 approximately here]

In this paper, we propose a new consumption disaster model with time-varying disaster

probabilities. In our model, the world and the countries are connected through the international

interactions of the world and country-specific disasters and disaster probabilities. Using long term

national accounts data for 42 economies, we estimate the parameters for the processes of

consumption disasters and disaster probabilities. With the estimated disaster model, we back out

the coefficient of risk aversion and analyze the asset pricing implications of the consumption

disaster risk.

Our model carefully characterizes both consumption disasters and their probability

dynamics. The time-varying probabilities of global and country-specific consumption disasters

follow logistic functions of disaster probability indices, which evolve as autoregressive processes

with occasional jumps. Specifically, jumps in the global disaster probability index arise from

world disasters and unexpected events in the previous period, while jumps in country-specific
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disaster probability indices are driven by unexpected idiosyncratic shocks, current world

disasters, and past country-specific disaster dynamics.

Our first set of findings pertains to the identification of global and country-specific

consumption disasters. At the world level, the estimated disaster periods—with the posterior

disaster probability of 25% or more—include 1838–1839, 1913–1921, 1930–1933, and

1939–1945; and with the posterior probability exceeding 50% include 1914–1916, 1931, and

1940–1944. These periods correspond to familiar historical disasters, such as the world wars, the

Great Depression, and possibly the Great Influenza Epidemic of 1918–20 (but not the recent

Great Recession of 2007-2009). Figure 2 depicts our estimates of the world disaster probabilities.

We also identified many familiar disastrous events for individual and small groups of countries,

including the First Sino-Japanese War for China in 1895, the Russian Revolution and Civil War

for 1917–1922, the 1973 Chilean coup and its aftermath, the Argentinean stagnation and

hyperinflation in 1988–1991, the government-debt crisis and recession in Greece for 2010–2012,

and so on. The graphs of country-specific disaster probabilities are depicted in Figures 6–11 as

well as in the online Appendix H.

[Insert Figure 2 approximately here]

The second set of findings is about the asset pricing implications of the estimated

consumption disaster model. Matching the observed long-term average real rates of return on

corporate equity and short-term government bills requires a coefficient of relative risk aversion

(CRRA) of 5.2, which is significantly lower than those typical estimates from rare disaster

models. Besides, this model can also quantitatively replicate the predictability of excess stock

returns by the dividend yield, as demonstrated in Campbell and Shiller (1988), Cochrane (1992),

etc. One major challenge for general equilibrium models of the stock market is to generate
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long-run predictability in excess stock returns without producing counterfactual predictability in

consumption growth. Our model addresses that challenge, as the estimated dividend yield

effectively predicts excess stock returns over extended horizons while exhibiting minimal

predictability for consumption growth. This finding aligns with empirical evidence from studies

such as Beeler and Campbell (2012), Campbell (2003), and Lettau and Ludvigson (2001). Among

other asset pricing statistics, we also find evidence of the out-of-sample predictability of equity

premia from our model’s estimated disaster probability index. That is, a higher disaster

probability today predicts a higher average future excess stock return over long horizons. The

predictive power of the disaster probability index is notably significant in both time series and

cross-sectional contexts.

Unlike prior studies that indirectly estimate disaster probabilities from asset prices, we

construct a direct, time-varying measure of macroeconomic disaster probabilities using historical

national accounts data, independent of financial data or assumptions about investor preferences.

Additionally, our TVPCD model explicitly models the time-series dynamics of global and

country-specific disaster probabilities, which are of intrinsic importance in macroeconomics and

asset pricing. Substantial efforts have been made in the literature to improve the estimation of

disaster risk; our approach offers a novel perspective on measuring disaster risk and provides

empirical support for the rare disaster hypothesis through an alternative methodology.

The rest of the paper is organized as follows. Section II relates our study to the previous

literature on the TVPCD. Section III lays out our formal model. Section IV discusses the data

used in this study, describes our method of estimation, and presents empirical results—including

a detailed description of six illustrative countries. Section V presents the framework for asset

pricing, draws out the implications of the estimated consumption processes for CRRA and
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various statistics, including the average equity premium and the volatilities of equity returns and

premia. Section VI explores the real-time predictability from our estimated disaster probability

index. Section VII concludes.

II. Relation to the Literature

Since the seminal work of Rietz (1988) and Barro (2006), rare disaster models have been

widely recognized for their ability to rationalize asset pricing puzzles. These models emphasize

that even the mere possibility of rare but severe macroeconomic disasters–such as wars, natural

disasters, financial crises, and pandemics–can significantly influence asset valuations, investment

decisions, and real economic outcomes.

Early rare disaster models, such as those in Barro (2006,0), Barro and Ursúa (2008), and

Barro and Jin (2011), assume a constant probability of disasters. Later models, such as Nakamura,

Steinsson, Barro, and Ursúa (2013) and Barro and Jin (2021), allow disaster probabilities to vary

over time and take on several different values, but this variation is directly contingent upon the

actual occurrence of disasters. As a result, these models struggle to explain large financial market

fluctuations during periods when no consumption disasters are observed. This limitation

highlights the need to model disaster probabilities as time-varying and less tightly linked to the

actual occurrence of disasters.

A notable step in this direction is Gabaix (2012), which discusses time-varying disaster

probabilities but does not provide a detailed empirical implementation or parameter calibration.

Wachter (2013) advances the literature by proposing a model with time-varying disaster

probabilities, which can generate a volatile equity premium and reconcile several macro-finance
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anomalies, including excess volatility and return predictability. However, the highest disaster

probability estimated in Wachter (2013)—14% in 1920—appears much lower than what historical

records suggest (see Figure 1).

Disaster risk is described as “dark matter” in economic models because it is difficult to

directly measure due to its rarity. The existence of this dark matter poses a fundamental challenge

to the key assumptions of rare disaster models. Many studies have attempted to measure disaster

risk using various approaches. The existing literature has largely relied on indirect proxies of

disaster risk derived from asset prices. For example, several studies have explored measures

obtained from option prices (Bollerslev and Todorov, 2011; Backus, Chernov, and Martin, 2011;

Seo and Wachter, 2019) or from the cross-section of asset returns (Kelly and Jiang, 2014).

Siriwardane (2015) constructs a jump risk factor based on short-term option prices for a broad

panel of U.S. firms, arguing that this factor proxies for the variation in the risk-neutral probability

of macroeconomic disasters. Similarly, Barro and Liao (2021) propose an option-pricing model

incorporating recursive preferences and apply it to far out-of-the-money put options on the

aggregate stock market. Their estimated disaster probabilities fluctuate sharply, spiking during the

global financial crisis and peaking at 42% in 2008. While asset prices are highly sensitive to

disaster risk, using them to measure disaster probabilities presents a fundamental challenge: the

circular nature of extracting disaster probabilities from asset prices raises concerns about whether

these estimates truly reflect objective disaster probabilities or are merely self-referential.

Moreover, disaster probabilities inferred from financial markets rely on specific assumptions

about investor preferences and can be confounded by other risk factors unrelated to disaster risk.

As a result, the absence of direct measures of disaster risk has given rise to the argument that
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financial markets may at times underplay the real threat of disasters (Baron and Xiong, 2017;

Muir, 2017).

A number of studies have attempted to address this challenge by using proxy variables

likely to capture variation in tail risk. Baron et al. (2022), for example, propose a measure based

on credit expansions and asset bubbles, building on evidence that credit booms often precede

banking crises and deep recessions. Berkman et al. (2011) construct a crisis index from a broader

set of international political events to reflect perceived disaster risk. Manela and Moreira (2017)

develop a news-based uncertainty index by linking Wall Street Journal front-page coverage to

option-implied volatility (VIX). More recently, Adrian, Boyarchenko, and Giannone (2019) and

Marfè and Pénasse (2024) use quantile regressions to estimate macroeconomic tail risks, with the

latter deriving time-varying disaster probabilities by weighting predictors according to their

ability to forecast the conditional distribution of consumption growth, using a rich international

dataset covering macroeconomic, political, and financial variables.

Our study contributes to this literature by proposing a direct, data-driven measure of

time-varying disaster probabilities based solely on historical consumption data. Unlike existing

approaches that rely on asset prices, preference assumptions, or proxy variables, we estimate the

disaster probability process within a unified framework using a long-span international dataset

and Bayesian MCMC methods. Importantly, all model parameters are jointly estimated within

this coherent structural framework, in contrast to much of the existing literature that relies on

calibrating parameters separately—making our characterization of disaster risk more internally

consistent and empirically credible. Our model distinguishes between transitory and permanent

consumption shocks and captures global and country-level disaster dynamics. As a result, it not

only aligns closely with historical macroeconomic crises but also delivers strong out-of-sample
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predictability for excess stock returns, offering robust empirical support for the time-varying

disaster risk hypothesis.

III. The Model

Our model builds on the framework of Nakamura et al. (2013), a modified version of the

Lucas Tree model that allows disasters to unfold over multiple years and be followed by

systematic recoveries. This structure provides a more realistic depiction of consumption dynamics

and addresses a key limitation of the Rietz-Barro framework—namely, its tendency to overstate

risk by assuming instantaneous and complete consumption drops without recovery, as noted by

Constantinides (2008), Donaldson and Mehra (2008), and Julliard and Ghosh (2012).

The primary innovation of our model relative to Nakamura et al. (2013) and Barro and Jin

(2021) is the introduction of time-varying disaster probabilities. We also implement several

refinements: (1) disaster gaps are assumed to shrink only during normal periods, avoiding the

entanglement of multiple effects during disasters; and (2) we allow for serial correlation in the

immediate effects of disasters and correlation between immediate and permanent effects,

extending beyond the i.i.d. assumptions of prior models. The detailed model setup is presented

below.
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A. Components of consumption

Similar to previous rare disaster models, the log of consumption per capita for country i

at time t, cit, is assumed to be the sum of three unobserved variables:

(1) cit = xit + zit + σεiεit,

where xit is the “potential level” of the log of per capita consumption and zit is the “disaster gap,”

which describes the deviation of cit from its potential level due to current and past consumption

disasters. The potential level of consumption and the disaster gap depend on the disaster process,

as detailed below. The term σεiεit is a temporary shock, where εit is an i.i.d. standard normal

variable. The standard deviation, σεi, of the shock varies by country. We also allow σεi to take on

two values for each country, one up to 1945 and another thereafter. This treatment allows for

post-WWII moderation in observed consumption volatility, particularly because of improved

measurement in national accounts—see Romer (1986) and Balke and Gordon (1989).

B. Time-varying disaster probabilities

We assume that for the whole world and an individual country, there are disaster and

normal states. Each state tends to persist over time, but there are varying possibilities for

transitioning from one state to the other. The disaster probabilities are determined by the world

and country-specific processes.

Let Iwt be the dummy variable for the presence of a world disaster with
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Pr(Iwt = 1) = pwt. The probability of the world disaster in time t, pwt, is assumed to be

(2) pwt = F (ywt) =
1

1 + e−ywt
,

where F (·) is a logistic function, ywt is the world disaster probability index at time t. In the

evolvement of the world disaster probability, there are jumps that are caused by either unexpected

events or disasters in previous periods. Specifically, we assume that the world disaster index ywt

evolves according to the following equation

(3) ywt = y∗w + ρyw(yw,t−1 − y∗w) +KwtJ
(1)
wt + Iw,t−1J

(2)
wt + σywζwt,

where ζwt is an i.i.d. standard normal variable, ρyw is the first order autoregressive coefficient, and

y∗w is the mean-reverting value of ywt if there are no jumps. Kwt is a dummy variable with

Pr(Kwt = 1) = pK ,

for some pK > 0, J (1)
wt and J

(2)
wt stand for jumps whose sizes follow a two-sided power-law

distribution with density function

fJw(s) = βJw(|s−mw|+ 1)−αJw ,

where βJw = (αJw − 1)/2, mw and αJw are all constant parameters characterizing the location

and shape of the power-law distribution.2 Here, J (1)
wt describes the jump that is triggered by an

2See online Appendix A for an illustration of the probability density of this distribution.
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unexpected world event in period t, and this trigger is effective only when Kwt = 1; J (2)
wt

describes the jump that is caused by the world disaster in period (t− 1). Both of these jump terms

are introduced to accommodate the rapid growth of the index during disaster periods. Specifically,

KwtJ
(1)
wt aims to account for unexpected shocks that lead to a sharp rise in the disaster index ywt,

particularly when the probability of the economy transitioning from a normal state to a disaster

state abruptly rises. The dummy variable Kwt is introduced to indicate the occurrence of such

unexpected and usually rare shocks. The second jump term Iw,t−1J
(2)
wt considers the persistency of

the disaster state, where a disaster state in the previous period tends to keep the probability of

subsequent disasters at a high level.

For each country, similar to the process of world disaster probability, we assume that the

chance of country i experiencing a rare macroeconomic disaster in time t, pit, is given by

(4) pit = Pr(Iit = 1) = F (yit) =
1

1 + e−yit
,

where Iit is the dummy variable for the presence of a disaster in country i at period t and yit is the

disaster probability index. We assume that the country-specific disaster index yit evolves

according to the following process with jumps:

(5) yit = y∗i + ρy(yi,t−1 − y∗i ) +KitJ
(1)
it +DitIwtJ

(2)
it + EitIi,t−1J

(3)
it + σyiζit,

where ρy is the first order autoregressive coefficient, y∗i is the mean-reverting value of yit if there

are no jumps, ζit is an i.i.d. standard normal variable. The random variables J (1)
it , J (2)

it and J
(3)
it

stand for jumps whose sizes all follow a two-sided power-law distribution with the following
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density function

fJ(s) = βJ(|s−m|+ 1)−αJ ,

where βJ = (αJ − 1)/2, m and αJ are different set of constant parameters with that of fJw(s). In

Equation (5), J (1)
it describes the jump that is triggered by an unexpected country-specific event in

period t, and this trigger is effective only when Kit = 1; J (2)
it describes the jump that is caused by

the world disaster in period t, and the jump occurs only when Dit = 1; J (3)
it describes the jump

that is caused by the country-specific disaster in period (t− 1), and the jump occurs only when

Eit = 1. In short, Kit, Dit, and Eit are dummy variables that may trigger jumps in yit only when

they take on value 1. We assume that Pr(Kit = 1) = pK , Pr(Dit = 1) = pD, and

Pr(Eit = 1) = pE; with pD > 0 and pE > 0.

Thus, a current world disaster triggers a jump in the disaster probability index yit for

country i with probability pD. Similarly, pE is the probability that a country-specific disaster in

period (t− 1) triggers a jump in disaster index in period t, and pK is the probability of

unexpected and idiosyncratic jumps.

C. Potential consumption

The growth rate of potential consumption for country i at time t is specified as:

(6) ∆xit = µi + Iitηit + σuiuit,
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where ∆xit ≡ xit − xi,t−1, µi is the constant long-run average growth rate of potential

consumption, Iitηit picks up the permanent effect of a disaster, and uit is an i.i.d. standard normal

variable.

D. Dynamics of disaster gaps

Returning to Equation (1), we now consider the disaster gap, zit, which describes the

deviation of cit from its potential level, due to current and past rare disasters. We assume that zit

follows a modified autoregressive process:

(7) zit = ρ1−Iit
z zi,t−1 + Iitϕit − Iitηit + σνiνit,

where ρz is a first-order autoregressive coefficient, with 0 ≤ ρz < 1. The shock includes the

standard normal variable νit multiplied by the country-specific constant volatility σνi. Different

from Nakamura et al. (2013) and Barro and Jin (2021), the disaster gap zit only vanishes in

normal periods. That is, in disaster periods, the disaster gap accumulates; recovery only happens

after a rare disaster. Thus, ρz describes country’s rate of recovery after disasters.

Our model captures the effects of disasters on consumption in two ways. First, disasters

cause a large immediate drop in actual consumption, represented by the immediate disaster effect,

ϕit. Second, disasters may influence the potential consumption level to which actual consumption

will eventually return, represented by the permanent disaster effect, ηit. We assume that ϕit

follows an autoregressive process:

(8) ϕit = ρϕϕi,t−1 + ωϕit
,
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where ωϕit
follows an exponential distribution with density function

fϕ(ω) = α1e
α1ω,

where ω < 0 and α1 > 0.3 While ϕit does not have a lasting impact on consumption, part of this

drop may recover after the disaster state ends. Since actual consumption will ultimately converge

to the potential consumption level once the disaster is over, only the impact on potential

consumption, ηit, has a permanent effect. Consequently, the remaining portion, ϕit − ηit,

represents the temporary disaster effect on actual consumption, which vanishes after the disaster

period.

In our model, the disaster gap zit is used to capture the dynamics of this temporary

disaster effect. During the disaster state (Iit = 1), zit accumulates the temporary disaster effect

ϕit − ηit each period, according to Equation (7): zit = zi,t−1 + ϕit − ηit + σνiνit. In the

post-disaster recovery period (Iit = 0), zit gradually fades away as it follows an autoregressive

process: zit = ρzzi,t−1 + σνiνit. Therefore, the temporary disaster shock, ϕit − ηit, does not affect

cit in the long run.

In terms of practical meaning, the immediate impact of a disaster, ϕit, might represent the

destruction of infrastructure, crowding out of consumption due to increased government

spending, and short-term financial system weaknesses, part of which might recover after the

3Based on Barro and Jin (2011), if 1
1−b ∼ power law distribution with (upper-tail) exponent α, where the disaster

size b is the fraction of contraction in C (real per capita personal consumer expenditure), then ξ ≜ −ln(1− b) ∼

exponential distribution with rate parameter α. This relationship suggests exponential distributions for ϕit and ηit,

which in turn suggests one- or two-sided exponential distributions for the error terms of ϕit and ηit.

15



disaster. Meanwhile, the permanent effect, ηit, could indicate a lasting loss in time spent on R&D

or permanent institutional changes triggered by the disaster.

E. Permanent disaster effect

The term Iitηit operates for country i at time t, when the country enters a disaster state

(Iit = 1). The random shock ηit determines the long-run effect of a current disaster on the level of

country i’s potential consumption. If ηit < 0, a disaster today lowers the long-run level of

potential consumption; that is, the projected recovery from a disaster is less than 100%. We

assume that ηit is correlated with the immediate disaster effect ϕit in the following way:

(9) ηit = αη + ρηϕit + ωηit ,

where ωηit follows a two-sided exponential distribution

fη(ω) =
1

2
α2e

−α2|ω|

with ω ∈ R and α2 > 0. In practice, we find that the mean of ηit is negative, but a particular

realization may be positive. Thus, although the typical recovery is less than complete, a disaster

sometimes raises a country’s long-run level of consumption, so that the eventual recovery exceeds

100%.
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F. An illustration of typical disaster dynamics

By decomposing consumption into potential consumption and a disaster gap, the model

captures disaster dynamics that unfold over multiple periods and are followed by recovery. Figure

3 illustrates a typical scenario our model can generate. For simplicity, we abstract from all shocks

except ϕit and ηit, assume a 2% annual consumption growth trend, and simulate a two-period

disaster with parameters ρz = 0.6, ϕit = −0.1, and ηit = −0.04 during each disaster period.

[Insert Figure 3 approximately here]

At the end of period 0, the economy enters a disaster state. Potential consumption (xit,

solid black line) evolves as in Equation 6 and declines each period due to the persistent shock ηit,

resulting in a cumulative drop of 0.08, which represents the permanent damage. Actual

consumption (cit, green line) falls below potential consumption during the disaster. The difference

between the two—the disaster gap (zit)—is shown as a dotted line. It accumulates according to

Equation 7: zit = zi,t−1 + ϕit − ηit, where ϕit − ηit captures the transitory effect of the disaster.

When the disaster ends in period 2, actual consumption has cumulatively fallen by 0.2

relative to the no-disaster path. Recovery then begins. The disaster gap shrinks over time via:

zit = ρzzi,t−1, eventually disappearing, while the permanent loss in potential consumption

(
∑

t ηit = −0.08) persists. Hence, the disaster is partially permanent. The model accommodates a

wide range of disaster scenarios. If ηit = 0, the disaster is fully transitory; if ϕit = ηit, the disaster

is entirely permanent.
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IV. Empirical Findings on Rare Disasters

A. Data

This paper uses a data set on annual real per capita consumption (personal consumer

expenditure) and gross domestic product (GDP) for 42 economies, which expands the Barro and

Ursúa (2010) Macroeconomic Dataset, as far back as 1790 and going through 2014.4 For most of

the economies, the GDP series is longer than the corresponding consumption series. In order to

fully utilize the information contained in this long-term macroeconomic dataset, we concatenate

the consumption and GDP series as follows. When the GDP series dates back earlier than does

the corresponding consumption series, we concatenate the beginning portion of the GDP series

with the corresponding consumption series.5 For convenience, we still call the so-obtained series

the consumption series, as the GDP data occurs only when the corresponding consumption series

are unavailable, and the main part of these series is still the consumption series. This treatment is

appropriate under the assumption that the growth rates of consumption and GDP are close to each

other, and helps to employ more information contained in the data, which is especially important

for the study of rare disasters.

The concatenated consumption and GDP series have 6189 country-year observations, as

we choose to start from 1833 with at least 10 countries. To better utilize the rich information in

the dataset, we allow for some short interruptions in the series, rather than discard the beginning

portion to get a shortened uninterrupted series as in Nakamura et al. (2013) and Barro and Jin

4The consumption series dates back to 1800 for Sweden, and the GDP series dates back to 1790 for the United

States.

5Please see online Appendix B for details of the concatenation of the consumption and GDP series.
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(2021).6 This is another reason why the data used in this study can further date back to as early as

1833.

B. Estimation Method

We use a standard Bayesian Markov-Chain Monte-Carlo (MCMC) to estimate the

model. This method is appropriate for complicated models like the one we have here. Moreover,

we are facing data irregularities as we have unbalanced panel data with missing observations,

which makes Bayesian MCMC the ideal choice for empirical implementation. Specifically, we

utilizes a Gibbs sampler to draw samples from the posterior distributions of the parameters and

unobserved quantities, augmented with Metropolis steps when necessary (see Gelman, Carlin,

Stern, Dunson, Vehtari, and Rubin (2013) for a detailed discussion on the MCMC algorithms). A

more detailed explanation of this algorithm can be found in online Appendix C.

The convergence of the MCMC simulation is guaranteed under very mild conditions. In

order to accurately estimate parameters and unknown quantities, we run four simulation chains

with over-dispersed starting points throughout the parameter space (see online Appendix F for

details of the specification of the four simulation chains). Besides visually evaluating the trace

plots of parameters and unknown quantities from the simulation, we also assess the convergence

by comparing variation “between” and “within” simulated sequences (see Chapter 11 of Gelman

et al. (2013) for a discussion of this method).

After two hundred thousand iterations, the simulation results from the four sets of

far-apart initial values stabilize and become very close to each other. So we iterate each chain for

6Please see online Appendix B for detailed treatment of missing observations when the series are interrupted.
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1 million times and use the latter half to analyze the posterior distributions of parameters and

unknown quantities of interest. The first five hundred thousand iterations are dropped as burn-in.

In order for implementing the Bayesian MCMC method, we need to specify various

priors. In general, the priors are specified to be “not very informative.” That is, the standard

deviation of the prior distribution is set to be fairly large, if the prior is not flat. The detailed

specification for prior distributions of parameters are listed in Table 1 in online Appendix D. We

also specify the conditional prior distributions for accurate estimation. Please see online

Appendices E and F for details of these technical treatments.

C. Empirical Results

1. Time-varying disaster probabilities

Table 1 exhibits the posterior means and standard deviations for the parameters of the

model. The first group of parameters corresponds to those in Equations (3) and (5) for the world

and country-specific disaster indices, respectively. These indices can be converted into

corresponding probability according to Equation (2) and (4). Parameters y∗w and y∗i are the

mean-reverting values of the probability indices ywt for the world and yit for country i,

respectively, if there are no jumps. The posterior means of y∗w and y∗i (mean over i) are both

−3.98, which corresponds to a disaster probability of 1.83% per year. The process of ywt is more

persistent than that of yit, and the posterior means of ρyw and ρy are 0.727 and 0.597, respectively.

Parameters αJw , mw, αJ and m characterize the two-sided power law distribution of jumps in the

processes of ywt and yit, respectively. These jumps have a mean value of 1.18 (for J (·)
wt) and 1.92

(for J (·)
it ) with fat tails. According to the functional forms of the two-sided power law, the standard
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deviations of jumps are 0.700 (for J (·)
wt) and 0.365 (for J (·)

it ). Parameter pK characterizes the

probability that an unexpected jump occurs in the processes of ywt and yit in a given year, and that

probability is 2.62%. The posterior mean of pD is 0.946, meaning that a world disaster at time t

will trigger a jump in yit for country i with very high probability. While the posterior mean of pE

is only 0.457, indicating that a previous-period country-specific disaster will trigger a jump in yit

for country i with a probability a bit less than one half. From the above analysis, we see that a

worldwide disaster is more likely to continue than a country-specific disaster. Simulations using

the posterior means of the parameters show that the average duration is 2.11 years for world

disasters and 1.95 years for country-specific disasters.

[Insert Table 1 approximately here]

The time-varying probability processes determine the average fractions of disaster periods

for the world and an individual country in the long run. We simulate the world economy for 1

million periods using the aforementioned posterior means of the parameters, and the results

indicate that the world is in the disaster state for 12.2% of time and an individual country is in the

disaster state for 12.0% of time. Accordingly, the simulated sequences of pwt(= F (ywt)) and

pit(= F (yit)) have mean values of 0.122 and 0.120, respectively. On the other hand, the posterior

means of Iwt, Iit, pwt, and pit in the MCMC are 0.117, 0.121, 0.117, and 0.119, respectively,

which are very close to the corresponding statistics for the simulated world economy. We

compare these statistics with the data used in Barro and Jin (2011), and they are very close.7

7Barro and Jin (2011) use an “NBER (National Bureau of Economic Research) -style peak-to-trough

measurement of the sizes of macroeconomic contractions. Starting from the annual time series, proportionate

contractions in C (real per capita personal consumer expenditure) and GDP were computed from peak to trough over

periods of 1 or more years, and declines by 10% or greater were considered.” An advantage of the peak-to-trough
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The posterior means of the world disaster probability pwt are plotted in Figure 2. The

probability exceeds 25% for 22 of the 182 sample years (from 1833 to 2014): 1838–1839,

1913–1921, 1930–1933, and 1939–1945. Especially in some of these years (1914–1916, 1931,

and 1940–1944), the posterior probability exceeds 50%. These years correspond to the main

world disasters in the long-term international data: the World War I, the Great Depression, and

World War II, with the possible addition of the Great Influenza Epidemic of 1918–1920.

Figure 1 depicts our estimates of disaster probabilities for the United States and replicates

the implied disaster probabilities represented in Figure 8 in Wachter (2013) and in Panel A of

Figure 1 in Barro and Liao (2021) as comparisons. In Wachter (2013)’s calculation, the highest

disaster probability occurs in 1920 with a value of 14%. The second highest value occurs in 1932

with a value of 12.5%. It seems not to be a coincidence that our estimates also show two peaks in

1920 and 1932, which most likely correspond to the aftermath of the World War I and the Great

Depression, respectively. However, our estimated disaster probability values are much higher

(> 0.6). There is another peak in Wachter (2013)’s estimates in 1982 with a value of 10.8%,

which is even higher than the disaster probability for the WWII period. Meanwhile, our estimated

disaster probabilities are very small for the early 1980s with a value of 2%, and we do not identify

any disaster or event that might significantly lower the consumption during that period. Based on

the comparisons between our estimated disaster probability and the real world data used in Barro

and Jin (2011), we think our estimates are more accurate than Wachter (2013)’s.8 On the other

measurement adopted therein is that the statistics for disasters are “objective” once the threshold is determined. The

long-term national accounts data for 36 countries used in Barro and Jin (2011) indicate that the average fraction of

consumption disaster periods for an individual country is 0.124.

8Our analysis in Section V is also in line with this claim. The analysis therein reveals that with the estimated
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hand, the highest value in Barro and Liao (2021)’s estimates of disaster probabilities for

1994–2018 is 42.5% in 2008. We also find a small peak in 2009, but the value is only 4%. As

option prices can be affected by many factors, we think that some financial market risk other than

real consumption disaster risk may be contributing to their empirical calculation, which makes the

estimates of the disaster probability a bit too high for the 2008 financial crisis.

From Figure 2, we can also pin down years with world disaster probability between 10%

and 25%. They are 1836–1837, 1840–1849, 1852–1862, 1912 (pre-WWI), 1922–1923

(post-WWI), 1928–1929 (pre-Great Depression), 1934 (post-Great Depression), 1936–1938

(pre-WWII), 1946–1947 (post-WWII). The recent global financial crisis in 2008–2010 does not

register in the figure as a world-wide disaster, with the posterior disaster probability around 3%,

but it shows up as a country-specific disaster for Greece and Iceland.

[Insert Table 2 approximately here]

We also plot the posterior means of disaster probability pit for each country, which can be

found in online Appendix H. It is not surprising to see that the posterior mean of pit are high

when the world is in a disaster. Outside of the main world disaster periods (1838–1839,

1913–1921, 1930–1933, 1939–1945), the cases in which individual countries have posterior

means for pit of 25% or more are listed in Table 2. These events include the Argentinean

stagnation and hyperinflation in 1988–1991, the collapse of the Argentinean fixed-dollar regime

in 2001–2002, the 1973 Chilean coup and its aftermath, the First Sino-Japanese War for China in

1895, the Egyptian revolution and independence as the Kingdom of Egypt in 1919–1922, the July

disaster probability, we need a CRRA γ of 5.2 to generate the observed equity premium. Meanwhile, the value of γ

used in Wachter (2013) is only 3.0. In the working paper version of Backus, Chernov, and Zin (2014), the authors

state that the jump parameters in Wachter (2013) “are somewhat extreme.”
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Revolution of Egypt in 1952, the government-debt crisis and recession in Greece for 2010–2012,

Indian independence in 1947, the Korean War for South Korea for 1950–1953, the violence and

economic collapse in Peru in 1989–1990, the Russian Revolution and civil war for 1917–1922,

the Russo-Turkish War for Turkey in 1877–1881. Moreover, if we look into cases in which

individual countries have posterior means of pit between 20% and 25%, some other events will

register, including China’s Great Famine during 1959–1961, the German hyperinflation in

1922–24, the Spanish Civil War in 1936–1937, and the American Civil War in 1862.

2. Size distribution of disasters

The second group of parameters in Table 1 characterizes the immediate and permanent

effects of disasters, along with the dynamics of disaster gaps described in Equations (7)–(9). The

parameter ρz = 0.631 governs the persistence of the disaster gap, implying that over 60% of a

temporary disaster shock remains after one year, and about 90% dissipates within five years.

While the temporary component, ϕit − ηit, eventually fades out, the long-term consequence

depends on the realization of the permanent component, ηit.

[Insert Figure 4 approximately here]

In contrast to the previous rare disaster models, where the immediate and permanent

effects of a disaster are usually assumed to follow i.i.d. normal or truncated normal distributions,

we allow for correlations within and between these two effects. The immediate effect, ϕit, of a

disaster evolves according to Equation (8). The parameter ρϕ describes the temporal correlation

between ϕit and ϕi,t−1. The estimated value, 0.49, implies that there is a rather large serial

correlation in the process of ϕit. The probability density function for ϕit plotted in Figure 4 has a

heavy tail on its support (−∞, 0]. The simulated mean of ϕit is −0.094; that is, the per capita
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consumption falls by 9.0% on average over the first year of a disaster.9 The simulated standard

deviation of ϕit is 0.055, indicating considerable dispersion in the distribution of the first-year

disaster size. The probability of ϕit falling below −0.149 log points (≈ −13.8%, one standard

deviation away from the mean) is 13.3%, and the probability of falling below −0.203 log points

(≈ −18.4%, two standard deviations away from the mean) is 4.7%. The probability density of the

distribution of ϕit diminishes exponentially, as ϕit gets further away to the left, the left tail of the

distribution of ϕit is notably heavy. See also the discussion in Footnote 3.

For the permanent effect ηit, we allow for contemporaneous correlation with ϕit, justified

by the empirical link between short-run damage and long-run impact. The posterior mean of ρη is

0.374, implying a sizable positive correlation. Figure 5 displays the slightly asymmetric

distribution of ηit (due to dependence on ϕit), with a simulated mean of −0.042 and a large

standard deviation of 0.14.

[Insert Figure 5 approximately here]

Following Barro and Ursúa (2008), we define disaster size as the peak-to-trough drop in

consumption. Simulations reveal that the average disaster size is −12.2%, and the standard

deviation is as large as 12.8%.10 When conditioning on disasters with peak-to-trough contractions

of at least 10%, then the average disaster size is −22.1%, and the standard deviation becomes

9Note that when we say “the per capita consumption falls by 9.0%,” we are comparing the disaster case with the

counterfactual normal situation. Thus, instead of accounting for the observed drop in consumption, the “9.0%”

includes the constant long-run average growth rate µi. This caveat also applies to other discussions about ϕit.

10When calculating the simulated mean and standard deviation of disaster sizes, we first convert the size of every

disaster in log points into corresponding value in percentage points, and then calculate the sample mean and standard

deviation.
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13.3%. Thus, the estimated disaster sizes in this study are extremely close to those documented in

Barro and Ursúa (2008) and Barro and Jin (2011).11

Our simulation indicates that on average 55.5% of consumption will recover over the

years after disasters. That is, on average, 44.5% of the drop from the consumption trend during a

disaster is permanent. Interestingly, 31.3% of disasters lead to over-recovery, where post-disaster

consumption exceeds the pre-disaster trend—possibly reflecting long-run “cleansing” effects of

crises.

D. Six illustrated countries

To provide a more intuitive and vivid illustration of our empirical findings, we highlight

six countries—China, Germany, Japan, Russia, the United Kingdom, and the United States.

Figures 6–11 display the time evolution of the posterior means of three key variables for each

country: the disaster probability (pit), the immediate effect (Iitϕit), and the permanent effect

(Iitηit), all expressed as quantities per year. The posterior distribution of consumption growth is

also shown in each figure. The graphs clearly identify World War I, the Great Depression, and

World War II as major disasters across countries. Disaster shocks—both immediate and

permanent—tend to occur when the posterior mean of pit is elevated, with substantial

cross-country variation in their magnitude during these periods.

[Insert Figure 6 approximately here]

[Insert Figure 7 approximately here]

[Insert Figure 8 approximately here]
11The average consumption disaster size is estimated to be 22% in Barro and Ursúa (2008) and 21.5% in Barro

and Jin (2011), both studies consider the macroeconomic contractions of magnitude 10% or more.
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[Insert Figure 9 approximately here]

[Insert Figure 10 approximately here]

[Insert Figure 11 approximately here]

For China in Figure 6, the most severe disasters are WWII, the Great Depression, and

WWI; while the First Sino-Japanese War in 1895 and the Great Chinese Famine in 1960 also

register prominent disaster probabilities. The immediate disaster effect reached −17.1% in 1895

and −15.1% in 1944. Surprisingly or not, the permanent disaster effect was as large as −15.2% in

1959 at the start of the Great Chinese Famine. For Germany in Figure 7, the disaster probability

peaked during the two world wars, and the two largest immediate disaster effects were about

−18% both during these periods. The case for Japan in Figure 8 is similar—WWII caused the

largest drop in the country’s per capita consumption level, and the immediate disaster effect was

−34.5%. The main disasters for Russia in Figure 9 are the two world wars, and the immediate

disaster effects reached tremendously low levels of −33.8% in WWII and −27.4% in WWI. For

the United Kingdom in Figure 10 and the United States in Figure 11, the patterns are similar but

in much smaller magnitudes. The largest immediate disaster effects for these two countries are

both less than 10%. However, the United Kingdom experienced a sudden drop in its long-run

consumption level after WWI (−16.9% in 1920), and the United States also experienced a 13.4%

fall in its long-run consumption trend during the American Civil War (1861–1865).

Unlike the findings in Nakamura et al. (2013) and Barro and Jin (2021), our results show

clear persistence in both the immediate and permanent disaster effects, with fewer erratic jumps

during disaster periods. This smoother pattern arises from our modified disaster dynamics in

Equation (7), which links the disaster gap to its own history and contemporaneous shocks. In
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addition, the allowance for serial correlation in ϕit and its correlation with ηit leads to a more

realistic characterization of disaster effects.

E. Robustness

To assess the robustness of model parameters, we re-estimate the model using different

subsamples across time and country groups. The results are summarized in Tables 3 and 4.

[Insert Table 3 approximately here]

Table 3 reports estimates based on truncated time samples ending in 1920, 1950, and

1980, with the full-sample estimates (from Table 1) serving as the baseline. Parameter estimates

remain broadly consistent across different sample periods in terms of posterior means and

standard deviations. Slight deviations appear in the early-period sample (ending in 1920), where

ρy is higher, and both PD and ρz are lower compared to the baseline. This reflects more persistent

disaster probabilities, less frequent jumps, and faster recoveries—likely due to the exclusion of

several major global disasters in the early sample.

[Insert Table 4 approximately here]

Table 4 shows results for OECD and non-OECD groups, alongside the full sample for

comparison. The parameters are generally robust across country groups, though some

heterogeneity is evident. In particular, non-OECD countries display lower ρy and higher σyi,

indicating more volatile and less persistent disaster probabilities. They also exhibit larger standard

deviations in volatility-related parameters—σϵi , σui
, and σµi

—as well as higher ρη, suggesting

that disasters tend to have more severe and lasting effects in these economies.
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V. Asset Pricing

A. Framework

We now analyze the asset pricing implications of the estimated consumption disaster

model, and discuss the effects on asset prices from the disentanglement of disaster probability and

realization of disasters. We assume that the representative agent in the endowment economy has

Epstein-Zin (1989)-Weil (1990) or EZW preferences. Under these preferences, Epstein and Zin

(1989) show that the return on any asset satisfies the condition

(10) Et

[
β

1−γ
1−θ

(
Ct+1

Ct

)−θ(1−γ)
1−θ

R
θ−γ
1−θ

w,t+1Ra,t+1

]
= 1,

where Ra,t+1 denotes the gross return on asset a from period t to t+ 1, and Rw,t+1 is the gross

return on total wealth, which in our model equals the value of the equity claim on a country’s

consumption. The parameter β is the subjective discount factor, γ is the coefficient of relative risk

aversion, and 1
θ

is the intertemporal elasticity of substitution (IES), which governs the agent’s

desire to smooth consumption over time. The EZW preferences delink the CRRA and the IES and

avoid some counterintuitive predictions in asset pricing that a power utility function would make.

The Euler condition for asset return, Equation (10), cannot be solved analytically. Hence,

we adopt a standard numerical method. Specifically, Equation (10) is an integral equation for the

price-dividend ratio of the consumption claim. We can find the fixed point of the corresponding

function via iteration. Given the price-dividend ratio of the consumption claim, the pricing of

other assets can be determined by solving Equation (10)12.

12Please see online appendix G for details of numerical solution of price-dividend ratio.
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The values of γ and β are estimated via matching the observed long-term average real

rates of return on corporate equity and short-term government bills—proxy for risk-free claims.

There are long history data for 17 countries in Barro and Ursúa (2008, Table 5),13 which we

update to 2014. The arithmetic average of real rates of return is 7.9% per year on levered equity

and 0.75% per year on short-term government bills (see Table 5, the second column). Hence, the

average equity premium is 7.15% per year. As the data on equity returns are observations of

levered claims on consumption stream, we assume a corporate debt-equity ratio of 0.5, following

Nakamura et al. (2013).

Besides the dynamics model parameters listed in Table 1, the values for CRRA (γ), IES

(1
θ
), and the subjective discount factor (β) need to be determined to analyze the asset-pricing

implications of the estimated disaster model. There has been a debate over the appropriate value

for the IES in the macroeconomics and finance literature. Bansal and Yaron (2004) claims that an

IES greater than 1 is critical for capturing the “reasonable” positive relationship between the

expected consumption growth rate and the price-dividend ratio for an unlevered equity claim on

consumption. Barro (2009) also notes that IES > 1 is necessary for a negative relationship

between the consumption uncertainty and this price-dividend ratio. Moreover, Nakamura et al.

(2013) show that low IES values, such as IES ≤ 1, are inconsistent with the observed behavior of

asset prices during consumption disasters. Bansal and Yaron (2004) use a value of 1.5 and Barro

(2009), Barro and Jin (2021) and Nakamura et al. (2013) adopt Gruber (2013)’s empirical

estimate of 2. Since our model is based on the framework established by Nakamura et al. (2013),

13These countries include 15 Organization for Economic Cooperation and Development (OECD) countries and 2

non-OECD countries—Australia, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, New Zealand,

Norway, Spain, Sweden, Switzerland, United Kingdom, United States, Chile, and India.
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we also use IES=2 for comparability. We also explore the impact of varying IES values on asset

pricing outcomes in Table 6. Next we are going to determine the values of two free parameters, γ

and β, to fit the observed long-term average real rates of return on corporate equity and short-term

government bills.

B. Empirical Evaluation

The asset pricing results are exhibited in Table 5. The second column shows the target

empirical values of various asset pricing statistics, including the mean and standard deviation of

the risk-free rate, rf , the levered equity return, re, and the equity premium, re − rf ; the Sharpe

ratio; the mean and standard deviation of the dividend yield. These statistics are obtained from

Barro and Ursúa (2008) and Global Financial Data.

[Insert Table 5 approximately here]

The asset pricing results are summarized in Table 5. Column 2 reports the empirical

targets, including the mean and standard deviation of the risk-free rate (rf ), equity return (re),

equity premium (re − rf ), Sharpe ratio, and dividend yield, sourced from Barro and Ursúa (2008)

and Global Financial Data. Column 3 presents results from our baseline TVPCD model, while

Columns 4 and 5 report corresponding outcomes from the RE & LRR model in Barro and Jin

(2021) and the Nakamura et al. (2013) model, respectively.

Given an IES of 2 and the parameter estimates in Table 1, both the TVPCD and RE &

LRR models match the observed average risk-free rate (0.75%) and equity premium (7.15%). The

required CRRA is 5.2 for our model, compared to 5.9 in the RE & LRR model and 6.4 in

Nakamura et al. (2013). The reduction in the required risk aversion stems primarily from the
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time-varying nature of disaster probabilities, which allows the model to generate risk premia even

in the absence of realized disasters. Additional features—such as persistence in immediate effects

and their correlation with permanent damage—further enhance the model’s ability to capture

asset pricing moments.

In terms of volatility, our model estimates σ(re − rf ) = 0.106 and a Sharpe ratio of 0.675,

which exceeds the empirical benchmark of 0.29. While the volatility is still underestimated, the

result is reasonable given the model’s general equilibrium structure and a conservative

debt-equity ratio of 0.5. For comparison, Barro and Jin (2021) report σ(re − rf ) = 0.087 with

γ = 5.9. Notably, as shown in Table 6, asset return volatilities increase with γ, and the

introduction of time-varying disaster risk significantly amplifies the model-implied volatility of

equity premia. Consequently, the TVPCD model delivers a more realistic Sharpe ratio than the

RE & LRR benchmark.14 Similarly, our model produces a higher and more plausible estimate of

equity return volatility σ(re).

Our model estimates an average dividend yield of 4.98% with a volatility of 1.52%, both

broadly consistent with empirical observations. However, the first-order autocorrelation of

dividend yield is 0.728, lower than the empirical value of approximately 0.816. This discrepancy

stems from the fact that our model does not target dividend yield—or any asset price

moments—during estimation. In addition, dividends are modeled as a fixed proportion of

consumption under the assumption of a low corporate debt-to-equity ratio (0.5), without explicitly

modeling the dividend process. Similar simplifications are also discussed in Marfè and Pénasse

(2024).

14As noted by Barro and Jin (2021), “generating good matches to the equity premium and Sharpe ratio

simultaneously is still challenging,” although their model improves upon Nakamura et al. (2013).
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[Insert Table 6 approximately here]

We also explore the sensitivity of asset pricing results to variations in the subjective

discount factor β, the risk aversion coefficient γ, and the intertemporal elasticity of substitution

(IES), as shown in Table 6. Increasing β lowers both the mean risk-free rate and the mean equity

return, with a slightly larger effect on the former, leading to a modest rise in the average equity

premium. At the same time, volatilities of asset returns and dividend yield decline slightly, while

the Sharpe ratio increases. Raising γ reduces the mean risk-free rate and increases the equity

return, thus widening the equity premium. Other asset pricing moments, such as volatilities and

the Sharpe ratio, also increase. Finally, decreasing the IES to 1.5 or 1 raises the mean risk-free rate

and lowers the equity return, resulting in a smaller equity premium. In these cases, the volatility

of the risk-free rate rises, while other asset pricing statistics fall relative to the benchmark.

We next discuss the model’s implications for excess return and consumption

predictability. Numerous studies (e.g., Campbell and Shiller, 1988; Cochrane, 1992; Fama and

French, 1989; Keim and Stambaugh, 1986) have shown that high dividend yields predict high

excess returns. Therefore, I conducted the following panel regression analysis to examine whether

the dividend yield in the model can predict excess stock returns:

(11)
1

H

H∑
h=1

[log(Re
i,t+h)− log(Rb

i,t+h)] = αi + βdivyieldit + ϵi,t+H

where Re
i,t+h and Rb

i,t+h are, respectively, country i’s return on aggregate market and on

government bill between t+ h− 1 and t+ h, and divyieldi,t is country i’s dividend yield on the

aggregate market at period t.

To facilitate comparison, I performed the regression using both historical data and

33



simulated data from the model. The historical data are drawn from 17 countries with long data

histories (as detailed in Table 5, see footnote 13), starting from 192015. To ensure that the

statistical power of the model-based regression is as close as possible to that of the historical data,

we simulated 1,000 paths for 17 economies, each with a length of 1,000 years, and performed a

panel regression on each simulated path. We calculate this regression for returns measured over

horizons ranging from 1 to 10 years.

[Insert Figure 12 approximately here]

The upper panel of Figure 12 presents the 1st, 50th, and 99th percentiles of the predictive

coefficients from the model simulations, alongside their empirical counterparts. The positive

distribution of coefficients for dividend yield across all horizons indicates that our model

effectively captures the equity premium predictability of dividend yield observed in the data. As

observed in the trend of the regression coefficients, there is a gradual decline in the magnitude of

these coefficients as the prediction horizon lengthens. This long-term downward trend in

coefficient values is consistent with the implications of our model and is also observed in other

studies on rare disasters16. As is typical in models with time-varying disaster probabilities,

disaster risk tends to mean-revert, with the risk premium and dividend yield reverting along with

it. Consequently, periods of high disaster risk are generally followed by periods of relatively

lower disaster risk. Therefore, as the forecast horizon extends, the coefficient estimate is expected

15The year 1920 was selected as the starting point because earlier data for dividend yields are sparse for several

countries, while from 1920 onwards, about half of the sample countries have available data.

16For example, Marfè and Pénasse (2024) and Wachter (2013). They do not average over long-horizon returns, so

to compare their coefficient estimates with those in this paper, one must divide the estimates by the horizon. This

adjustment results in a declining coefficient, similar to our findings.

34



to decline. The upper panel of Figure 12 also shows the empirical counterparts. The point

estimates of the regression coefficients exhibit a similar pattern and fall within the interval

produced by the model simulations at each horizon. Although there is a slight uptick in empirical

coefficients at shorter horizons–likely a result of data noise–the overall trend aligns with the

model’s projections, exhibiting a downward trajectory as the forecast horizon lengthens.

[Insert Table 7 approximately here]

This finding of predictability follows naturally from our model’s properties: a high

dividend yield is associated with elevated disaster risk, which in turn predicts higher future

expected returns on stocks relative to bonds. Table 7 presents the regression results of the

dividend yield on the disaster probability index derived from the model simulations. We report

various percentiles of the coefficient estimates, standard errors, and R2 statistics. The median R2

exceeds 0.5, indicating that the fear of potential disasters significantly drives the variation in

dividend yield. An elevated probability of disaster drives up the dividend yield, which in turn

signals higher expected future excess returns on stocks. Therefore, fluctuations in disaster

probability could potentially serve as a predictor of future stock excess returns, a topic we will

delve into further in Section VI.

It is also valuable to examine the extent of consumption growth predictability implied by

the model. Similar to the previous analysis, we conduct predictive panel regressions of

H-year-ahead log consumption growth on past country dividend yields:

(12)
H∑

h=1

∆ci,t+h = αi + βdivyieldi,t + ϵi,t+H
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where ∆ci,t+h is country i’s log growth in aggregate consumption between periods t+ h− 1 and

t+ h, and divyieldi,t is country i’s dividend yield on the aggregate market at period t.

The lower panel of Figure 12 shows the estimation results for cumulative horizons ranging

from 1 to 10 years. The coefficients from the simulated data vary widely, with both positive and

negative values for each horizon, indicating insignificant evidence of consumption growth

predictability. The point estimates from the historical data exhibit a similar pattern, with

magnitudes close to zero. These findings align with several studies (e.g., Beeler and Campbell,

2012; Campbell, 2003; Cochrane, 1994; Hall, 1988; Lettau and Ludvigson, 2001) that also report

little to no predictability of consumption growth over long horizons.

VI. Predictability from Disaster Probability Index

A. Model-Implied Predictability

From the analysis in the previous section, we understand that the disaster probability

index could serve as a predictor for future stock excess returns. In this section, we will conduct a

deeper analysis of this possibility. We will begin by examining the model’s implication on the

predictability from the disaster probability index.

We utilize the following panel regression model to investigate the predictability of future

excess returns:

(13)
1

H

H∑
h=1

[log(Re
i,t+h)− log(Rb

i,t+h)] = αi + βyit + ϵi,t+H ,

where Re
i,t+h and Rb

i,t+h are the gross returns on aggregate stock market indices and short-term
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government bills from year (t+ h− 1) to year (t+ h) for country i, respectively, H is the

forecasting horizon, yit is the disaster probability index of country i, and µi accounts for the

country fixed effects. We conduct this regression analysis using data generated through

simulations. As in the previous section, we simulated 1,000 paths for 17 different economies,

each spanning 1,000 years, and ran a panel regression on each simulated path. This analysis was

carried out for returns measured over various time horizons, ranging from 1 to 10 years.

[Insert Figure 13 approximately here]

The upper panel of Figure 13 presents the 1st, 50th, and 99th percentiles of the predictive

coefficients derived from the regressions of simulated data. The results indicate a robust positive

relationship between the disaster probability index and excess returns across all forecast horizons,

underscoring the influence of disaster risk on stock returns. As the forecast horizon extends, we

observe a gradual decrease in the magnitude of these coefficients, reflecting a diminishing impact

of disaster probability on excess returns over time. This pattern is consistent with the

characteristics of a disaster model with time-varying probabilities, where disaster risk tends to

mean-revert–an issue we have already discussed in Section B. The lower panel of Figure 13

displays the R2 values from these regressions, showing a clear upward trend as the forecast

horizon extends. The R2 starts at 0.075 for a one-year horizon and reaches a peak of 0.208 around

the seventh year, followed by a slight decline. This initial rise in R2 likely reflects the reduction in

noise from short-term returns as the horizon lengthens, allowing for clearer predictive signals.

However, as the forecast horizon becomes too extended, the R2 experiences a modest drop,

indicating a diminishing predictive power over the longer term.
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B. Real-Time Return Predictability

The model simulation results in section A confirm the significant predictive power of the

disaster probability index on future excess returns. In this section, we evaluate the real-time

predictability of the empirical disaster probability index. For this end, we regress the average

future excess stock return on the posterior mean of country disaster probability index estimated

from the TVPCD model. The panel regression model used here is identical to regression model

(13) in Section A, but with yit and log(Re
i,t+h)− log(Rb

i,t+h) derived from historical data rather

than model simulations. Additionally, to ensure real-time prediction, each period’s estimate of the

disaster probability index yit relies solely on the information available up to each point in time.

Specifically, yit represents the contemporaneous posterior mean of country i’s disaster

probability index. We construct yit in real-time using an expanding window approach. For each

year t, we estimate yit based on data available from the sample’s starting year (1833) up to year t.

We rerun the MCMC estimation procedure to obtain the posterior mean of country i’s disaster

probability index, yit, using all available data up to period t. This process is repeated for

subsequent years, t+ 1, t+ 2, and so on, using all the data available up to those years. We then

use this real-time disaster probability index, yit, to forecast future equity premiums over horizons

ranging from 1 to 10 years. Given that some countries in the sample have later start dates for their

consumption data, the real-time estimates of yit start from 1920.

[Insert Table 8 approximately here]

Panel A of Table 8 presents the predictive regression results using the full sample period

across forecasting horizons of 1 to 10 years. The results reveals that the disaster probability index

is a strong predictor of future returns. Specifically, a one-unit increase in the disaster probability
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index (equivalent to a 5.5 percentage point rise in the disaster probability, based on the sample

average of disaster probability index) predicts a 0.91 percentage point higher return in the

following year, with the predicted premium rising to 3.1% annually over a three-year horizon.

The magnitude of the regression coefficients initially experiences a slight increase in the short

term, followed by a gradual decrease as the forecast horizon extends, while maintaining

consistent predictive significance. The early rise in coefficients may be attributed to the presence

of more noise in the short-horizon return data. Additionally, the R2 statistic shows a steady

upward trend as the forecast horizon lengthens, reaching nearly 3.3% at the ten-year mark.

Compared to the regression results from the simulated data in Section A, the R2 from the

real-time prediction regressions are considerably lower. This discrepancy is likely due to the

greater variation in actual return data, which includes more shocks beyond disaster risk.

Turning to the subperiods, Panels B and C of Table 8 report the prediction results for the

prewar (pre-1945) and postwar (post-1946) periods. One notable difference between these two

periods is that far fewer disasters occurred in the latter. Despite this, we see that even in the

postwar era, the disaster probability index continues to exhibit strong and sustained predictive

power. Manela and Moreira (2017) interpret this postwar predictability as being driven by

ongoing concerns about potential disasters.

To explore whether disaster risk has cross-sectional predictability for returns, we examine

the same predictability regressions, replacing country fixed effects with year fixed effects. Panel

D of Table 8 presents these regression results. The coefficients become significantly positive after

two periods, and their significance increases notably after five periods. The weaker significance in

the earlier periods may be due to the interference of other individual-level factors, which diminish

as the forecasting horizon extends. This result suggests that the disaster probability index also
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exhibits some predictive power at the cross-sectional level, as economies with higher disaster risk

tend to predict higher future excess returns.

To further supplement the discussion on the disaster risk predictive power, we examine

whether the disaster indexes possess any out-of-sample forecasting power for realized disasters.

Specifically, we conduct the following panel regression:

Crisis
(H)
i,t+H = αi + βyit + ϵi,t+H

Here, the dependent variable is the crisis dummy variable, which indicates whether country i is

experiencing a disaster at time t. The variable Crisis = 1 denotes the occurrence of a disaster,

while Crisis = 0 otherwise. We adopt the definition from Marfè and Pénasse (2024): A

macroeconomic crisis is identified as a 2-standard-deviation decline in consumption growth

relative to its long-term trajectory:

Crisis
(H)
i,t =


1, if ∆c

(H)
i,t < mean(∆c

(H)
i,t )− 2× SD(∆c

(H)
i,t ),

0, otherwise.

where the H-year consumption growth is measured as: ∆c
(H)
i,t ≡ ln

(
Ci,t

Ci,t−H

)
.

Panel E of Table 8 presents the results of this predictive panel regression. We observe that

the disaster probability index demonstrates strong forecasting power for future crises across all

horizons. This finding not only reinforces the reliability of the disaster probability index but also

lends some support to its predictive power for returns.
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VII. Conclusions

To our best knowledge, this is the first paper to incorporate time-varying disaster

probabilities into the rare disaster model and to estimate the physical (or “real”) processes of

disasters and disasters probabilities in an integrated global framework with international

interactions of disaster risks. All the parameters used to characterize the processes of disasters

and disaster probabilities are estimated using the long-term national accounts data, which avoids

the potential tendency of overstating the disaster risk in typical parameter calibration when using

financial market data. The model identifies major historical disaster episodes, such as the world

wars and the great Depression, along with some disasters that affected only individual or several

countries. The empirical results from the TVPCD model accord very well with historical records

of macroeconomic disasters, and we think our estimates are more accurate than those reported in

recent similar studies.

With respect to the asset pricing implications of the estimated model, a match of the

observed real rates of return on risk-free claims and corporate equity requires a γ of 5.2, which is

substantively smaller than the estimates from previous rare disaster models. The introduction of

the time-varying disaster probability delinks the variations in disaster probabilities and the

realizations of disasters, lowers the required CRRA γ, increases the estimated volatilities of

equity returns and premia, and provides a better match for the Sharpe ratio compared to previous

rare disaster models. Moreover, the out-of-sample predictive regressions show that the disaster

probability index estimated from our model has significant real-time predictive power for excess

returns over long horizons, and this predictive ability holds both over time and in the

cross-section.
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FIGURE 1
Disaster Probabilities for the United States Estimated in This Paper and Im-

plied by Wachter (2013) and Barro and Liao (2021)
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FIGURE 2

World Disaster Probability

FIGURE 3

An illustration of a typical disaster dynamics
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FIGURE 4

Probability Density Function for the Immediate Disaster Effect ϕit

 FIGURE 5

Probability Density Function for the Permanent Disaster Effect ηit
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FIGURE 6

Fitted Model for China

FIGURE 7

Fitted Model for Germany
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FIGURE 8

Fitted Model for Japan

FIGURE 9

Fitted Model for Russia
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FIGURE 10

Fitted Model for United Kingdom

FIGURE 11

Fitted Model for United States
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FIGURE 12

Long-Horizon Regressions: Excess Return & Consumption Growth
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FIGURE 13

Model-implied Predictability from Disaster Probability Index
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TABLE 1

Estimated Parameters—Model with Time-Varying Probability of Disasters

Parameter Definition
Posterior Posterior

Mean s.d.

y∗w Mean-reverting value of ywt if no jumps −3.98 0.376
ρyw First order autoregressive coefficient for ywt 0.727 0.0807

y∗i (mean over i) Mean-reverting values of yit if no jumps −3.98
ρy First order autoregressive coefficient for yit 0.597 0.0593
αJw Tail exponent for J (1)

wt and J
(2)
wt 4.26 0.792

mw Mean value of J (1)
wt and J

(2)
wt 1.18 0.394

αJ Tail exponent for J (1)
it , J (2)

it and J
(3)
it 4.90 0.780

m Mean value of J (1)
it , J (2)

it and J
(3)
it 1.92 0.378

σyw s.d. of shock to ywt 1.20 0.395
σyi s.d. of shock to yit 0.877 0.170
pK Prob. of Kwt = 1(Kit = 1) 0.0262 0.00920
pD Prob. of Dit = 1 0.946 0.0497
pE Prob. of Eit = 1 0.457 0.0941
ρϕ First order autoregressive coefficient for ϕit 0.490 0.0953
α1 Rate parameter for ωϕit

20.9 2.17
αη Intercept term (Eq. [9]) −0.00660 0.00930
ρη Slope coefficient (Eq. [9]) 0.374 0.0761
α2 Rate parameter for ωηit 10.2 0.740
ρz First order autoregressive coefficient for zit (when

Iit = 0)
0.631 0.0187

µi (mean over i) Long-run average growth rate 0.0212
σεi (mean over i) s.d. of shock to consumption (Eq. [1]), pre-1945 0.0191
σεi (mean over i) s.d. of shock to consumption (Eq. [1]), post-1946 0.00619
σui (mean over i) s.d. of shock to potential growth rate (Eq. [6]) 0.0296
σνi (mean over i) s.d. of shock to event gap (Eq. [7]) 0.00647

55



TABLE 2
Country-years with Posterior Disaster Probability of 20% or More (outside of

global disaster years: 1838–1839, 1913–1921, 1930–1933, 1939–1945)

Country Year

Argentina 1889, 1890–1894, 1895, 1896–1901, 1902–1903, 1946, 1988, 1989–1990, 1991, 2001,
2002, 2003

Australia 1840–1843, 1844–1846, 1850–1853, 1854–1863, 1891–1893, 1946, 1947, 1952–1953,
1954

Austria 1934–1936, 1937, 1946–1947
Brazil 1893, 1894, 1922

Canada 1876, 1877, 1922, 1934
Chile 1922, 1923, 1956, 1958, 1974–1977, 1983–1985
China 1894, 1895, 1896, 1934–1935, 1936–1937, 1938, 1946–1947, 1959–1961

Columbia 1936, 1946–1951
Denmark 1922

Egypt 1922–1925, 1926, 1953–1954, 1974, 1976
Germany 1922–1924, 1927, 1929, 1946–1947
Greece 1840–1846, 1847–1848, 1856, 1859, 1860–1861, 1862–1863, 1864, 1889, 1890–1891,

1892, 1900, 1901, 1922–1924, 1946–1947, 2010, 2011, 2012
Iceland 1949–1952, 1953, 1969
India 1946–1950, 1951

Indonesia 1946, 1947
Italy 1946
Japan 1946

South Korea 1946–1947, 1950–1953
Mexico 1911, 1912, 1922–1923, 1929

Malaysia 1934, 1946–1947, 1953, 1986, 1987
New Zealand 1922, 1923, 1946–1947

Norway 1837, 1840, 1922
Peru 1989, 1990

Philippines 1934–1935, 1946, 1947
Portugal 1854
Russia 1889–1891, 1922, 1934, 1946

Singapore 1946–1953, 1958–1959
Spain 1936–1937, 1946–1950

Sri Lanka 1946, 1947
Sweden 1853–1854, 1946, 1947, 1948–1950, 1951

Switzerland 1853–1856, 1857, 1859–1873, 1876, 1877–1879, 1880, 1882, 1883, 1884, 1886, 1887–
1890, 1946

Taiwan 1905, 1934, 1938, 1946
Turkey 1877, 1878–1881, 1887, 1888, 1889, 1922, 1946–1947, 1949–1950

Uruguay 1874, 1875–1876, 1877–1879, 1880, 1888–1891, 1934, 1982, 1983–1985, 1986
United States 1862, 1922, 1934

Venezuela 1889, 1890–1898, 1899–1900, 1922–1923, 1929, 1934, 1935–1936, 1946–1947, 1948,
1949–1953, 1954, 1958–1959, 1983, 1984–1985, 2002, 2003, 2004

Note: Numbers in boldface indicate country-years with posterior disaster probability of 25% or more.
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TABLE 3

Estimated Parameters for Different Periods

Parameter
1920 1950 1980

Posterior Posterior Posterior Posterior Posterior Posterior
Mean s.d. Mean s.d. Mean s.d.

y∗w -4.00 0.388 -3.89 0.396 -3.84 0.370
ρyw 0.779 0.0793 0.722 0.0768 0.713 0.0708

y∗i (mean over i) -3.99 -3.99 -3.98
ρy 0.661 0.0707 0.570 0.0603 0.580 0.0639
αJw 4.26 0.788 4.24 0.811 4.27 0.779
mw 1.04 0.447 1.23 0.416 1.11 0.372
αJ 4.94 0.693 4.80 0.745 4.76 0.703
m 1.67 0.432 1.82 0.311 1.91 0.346
σyw 1.38 0.429 1.37 0.326 1.31 0.490
σyi 0.868 0.273 0.959 0.216 0.801 0.265
pK 0.0256 0.00962 0.0269 0.00916 0.0256 0.00932
pD 0.878 0.0892 0.950 0.0400 0.941 0.0535
pE 0.539 0.0978 0.513 0.0876 0.498 0.0863
ρϕ 0.484 0.107 0.481 0.104 0.480 0.104
α1 19.3 2.43 19.0 2.38 20.1 2.51
αη 0.00477 0.0104 0.00706 0.00920 -0.00150 0.00883
ρη 0.411 0.0874 0.390 0.0674 0.381 0.0760
α2 9.53 0.731 11.2 0.943 10.9 0.768
ρz 0.587 0.0299 0.600 0.0153 0.611 0.0175

µi (mean over i) 0.0169 0.0174 0.0204
σεi (–, pre-1945) 0.0176 0.0186 0.0185
σεi (–, post-1946) 0.0177 0.0102
σui (mean over i) 0.0271 0.0304 0.0306
σνi (mean over i) 0.00828 0.00846 0.00763
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TABLE 4

Estimated Parameters for Subsample Countries

Parameter
Full Sample OECD Countries non-OECD Countries

Posterior Posterior Posterior Posterior Posterior Posterior
Mean s.d. Mean s.d. Mean s.d.

y∗w −3.98 0.376 -4.03 0.412 -3.85 0.372
ρyw 0.727 0.0807 0.735 0.0808 0.730 0.0792

y∗i (mean over i) −3.98 -4.02 -3.97
ρy 0.597 0.0593 0.617 0.0512 0.541 0.0642
αJw 4.26 0.792 4.35 0.803 4.18 0.790
mw 1.18 0.394 1.02 0.388 1.15 0.394
αJ 4.90 0.780 5 0.745 4.59 0.682
m 1.92 0.378 1.86 0.332 1.77 0.310
σyw 1.20 0.395 1.41 0.366 1.27 0.418
σyi 0.877 0.170 0.631 0.213 1.15 0.287
pK 0.0262 0.00920 0.0217 0.00907 0.0262 0.00949
pD 0.946 0.0497 0.926 0.0616 0.929 0.0555
pE 0.457 0.0941 0.508 0.0973 0.565 0.0985
ρϕ 0.490 0.0953 0.482 0.103 0.470 0.113
α1 20.9 2.17 20.4 2.2 20.5 2.13
αη −0.00660 0.00930 -0.0102 0.00962 -0.00949 0.0119
ρη 0.374 0.0761 0.333 0.0768 0.463 0.0851
α2 10.2 0.740 10.4 0.642 10.1 0.828
ρz 0.631 0.0187 0.640 0.0151 0.628 0.0217

µi (mean over i) 0.0212 0.0199 0.0237
σεi (–, pre-1945) 0.0191 0.0186 0.0196
σεi (–, post-1946) 0.00619 0.00502 0.00782
σui (mean over i) 0.0296 0.0270 0.0335
σνi (mean over i) 0.00647 0.00590 0.00737
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TABLE 5

Asset Pricing Statistics—Data and Models

Statistics Data
TVPCD RE & LRR Model in

Nakamura et al. (2013)Model Barro and Jin (2021)

Mean rf 0.0075 0.0075 0.0075 0.009
Mean re 0.0790 0.0790 0.00790 0.0081

Mean (re − rf ) 0.0715 0.0715 0.0715 0.072
σ(rf ) 0.085 0.0246 0.0253 –
σ(re) 0.245 0.110 0.0974 –

σ(re − rf ) 0.245 0.106 0.0872 –
Sharpe ratio 0.29 0.675 0.820 –

Mean div. yield 0.0449 0.0498 0.0486 –
σ(div. yield) 0.0175 0.0152 0.0160 –

Autocorr. of div. yield 0.816 0.728 – –
γ – 5.22 5.86 6.4
β – 0.971 0.973 0.967

TABLE 6
Asset Pricing Statistics—Estimated Model with Alternative Subjective Dis-

count Factor, Risk Aversion, and IES

Statistics
1 2 3 4 5

Baseline β γ 1/θ 1/θ

γ (CRRA) 5.22 5.22 5.89 5.22 5.22
1/θ (IES) 2 2 2 1.5 1

β (subjective discount factor) 0.971 0.972 0.971 0.971 0.971
Mean rf 0.00750 0.00646 −0.00373 0.0122 0.0218
Mean re 0.0790 0.0781 0.0932 0.0731 0.0612

Mean (re − rf ) 0.0715 0.0716 0.0970 0.0609 0.0394
σ(rf ) 0.0246 0.0245 0.0292 0.0259 0.0300
σ(re) 0.110 0.109 0.118 0.0986 0.0901

σ(re − rf ) 0.106 0.106 0.116 0.0943 0.0868
Sharpe ratio 0.675 0.677 0.836 0.646 0.454

Mean div. yield 0.0498 0.0488 0.0633 0.0447 0.0335
σ(div. yield) 0.0152 0.0151 0.0185 0.0147 0.0143
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TABLE 7

Regressing Dividend Yield on Disaster Probability Index

divyieldit = αi + βyit + ϵit

Percentile 1% 2.5% 5% 50% 95% 97.5% 99%

β 0.00343 0.00363 0.00393 0.00577 0.00652 0.00665 0.00676
t 12.4 14.5 15.8 25.4 38.4 40.2 43.2
R2 0.284 0.314 0.342 0.540 0.679 0.698 0.711

TABLE 8

Out-of-sample Predictive Regression

Horizon

1 2 3 5 7 10
1
H

∑H
h=1[log(R

e
i,t+h)− log(Rb

i,t+h)] = αi + βyit + ϵi,t+H

Panel A: Full Sample

β 0.0193∗∗ 0.0266∗ 0.0314∗∗ 0.0229∗∗ 0.0182∗∗∗ 0.0149∗∗∗

t 1.98 1.89 1.96 2.41 2.63 3.15
R2 0.00230 0.00801 0.0164 0.0219 0.0248 0.0326

Panel B: Pre-1945

β 0.00275 0.0246∗∗ 0.0429∗∗ 0.0477∗∗ 0.0346∗ 0.0185
t 0.153 2.48 2.24 2.17 1.75 1.55
R2 2.41× 10−5 0.00323 0.0129 0.0281 0.0242 0.0139

Panel C: Post-1946

β 0.0277∗∗ 0.0222∗∗ 0.0220∗∗∗ 0.0225∗∗∗ 0.0204∗∗∗ 0.0214∗∗∗

t 2.17 2.50 2.80 3.60 3.16 4.24
R2 0.00549 0.00683 0.0105 0.0199 0.0250 0.0461

1
H

∑H
h=1[log(R

e
i,t+h)− log(Rb

i,t+h)] = γt + βyit + ϵi,t+H

Panel D: Full Sample

β 0.0185 0.0269∗ 0.0423∗ 0.0304∗∗ 0.0241∗∗ 0.0204∗∗

t 1.36 1.65 1.73 2.05 2.10 2.24
R2 0.143 0.146 0.147 0.196 0.238 0.280

Crisis
(H)
i,t+H = αi + βyit + ϵi,t+H

Panel E: Full Sample

β 0.0369∗∗∗ 0.0332∗∗∗ 0.0293∗∗∗ 0.0167∗∗∗ 0.00448∗∗ 0.00986∗∗∗

t 8.56 7.41 6.43 4.61 2.21 3.98
R2 0.0679 0.0533 0.0394 0.0136 0.00103 0.00575
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