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Abstract

This paper investigates crash risk premiums in individual stocks using skewness
swaps. These swaps involve buying a stock’s risk-neutral skewness and receiving
the realized skewness as a payoff. The strategy’s returns, which measure the
skewness risk premium, are found to be consistently large and positive. This
suggests investors are concerned about potential crashes in individual stocks and
require substantial compensation for bearing this risk. Notably, significant results
are mainly observed after the 2007/2009 financial crisis, indicating changes in
post-crisis option market dynamics. Cross-sectional determinants of skewness
swap returns include measures of systematic crash risk and stock overvaluation.
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I. Introduction

Stock markets do crash. Over the past century, the U.S. stock market has

experienced at least five of these episodes, two of them just ten years apart: the global

financial crisis crash in 2008 and the Covid pandemic crash in 2020.1 Due to their

rarity, they are very hard to predict and investors are left with the only option to hedge

against these events, rather than avoiding them. The option market provides an ideal

laboratory to study the pricing of crash risk. Investors can protect themselves from

market crashes by purchasing put options or more sophisticated option portfolios which

provide hedges against variance and skewness risk. Indeed, a significant body of

literature focusing on variance risk, skewness risk, and crash risk has examined the

returns generated by these hedging option portfolios, particularly variance swaps and

skewness swaps (see e.g., Carr and Wu (2009), Kozhan et al. (2013), Schneider and

Trojani (2019), Bakshi and Kapadia (2003), Bollerslev and Todorov (2011), Bondarenko

(2014b)). These studies have consistently documented highly negative returns,

indicating that investors are willing to pay exceptionally high premia to protect

themselves against market downturns and turmoils.2

Individual stocks do crash as well and they do so even outside periods of market

stress.3 Surprisingly, the evidence on pricing of crash risk for individual stocks is

1Other notable events that are commonly considered stock market crashes include the 1929 Great
Depression, Black Monday of 1987, and the 2001 dotcom bubble burst.

2For example, Carr and Wu (2009) and Kozhan et al. (2013) document that the average absolute
monthly return of a variance swap and a skewness swap on the S&P500 index is approximately 66% and
42%, respectively.

3In the last twenty years, excluding crisis periods, an average of eighteen S&P500 stocks per month
have experienced at least one daily drop greater than -10%.
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limited. Early studies agree that single-stock put options are cheap and demand for

out-of-the-money puts is low compared to out-of-the-money calls (see e.g., Bollen and

Whaley (2004), Garleanu, Pedersen, and Poteshman (2009), Bakshi, Kapadia, and

Madan (2003)). Prior studies that have employed option returns to assess the premium

paid by investors to be protected against the risk associated with individual stocks have

predominantly concentrated on measuring variance risk premiums using variance swaps

or variance portfolios (Carr and Wu (2009), Duarte, Jones, and Wang (2023), Heston

and Todorov (2023)).

This paper contributes to this literature by studying skewness swap returns on

individual stocks within the S&P500 index from 2003 to 2020. Specifically, the paper’s

contribution can be divided into two key aspects.

First, it proposes a methodology to construct skewness swaps at the individual

stock level. These swaps provide a direct exposure to skewness, while being designed to

be independent of other moments. The methodology builds on Schneider and Trojani

(2019), with the added feature of independence from the fourth moment as well. I

provide both convergence results and a simulation analysis, which demonstrate the

accuracy of the approach. Skewness swaps are trading strategies in which an investor

buys the stock’s risk-neutral skewness via an option portfolio at the beginning of the

month and receives, as a payoff, the realized skewness of the stock at the end of the

month. The strategy is a pure bet on skewness: it performs well when realized returns

exhibit high positive skewness and incurs losses when they exhibit low negative
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skewness.4 While skewness swaps have been used to study the skewness risk premium

on the market index (see, e.g., Schneider and Trojani (2015), Kozhan et al. (2013)), to

the best of my knowledge, they have not been employed to investigate the skewness risk

premium at the individual stock level.

Empirical implementation of skewness swaps across the cross-section of stock

options reveals consistently positive swap returns of remarkable magnitude, with an

average Sharpe ratio of 0.53. Despite their overall positivity, the time-series pattern of

swap returns displays a strong negative skew, characterized by infrequent but significant

losses. These returns resemble the performance of selling crash insurance, which

typically generates profits until the triggering event occurs – in this case, a crash of the

stock, leading to substantial losses in the strategy. The notably high average returns

strongly indicate the presence of a significant crash risk premium priced within

individual stock options. Incorporating transaction costs, such as bid-ask spreads, does

diminish profits to some extent but does not alter the primary finding: skewness swap

returns remain positive for the majority of stocks. These results hold up even when

accounting for the discrete nature of option prices and considering the limited range of

moneyness. Importantly, these returns cannot be attributed to equity and variance risk

premia alone, as their combined effect can only account for approximately 50% of the

4Formally, the payoff of a skewness swap is the difference between the realized skewness of the stock
(denoted P-skewness) and the risk-neutral skewness (denoted Q-skewness). The payoff of the strategy is
thus positive when the realized P-skewness exceeds the Q-skewness. This difference provides a direct and
tradable measure of the compensation investors demand for bearing skewness risk, that is, the skewness
risk premium. Just as variance swap returns have been used to measure the variance risk premium (e.g.,
Carr and Wu (2009), Martin (2017)), skewness swap returns capture the skewness risk premium. From
a hedging perspective, an investor seeking protection against negative skewness would sell the skewness
swap, thereby paying the skewness risk premium.
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variability observed in skewness swap returns.

Secondly, skewness swap returns become especially pronounced following the

2007/2009 financial crisis. In fact, when the results are segmented into pre-crisis and

post-crisis subsamples, it becomes evident that skewness swap returns experienced a

significant right shift in distribution after the financial crisis. Moreover, a greater

number of stocks display statistically significant positive swap returns during this

post-crisis period. In addition to the increase in crash risk premium measured by

skewness swap returns, I also document an increase in the price of crash risk in

individual stocks. This is reflected by a more left-skewed implied volatility smile, driven

by a higher price of deep out-of-the-money options.

Complementing this evidence, a portfolio sort analysis shows that swap returns

are higher for stocks with greater systematic crash risk and overvaluation risk, a

relationship that arises specifically in the post-crisis period. This pattern aligns with

the broader macroeconomic environment: the years between the financial crisis and the

Covid-19 crisis were marked by exceptionally low interest rates, which encouraged

reaching-for-yield behavior and drove asset valuations higher (see, e.g., Hau and Lai

(2016), Lian, Ma, and Wang (2019)). These findings reinforce the idea that skewness

swap returns reflect the stock-level crash risk in the economy.

The paper is related to several strands of literature. The methodology

implemented is the skewness swap of Schneider and Trojani (2019), which provide a

simple approach to trading skewness in both the stock and option markets. This

methodology is situated within an extensive body of research that stems from the
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findings of Breeden and Litzenberger (1978) and Carr and Madan (2001).5 On the

empirical front, numerous studies have explored the dynamics of variance swaps or

variance portfolios applied to the market and individual stocks (see e.g., Heston, Jones,

Khorram, Li, and Mo (2022), Duarte, Jones, and Wang (2023), Dew-Becker, Giglio, Le,

and Rodriguez (2017), Aı̈t-Sahalia, Karaman, and Mancini (2020), Filipović, Gourier,

and Mancini (2016), Johnson (2017)). In contrast, the empirical investigation of

skewness swaps has thus far only centered on skewness swaps on the market index

(Kozhan et al. (2013), Or lowski, Schneider, and Trojani (2023), Schneider and Trojani

(2019)).6

Furthermore, this paper is related to the broader literature exploring the risk

premium associated with the skewness of individual stocks. Typically, individual stocks

exhibit positive skewness (Bessembinder (2018)). However, the ex-ante measurement of

skewness has traditionally presented challenges, leading to a variety of methodologies

and occasionally conflicting findings. Notably, contradictory outcomes emerge when

ex-ante skewness is computed from stock returns versus the option market. For

example, Boyer, Mitton, and Vorkink (2010) find that stocks with the lowest expected

idiosyncratic skewness outperform those with the highest idiosyncratic skewness. In

contrast, Stilger, Kostakis, and Poon (2017) document that stocks exhibiting a greater

5This research has led to the formulation of techniques for trading variance or entropy, and, more
broadly, higher-order moments using static option portfolios, see e.g., Carr and Wu (2009), Martin (2017),
Schneider and Trojani (2019), Bondarenko (2014a), and Driessen et al. (2009) for trading correlation.
The methodology of Schneider and Trojani (2019) is nested into the results of Bondarenko (2014a), who
focus on variance trading but also provide a general result on how to trade a generic payoff.

6There is also a large literature that investigates crash risk and skewness risk in the S&P500 option
market with parametric or semi-parametric methodologies other than skewness swaps, see e.g., Andersen
et al. (2015b), Todorov (2010), Bates (1991), Bates (2012), Backus, Chernov, and Martin (2011), and
Welch (2016).
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ex-ante negative skewness in the risk-neutral distribution tend to yield lower subsequent

returns.7 The approach to skewness risk premium analysis outlined in this paper

distinguishes itself from prior research by not depending on conventional portfolio-based

cross-sectional methods intended to predict stock returns based on ex-ante skewness

information. Instead, it employs an individualized trading strategy for each stock,

specifically a skewness swap. The returns generated by this strategy directly capture

the difference between the P skewness (skewness in the real-world measure), and Q

skewness (skewness in the risk-neutral measure) of each individual stock. The positive

swap returns documented in this paper align with investor preferences for positively

skewed payoffs, as proposed in the model by Barberis and Huang (2008) (see also

Eraker and Ready (2015)).

Finally, the paper is also related to the literature that connects crash risk and

skewness risk with overvaluation risk, as is done for example in Chen, Hong, and Stein

(2001), Stilger, Kostakis, and Poon (2017), and Rehman and Vilkov (2012).

The paper is structured as follows. Section II presents the methodology, while

Section III provides an overview of the data used. Section IV presents the principal

findings: Section IV. A analyzes the distribution of swap returns, Section IV. B compares

7Other relevant studies examining the pricing of individual skewness risk include Amaya, Christof-
fersen, Jacobs, and Vasquez (2015), who demonstrate that stocks with the lowest realized skewness
outperformed those with the highest realized skewness. Additionally, Schneider, Wagner, and Zechner
(2020) establish a connection between option-implied ex ante skewness and ex post residual coskewness,
while Bali and Murray (2013) identify a negative relationship between risk-neutral skewness and skew-
ness in asset returns. Focusing on idiosyncratic risk, Bégin, Dorion, and Gauthier (2020) and Gourier
(2016) delve into the significant pricing of idiosyncratic jump risk and variance risk, respectively. In con-
trast, Langlois (2020) find that the role of idiosyncratic skewness risk is not as robust when compared to
systematic skewness risk. Turning attention to the financial crisis, Kelly, Lustig, and Van Nieuwerburgh
(2016) and Battalio and Schultz (2011) highlight the elevated pricing of put options on individual stocks
during the sample period of 2007-2009.
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skewness swap returns with equity and variance swap returns, and Section IV. C

explores the post-financial crisis period in detail. Section V includes the model-based

and corridor-based versions of skewness swaps as robustness checks. Finally, Section VI

concludes. The Appendix includes the methodological details and proofs.

II. Skewness Swaps: Theory and Implementation

A skewness swap is a trading strategy with which an investor can directly buy

the skewness of an asset and gain the skewness risk premium. The methodology

employed in this paper is an application of Schneider and Trojani (2019) but

incorporates two modifications: i) isolating skewness from kurtosis, and ii) considering

the early exercise of American options. The econometric details and a convergence

analysis are reported in Appendix A and B, while this section only presents the

intuition and the main formulas used in the empirical section.

A. Background on Variance Swaps

Before introducing the skewness swaps, this section recalls some known results

on variance swaps. As outlined in Carr and Wu (2009), the payoff at maturity T to the

long side of the variance swap is equal to the difference between the realized variance

over the life of the contract, RVt,T , and a constant called the variance swap rate, SWt,T :

[RVt,T − SWt,T ] L,
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where L denotes the notional dollar amount, and t is the start date of the contract. By

no arbitrage, SWt,T = EQ
t [RVt,T ], and the variance swap has zero net market value at

entry. The return on the strategy thus depends on the difference between the realized

variance RVt,T and the risk-neutral variance SWt,T and is a direct measure of the

realized variance risk premium.

It is a known result that the swap rate can be measured at time t with the price

of a portfolio of options with maturity T (see e.g., Carr and Madan (2001), Carr and

Wu (2009), Martin (2017), among others). The realized variance can be measured with

the sum of squared daily returns (Carr and Wu (2009)), or by squaring the return over

the time period from t to T .8 The latter can be measured with the payoff of the option

portfolio employed in calculating the swap rate (see e.g., the variance portfolios in

Heston et al. (2022)).

B. Skewness Swaps: Theory

The skewness swap is defined in a similar way to the variance swap. The payoff

at maturity T to the long side of the skewness swap is equal to the difference between

the realized skewness over the life of the contract, RSt,T ,9 and a constant called the

skewness swap rate, SSWt,T , which measures the risk-neutral skewness, times the

8Because variance has the aggregation property of time, it holds EQ
0

[∑T
(δS)2

]
= EQ

0

[
(ST − S0)

2
]

if prices are martingales (see Neuberger (2012), Bondarenko (2014a)). The third moment, instead, does
not have the time-aggregation property.

9In this context, realized skewness over the life of the contract refers to the cube of the return measured
from time t to T , as will be formally defined in Proposition 1.
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notional L:

(1) [RSt,T − SSWt,T ] L.

Skewness portfolios can be constructed in different ways, depending on how realized

skewness and risk-neutral skewness are measured. For the baseline analysis, I

implement the simple swap methodology of Schneider and Trojani (2019), which

extends the model-free methodology of Bakshi et al. (2003) to measure the swap returns

of every moment of the distribution.10 I postpone the analyses of more complex

model-based and corridor-based alternatives in the robustness Section V.11

The structure of the swap strategy of Equation 1 involves a fixed leg (SSWt,T )

and a floating leg (RSt,T ), which are exchanged at maturity between two counterparts.

These components are defined in Schneider and Trojani (2019) using the following

general formulas, which can be applied to trade not only skewness but any moment of

the distribution:

(2) fixed legt,T =
1

Bt,T

(∫ Ft,T

0

Φ
′′
(K)Pt,TdK +

∫ ∞
Ft,T

Φ
′′
(K)Ct,TdK

)
10Bakshi et al. (2003) provide a static methodology to measure the standardized and non-standardized

risk-neutral moments, while Schneider and Trojani (2019) provide a methodology to trade non-
standardized moments. The two methodologies are closely related, and indeed the skewness swap rate
employed in this paper has a correlation of more than 90% with the price of the cubic contract of Bakshi
et al. (2003).

11A different set of skewness swap methodologies are those proposed by Kozhan et al. (2013) and
Or lowski et al. (2023), in which the traded realized skewness is the sum of daily cubed returns, i.e.,∑
t r

3
t,t+1, which is different from the Bakshi et al. (2003) third moment over the full period, i.e., r3

0,T .

The methodologies that trade
∑
t r

3
t,t+1 involve a continuous rebalancing of the option portfolio with

consequent high trading costs. I therefore opt for the skewness portfolio of Schneider and Trojani (2019)
which involves a static option portfolio and a continuos rebalancing only in the underlying asset.
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(3)

floating legt,T =

(∫ Ft,T

0

Φ
′′
(K)PT,TdK +

∫ ∞
Ft,T

Φ
′′
(K)CT,TdK

)
︸ ︷︷ ︸

Payoff of the option portfolio

+
n−1∑
i=1

(
Φ
′
(Fi−1,T )− Φ

′
(Fi,T )

)
(FT,T − Fi,T )︸ ︷︷ ︸

Dynamic trading in the underlying

.

Pt,T and Ct,T are the prices of put and call options at time t with maturity T

and strike K, Bt,T is the zero-coupon bond with maturity T , and Ft,T is the forward

price at time t for delivery at time T . PT,T and CT,T denote the put and call option

payoff at maturity, defined as max(0, K − ST ) and max(0, ST −K), respectively.

Equation 2 shows that the fixed leg is an option portfolio with weights given by

the function Φ
′′
, which determines the moment of the distribution traded with the swap

(e.g., variance or skewness). Equation 3 shows that the floating leg is composed of two

parts: the payoff at maturity of the same option portfolio defined in Equation 2, plus a

dynamic trading strategy in the forward market, which is rebalanced on the n

intermediate dates: t < t1 < ... < tn−1 < tn = T . To simplify the notation, I denote Fti,T

with Fi,T .

I implement the above swap strategy with a specific choice of the Φ function,

which makes the swap a trading strategy specifically designed to target skewness. This

is formally demonstrated in the following Proposition:

Proposition 1. The skewness swap S with the floating leg given by Equation 3 and the

fixed leg given by Equation 2 with

(4)
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Φ(x) = ΦS

(
x

F0,T

)
= −24

(
x

F0,T

)1/2

log

(
x

F0,T

)
+24

[(
x

F0,T

)1/2
(

log

(
x

F0,T

)2

+ 8

)
− 8

]

verifies the following property:

(5) fixed legΦS ,0,T
= EQ

0

[(
log

(
FT,T
F0,T

))3

+O

(
log

(
FT,T
F0,T

)5
)]

.

Proof. See Appendix A.

Proposition 1 formally proves that, under the choice of the Φ function given by

Equation 4, the leading term of the floating leg corresponds to the third

non-standardized moment of the forward return distribution.12 This leg is independent

of the first, second, and fourth moments, while the error component is a function of the

fifth moment.

To better visualize how the option strategy defined by Φ relates to the third

moment, Figure 1 plots the payoff of the option portfolio as a function of the forward

return
(

log
(
FT,T
F0,T

))
.13

[Figure 1 here]

The figure shows that the payoff accurately traces the cube of the return. The

figure also displays the payoff of the option portfolio implemented by Schneider and

Trojani (2019) and Schneider and Trojani (2015), which relies on a different choice of Φ

12The standardized and non-standardized third moments are both used in the literature as measures
of skewness. While they both have advantages and disadvantages, the choice of the non-standardized
skewness in this paper is dictated by the tradability of the skewness swap. The non-standardized skewness
is also consistent with the skewness preferences of Kraus and Litzenberger (1976).

13Note that the payoff of the option portfolio equals Φ(FT,T )− Φ(F0,T )− Φ
′
(F0,T )(FT,T − F0,T ) (see

Carr and Madan (2001)).
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function based on the Hellinger distance.14 In this case the accuracy is lower, especially

in the tails of the distribution. Numerically, Appendix B shows that the gain in the

convergence of the skewness swap implemented in this paper over that implemented in

Schneider and Trojani (2019) can be as high as 20%, underscoring the importance of

isolating the third moment from the fourth.

C. Skewness Swaps: Implementation and Convergence

The fixed and floating legs of the swap contain a theoretical portfolio with a

continuum of options with strikes in the range [0,+∞]. However, only a finite number

of strikes is listed on the options market. Thus, I implement the following discrete

approximation. Suppose that at time t there are N calls and N puts traded in the

market. I order the strikes of the calls such that

K1 < ... < KMc ≤ Ft,T < KMc+1 < ... < KN and the strikes of the puts such that

K1 < ... < KMp ≤ Ft,T < KMp+1 < ... < KN . The integrals of the fixed leg in Equation

2 are then approximated with the following quadrature formula:

(6) fixed legt,T =
1

Bt,T

(
Mp∑
i=1

Φ
′′
(Ki)Pt,T (Ki)∆Ki +

N∑
i=Mc+1

Φ
′′
(Ki)Ct,T (Ki)∆Ki

)
14The Hellinger Φ3 function implemented in Schneider and Trojani (2019) is reported in Equation A.1

in the Appendix. It satisfies fixed legΦ3,0,T = EQ
0

[
1
6y

3 + 1
12y

4 +O(y5)
]
, where y = log(FT,T /F0,T ).
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where

∆Ki =


(Ki+1 −Ki−1)/2 if 1 < i < N

(K2 −K1) if i = 1

(KN −KN−1) if i = N

The floating leg in Equation 3 is composed of two parts: the payoff of the option

portfolio plus the delta hedge. The integrals of the option portfolio are approximated

with the same quadrature approximation outlined above; the delta hedge is

implemented each day ti, starting from day t1 (the day after the start date of the swap)

until day tn−1 (the day before the maturity of the swap).

In Appendix B, I verify the numerical convergence of the discretized swap

methodology to the true skewness under the Merton jump-diffusion model. The results,

shown in Table B.1, indicate that the value obtained using just four call and four put

options deviates from the model-implied skewness by approximately 5%, demonstrating

that the methodology achieves a high level of accuracy even with a small number of

options.

Another empirical adjustment to the theoretical formulas is necessary because

single-stock options are American-style, meaning they can be exercised at any time

before maturity. To account for this and ensure the tradability of the skewness swap, I

incorporate quoted American option prices in the fixed leg formula and determine the

option payoff in the floating leg by evaluating the optimal exercise of these options

daily, following the market-based rule introduced by Pool et al. (2008). The accuracy of
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this American version of the skewness swap in measuring skewness depends on the early

exercise premium. In Section IV, I show that in this empirical setting, the error remains

negligible, as the skewness swap consists exclusively of out-of-the-money options. For a

detailed explanation of the construction of the American skewness swap, see Appendix

A.

1. What is the Return on a Skewness Swap?

The payoff of the long side of a skewness swap is defined in dollars by Equation

1. The return is then calculated by standardizing this payoff by the capital required to

establish the position, that is, the cost of purchasing the fixed leg of the swap. This cost

is given by

capital =
1

Bt,T

(∫ Ft,T

0

| Φ′′(K) | Pt,TdK +

∫ ∞
Ft,T

| Φ′′(K) | Ct,TdK

)

The formula contains the absolute values of the portfolio weights, | Φ′′(K) |, in the

integrals to account for the fact that the skewness swap portfolio involves both long and

short option positions. This ensures that all positions are properly incorporated in

terms of capital requirements and total exposure.

III. Data

This section describes the data sources, the data filtering, and the main variables

used in the empirical analysis.
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Time Period and Roll-over of the Trading Strategies: I apply the skewness swap

to all the components of the S&P500 separately over the period from January 2003 to

December 2020. I fix a monthly horizon for the skewness swaps, starting and ending on

the third Friday of each month, consistent with the maturity structure of option data.

Because the issue of new options sometimes occurs on the Monday after the expiration

Friday, I take as the starting day of the swaps the Monday after the third Friday of each

month.

Security Data: The list of the actual components of the S&P500 is taken from

Compustat. This sample is merged with Optionmetrics and Center for Research in

Security Prices (CRSP), with the exclusion of the stocks for which there is not an exact

match between the daily close price reported by Optionmetrics, CRSP, and Compustat.

The data on the security prices and returns are taken from CRSP, while the data on

firm characteristics are taken from Compustat. After this selection, the sample consists

of 835 stocks. The methodology requires the calculation of the forward price at time t

for delivery of the asset at time T . It is calculated as Ft,T = Ste
r(T−t) − AVD according

to standard no-arbitrage arguments, where r is the risk-free interest rate, St is the stock

price at time t, and AVD is the accumulated value of the dividends paid by the stock

between time t and time T . The data on the dividend distribution and the risk-free rate

are taken from Optionmetrics. I consider only the periods in which stocks do not

distribute special dividends in order to avoid special behavior of stocks.

Options Data: The data on option prices and attributes for both single stocks and the
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S&P500 index come from Optionmetrics. The following data filtering is applied at the

start of the swap: I include only options with positive open interest and exclude those

with negative bid-ask spreads, negative implied volatility, or a bid price of zero. The

swap is implemented only if at least two call options and two put options pass these

filters to construct the fixed leg. After filtering, each stock has an average of 100

monthly swap returns over the full sample period, with approximately 10 to 12 options

used in each swap implementation.

FOMC Announcement Data: The information regarding interest rate

announcements from the Federal Open Market Committee (FOMC) is sourced from the

Federal Reserve Board’s website.15 The analysis exclusively incorporates meetings, both

scheduled and unscheduled, that have associated statement files. This selection criteria

is applied because these meetings are the ones where discussions regarding potential

interest rate adjustments took place.

Start and End of the Financial Crisis 2007/2009: As in Kelly et al. (2016), I

consider the start date of the crisis as August 2007 (the asset-backed commercial paper

crisis) and June 2009 as the end date of the crisis. The COVID-19 recession is set to

begin in February 2020, in line with NBER recession dating.

15Source: https://www.federalreserve.gov/monetarypolicy/fomc historical year.htm
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IV. Empirical Results

The monthly returns from skewness swaps provide a means to assess the

time-series and cross-sectional aspects of skewness risk premiums in individual stocks.

Section IV. A analyzes the swap return distribution; Section IV. B investigates the

relation between skewness swaps and equity and variance swap returns; and Section

IV. C analyzes the returns before and after the 2007–2009 financial crisis.

A. Skewness Swap Returns

Skewness swaps are implemented independently each month for every individual

stock in the sample. As a result, each stock has its own time series of monthly swap

returns. Panel A1 of Table 1 presents the mean, median and annualized Sharpe ratio of

the returns of a value-weighted portfolio of skewness swaps on individual stocks. Each

month, the portfolio is constructed by including all individual skewness swaps, with

weights proportional to the market capitalization of each stock. For comparison, Panel

A2 presents the findings for the skewness swaps on the S&P500 index. Panel A3

analyzes the skewness swap returns for each stock separately, and reports cross-sectional

averages of mean and median skewness swap returns, along with the number of stocks

exhibiting statistically significant positive or negative swap returns.

[Table 1 here]

The results in Panel A are very strong across all three cases: the returns of

skewness swaps are positive, significant, and very high.
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The average return of the portfolio of skewness swaps is 21.91% per month,

yielding a Sharpe ratio of 0.54 (Panel A1). Panel A of Figure 2 presents the histogram

of these portfolio returns. The distribution has a positive mean but it also exibits a

negative skewness. Indeed, the distribution has a very long left tail, which corresponds

to months in which the skewness swap returns are highly negative.

[Figure 2 here]

Panel B of Figure 2 presents the time series of the portfolio’s monthly returns,

while Panel C illustrates the cumulative growth of a one-dollar investment in a portfolio

that allocates each month 95% to T-bills and 5% to the skewness swap portfolio. On

average the return is positive, but the dispersion is huge: there are months in which the

return is below −100% or above +100%. The gain shares some similarities with the

return on selling insurance: on average it is profitable until the trigger event happens (a

crash in this case), at which point it generates large losses. For the swap strategy the

risk is even higher because the return can be less than −100% due to the short positions

in the portfolio of options. Two main crashes stand from the graph: the financial crisis

of 2007-2009 and the COVID-19 crisis. These graphs show that the skewness swap is a

highly profitable and highly risky strategy. This is also reflected in the difference

between the mean and the median of the skewness swap portfolio returns in Table 1:

due to these rare crash events, the mean is much lower than the median. We can

interpret the median as the average return outside the crashes. From a hedging

perspective, an investor who wants to hedge against a drop in the skewness will sell the
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skewness swap, and the results in Table 1 show that investors are willing to accept deep

negative returns for this hedge.

The results for the skewness swap on the S&P500, reported in Panel A2, are

consistent with those documented in the existing literature,16 and demonstrate that the

magnitude of swap returns in individual stocks is considerably lower, approximately

around half, than the corresponding swap return on the S&P500. These results are

consistent with the hypothesis that investors are more concerned about market crash

risk than crash risk in individual stocks.

Panel A3 analyzes the cross-sectional distribution of skewness swap returns,

confirming that S&P500 stocks predominantly exhibit positive and substantial skewness

swap returns. The average monthly swap return is 20.55%, comparable to the portfolio

returns in Panel A1. The mean return is significantly positive for 146 stocks, while the

median return is significantly positive for 673 stocks. Notably, no stocks display a

statistically significant negative mean or median swap return. Consistent with the

portfolio results, the median return exceeds the mean, due to occasional instances of

extreme negative returns.

Altogether, the results from Panels A1, A2, and A3 support the idea that

investors have a preference for positive skewness not only at the market level but also at

the individual stock level.

16The average monthly skewness swap return on the S&P500 implemented by Kozhan et al. (2013)
during the period 1996-2012 amounted to -42% (variable xs in their Table 1). The negative sign results
from their standardization using the risk-neutral skewness, which is negative, while my standardization
employs the absolute value of the risk-neutral skewness. Similarly, according to Schneider and Trojani
(2015), the Hellinger skewness swap applied to the S&P500 in the sample period 1990-2014 yielded an
average monthly payoff of approximately 0.0042 and an implied leg of -0.0075 (results in their Figure 9
for x = 0). This corresponds to a monthly return of approximately 56%.
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The table also provides the outcomes of three robustness checks. Panel B

computes the return of a skewness swap without the dynamic trading in the underlying

asset in the floating leg of Equation 3. The results show that, even without

delta-hedging, the returns of the skewness swaps are still highly positive and significant.

Panel C calculates the swap return while accounting for the bid-ask spread

incurred by investors. Optionmetrics provides quoted bid-ask spreads for each option at

the close of each trading day. Based on prior research showing that investors typically

pay 40% to 60% of the quoted option spread (see e.g., Muravyev and Pearson (2020)), I

adopt a conservative approach to transaction costs. Specifically, for this analysis, I

assume investors pay 60% of the option bid-ask spread and 100% of the stock bid-ask

spread. Incorporating transaction costs significantly reduces the average return,

underscoring the bid-ask spread as a key friction that some investors pay while others

profit from. Nonetheless, for those fully paying the transaction costs, the mean swap

return remains 10.58% for the swap portfolio (Panel C1) and 4.95% across the

cross-section of stocks (Panel C3). Even if the return for the portfolio is not statistically

significant, 62 stocks display significantly positive swap returns and only one

significantly negative. Overall, these results emphasize the positive returns of the

strategy even after accounting for transaction costs.

Finally, Panel D computes the return of a skewness swap that uses synthetic

European option prices instead of the actual American option prices.17 Also in this case

17The synthetic European option prices are recovered with the Black–Scholes formula applied to the
implied volatility of the American option prices provided by Optionmetrics. This European swap is
not tradable, but its return is useful to measure the importance of the early exercise component in the
tradable American swap for individual stocks.
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the returns are still positive and significant.

B. Relation between Skewness Swaps, Variance Swaps, and

Stock Returns

In this section, I examine the interplay among skewness swaps, variance swaps,

and stock returns. The objective is to determine whether skewness swaps are fully

explained by variance swaps and equity returns or if they provide supplementary

insights.

[Figure 3 here]

Figure 3 depicts the time-series of three cross-sectional quantiles (10%, 50%, and

90%) of skewness swap and variance swap returns for individual stocks.18 The figure

also highlights three significant crashes that resulted in deep negative returns for

skewness swaps: September 2008 (Lehman default), August 2011 (US credit rating

downgrade), and March 2020 (Covid-19 crisis). Corresponding to these events, variance

swap returns display major positive spikes. This is expected since, during crashes,

volatility rises while skewness generally drops. However, outside of these pivotal events,

the negative correlation between the two series is less evident.

[Table 2 here]

18The variance swap is a trading strategy with the same structure as the skewness swap but with port-

folio weights such that fixed legt,T,Φ2
' EQ

t

[(
log
(
FT,T

Ft,T

))2
]
. Following Schneider and Trojani (2015), I

implement the variance swap of Equation 2 with Φ function equal to Φ2(x/F0,T ) = −4((x/F0,T )0.5 − 1).
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Table 2 compares skewness swap returns with equity returns (Panel A), and

variance swap returns (Panel B). It reports (i) the percentage of months in which equity

or variance swap returns share the same sign as skewness swap returns, and (ii) the

R-squared from regressing skewness swap returns on equity or variance swap returns.

The analysis is computed for the portfolio of swaps (Panels A1 and B1) and for the

individual swaps, for which the table reports cross-sectional averages and quantiles

(Panels A2 and B2). Finally, Panel C presents the R-squared from a regression of

skewness swap returns on equity returns, variance swap returns, and, to capture

potential nonlinearities, the square and cube of equity returns. Only the stocks with at

least 100 swaps are included in this analysis (401 stocks).

As expected, skewness swap returns tend to align with the same sign as equity

returns in most instances, 74% of the months on average for individual swaps and

82.71% for the portfolio (see Panel A). The average cross-sectional R squared is 21.08%

for individual swaps and 45.90% for the portfolio, indicating that there is a substantial

portion of the variation in skewness swap returns unexplained by equity returns.

Similar observations hold when examining the relationship between skewness

swap returns and variance swap returns (Panel B). As expected, the variables display a

negative comovement, since they have the same sign for less than 30% of the months for

both the individual and portfolio of swaps. While the R-squared are higher than in

Panel A (around 61% for the portfolio and an average of 41.2% for individual swaps),

there is still substantial variation left unexplained.

In the most stringent specification in Panel C, the R-squared are about 88% for
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the skewness swap portfolio and an average of 67% for individual swaps. This is not

surprising, given that the specification also includes r2
i and r3

i which are proxies for

realized variance and skewness, respectively.

Figure 3 suggests that the R-squared reported above may be inflated by a few

major market crashes, during which skewness swap returns (and equity returns) decline

sharply, while variance swap returns surge.19 Excluding the six market crashes in the

sample (August 2008, October 2008, August 2011, February 2018, and March 2020)

results in a substantial decline in explanatory power, with the R-squared in the most

stringent specification dropping from 88% to 54%.20

Overall, this analysis highlights that, while skewness swap, variance swap, and

equity returns are correlated with the expected sign, especially during extreme market

crashes, the information in skewness swap returns is not spanned by these other

variables.

C. Skewness Swap Returns After the Financial Crisis

The time-series graphs of Panels B and C in Figure 2 suggest that there is a

substantial increase in the skewness swap returns after the financial crisis.

The period between the end of the financial crisis and the onset of the Covid

recession represents a distinct phase in financial markets. In response to the crisis,

policymakers, most notably the Federal Open Market Committee (FOMC), lowered

19It is well known (see, e.g., Aı̈t-Sahalia and Xiu (2016)) that the correlation between two time series
can differ substantially depending on whether jumps are included or excluded, with the latter capturing
the correlation in the continuous component of the series.

20Results available upon requests.
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interest rates to near zero and maintained them at those levels for an extended period.

This prolonged low-rate environment, as widely documented in the literature (e.g., Hau

and Lai (2016), Lian et al. (2019)), encouraged increased risk-taking and contributed to

elevated asset valuations. Indeed, following the crisis, the U.S. stock market surged,

with valuations rising well above historical levels, as also documented in the Federal

Reserve’s 2018 Financial Stability Report,21 and reflected in the time-series of Tobin’s q

for the U.S. economy (see top graph of Figure D.1 in the Appendix).

This section examines the distribution of skewness swap returns during this

peculiar period. First, it formally tests for differences in the distribution of returns

between the pre-crisis and post-crisis periods (Section 1). Second, it also documents

changes in the implied volatility smile (Section 2). Finally, it investigates whether

post-crisis skewness swap returns are particularly linked to systematic and firm-specific

measures of crash risk and overvaluation risk (Section 3).

1. Pre- versus Post-Crisis Swap Returns

[Table 3 here]

Table 3 reports the mean and median skewness swap returns for the periods

before the financial crisis (January 2003–July 2007) and after the financial crisis (June

2009–February 2020). The average return of the skewness swap portfolio (Panel A)

increases by almost 50% in relative terms, from 26.17% to 38.32% after the crisis. The

increase in the median return is even more pronounced, from 29.27% to 51.43%. These

21Source: 2018 Financial Stability Report, Board of Governors of the Federal Reserve System,
https://federalreserve.gov/publications/files/financial-stability-report-201811.pdf
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results suggest a post-crisis shift in the swap return distribution, characterized by a

higher mean and greater left skewness. The kernel densities, reported in the top graph

of Figure 4, visually confirm this change in the swap return distribution. A formal test

for distribution differences is presented in the last column of Panel A in Table 3, which

shows a statistically significant Kolmogorov-Smirnov t-statistic.

The results for the S&P500 index swap, reported in Panel B, document a more

modest post-crisis increase of approximately 12% (from 71.20% to 80.28%).

[Figure 4 here]

Panel C completes the analysis and presents the cross-sectional averages of the

mean and median skewness swap returns for individual stocks. The mean rises from

6.98% to 24.29%, while the median increases from 28.64% to 49.38%. Additionally, the

numbers in parentheses indicate that before the financial crisis, only 172 (302) stocks

had a significantly positive mean (median) skewness swap return, whereas after the

crisis, this number rises to 311 (614).

Overall, these results indicate that, after the financial crisis, investors demanded

a much higher compensation for crash risk in individual stocks.

2. Pre- versus Post-Crisis Implied Volatility Smile

The crash of October 1987 (i.e. the Black Monday) is considered a landmark

event in the history of the option market. The literature documented that following the

Black Monday, the implied volatility smile of the S&P500 index became asymmetric
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(see Bates (2000) and Rubinstein (1994), among others), due to the disproportionate

increase in the price of out-of-the-money put options compared to the price of

out-of-the-money call options. This new asymmetry, known as “smirk”, is commonly

interpreted as evidence of a pronounced aversion of investors to market crashes (see e.g.,

Bates (2000)).

On the other hand, for individual stocks, early studies (see e.g., Bollen and

Whaley (2004)) using samples ending prior to the 2007-2009 financial crisis, document

an overall simmetry of the implied volatility smile. If the change previously documented

in skewness swap returns genuinely reflect a change in investors preferences and beliefs

about stock-specific crashes, I should also observe a smirk in individual stocks following

the financial crisis.

To test whether this is the case, I create pre- and post-crisis average smiles,

following the methodology in Bollen and Whaley (2004).22 The results, displayed in the

bottom graphs of Figure 4, distinctly reveal that, after the financial crisis, the implied

volatility smile became more asymmetric for individual stocks due to a pronounced

increase in the price of deep out-of-the-money put options (moneyness category 1).

Indeed, the average difference between the implied volatility of the most

22In detail, for each stock and day, put and call options with maturities up to one year are categorized
into five moneyness groups based on their deltas. Category 1 includes call options with 0.875 < ∆C ≤
0.980 and −0.125 < ∆P ≤ −0.020. Category 2 includes options with 0.625 < ∆C ≤ 0.875 and −0.375 <
∆P ≤ −0.125, category 3 includes options with 0.375 < ∆C ≤ 0.625 and −0.625 < ∆P ≤ −0.375,
category 4 includes options with 0.125 < ∆C ≤ 0.375 and −0.875 < ∆P ≤ −0.625, and finally, category
5 includes options with 0.020 < ∆C ≤ 0.125 and −0.980 < ∆P ≤ −0.875. Implied volatilities are
averaged within each category to obtain average daily implied volatility smiles. Finally, these daily
smiles are averaged across stocks in the pre-crisis and post-crisis periods to create the average pre-crisis
and post-crisis smiles depicted in the bottom graphs of Figure 4. To better illustrate the variation in
slopes, the pre-crisis smiles are shifted within the graph to align with the post-crisis smiles.
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out-of-the-money puts and calls increases from 5% to about 11% for individual stocks

(more than a 100% increase), and from 11% to 15% for S&P500 options (about a 35%

increase). While the change is statistically significant at the 1% level in both cases, it is

relatively smaller in magnitude for S&P500 options.

These results are consistent with those based on skewness swap returns, and

further confirm an increased concern among investors for stock-specific crashes.

3. The Cross-Section of Swap Returns After the Crisis

This section investigates the cross-sectional dynamics of skewness swap returns

across the pre- and post-crisis subsamples. Given the distinctive features of the

post-crisis environment, characterized by persistently low interest rates and elevated

asset valuations, the analysis focuses on whether exposures to systematic crash risk and

firm-specific overvaluation risk are reflected in skewness swap returns during this

period.23 Specifically, it tests whether stocks with higher exposure to these risks earn

higher average swap returns, and how these relationships differ across the two periods.

I consider the following measures of systematic crash risk exposure. First, for

each stock i, I regress the skewness swap return time series rsk,i,t on the market

skewness swap return rsk,S&P500,t and its square r2
sk,S&P500,t. The regression coefficients

βi,swap,1 and βi,swap,2 serve as the first two systematic risk exposures considered.

Following Duan and Wei (2009), I also consider the regression R squared, which

23Table E.3 in the Appendix shows a general increase in skewness swap returns following Federal
Reserve rate cuts, further supporting the view that interest rate levels have an important effect on
individual swap returns.

28



captures the proportion of systematic variance in the total variance of each swap,

denoting it as SysRiskPropi.
24 I then consider the tail beta proposed by De Jonghe

(2010), which quantifies the probability of a stock price crash conditional on a crash in

the market index.25 I calculate these systematic crash risk measures for each stock

separately for the pre- and post-crisis periods, and I sort the stocks into quartiles

according to each measure.

[Table 4 here]

Panel A of Table 4 reports the average skewness swap return for each portfolio

and for the difference portfolio. T-statistics for the difference portfolio are computed

using the Newey and West (1987) correction method with the optimal lag length

suggested by Andrews and Monahan (1992). The results show that, while none of the

systematic crash risk measures are correlated with skewness swap returns in the

pre-crisis period, two measures, systematic risk proportion and tail beta, are

significantly correlated with skewness swap returns in the post-crisis period. Stocks

with higher systematic risk proportion and higher tail beta earn higher skewness swap

returns, with a clear monotonic pattern.

Panel B of Table 4 presents the results for firm specific carachteristics that are

most likely to reflect the stock’s crash risk. First, following the literature linking

24Duan and Wei (2009) show that, under a standard factor model for stock returns, the level and
slope of the implied volatility smile for individual stocks are more closely related to the proportion of
systematic risk than to individual betas. This builds on results from Bakshi et al. (2003), who link the
higher-order risk-neutral moments of individual stocks to those of the market.

25I estimate the tail beta for each stock using the extreme value theory approach of De Jonghe (2010).
This method involves transforming stock and market returns into unit Pareto marginals, then estimating
the tail index of their joint probability distribution using the Hill estimator. The tail region is defined
by a crash probability of p = 0.04%, following De Jonghe (2010).
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overvaluation to increased crash risk (see, e.g., Abreu and Brunnermeier (2003), Hong

and Stein (2003)), I consider three standard measures of overvaluation: i) the logarithm

of the book-to-market ratio (BM), ii) the logarithm of company’s Tobin’s q, and iii) the

maximum daily return of the stock over the preceding month (MAX), as outlined in

Bali et al. (2011).26 Second, following the literature linking the put option market to

crash risk (see e.g., Carr and Wu (2011)), I consider (i) the number of put options

traded at the start of the swap, denoted as Np, and (ii) the moneyness of the most

out-of-the-money put option traded, which I calculate as min(K/F0,T ), where K is the

strike price of the put option and F0,T is the forward price at time 0 for delivery at time

T. The first measure reflects the overall activity in the put market, while the second

captures the depth of downside protection sought by investors, with lower values

indicating a higher demand for deep out-of-the-money puts. Finally, I consider the

risk-neutral variance of the stock, denoted as Qvar, which is computed using a portfolio

of options as described in Section IV. B.

Each month, I sort stocks into quartiles based on the variables above calculated

at the start of the month. Panel B of Table 4 reports average swap returns for each

portfolio and the difference portfolio in the pre- and post-crisis subsamples. The results

show that, in the post-crisis period only, overvaluation measures emerge as significantly

correlated with skewness swap returns: stocks with lower book-to-market ratios and

higher Tobin’s q earn higher returns, with a clear monotonic pattern. MaxRet is mildly

26The Tobin’s q and book-to-market ratio are computed using the Compustat variables as fol-
lows: i) Tobin q = (atq+(prccq*cshoq)-(seqq+txditcq-pstkq))/atq, and ii) BM = (seqq+txditcq-
pstkq)/(prccq*cshoq). As these measures are recorded quarterly in Compustat, I consider the last value
recorded prior to the start of the swap.
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negatively correlated with swap returns, consistent with Bali et al. (2011), suggesting it

captures short-term overpricing that is corrected in the following month. Instead, BM

and Tobin’s q appear to reflect more persistent overvaluation. Trading activity in the

put option market is significantly related to skewness swap returns in both samples:

stocks with a higher number of put options traded and deeper out-of-the-money puts

exhibit higher swap returns, reinforcing the idea that the put option market provides

meaningful information about a firm’s crash risk. Finally, risk-neutral variance is

related to skewness swap returns in the post-crisis period only and with a negative sign,

further highlighting that variance and skewness capture different dimensions of risk.

In summary, the findings of this section indicate that skewness swap returns are

particularly high during the post-crisis period, where they appear to be positively

correlated with exposures to both systematic and firm-specific crash risk, as well as

overvaluation risk. These results suggest that skewness swap returns capture the

stock-level crash risk prevailing in the economic environment.

V. Robustness Checks

Options are not available for all strike values, and moneyness coverage varies

across months. This section addresses this limitation by implementing two robustness

checks to examine skewness swap returns before and after the financial crisis while

maintaining a constant moneyness range. First, I compute the return of a model-based

skewness swap with a fixed moneyness range and a fixed number of options. Second,
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following the literature on corridor swaps, I construct a corridor-version of the skewness

swap using different corridor values.27

In both of these alternative specifications, the results align consistently with the

earlier findings: swap returns exhibit positivity, notably high values, and a

post-financial crisis increase.

A. The Model-based Skewness Swap

As a first robustness check, I introduce a model-based version of the skewness

swap. In this approach, rather than relying on actual option prices, I utilize option

prices derived from a fitted model. I chose the Merton jump-diffusion model of Merton

(1976) as a benchmark model due to its well-documented ability to fit short-term

options and its mathematical tractability (see e.g., Hagan, Kumar, Lesniewski, and

Woodward (2002)).

The dynamics of the stock under the Merton jump-diffusion model is as follows:

(7) dst =

(
r − λκ− 1

2
σ2

)
dt+ σdWt + log(ψ)dqt

where st is the logarithm of the stock price, r is the risk-free interest rate, σ is the

instantaneous variance, and qt is a Poisson process, independent from Wt, which equals

one when a jump occurs. I follow the standard assumptions that jumps occur within dt

with probability λdt, and that the jump size follows log(ψ) ∼ N(µ, δ2). Finally,

27For a review on the literature on corridor swaps see, for example, Carr and Lewis (2004), Lee (2010),
and Andersen, Bondarenko, and Gonzalez-Perez (2015a).
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κ = E[ψ − 1] represents the mean jump size.

The implementation of the skewness swap based on the Merton jump-diffusion

model consists of two main steps: (i) calibrating the model parameters to option prices

at the swap inception date, and (ii) constructing the swap using a regular grid of option

prices generated from the calibrated model. The details of the implementation are

provided in Appendix C. This approach ensures a consistent moneyness range and a

fixed number of options across different stocks and time periods. However, a key

limitation is that the model-based skewness swap is not tradeable.

[Table 5 here]

Panel A of Table 5 reports the mean and median return of the model-based

portfolio of swaps in the pre- and post- crisis samples. The results indicate that the

mean (median) model-based skewness swap return is 22.97% (32.59%) before the

financial crisis and 29.43% (42.62%) after, representing a 20%–30% increase. The

Kolmogorov-Smirnov statistic confirms a shift in the distribution of swap returns

between these periods. These findings are consistent with the baseline analysis, though

slightly smaller, likely due to the smoother nature of model-derived option prices

compared to actual market prices.

B. Corridor Skewness Swaps

In this section, I apply the corridor variant of Andersen et al. (2015a) to the

skewness swaps. Corridor swaps focus on price changes within a fixed moneyness range,
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applying a consistent truncation rule to both swap legs. Varying the corridor range

enables analysis of deep far out-of-the-money options’ impact on skewness swap returns.

In formulas, given a corridor [a, b], and a generating Φ function, the fixed leg and

floating leg of the corridor swap are defined as follows:

(8) Corridor fixed legt,T =
1

Bt,T

(∫ min(b,Ft,T )

a

Φ
′′
(K)Pt,TdK +

∫ b

max(Ft,T ,a)

Φ
′′
(K)Ct,TdK

)

(9)

Corridor floating legt,T =

(∫ min(b,Ft,T )

a

Φ
′′
(K)PT,TdK +

∫ b

max(Ft,T ,a)

Φ
′′
(K)CT,TdK

)

+
n−1∑
i=1

(
Φ
′

a,b(Fi−1,T )− Φ
′

a,b(Fi,T )
)

(FT,T − Fi,T ).

The option portfolio in the fixed and floating leg has weights given by Φ
′′
(K) inside the

corridor and zero outside of the corridor, that is, out-of-the-money calls (puts) with

strike K > b (K < a) have no contribution in the skewness swap. The dynamic trading

in the underlying is rebalanced according to the function Φ
′

a,b, which is equal to Φ
′
(a) if

x < a, Φ
′
(x) if a ≤ x ≤ b, and Φ

′
(b) if x > b. In other words, the dynamic trading is

rebalanced only on price changes inside the corridor or on price changes from regions

inside (outside) the corridor to regions outside (inside) the corridor.

Panel B of Table 5 presents the mean and median returns for five corridor-based

skewness swaps. These corridors are defined as nested intervals around Ft,T , ranging

from one to five standard deviations away.28 The results consistently show positive

returns across all corridors except the first, which covers only one standard deviation.29

28Mathematically, the n-th corridor, for n = 1, 2, 3, 4, 5, is given by [Ft,T e
−nσ

√
T−t, Ft,T e

+nσ
√
T−t],

where Ft,T is the forward price, σ is the at-the-money volatility, and T − t represents time to maturity.
Each corridor includes all options with strike prices within n standard deviations from Ft,T .

29The returns of the corridor swap covering one standard deviation are very noisy due to the limited
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Skewness swap returns increase as the corridor widens, highlighting the crucial role of

out-of-the-money options in measuring the skewness risk premium. Additionally, for

corridors spanning two to five standard deviations, returns are higher in the post-crisis

subsample. The widest corridor, covering five standard deviations, aligns most closely

with the baseline skewness swap returns without corridor restrictions (Panel A of Table

3), as expected.

VI. Conclusion

This paper examines the crash risk premium in individual stocks through the

returns of skewness swaps.

Similar to variance swaps, a skewness swap strategy involves taking positions in

the skewness of a stock by buying and selling out-of-the-money put and call options.

The return of this strategy captures the difference between the stock’s realized skewness

and its risk-neutral skewness, providing a tradable measure of the compensation

investors require for exposure to the risk of a sudden decline in skewness. Notably, this

return is independent of the first, second, and fourth moments, offering a pure bet on

skewness.

I apply this strategy to the S&P500 index constituents from 2003 to 2020 and

show that skewness swap returns are positive and statistically significant. The findings

are robust across different implementations of the skewness swap strategy and indicate

that investors demand significant compensation for skewness risk in individual stocks,

number of options within the narrow corridor.
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which is not subsumed by compensation for variance risk.

The crash risk premium, measured by skewness swap returns, becomes

particularly pronounced after the 2007/2009 global financial crisis. This shift also

coincides with a rise in the price of crash risk, as reflected in a more left-skewed implied

volatility smile, driven by higher prices for deep out-of-the-money options. A portfolio

sort analysis further shows that, in the post-crisis period only, skewness swap returns

are positively correlated with measures of systematic crash risk and overvaluation.

These findings reinforce the idea that skewness swap returns reflect the stock-level crash

risk in the economy.

These results have broad implications for asset pricing. They highlight the

importance of measuring higher-order moments of return distributions and suggest that

models incorporating skewness and tail risk provide a more complete framework for

understanding investor preferences.
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Figure 1. Payoff of the Skewness Swap Option Portfolio

The figure illustrates the payoff of the skewness swap option portfolio as a function of the

forward return log
(
FT,T
F0,T

)
. For comparison, it also displays the payoff of the Hellinger skewness

swap option portfolio, as implemented in Schneider and Trojani (2019), along with the cubic

function log
(
FT,T
F0,T

)3
as a benchmark.
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Figure 2. Returns of the Portfolio of Skewness Swaps

Panel A shows the histogram of returns for the skewness swap portfolio in individual stocks,
as analyzed in Panel A1 of Table 1, while Panel B presents the time series of the same portfolio
returns. The sample period runs from January 1, 2003, to December 31, 2020. In Panel B, red
markers indicate months when returns dropped below -100%. Panel C depicts the growth of a
one-dollar investment in a portfolio partially allocated to the risk-free rate and skewness swaps.
Each month, 95% of the portfolio is allocated to one-month T-bills and 5% to the swap portfolio
strategy, with returns compounding over time. Shaded gray regions represent the financial crisis
and COVID-19 crisis periods.

Panel A: Histogram

Panel B: Monthly Time-Series

Panel C: Compound Return
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Figure 4. The Option Market Before and After the 2007-2009 Financial Crisis

The top graph presents the kernel density estimation of the return distribution for the portfolio
of skewness swaps before the financial crisis (Jan 2003–Aug 2007) and after the financial crisis
(June 2009–Feb 2020). The bottom graphs show the average implied volatility smile before
and after the financial crisis for both the cross-section of individual stocks (left graph) and the
S&P500 index (right graph). The implied volatility smile is constructed by grouping options
into five moneyness categories based on their deltas, following Bollen and Whaley (2004), and
averaging implied volatilities within each category. To better illustrate differences in slope, the
pre-crisis smile curves are vertically shifted so that the implied volatility of the at money options
(category 3) overlaps with that of the post-crisis smile, allowing for a clearer comparison of their
relative shapes.
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Table 1. Skewness Swaps on Individual Stocks.

Panel A of the table presents the mean and median monthly returns for a value-weighted port-
folio of skewness swaps on individual stocks (A1) and the skewness swap for the S&P500 index
(A2). Below the median, the table reports a confidence interval estimated using a bootstrap
technique with 2,000 bootstrap samples, while the t-statistic is shown below the mean. The
table also reports the annualized Sharpe ratio. Panel A3 reports the mean and median skewness
swap returns across individual stocks. The numbers in parentheses indicate the count of stocks
with statistically significant positive (N pos) or negative (N neg) swap returns. Panels B, C,
and D present variations of the baseline skewness swap calculation: Panel B excludes dynamic
trading in the underlying stock, Panel C incorporates transaction costs, and Panel D constructs
skewness swaps using synthetic European options (i.e., excluding early exercise), which is only
applicable to options on individual stocks. Only the stocks with at least 10 skewness swaps are
included in the analysis.

Panel A: Skewness Swap Returns

A1: Portfolio of Swaps A2: S&P500 Swaps A3: Individual Swaps

Mean Median Sharpe R. Mean Median Sharpe R. Mean Median
21.91%∗∗ 47.99%∗∗∗ 0.54 54.37%∗∗∗ 91.06%∗∗∗ 0.79 20.55% 51.06%

tstat/CI (2.36) [39.12, 55.45] tstat/CI (3.35) [88.03, 93.77] N pos (146) (673)
N neg (0) (0)

Panel B: Without Dynamic Trading in the Underlying

B1: Portfolio of Swaps B2: S&P500 Swaps B3: Individual Swaps

Mean Median Sharpe R. Mean Median Sharpe R. Mean Median
28.70%∗∗ 57.89%∗∗∗ 0.55 67.02%∗∗∗ 92.55%∗∗∗ 1.08 18.81% 49.11%

tstat/CI (2.19) [50.01, 65.78] tstat/CI (4.40) [89.97, 94.88] N pos (177) (690)
N neg (0) (0)

Panel C: With Transaction Costs

C1: Portfolio of Swaps C2: S&P500 Swaps C3: Individual Swaps

Mean Median Sharpe R. Mean Median Sharpe R. Mean Median
10.58% 39.53%∗∗∗ 0.23 41.98%∗∗ 84.04%∗∗∗ 0.55 4.95% 39.80%

tstat/CI (1.02) [28.75, 44.92] tstat/CI (2.31) [80.59, 89.46] N pos (62) (611)
N neg (1) (0)

Panel D: Without Early Exercise

D1: Portfolio of Swaps D2: S&P500 Swaps D3: Individual Swaps

Mean Median Sharpe R. Mean Median Sharpe R. Mean Median
18.98%∗ 47.02%∗∗∗ 0.39 N/A N/A N/A 14.63% 50.64%

tstat/CI (1.66) [38.87, 54.99] tstat/CI N/A N/A N pos (139) (672)
N neg (0) (0)
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Table 2. Skewness Swap Returns, Equity Returns, and Variance Swap Returns.

The table presents statistics comparing skewness swap returns with equity returns (Panel A)

and variance swap returns (Panel B). Specifically, it reports: (i) the percentage of months in

which equity or variance swap returns share the same sign as skewness swap returns, and (ii)

the R-squared from regressing skewness swap returns on equity or variance swap returns. Panel

C extends this analysis by presenting the R-squared from a regression of skewness swap returns

on equity returns, its square, its cube, and variance swap returns. The analysis is conducted at

both the portfolio level (Panels A1, B1, and C1) and the individual stock level, where the table

reports cross-sectional averages and quantiles (Panels A2, B2, and C2). The analysis includes

stocks with at least 100 swaps, resulting in a total of 401 stocks.

Panel A: Skewness Swap Returns rsk,i and Equity Returns ri

A1: Portfolio A2: Individual Swaps
of Swap

Mean q0.25 q0.50 q0.75

% of months in which rsk,iri > 0 82.71% 74.00% 71.43% 74.19% 76.67%
R squared of rsk,i on ri (%) 45.90% 21.08% 12.19% 21.04% 29.57%

Panel B: Skewness Swap Returns rsk,i and Variance Swap Returns rvar,i

B1: Portfolio B2: Individual Swaps
of Swap

Mean q0.25 q0.50 q0.75

% of months in which rsk,irvar,i > 0 15.89% 27.82% 24.34% 27.67% 30.87%
R squared of rsk,i on rvar,i (%) 61.52% 41.12% 15.78% 38.17% 64.59%

Panel C: Regression of rsk,i on ri, r2
i , r3

i , and rvar,i

C1: Portfolio C2: Individual Swaps
of Swap

Mean q0.25 q0.50 q0.75

R squared of rsk,i on 88.82% 67.50% 52.63% 67.81% 84.01%
ri, r

2
i , r3i , and rvar,i (%)
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Table 3. Skewness Swap Returns Before and After the Financial Crisis

The table reports the mean and median returns for the portfolio of skewness swaps (Panel A),
the skewness swap on the S&P500 index (Panel B), and the cross-sectional mean and median
of individual swap returns (Panel C). These statistics are reported separately for the periods
before the financial crisis (Jan 2003 – Aug 2007) and after the financial crisis (June 2009 – Feb
2020). Below the mean, the corresponding t-statistic is provided, while below the median, the
1% confidence interval is reported, computed using a bootstrap technique with 2000 bootstrap
samples. The last column in Panels A and B reports the Kolmogorov-Smirnov test statistic,
assessing differences in the return distributions between the pre- and post-crisis periods. In
Panel C, the numbers in parentheses indicate the count of stocks with statistically significant
positive and negative swap returns.

Panel A: Portfolio of Skewness Swaps

Before FC After FC

Mean Median Mean Median KS Test Statistic

26.17%∗∗∗ 29.27%∗∗∗ 38.32%∗∗∗ 51.43%∗∗∗ 0.30∗∗∗

tstat/CI (2.86) [20.56, 50.11] (6.88) [40.85, 62.00]

Panel B: S&P500 Skewness Swaps

Before FC After FC

Mean Median Mean Median KS Test Statistic

71.2%∗∗∗ 82.93%∗∗∗ 80.28%∗∗∗ 95.72%∗∗∗ 0.50∗∗∗

tstat/CI (11.09) [73.37, 87.18] (13.57) [92.11, 97.35]

Panel C: Individual Swaps

Before FC After FC

Mean Median Mean Median

6.98% 28.64% 24.29% 49.38%
N pos (172) (302) (311) (614)
N neg (17) (20) (1) (1)
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Table 4. Systematic and Firm-Specific Crash Risk

The table reports the results of a portfolio sort analysis of skewness swap returns based on
exposures to systematic crash risk, SysRiskProp, β1, β2, and tail beta (Panel A), as well as
firm-specific characteristics (Panel B), including the logarithm of the book-to-market ratio at
the beginning of each month (BM), Tobin’s Q, maximum return over the previous month (Max
Ret), minimum moneyness traded, number of put options traded (Np), and risk-neutral variance
(Qvar). The analysis is conducted separately for the pre-crisis period (Jan 2003–Aug 2007) and
the post-crisis period (June 2009–Feb 2020). The table displays the average skewness swap
return for each portfolio, along with the return of the difference portfolio. T-statistics for the
difference portfolio are computed using the Newey and West (1987) correction method, with
the optimal lag length selected according to Andrews and Monahan (1992).

Panel A: Systematic measures

Before FC After FC

Measure ptf1 ptf2 ptf3 ptf4 ptf4 - ptf1 ptf1 ptf2 ptf3 ptf4 ptf4 - ptf1

SysRiskProp 0.24 0.34 0.35 0.21 -0.03 0.19 0.29 0.31 0.33 0.14∗∗

Tail beta 0.29 0.28 0.27 0.25 -0.04 0.19 0.27 0.31 0.36 0.17∗∗∗

β1 0.28 0.35 0.29 0.20 -0.08 0.25 0.34 0.31 0.20 -0.06
β2 0.13 0.35 0.29 0.31 0.17 0.24 0.32 0.30 0.24 0.01

Panel B: Firm-specific measures

Before FC After FC

Measure ptf1 ptf2 ptf3 ptf4 ptf4 - ptf1 ptf1 ptf2 ptf3 ptf4 ptf4 - ptf1

BM 0.31 0.25 0.25 0.28 -0.03 0.34 0.31 0.25 0.21 -0.13∗∗

Tobin Q 0.22 0.32 0.29 0.27 0.05 0.21 0.26 0.30 0.34 0.13∗∗

Max Ret 0.26 0.23 0.25 0.29 0.03 0.34 0.28 0.24 0.27 -0.07∗

Min Mon Traded 0.41 0.27 0.23 0.19 -0.23∗∗∗ 0.38 0.29 0.22 0.25 -0.13∗∗∗

Np 0.24 0.25 0.22 0.41 0.18∗∗∗ 0.18 0.27 0.34 0.38 0.19∗∗∗

Qvar 0.26 0.26 0.26 0.33 0.07 0.36 0.31 0.23 0.23 -0.12∗∗
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Table 5. Robustness: The Model-based Skewness Swaps and the Corridor Skewness
Swaps.

The table presents the mean and median returns for the model-based portfolio of swaps (Panel
A) and the corridor-based portfolios of swaps (Panel B), separately for the periods before the
financial crisis (Jan 2003 – Aug 2007) and after the financial crisis (June 2009 – Feb 2020).
The last column reports the Kolmogorov-Smirnov test statistic, which tests the difference in
return distributions between the pre- and post-crisis periods. The model-based skewness swap
is constructed at each swap start date using option prices generated from the Merton jump-
diffusion model that best fits the data. The corridor swaps are implemented following Andersen
et al. (2015a), with five corridor choices defined as K ∈ [Ft,T e

−SDσ
√
T−t, Ft,T e

SDσ
√
T−t], where

SD ranges from 1 to 5, K is the strike price, Ft,T is the forward price, T − t is the time to
maturity, and σ is the at-the-money volatility. Below the mean, the corresponding t-statistic
is reported, while below the median, the 1% confidence interval is provided, computed using a
bootstrap technique with 2000 bootstrap samples.

Panel A: Model-based Portfolio of Swaps

Before FC After FC

Mean Median Mean Median KS Test

22.97%∗∗∗ 32.59%∗∗∗ 29.43%∗∗∗ 42.62%∗∗∗ 0.22∗

tstat/CI (3.31) [21.88, 43.16] (5.32) [32.68, 50.51]

Panel B: Corridor-based Portfolio of Swaps

Corridor Range Before FC After FC

Mean Median Mean Median KS Test

1SD 44.14% 10.07% -2.09% 16.91% 0.12
(1.20) [-3.72, 32.72] (-0.22) [-3.85, 22.19]

2SD 14.82%∗∗ 23.57%∗∗∗ 17.62%∗∗∗ 35.37%∗∗∗ 0.22∗

(1.99) [14.00, 35.50] (3.01) [22.60, 44.71]
3SD 17.14%∗∗ 27.17%∗∗∗ 25.5%∗∗∗ 40.94%∗∗∗ 0.21∗

(2.06) [19.82, 41.44] (4.02) [29.55, 51.86]
4SD 19.87%∗∗ 28.94%∗∗∗ 31.34%∗∗∗ 47.31%∗∗∗ 0.26∗∗∗

(2.51) [17.85, 43.83] (5.19) [35.25, 55.89]
5SD 21.99%∗∗∗ 29.17%∗∗∗ 34.95%∗∗∗ 49.78%∗∗∗ 0.28∗∗∗

(2.83) [20.18, 44.10] (6.06) [38.22, 58.42]
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A. The Skewness Swaps

Background and Theory on Skewness Swaps

The skewness swap is a contract through which an investor can buy the skewness

of an asset by taking positions in options. At the contract’s initiation, the investor

purchases a portfolio of options, and upon the options’ expiration, she receives the

payoff associated with this option portfolio. The fundamental concept underpinning this

contract is that the price of the option portfolio quantifies the risk-neutral skewness of

the asset, while the option portfolio’s payoff plus a continuous hedging in the underlying

stock market quantifies the realized skewness of the asset. In essence, it functions akin

to a swap contract in which two parties agree to exchange a fixed leg, determined by the

price of the option portfolio, for a floating leg, determined by the payoff of the option

portfolio plus the hedge, at the contract’s maturity.

I build on the general divergence trading strategies of Schneider and Trojani

(2019) and Schneider and Trojani (2015) to construct the skewness swap implemented

in this paper. Schneider and Trojani (2019) introduce a new class of swap trading

strategies with which an investor can take a position in the generalized Bregman (1967)

divergence of the asset. The skewness can be seen as a special type of divergence, and

Schneider and Trojani (2015) propose a Hellinger skew swap for trading skewness. The

swap developed in this paper builds on the Hellinger skewness swap of Schneider and

Trojani (2015) with the following differences: (a) this skewness swap is a pure bet on

the third moment of the stock returns while being independent of the first, second, and
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fourth moments, and (b) the swap is applied directly to American options.

The swap consists of a fixed leg and a floating leg, which investors exchange at

maturity. These are defined by Equations 2 and 3 in the main text. A key part of the

formulas is the function Φ : R −→ R, which is a twice-differentiable generating function

that defines the moment of the distribution we want to trade. For example, if

Φ(x) = Φ2(x) = −4((x/F0,T )0.5 − 1), then

fixed leg0,T = EQ
0 [log(FT,T/F0,T )2 +O(log(FT,T/F0,T )3)]. In this example, Φ2 captures

the second-order variation of the returns. The fixed leg0,T quantifies the risk-neutral

moment and is established at time 0, whereas the floating leg0,T measures the

realization of the moment between time 0 and time T , with its value known at time T .

It is worth noting that dividends do not affect the methodology because the modeled

return is the forward return y = log(FT,T/F0,T ) in which the dividends are included in

the calculation of F0,T . Equation 3 shows that the floating leg is composed of two parts:

the payoff of the option portfolio at maturity plus dynamic trading in the forward

market, which is rebalanced at the intermediate dates i. All the payments of the swap

are made at maturity, when the investors exchange the fixed leg with the floating leg.

The value of the swap at time 0 is zero, as EQ
0 [floating leg0,T ] = fixed leg0,T .

If the function Φ is

(A.1) Φ(x) := Φ3

(
x

F0,T

)
= −4

(
x

F0,T

)1/2

log

(
x

F0,T

)
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then

(A.2) fixed legΦ3,0,T = EQ
0

[
1

6
y3 +

1

12
y4 +O(y5)

]
,

where y = log(FT,T/F0,T ). This is the Hellinger skewness swap proposed by Schneider

and Trojani (2015) for studying the third moment of the returns. However, the formula

A.2 shows that the swap depends theoretically on the fourth moment as well, and in

Section B of the Appendix I will show that this dependence could potentially lead to a

biased measure of the third moment.

The Skewness Swap Implemented in this Paper

To mitigate the reliance on the fourth moment, as discussed earlier, and enhance

the isolation of the third moment, I introduce a new skewness swap denoted as S. The

function ΦS for this swap is a fusion of Φ3 and Φ4, with Φ4 being the function that

characterizes the kurtosis swap in Schneider and Trojani (2015). In detail,

Φ4

(
x

F0,T

)
= −4

[
(x/F0,T )1/2(log(x/F0,T )2 + 8)− 8

]
and verifies

fixed legΦ4,0,T = EQ
0 [ 1

12
y4 +O(y5)], where y = log(FT,T/F0,T ). By taking a long position

in 6 times Φ3 and a short position in 6 times Φ4, I can construct a new simple skewness

swap which does not depend on the fourth moment anymore. The formal result is

stated in Proposition 1 in the main text, and I outline the proof below.

Proof of Proposition 1.

For every Φ:

fixed legΦ,0,T = EQ
0 [floating legΦ3,0,T ] = EQ

0

[∫ F0,T

0

Φ
′′
(K)PE,T,TdK +

∫ ∞
F0,T

Φ
′′
(K)CE,T,TdK

]
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because EQ
i [FT,T − Fi,T ] = 0 for every i, and hence the conditional expectation of the

second term of the floating leg defined by Equation 3 is zero.

By applying the result of Carr and Madan (2001) to our case, I obtain the

following:

∫ F0,T

0

Φ
′′
(K)PE,T,T (K)dK+

∫ ∞
F0,T

Φ
′′
(K)CE,T,T (K)dK = Φ(FT,T )−Φ(F0,T )−Φ

′
(F0,T )(FT,T−F0,T ).

I substitute the definition of Φ of Equation 4, and with some calculations I obtain

Φ(FT,T )− Φ(F0,T )− Φ
′
(F0,T )(FT,T − F0,T ) =

= 72− (72FT,T )

F0.T

− 24

(
FT,T
F0.T

)0.5

log

[
FT,T
F0.T

]
+ 24

(
−8 +

(
FT,T
F0.T

)0.5
(

8 + log

[
FT,T
F0.T

]2
))

=

= 72− 72ey − 24ey/2y + 24(−8 + ey/2(8 + y2)) =

= y3 +O(y5),

where y = log(FT,T/F0,T ), and the last equality is obtained by substituting ey with its

power series expansion ey =
∑∞

n=0
yn

n!
.

American Versus European Skewness Swap

The preceding formulas for the skewness swap pertain to options with a

European-style exercise, meaning they can only be exercised at maturity. However, in

the equity market, European options are available only for indexes, while options on

individual stocks are American, allowing exercise at any point before maturity.

This section illustrates a straightforward adjustment to Equations 2 and 3 for

crafting a tradable skewness swap involving American options. The discrepancy

54



stemming from the use of American options instead of European options is a simple

function of the early exercise premium, which, in this context, is negligible.

I start by defining the American call option payoff at time T :

CA,T,T =
(St∗ −K)

Bt∗,T

where t∗ = min{0 ≤ t ≤ T : (St∗ −K) > C(t∗, St∗ , K, T − t∗)}, and analogously, the

American put option payoff:

PA,T,T =
(K − St∗)
Bt∗,T

where t∗ = min{0 ≤ t ≤ T : (K − St∗) > P (t∗, St∗ , K, T − t∗)}. The idea is that the

investor exercises the American options optimally, and the final payoff at maturity is

given by the compounded optimal exercise proceeds.30

I define a new swap whose floating leg is given by

(A.3)

floating legA,0,T =

(∫ F0,T

0

Φ
′′
(K)PA,T,TdK +

∫ ∞
F0,T

Φ
′′
(K)CA,T,TdK

)

+
n−1∑
i=1

(
Φ
′
(Fi−1,T )− Φ

′
(Fi,T )

)
(FT,T − Fi,T )

and whose fixed leg is given by the expectation of the floating leg

(A.4)

30Many studies show that investors actually do not optimally exercise their stock options, and in
particular they miss most of the advantageous exercise opportunities (see, e.g., Pool et al. (2008), Barr-
aclough and Whaley (2012), Cosma et al. (2020), Bryzgalova et al. (2022)). This issue is important for
in-the-money options, while here the skewness swap is constructed using out-of-the-money options, for
which the early exercise is less relevant. In the empirical section, I show that, in my analysis, the early
exercise value is very small, and hence an alteration of the early exercise proceeds given by a suboptimal
behavior would not alter the main results of the paper.
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fixed legA,0,T = EQ
0 [floating legA,0,T ] =

1

B0,T

(∫ F0,T

0

Φ
′′
(K)PA,0,TdK +

∫ ∞
F0,T

Φ
′′
(K)CA,0,TdK

)
.

The subscript A indicates that the prices are American option prices. The next

proposition shows that fixed legA,0,T equals fixed leg0,T plus the price of the early

exercise and that floating legA,0,T equals floating leg0,T plus the realization of the early

exercise.

Proposition 2. The swap with fixed leg given by Equation A.4 and floating leg given by

Equation A.3 verifies the following properties:

fixed legA,0,T = fixed leg0,T +
1

B0,T

(∫ F0,T

0

Φ
′′
(K)(PA,0,T − PE,0,T )dK

)
+

+
1

B0,T

(∫ ∞
F0,T

Φ
′′
(K)(CA,0,T − CE,0,T )dK

)

floating legA,0,T = floating leg0,T +

(∫ F0,T

0

Φ
′′
(K)(PA,T,T − PE,T,T )dK

)
+

+

(∫ ∞
F0,T

Φ
′′
(K)(CA,T,T − CE,T,T )dK

)
The difference between the American and European prices (PA,0,T − PE,0,T ) and

(CA,0,T − CE,0,T ) measures the price of the early exercise. The difference between the

payoff of American and European options (PA,T,T − PE,T,T ) and (CA,T,T − CE,T,T )

measures the realization of the early exercise.

Proof. The proof can be readily derived by simply adding and subtracting the

European option prices and payoffs in Equations A.4 and A.3, respectively.
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B. Numerical Analysis: Convergence of the

Skewness Swap

This section delves into an examination of the accuracy of skewness swaps in

measuring the third moment of stock returns within the Merton jump-diffusion model.31

Within this section, two convergence exercises are conducted. Firstly, I apply Equation

6 in the main text with an increasing number of options to verify numerically that the

skewness swap accurately estimates the skewness of the stock as the number of options

approaches infinity. Secondly, while keeping a constant number of ten options (which

aligns with the average number used in empirical analyses), I assess the error magnitude

when these ten options span a wider range of moneyness levels.

The dynamics of the Merton (1976) model is described by Equation 7 in the

main text. The characteristic function is given by:

φ(u) = E[eiu(st−s0)] = et(i(r−0.5σ2−λκ)u−0.5σ2u2+λ(eiµu−0.5δ2u2−1))

and the moments can be recovered from the property of the characteristic function:

E[(st − s0)k] = (−i)k d
k

duk
φ(u)|u=0.

As a result, the third moment can be expressed in closed form by the following formula:

E[(st−s0)3] = 3δ2λµt+λµ3t−3(−δ2λ−λµ2−σ2)(r+(−κλ+λµ−0.5σ2))t2+(r−κλ+λµ−0.5σ2)3t3.

31It’s worth noting that the selection of the Merton model is not limiting, as demonstrated in the work
of Hagan et al. (2002), where it is shown that, for time horizons less than one year, the implied volatility
smile generated by the Merton model satisfactorily mirrors empirical data.
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Figure B.1. Merton Implied Volatility Smile

The figure displays the one-month implied volatility smile generated by the Merton model with
the following set of representative parameters: r = 0, µ = −0.05, δ = 0.08, σ = 0.2, λ = 3.

0.6 0.8 1 1.2 1.4
0.2

0.3

0.4

0.5

Moneyness K
S0

Im
p
li
ed

vo
la

ti
li
ty

I chose the following standard parameter values for the simulation study: r = 0,

µ = −0.05, δ = 0.08, σ = 0.2, λ = 3, t = 30/365. With these parameters, the Merton

implied volatility smile is left skewed, as shown in Figure B.1.

Convergence in the Number of Options

Table B.1 shows the convergence of the fixed leg of the swap to the true

model-based third moment when the number of options used increases from 8 to 100.

The fixed leg of the swap is evaluated using Equation 6, with option prices derived

analytically from the Merton jump-diffusion model. The price of a call option is given

by (see Merton (1976)):

CMRT (0, t,K) =
∞∑
n=0

e−λ
′t+n log(λ′t)−

∑n
i=1 lognC(S0, K, rn, σn)

where λ′ = λ(1 + k), k = eµ+ 1
2
δ2 − 1, C(S0, K, rn, σn) is the Black-Scholes price of an
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European call with volatility σn =
√
σ2 + nδ2

t
and risk-free rate rn = r − λk + n log(1+k)

t
.

The price of a put option is defined analogously. The initial stock price, denoted as S0,

is set at 100, and the options cover an evenly spaced range of strike prices from 50 to

150.

I evaluate the precision of two skewness swaps in this analysis. The first is the

skewness swap utilized in the empirical study of this paper, labeled as ΦS, where the Φ

function is defined by Equation 4. The second is the skewness swap originally

introduced by Schneider and Trojani (2015), referred to as Φ3, where the Φ function is

defined by Equation A.1.

Table B.1 illustrates the measurement errors as a percentage of the true

skewness. The third column reveals a consistent reduction in measurement errors as the

number of options increases, eventually stabilizing at around 0.7% to 0.8% when using

twenty or more options. It’s important to note that the error cannot reach zero due to

its dependence on the fifth moment in Equation 5. Nevertheless, the error magnitude

remains quite low, with an error of approximately 1.7% even with just 10 options. On

the other hand, the second column demonstrates the error of the skewness swap defined

by Φ3, which displays a more pronounced bias that persists even as the number of

options increases. This discrepancy arises from the error term’s dependence on the

fourth moment, which naturally holds greater significance than the fifth moment.

In summary, this analysis underscores the convergence of the skewness swap

implemented in this paper to the stock’s skewness within the Merton jump diffusion

model. It emphasizes the importance of isolating the third moment from the fourth
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Table B.1. Convergence in the Number of Options.

This table shows the convergence of the fixed leg of the trading strategy to the third mo-

ment of the asset returns when the number of options increases. The error is computed as

(|True moment − Strategy fixed leg|)/(|True moment|) and is displayed as a percentage. The

returns are assumed to follow a Merton jump-diffusion process with standard parameters, i.e.,

µ = −0.05, δ = 0.08, σ = 0.2, λ = 3, r = 0, t = 30/365. The true moment is computed in

closed form and is equal to −3.12 · 10−4. In the second column, I consider the skewness swap of

Schneider and Trojani (2015) with Φ = Φ3, while in the third column I consider the skewness

swap introduced in this paper with Φ = ΦS .

Number of options Error (%)

Φ3 ΦS

8 18.81% 5.16%

10 21.10% 1.70%

20 22.70% 0.72%

50 22.80% 0.86%

100 22.80% 0.87%

moment for achieving a precise measurement.

Convergence in the Range of Moneyness

As a second convergence exercise, I check how the precision of the methodology

depends on the range of moneyness available. In this context, the moneyness of an

option is defined in standard deviations (SD) as log(K/F0,T )/(σ
√
T ), where K is the

strike price, F0,T is the forward price, σ is the at-the-money implied volatility, and T is

the time to maturity. In this exercise I maintain a constant number of options, set at

10, and assess the error of the swap when these ten options span moneyness ranges of
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±1SD, ±2SD, ±3SD, and ±4SD.32

Figure B.2 illustrates the results. Every quadrant i, where i = 1, ..4, illustrates

the part of the Merton implied volatility smile spanning ±iSD. Each plot provides a

zoomed out perspective compared to the previous one by 1SD. Positioned at the top of

each graph is the measurement error (expressed as a percentage of the true skewness) of

a skewness swap calculated using ten options spanning the corresponding moneyness

range of ±iSD as described above. The results show that the precision changes

considerably depending on the moneyness range available. At least three standard

deviations are needed in order to have an error around 10%, and four standard

deviations are needed to have an error around 1%.

C. Model-based Skewness Swap

This section provides a comprehensive breakdown of the procedures entailed in

constructing the model-based skewness swap, as employed in the robustness Section 5.1.

The implementation of the model-based skewness swap consists of two principal steps:

i) calibration of the Merton model, and ii) implementation of the swap based on the

calibrated model. These steps are detailed below.

Calibration

The model-based skewness swaps are implemented monthly, as the tradable

32To illustrate, if the ten options encompass a moneyness range of ±1SD, their strike prices are

evenly distributed within the strike range of [F0,T e
−σ
√
T , F0,T e

+σ
√
T ]. Similarly, if the ten options

cover a moneyness range of ±2SD, their strike prices are evenly spaced within the strike range of

[F0,T e
−2σ
√
T , F0,T e

+2σ
√
T ], and so forth.
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Figure B.2. Convergence in the Moneyness Range

This figure illustrates the volatility smile derived from the Merton jump-diffusion process, with
the following parameters: µ = −0.05, δ = 0.08, σ = 0.2, λ = 3, r = 0, and t = 30/365. The illus-
tration covers increasing moneyness ranges. In the first plot, a moneyness range of [−1SD, 1SD]
is considered, followed by the second plot with [−2SD, 2SD], the third with [−3SD, 3SD], and
finally, the fourth with [−4SD, 4SD]. Here, SD is defined as SD = log(K/F0,T )/(σ

√
T ), where

K represents the strike price, F0,T is the forward price, σ is the at-the-money implied volatility,
and T is the time to maturity. Each plot provides a zoomed-out perspective compared to the
previous one by 1SD. Within each moneyness range, the fixed leg of the skewness swap is
computed and compared to the true skewness derived through a closed-form expression. The
measurement error is presented at the top of each graph.
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skewness swaps, and they start and end on the third Friday of each month. The months

in which the stocks pay dividends are excluded in order to simplify the calculation of

the model-based option prices. The model is recalibrated at each start date of the swap

and for each stock separately. In detail, at each start date of the swap t and for each

stock St, I consider all the out-of-the-money options with a maturity 30 days provided

by the Optionmetrics implied volatility surface file. This sample constitutes the

calibration sample. The benchmark model is the Merton jump-diffusion model with

Gaussian jump-size distribution, whose dynamics is given by Equation 7 in the main

text. I then calibrate the parameters of the model by minimizing the implied volatility

mean squared error (IVMSE) as

IVMSE(χ) =

n∑
i=1

(σi − σi(χ))2

where χ = {λ, µ, δ, σ} is the set of parameters to estimate, σi = BS−1(Oi, Ti, Ki, S, r) is

the market implied volatility provided by Optionmetrics, and

σi(χ) = BS−1(Oi(χ), Ti, Ki, S, r) is the model implied volatility, where Oi(χ) is the

Merton model price of the option i. The model implied volatility is obtained by

inverting the Black–Scholes formula, where the option price is given by the Merton

model price. The choice of the implied volatility mean squared error (IVMSE) loss

function follows the argumentation of Christoffersen and Jacobs (2004), who show that

the calibration made on implied volatilities is more stable out of sample. Table C.1

displays the average calibrated parameters for the cross-section of stocks.

Implementation of the Model-based Swap
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Table C.1. Calibrated Parameters of the Merton Jump-diffusion Model.

This table displays the average calibrated parameters of the Merton jump-diffusion model for the

cross-section of stocks. The model is calibrated separately for each stock, and it is recalibrated

monthly at each start date of the swap. The calibration sample includes all the out-of-the-money

options with a maturity 30 days quoted by the Optionmetrics interpolated volatility surface file

on the calibration day. The numbers displayed are the average calibrated parameters across

months and across stocks.

λ µ δ σ

Average across stocks 4.01 -0.13 0.20 0.24

Following the calibration procedure outlined in the preceding step, the

parameters λ̂, µ̂, δ̂, σ̂ of the Merton jump-diffusion model are estimated individually for

each stock St on each starting date of the swaps, denoted as t. Subsequently, Merton

option prices are computed for a regularly spaced grid of strikes, covering the moneyness

range [Ste
−4σ
√
T−t, Ste

4σ
√
T−t]. In this formula, σ is determined as the implied volatility

of an at-the-money option, represented as σ = BS−1(CMRT , T − t, St, St, r), where

CMRT corresponds to the Merton price of a call option with a strike equal to St. The

equispaced grid is designed to include twenty out-of-the-money puts with strikes

spanning the range [Ste
−4σ
√
T−t, St], along with twenty out-of-the-money calls having

strikes covering the range [St, Ste
4σ
√
T−t]. The fixed leg of the swap, as defined in

Equation 6, is then calculated using these model-derived option prices. The floating leg

of the swap comprises the total of the payoff from the same option portfolio and a

continuous delta-hedge executed in the forward market. The return of the swap is

computed as outlined in Section 1 in the main text.
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D. Additional Figures

Figure D.1. Overvaluation of the Stock Market After the Financial Crisis.

The upper chart presents the time-series of the Tobin’s q metric for the US economy. The data is
sourced from the FRED database operated by the Federal Reserve Bank of St. Louis, specifically
from the variable denoted as (Nonfinancial Corporate Business; Corporate Equities; Liability,
Level/1000)/(Nonfinancial Corporate Business; Net Worth, Level). The lower chart presents
the time-series of the average value of the fixed leg of the swaps across stocks, accompanied
by the corresponding time-series for the Federal Funds Rate. The data source for the Federal
Funds Rate is the H15 Report of the Federal Reserve accessed from Wharton Research Data
Service (WRDS). The regions in gray highlight the financial crisis and Covid-19 recessions, as
officially defined by the National Bureau of Economic Research (NBER).
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E. Additional Tables

Table E.1. Skewness Swap Returns Around FOMC Announcements.

The table reports the results of a panel regression examining changes in skewness swap returns

following FOMC announcements. The analysis covers announcements from 2004 to 2020, includ-

ing 151 instances where interest rates were on the agenda. The dependent variable ∆rsk,i,FOMCt

measures, for each stock i, the change in the return of the first swap following the FOMC date

relative to the last swap before the announcement. This variable is regressed on the interest rate

decision, IRFOMCt , and its interaction with two dummy variables: 1IRFOMCt<0, which equals

one when the Federal Reserve lowers rates, and 1IRFOMCt>=0, which equals one when rates are

held constant or increased. Standard errors are clustered at both the stock and time levels.

Panel Regression of ∆rsk,i,FOMCt

IRFOMCt -0.026∗∗

(-2.28)
1IRFOMCt

>=0 · IRFOMCt -0.006

(-0.70)
1IRFOMCt

<0 · IRFOMCt -0.029∗∗

(-2.16)

Stock fixed effect Y Y
Year fixed effect Y Y

R squared (%) 1.33 1.52
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