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I. Introduction

Scheduled announcements, with dates well known in advance, lead investors to anticipate

the arrival of information, even without knowing its content. Surprisingly, the empirical literature

consistently documents a sizable increase in equity prices before such announcements.1 Given the

extensive documentation on Federal Open Market Committee (FOMC) meetings, this paper uses

as its main example what Lucca and Moench (2015) call the pre-FOMC drift, a significant

increase in equity prices before scheduled FOMC meetings, accounting for up to 80% of annual

U.S. equity returns. Remarkably, this upward drift occurs regardless of the announcement’s

content and is accompanied by low volatility and trading volume, adding to its puzzling nature.

To our knowledge, no existing asset pricing theory fully explains this set of empirical facts.

This paper proposes an economic mechanism that explains the pre-announcement drift

and its associated low volatility and trading volume. Building on David (2008) and Dumas,

Kurshev, and Uppal (2009), we introduce two key modifications to a disagreement model:

(1) scheduled announcements, such that information arrives both continuously and at fixed,

well-known points in time, and (2) a costly continuous-time signal, requiring investors to exert

effort, however small, to learn from it. These elements, within a disagreement framework, offer a

unified explanation for the empirical facts surrounding scheduled announcements.

The pre-announcement drift arises because investors optimally stop learning from the

costly signal when an announcement is imminent. Given the cost, investors weigh whether

1See Gao, Hu, and Zhang (2020), Savor and Wilson (2016), Donders, Kouwenberg, and Vorst (2000), Chae

(2005), and Akbas (2016) for corporate earnings announcements and Lucca and Moench (2015), Savor and Wilson

(2013), and Hu, Wang, Pan, and Zhu (2019)for macroeconomic announcements, including FOMC meetings.
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learning is worthwhile and choose to forgo it when they foresee an announcement approaching. In

a disagreement model, this decision reduces sentiment risk, driving up prices before the

announcement. Thus, the reduction in sentiment risk provides a unified explanation for the

pre-announcement drift and its related empirical patterns.

Our specific model describes an economy where dividends follow an unknown,

unobservable growth rate. Investors learn about this rate from two sources (besides the

dividends): scheduled announcements and a costly continuous signal.2 Both the announcements

and the signal are public, meaning investors trade for consumption smoothing rather than

speculation.3 Disagreement is modeled as stemming from unshakable priors: one group, the “Fed

believers” (investors B), trust that all relevant information is revealed only through scheduled

announcements; the other group, “Fed agnostics” (investors A), view the continuous signal as

informative too. Under this structure, investors still form rational expectations, but they do not

learn from each other or from prices; they simply “agree to disagree.” Since investors interpret

signals differently, their estimates of the economy’s growth rate diverge. Investors A might be

more optimistic or pessimistic depending on the signal content. A change in the beliefs of

investors A relative to those of investors B defines sentiment, and as both groups trade to clear the

market, sentiment is ultimately reflected in prices, with the absolute level of disagreement

between the investors determining its riskiness, i.e., stochastic volatility.

2Possible micro-foundations for this cost include limited cognitive capacity, as in the optimal inattention work of

Abel, Eberly, and Panageas (2007), time spent monitoring information, or transaction and portfolio rebalancing costs

incurred upon processing and acting on the information.

3This aligns with the empirical evidence that informed trades, though likely present, do not cause the

pre-announcement drift; see Appendix A.
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The reason why investors decide to stop learning when an announcement is imminent is as

follows. While investors A learn about the economy’s growth rate from the costly signal, they

must weigh its cost against its benefits. As an announcement approaches, the benefits of learning

from the signal diminish because new information is expected to arrive soon. The

announcement’s informational content dwarfs that of the signal, so investors prefer to spare the

cost of the signal and wait.4 Intuitively, when investors anticipate an announcement, they

anxiously “freeze up” and stop learning from the costly signal.5 However, the exact timing of the

decision to stop learning is random and endogenous depending on the economy’s state.6 When

investors A stop learning, their beliefs stop diverging from those of investors B, thereby reducing

disagreement and, in turn, sentiment risk. Since sentiment risk is priced, such a risk reduction

increases prices, generating the pre-announcement drift, along with lower volatility (due to

reduced risk) and lower trading volume (from decreased hedging demand). Still, the

pre-announcement drift cannot be arbitraged away by purchasing equities earlier in an

announcement cycle, as this entails exposure to sentiment risk, which deters investors from

holding the equity asset. Only a reduction in sentiment risk motivates investors to increase their

asset holdings, causing the pre-announcement drift. After an announcement occurs, prices may

jump up or down depending on the announcement’s content, but no reverse drift occurs. Instead,

the differences in investors’ beliefs about the announcement generate abnormally high volatility

and trading volume, consistent with empirical post-announcement evidence.

4The same mechanism is at play in Grossman and Stiglitz (1980), where the information contained in prices and

signals are substitutes; if there is too much information in prices, few investors will buy signals.

5Ahead of FOMC meetings, expressions such as “Fed watch” or “countdown to FOMC” reflect this phenomenon.

6This unique feature of the model aligns with the empirical findings of Kurov, Wolfe, and Gilbert (2020).
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The model’s generality allows it to encompass various scheduled announcements,

including FOMC meetings, without explicitly modeling the Federal Reserve. Announcements are

assumed to be imperfectly transparent, leading to disagreements in their interpretation. In the

FOMC case, several studies have demonstrated the effects of such an information channel versus

the traditional policy channel.7 Here, announcements are interpreted as forward guidance,

particularly through press conferences, since other policy tools, such as short-term rate changes,

contain little noise upon release.8 This interpretation aligns with Stein’s (1989) argument that the

Fed, aiming to shape expectations while maintaining flexibility, cannot fully and credibly disclose

its policy objectives.9 This lack of disclosure reduces transparency in FOMC announcements,

supporting the model’s assumption.10

Assuming that announcements are noisy does not imply that the pre-announcement drift

results from information leakage.11 Both FOMC and corporate earnings announcements exhibit a

consistently positive pre-announcement drift, whereas post-announcement price movements

average to zero but vary based on the released information. Surprisingly, the pre-announcement

7See Cieslak and Schrimpf (2019), Gurkaynak, Sack, and Swanson (2005), Jarociński and Karadi (2018),

Matheson and Stavrev (2014), and Leombroni, Venter, and Whelan (2016).

8This is consistent with Boguth, Gregoire, and Martineau (2019) on the consequences of FOMC press

conferences.

9See Blinder (2008) and Blinder, Goodhart, Hildebrand, Lipton, and Wyplosz (2001) for discussions on central

bank communication strategies.

10For a corporate earnings parallel, see Jones (1991) and Balsam, Bartov, and Marquardt (2002) on managing

expectations through accruals.

11Information leakage refers to any advance revelation of an announcement’s content, whether private or public,

as in Ai, Bansal, and Han (2021).
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drift remains positive even for “bad news” announcements, to which the market reacts negatively

(see Appendix A). To the best of our knowledge, no empirical evidence links an announcement’s

content to the preceding price drift. Therefore, this paper explicitly rules out insider information

leakage as an explanation.

While contributing to the extensive literature on heterogeneous beliefs, this paper

introduces a novel dimension: the endogenous decision to learn or stop learning, thereby

determining the extent of disagreement. Banerjee, Davis, and Gondhi (2021) explore a related

idea, where investors choose to disagree due to higher utility (i.e., utility-based belief biases),

while Brunnermeier and Parker (2005) examine its impact on portfolios. In contrast, this paper

focuses on how the decision to stop learning influences asset prices, volatility, and trading

volume, using scheduled announcements as the key trigger.

Furthermore, this paper contributes to the theoretical understanding of scheduled

announcements by incorporating heterogeneous agents into a framework with expected utility,

unlike Ai and Bansal (2018), who showed that a “pure news” event cannot generate a risk

premium in a single-agent model. Here, sentiment risk, arising from agent heterogeneity, is

reduced before an announcement, in contrast to macroeconomic models (see Ai et al. (2021),

Wachter and Zhu (2018), and Laarits (2019)) that predict higher pre-announcement risk. These

models struggle to explain why high pre-announcement risk would coincide with low realized

volatility, while low risk is accompanied by high volatility after the announcement; they would

require an unrealistically high (low) price of risk before (after) an announcement to align with the

empirical evidence. Additionally, in models such as Laarits (2019) and a modified version of that

in Pástor and Veronesi (2013), increased information before the announcement must increase

volatility, which again contradicts the empirical evidence. Similarly, in a Kyle (1985) setting, if
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noise traders were to unexpectedly exit the market before announcements, the price would react

more strongly to informed trades and also generate higher volatility.

This paper also contributes to studying the asset pricing effects of scheduled public

announcements, as explored by Kim and Verrecchia (1991a,b) and Kondor (2012). These studies

examine how price, volume, and volatility depend on factors such as announcement precision,

surprise content, and investors’ prior knowledge, but focus solely on post-announcement effects.

In contrast, this paper provides a unified framework linking asset pricing dynamics both before

and after announcements.

Further empirical research on macroeconomic announcements, particularly FOMC

announcements, includes work by Hu et al. (2019), Cieslak, Morse, and Vissing-Jorgensen

(2019), and Fisher, Martineau, and Sheng (2022). Cieslak et al. (2019) found that the equity

premium is earned during even weeks following the last FOMC meeting. While the current paper

focuses on a single announcement (week 0), the model can be extended to include biweekly

minor announcements, aligning with Cieslak et al.’s (2019) findings. Fisher et al. (2022), using

daily data, documented an increase in attention before macroeconomic announcements,

accompanied by high volatility and trading volume. In contrast, the pre-announcement drift

occurs with low volatility and trading volume, which could suggest low attention in the hours

leading up to the announcement, aligning with our model’s prediction of low disagreement. Hu

et al. (2019) proposed that macroeconomic announcements increase market uncertainty, which is

resolved shortly before the announcement, producing a positive price drift. However, they did not

identify the specific uncertainty being reduced. This paper fills that gap by identifying sentiment

risk as the uncertainty that declines before the announcement.

The rest of the paper is structured as follows. Section II introduces the model, which
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features disagreement, scheduled announcements, and a costly signal within a general equilibrium

consumption framework. Section III presents the main results, explaining the positive

pre-announcement drift along with the empirically observed low volatility and trading volume,

patterns that have challenged existing theories. Section IV explores two reduced models: one with

a costless signal to isolate the effect of disagreement from its interaction with intermittent learning

(i.e., periods of learning and not learning), and another without disagreement or a costly signal,

serving a pedagogical purpose by testing whether scheduled announcements alone can generate a

pre-announcement drift, which they cannot. Finally, Section V offers concluding remarks.

II. Main Model

This section presents a model of disagreement à la Dumas et al. (2009) with two

innovations: scheduled announcements and costly information. To preserve tractability, we

include only assumptions essential to the main mechanism; extensions not explicitly modeled are

discussed throughout the section.

A. Structure of the Economy

Time t is a continuous variable, with discrete events, called announcements, occurring at a

fixed periodicity τ . The market is assumed to be complete and populated by atomistic investors

who exhibit power utility over consumption. All investors have the same relative risk aversion,

described by the parameter 1− α > 1 where α < 0, and rate of impatience ρ.12

12The assumption of 1− α > 1 is important in this model because, with logarithmic utilities, prices are just an

average of the prices in representative-agent economies each consisting of investors of one type, A or B. Therefore, in
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The economy features a dividend process that follows a geometric Brownian motion with

an unobserved growth rate ft, which is stochastic and follows an Ornstein–Uhlenbeck process.

The dividend Dt and the growth rate ft are governed by the processes

dDt

Dt

= ft dt+ σD dZD,t,(1)

dft = −ζ(ft − f̄) dt+ σf dZf,t,(2)

where the two Brownian motions {ZD,t, Zf,t} are uncorrelated with each other. The growth rate ft

is the sole unobserved variable of the economy, and all investors want to estimate it to make

optimal consumption decisions. No investor knows the true ft because it fluctuates before they

can ever fully learn it, as in equation (2).

B. Information Assumptions

Investors are divided into two groups with contrasting, unshakable priors about the

information content in the announcements and the signal available to learn about the economy’s

growth rate. Investors A, the “agnostics” to announcements, value the signal as a useful source of

information, while investors B, the “believers” in announcements, view the announcements as the

only valid source of information and dismiss the signal. Investors’ beliefs are assumed to be

dogmatic but observable. Therefore, no learning from prices occurs, as all information is

public—there is no private information to learn from prices. In what follows, the superscripts A

and B indicate investors of groups A and B, respectively.

Announcements: The announcements, denoted by It, are noisy information releases

such an economy there would be no risk compensation for the fluctuation in the share of consumption, i.e., no

sentiment risk.
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about the growth rate ft that occur with periodicity τ . They are perceived differently by investors

A and investors B, and the parameter ψ ∈ (0, 1) determines how informative they are for

investors A:

IAt = ψft +
√

(1− ψ2)γAt ν
A
I,t + σIε

A
I,t where νAI,t, ε

A
I,t ∼ N (0, 1) and νAI,t ⊥ εAI,t,(3)

IBt = ft + σIε
B
I,t where εBI,t ∼ N (0, 1).

Signal: The signal, denoted by St, provides continuous information about shocks to the

growth rate, dZf,t. It is also perceived differently by investors A and investors B, and the

parameter ϕt ∈ (0, 1) determines how informative the signal is for investors A:

dSA
t = ϕt dZf,t +

√
1− ϕ2

t dZS,t = dZA
S,t,(4)

dSB
t = dZB

S,t,

where ZS,t is a third Brownian motion, which is uncorrelated with {ZD,t, Zf,t}. The current

model allows for time variation in the parameter ϕt, for which we consider the following cases:

(i) where ϕt changes at an exogenous time t∗ (Section III.A), (ii) where t∗ is endogenous

(Section III.B), and (iii) where ϕt remains constant over time (Section III.C). Note that the signal

St in equation (4) conveys contemporaneous information solely about the current growth rate,

without providing any information about the upcoming announcement. Thus, the signal is a

substitute for the announcement. In contrast, models such as Laarits (2019) and Ying (2020a)

incorporate complementary signals, which help investors interpret announcements. These affect

only the perceived precision of announcements and do not influence beliefs during the

announcement cycle.

The previous assumptions lead to disagreement over announcements when ψ < 1 and
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over signals when ϕt > 0. While disagreement over announcements (ψ) has no effect within an

announcement cycle, it is crucial for capturing established post-announcement empirical patterns,

such as no average price effect, high volatility, and high trading volume. In contrast, the model’s

findings stem from the intermittence of ϕt, which is usually assumed to be constant in the

literature. During an announcement cycle, investors A learn from the signal when ϕt > 0 and

ignore it when ϕt = 0. These alternating periods of learning and non-learning drive our main

results on prices, volatility, and trading volume in Section III.

Two key parameter restrictions follow. First, disagreement about the signal (ϕt > 0) at

some point during an announcement cycle is essential for sentiment risk to affect expected returns

(see Section II.G). Second, investors A must foresee a minimal amount of information in

announcements (ψ > 0); if they fully disregarded future announcements, their posterior variance

would converge to a stationary value instead of following a pattern of periodic stationarity,

rendering the results in Propositions 2–4 invalid.

In the presence of disagreement, at least one group of investors must be objectively

incorrect. Since neither group knows the true state of the economy, the objective measure is not

defined on their respective σ-algebra and can be ignored for calculating the equilibrium. However,

the objective measure impacts each group’s long-term survival through their share of

consumption: persistent over- or under-consumption relative to the objective measure depletes a

group. To maintain balance, we assume the objective process is that of investors A for the signal

and that of investors B for the announcements, making each group correct about one source of

information but incorrect about the other.
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C. Filtering

Investors need to form an estimate of the growth rate, i.e., a filter, which follows a normal

distribution, ft ∼ N (f̂ i
t , γ

i
t), where f̂ i

t and γit are the mean and posterior variance of the estimated

growth rate for each group i ∈ {A,B}. The filtering on announcement dates (in discrete time)

generates the boundary conditions for the filtering processes between consecutive announcements

(in continuous time) where investors use the signal and dividend. A superscript “−” denotes

quantities immediately before an announcement. From filtering theory, the updated beliefs after

observing the announcement are

f̂A
t = f̂A−

t +
ψγA−

t (IAk − ψf̂A−
t )

σ2
I + γA−

t

, γAt =
γA−
t

(
σ2
I + γA−

t (1− ψ)
)

σ2
I + γA−

t

,(5)

f̂B
t = f̂B−

t +
γB−
t (IBk − f̂B−

t )

σ2
I + γB−

t

, γBt =
γB−
t σ2

I

σ2
I + γB−

t

,

while during an announcement cycle, the conditional expected values and posterior variances

obey the stochastic differential equations

df̂A
t = −ζ(f̂A

t − f̄)dt+
γAt
σ2
D

(
dDt

Dt

− f̂A
t dt

)
+ ϕtσfdSt, dγAt = σ2

f (1− ϕ2
t )− 2ζγAt − (γAt )

2

σ2
D

,

(6)

df̂B
t = −ζ(f̂B

t − f̄)dt+
γBt
σ2
D

(
dDt

Dt

− f̂B
t dt

)
, dγBt = σ2

f − 2ζγBt − (γBt )
2

σ2
D

.

Although the means f̂A
t and f̂B

t of the growth rate are stochastic, the posterior variances γAt and

γBt are deterministic functions of time (with closed-form expressions) that exhibit periodic

stationarity, illustrated in Figure 1. All figures use the parameter values in Table 1 in Appendix B.

The left and middle graphs of Figure 1 show γAt and γBt over three announcement cycles with ϕt

constant over time. Since ψ and ϕt determine how much information investors A extract from

announcements and signals, they jointly influence whether investors A are more confident than
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investors B. With the baseline parameters in Table 1, investors A are more confident, as in Dumas

et al. (2009), but this is irrelevant for our model. For instance, with ϕt = 0.87 and ψ = 1− ϕt,

both groups have the same average posterior variance (right graph of Figure 1). Investors B start

each cycle more confident, but since they do not learn from the signal between announcements,

investors A become more confident as the cycle progresses.

Figure 1: Posterior variances γAt and γBt over time. The left and middle graphs show γAt and γBt for
three announcement cycles, respectively, with each exhibiting periodic stationarity. The right graph shows
γAt and γBt for ϕt = 0.87 and ψ = 0.13 over three announcement cycles.
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D. Disagreement and Sentiment

Because the two groups of investors have different beliefs about the growth rate ft, there is

disagreement in the economy. A process that captures the disagreement between the two groups

from the perspective of investors A can be defined as13

gt ≡ f̂A
t − f̂B

t ,

13The perspective of either group can be chosen as the reference; here the choice is to focus on investors A, as

they find the signal informative.
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which follows an Ornstein–Uhlenbeck process with mean reversion to zero:

dgt = ϑtgt dt+ σg
D,t dZ

A
D,t + σg

S,t dZ
A
S,t,(7)

ϑt = −
(
ζ +

γBt
σ2
D

)
, σg

D,t =
γAt − γBt
σD

, σg
S,t = ϕtσf .

From the last equation, a higher ϕt increases σg
S,t, amplifying the volatility of the disagreement

process and causing larger fluctuations. Moreover, the mean reversion in equation (7) occurs

independently of the fundamental process in equation (2). Even if ζ = 0, the process of g remains

mean-reverting due to its dependence on the posterior variance γBt . Intuitively, extreme belief

shifts take time to revert to zero, sustaining disagreement persistence.

Since the probability measures of investors A and B are equivalent, a change of measure

ηt from the beliefs of investors B to those of investors A can be specified in continuous time. For

any event eu belonging to the σ-algebra of time u, EA
t

[
ηu
ηt
1eu

]
= EB

t [1eu ].14 Hence, by the

Girsanov theorem,

dηt
ηt

=
f̂B
t − f̂A

t

σD
dZA

D,t = − gt
σD

dZA
D,t.(8)

Following Dumas et al. (2009), this change of measure ηt is called the “sentiment” variable.15 For

investors A, ηt represents the extent to which the probability beliefs of investors B differ from

their own. When investors A are pessimistic (gt < 0), investors B assign a higher probability to

positive dividend innovations. Crucially, ηt and gt are distinct: the disagreement gt determines the

14This builds on the observational equivalence of the dividend process where

dDt

Dt
= fAt dt+ σD dZ

A
D,t = fBt dt+ σD dZ

B
D,t and the definition of ηt as a martingale under the measure of

investors A.

15It is also known as the “disagreement weighting process” (see Basak (2005)) or the “disagreement value” (see

David (2008)).
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stochastic volatility of ηt. The riskiness of the sentiment variable ηt depends on |gt|, making

sentiment risk proportional to g2t .

Due to the split in filtering (Section II.C), equation (8) holds during an announcement

cycle but not at the discrete announcement times. At these points, the likelihood ratio sets the

boundary condition for equation (8) without requiring the Girsanov theorem. The sentiment

variable ηt jumps up or down based on the announcement realization It, but this jump is zero in

expectation. Thus, ηt retains its martingale properties throughout the economic timeline, which is

essential for deriving a stationary equilibrium pricing kernel.

The Markovian system comprising equations (1), (6), (7), and (8) completely

characterizes the evolution of the economy, which is driven by only two Brownian motions, ZD,t

and ZS,t, because no investor observes Zf,t. The diffusion matrix of the four state variables

{Dt, f̂
A
t , gt, ηt} is a 4× 2 matrix

Mσ =



DtσD 0

γA

σD
ϕtσf

γA−γB

σD
ϕtσf

− g
σD
η 0


.(9)
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E. Optimization and Equilibrium

From the perspective of investors A, one can use the change of measure ηt to express the

problem that investors B face. This results in the following two optimization problems:

For investors A: For investors B:

sup
ct,t∗

EA

∫ ∞

0

e−ρt 1

α
(cAt )

α dt sup
ct

EA

∫ ∞

0

ηte
−ρt 1

α
(cBt )

α dt

subject to subject to

EA

∫ ∞

0

ξAt c
A
t dt = EA

∫ ∞

0

ξAt θ
ADt dt EA

∫ ∞

0

ξAt c
B
t dt = EA

∫ ∞

0

ξAt θ
BDt dt

where t∗ represents the point in time in an announcement cycle at which investors A stop learning

from the signal. Taking first-order conditions with respect to cAt and cBt , with Lagrange multipliers

λA and λB, and imposing the condition that the dividend must be fully consumed, cAt + cBt = Dt,

the state price density ξAt is obtained as

ξAt = e−ρt

[(
1

λA

) 1
1−α

+
( ηt
λB

) 1
1−α

]1−α

Dα−1
t ,(10)

and the optimal levels of consumption for the two investor groups are

cAt = ωηtDt, cBt = (1− ωηt)Dt(11)

where ωηt =

(
1
λA

) 1
1−α(

1
λA

) 1
1−α +

(
ηt
λB

) 1
1−α

.

Equation (10) explicitly states that the sentiment ηt is priced. Intuitively, investors A are

concerned about the beliefs of investors B because collectively they share the aggregate dividend,

thereby clearing the market. Since the sentiment ηt determines the consumption share of investors

A, as per equation (11), fluctuations in this share of consumption, i.e., the riskiness of ηt, are
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priced.16 Using equation (11), the utility of investors A is defined as

UA
t (Dt, f̂

A
t , gt, ηt, t) =

∫ ∞

t

e−ρ(u−t) 1

α
EA
[
(ω(ηu)Du)

α
]
du.(12)

The ratio of pricing densities, used to price all assets in Section II.F, depends on the power 1− α.

Assuming this power is an integer,17 the binomial formula can be used to write the ratio as

ξAu
ξAt

= e−ρ(u−t) (ωηt)
1−α

1−α∑
j=0

(1− α)!

j!(1− α− j)!

(
1

ωηt

− 1

)j (
Du

Dt

)α−1(
ηu
ηt

) j
1−α

.(13)

Note that the ratio of pricing densities in equation (13) depends on the expectation of the joint

distribution of ηu and Du to certain powers. The moment-generating function of this distribution

can be expressed in closed form as follows.

Proposition 1. The characteristic function of the joint distribution of ηu and Du takes the form

EA

[(
Du

Dt

)ε(
ηu
ηt

)χ ∣∣∣∣ Yt, t] = Hf (f̂
A, t, u; ε)×Hg(g, t, u; ε, χ),(14)

where the functions Hf (·) and Hg(·) are given in closed form in Appendix C.1, and Hg(·) is

hump-shaped in g and decreasing in g2.

Intuitively, prices depend on both the expected growth rate f̂A and the absolute level of

investor disagreement (g2). As disagreement decreases, risk declines, prompting investors to hold

more risky assets and driving up prices. Notably, the price density reflects only continuous risk

since scheduled announcements, being predictable, cause jumps only on those discrete dates.

Consequently, the risk before an announcement stems solely from continuous Brownian motions

if there are no potential jumps in the next instant.

16This is true for time-additive utility; with recursive utility, g can also be priced as in Boroviécka (2011).

17The integer assumption, though standard in the literature, is not necessary; see Bhamra and Uppal (2014) for a

general case.
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In Figure 2, the left graph illustrates the hump shape of Hg with respect to g (the riskiness

of ηt) when the correlation effect is ignored, i.e., ε = 0. The middle graph shows both the

variance (ε = 0) and the correlation (ε = −2) effects when g = 0. The right graph shows the

logarithmic derivative ∂Hg

∂g
1
Hg

, which is decreasing in g.

Figure 2: Properties of the function Hg. The left graph shows Hg as a function g at different points in the
future: u− t = τ , u− t = 2τ , and u− t = 3τ , with ε = 0. The middle graph shows Hg as a function of χ,
when isolating the variance effect (ε = 0) and when including the correlation effect (ε = −2). The right
graph shows ∂Hg

∂g
1
Hg

as a function of g for two values of χ.
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F. Asset Prices

Since agents care about two Brownian motions, three linearly independent securities are

needed to complete the financial market and implement equilibrium during an announcement

cycle. The choice of securities is arbitrary, and the selection here consists of (i) a riskless,

instantaneous bank deposit, (ii) an equity that pays the aggregate dividend Dt perpetually, and

(iii) a perpetual bond providing one unit of consumption per unit time. The prices of the equity

and bond are

P (Dt, f̂t, t) = Dt

∫ ∞

t

E

[
ξu
ξt

Du

Dt

∣∣∣∣ f̂t, t] du,
B(f̂t, t) =

∫ ∞

t

E

[
ξu
ξt

∣∣∣∣ f̂t, t] du.
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Furthermore, the noise of the announcements generates an additional source of risk with

periodicity τ , requiring an additional security for hedging. To prevent distortions in the stock and

bond markets, the model includes a tailored futures contract in zero net supply, fluctuating solely

with announcement releases. This futures contract serves exclusively as a hedge against

announcement risk while remaining orthogonal to stocks and bonds. Since the market value of a

future contract is always adjusted to equal zero, no capital flow is induced, so the positions in the

risky stock and bond remain unaffected.

G. Contemporaneous Excess Returns

The pricing measure in equation (10) encompasses the equilibrium’s risk-free rate and

market prices of risk. As in Cox and Huang (1989), the risk-free rate r on the instantaneous bank

deposit is defined as the drift, and the market prices of risk, denoted by the vector κ, define the

diffusion of the risk-neutral measure. By applying Itô’s lemma to equation (10), one obtains the

risk-free rate and market prices of risk as

r = ρ+ (1− α)f̂t −
1

2
(2− α)(1− α)σ2

D − gt(1− ωη)

(
αgtωη

2(1− α)σ2
D

+ (1− α)

)
,(15)

κ =

(1− α)σD + gt(1−ωη)

σD

0

 .(16)

From equation (15), the risk-free rate increases with the expected dividend growth rate but

responds to the disagreement gt in a non-monotonic and asymmetric way, as shown in David

(2008). This is because gt affects both the average of f̂A
t and f̂B

t and the gap between them. If one

defines a weighted average belief f̂M
t = ωηt f̂

A
t + (1− ωηt f̂

B
t ), the role of disagreement in the

risk-free rate can be isolated: it depends solely on the disagreement squared—that is, on the
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degree of belief dispersion. Intuitively, the square of the disagreement increases the risk-free rate

because, as a priced source of risk, it reduces all stochastic discount factors.

The contemporaneous (expected) excess returns are given by µ− r = σRκ, where the

return volatility σR is obtained by pre-multiplying the diffusion matrix of the state variables (Mσ

in equation (9)) by the gradient of the price function, resulting in

σR =

σD +
γA

σD

∂P

∂f̂t

1

P
+

(γAt − γBt )

σD

∂P

∂gt

1

P︸ ︷︷ ︸
fundamental component = σ̄R

− gtηt
σD

∂P

∂ηt

1

P︸ ︷︷ ︸
sentiment component

ϕtσf

(
∂P

∂f̂t

1

P
+
∂P

∂gt

1

P

) .(17)

Here ∂P

∂f̂t
< 0, ∂P

∂gt
> 0, and ∂P

∂ηt
> 0. Sentiment risk introduces excess volatility, as demonstrated

in Scheinkman and Xiong (2003). The intuition behind ∂P
∂gt

> 0 is that an increase in disagreement

stems from greater optimism among investors A, which also prompts them to buy more of the

stock and push prices up. Similarly, ∂P
∂ηt

> 0 holds because a rise in η reduces the consumption

share of investors A (see equation (11)), making their consumption riskier. This heightened risk

raises their hedging demand, which also drives up prices.

Therefore, the excess rates of return conditionally expected by investors are

µ− r = σ̄R(1− α)σD + gt

(
(1− ωηt)

σD
σ̄R − (1− α)ηt

∂P

∂ηt

1

P

)
− g2t

ηt(1− ωηt)

σ2
D

∂P

∂ηt

1

P
(18)

= K0 +K1gt +K2g
2
t ,

where the signs of K0 > 0, K1 ≈ 0, and K2 < 0 follow from the price sensitivities. The

hump-shaped relationship between µ− r and the disagreement g arises from the latter being the

variance of sentiment; see equation (8). Since sentiment determines investors’ consumption share

(see equation (11)), greater disagreement-squared amplifies consumption fluctuations. Such

fluctuations make the risky asset essential for hedging, resulting in a negative risk premium.

Figure 3 shows the different components of the relationship between contemporaneous (expected)
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excess returns and disagreement. Solid lines include the correlation effect between dividends and

sentiment (ε = −2), while dashed lines isolate the impact of disagreement as the variance of

sentiment (ε = 0).

Figure 3: Components of contemporaneous (expected) excess returns as functions of the
disagreement. The left graph shows K0, K1, and K2 from equation (18) as functions of the disagreement
g, and the right graph shows them as functions of η; the dashed lines isolate the variance effect (ε = 0)
while the solid ones include the correlation effect (ε = −2).
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H. Portfolio Allocation

Under the complete market assumption, the portfolio allocation problem is reduced to the

positions making up the exposure that investors A desire to the shocks ZD,t and ZS,t. All state

variables are driven by these two Brownian motions, with the diffusion matrix Mσ given in

equation (9). Defining the aggregate utility of consumption as in equation (12), investors A seek a

vector θ⊤ = [θP θB] of asset allocations that satisfies the system

[
UA
t

∂UA
t

∂f̂A
t

∂UA
t

∂gt

∂UA
t

∂ηt

]
Mσ =

[
θP θB

] P ∂P

∂f̂A
t

∂P
∂gt

∂P
∂ηt

0 ∂B

∂f̂A
t

∂B
∂gt

∂B
∂ηt

Mσ.(19)
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The left-hand side represents the target exposures based on consumption utility, while the

right-hand side shows the exposure to available securities. Thus, θ⊤ reflects how investors achieve

their desired allocation. The allocation defined in equation (19) is used to calculate trading

volume, which is defined as the square of the change in an investor’s allocation to each asset

(turnover), matching the other group’s change in allocation due to market clearing.

III. Main Results

This section examines the impact of the signal’s information content. When ϕt = 0,

investors A ignore the signal and stop learning until an announcement occurs. We investigate the

implications of such alternating periods of learning and non-learning for prices, volatility, and

trading volume. The analysis is divided into two parts: first, we assume an exogenous pattern for

ϕt over an announcement cycle, and then we endogenize ϕt, demonstrating that the optimal

pattern that emerges mirrors the exogenously imposed one. Finally, this section presents

additional analyses linking the model’s findings to empirical evidence. Our main results use the

following definition.

Definition 1: A positive pre-announcement drift is an increase in the expected excess return on

the risky asset before the announcement.

A. Exogenous ϕt

Assume that investors A stop extracting information from the signal exogenously when a

certain percentage of time t∗ in each cycle is reached. For example, investors A might extract

information from the signal (ϕt > 0) during the first t∗ = 95% of the announcement cycle, but
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ignore the signal (ϕt = 0) for the 5% of time remaining.18 The implications of ceasing to learn in

the run-up to an announcement are discussed below.

1. State Variables

Ceasing to learn from the signal primarily impacts the filtering process of investors A.

Since they rely on the signal to infer the economy’s growth rate, ignoring it increases their

uncertainty γAt . Furthermore, when investors A ignore the signal, their beliefs align with those of

investors B, who always disregard the signal, thus reducing the absolute difference in their

posterior variances.19 Finally, as investors A become more similar to investors B, fluctuations in

the change of measure η decrease, i.e., the riskiness of the sentiment (g2) decreases. These effects

are formalized as follows:20

Proposition 2. Investors A ceasing to learn from the signal (i.e., setting ϕt = 0) has the following

effects:

(a) It increases the posterior variance γAt of investors A.

(b) It decreases the absolute difference between the posterior variances, |γAt − γBt |, while

increasing the difference γAt − γBt .

(c) It decreases the variance of the sentiment, g2t , while the disagreement gt continues to

follow an Ornstein–Uhlenbeck process with mean reversion to zero.

The changes in state variables summarized in Proposition 2 do not generate jumps, which

would require an additional premium in the state price density. Although the diffusion structure of

18For the FOMC case, the drift occurs over the two days before the meeting, so t∗ = 31−2
31 ≈ 94%.

19This is referred to as differences in overconfidence, which can be shut down as in Xiong and Yan (2010).

20The proof is given in Appendix C.2.
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the economy changes when learning stops, all processes remain continuous, so no jump premium

arises. Figure 4 illustrates Proposition 2 for two choices of t∗: 95% (solid lines) and 75% (dashed

lines). The top left graph shows the posterior variance γAt of investors A, which decreases during

an announcement cycle until t∗ is reached. After t∗, γAt increases (part (a) of Proposition 2),

before dropping each time an announcement occurs. The top right graph shows the difference

γAt − γBt between the posterior variances of investors A and investors B. It decreases until t∗ and

exhibits a slight increase thereafter (part (b) of Proposition 2) that precedes the jump due to

disagreement each time an announcement occurs. The bottom graph shows the

disagreement-squared, which dramatically decreases after t∗ (part (c) of Proposition 2), thereby

reducing the riskiness of the sentiment ηt.
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Figure 4: Posterior variance of investors A, difference in posterior variances, and
disagreement-squared over three announcement cycles. The top left graph shows the posterior variance
γAt of investors A, the top right graph shows the difference γAt − γBt between the posterior variances of
investors A and investors B, and the bottom graph shows the disagreement-squared, g2t . Three
announcements are marked at times τ , 2τ , and 3τ . The solid lines are the results for t∗ = 95% and the
dashed lines for t∗ = 75%.
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2. Returns

The key impact of stopping signal learning is an increase in excess returns, from

Proposition 2(c), which drives the pre-announcement drift defined in Definition 1. Parts (a) and

(b) of the proposition have offsetting effects on the fundamental volatility (σ̄R), leaving no

consistent impact on excess returns. As equation (18) shows, the sharp drop in
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disagreement-squared after t∗ raises excess returns, given that K2 < 0:

µ− r︸ ︷︷ ︸
↑

= K0 +K1gt + K2︸︷︷︸
<0

g2t︸︷︷︸
↓

.

While the drift of the price process, i.e., the expected return, increases sharply, the process itself

stays continuous and free of jumps. As the announcement approaches and investors A stop

learning from the signal, fluctuations in gt become smaller, reducing g2t and, hence, sentiment

risk. Recall that sentiment risk charges a premium from the vagaries of others by forcing investors

to hedge and hold fewer shares of equity than would be optimal in a market without sentiment

risk (see equation (11)). Therefore, when sentiment risk is reduced, investors are more willing to

hold the risky asset, thus increasing its price.

Figure 5 displays the excess returns and cumulative returns over two announcement

cycles, together with confidence intervals. There is a considerable increase in returns ahead of the

announcement, due to the dramatic decrease in disagreement-squared when investors A stop

learning from the signal. If the stopping of learning occurs at t∗ = 95% (solid blue lines), about

half of the returns in an announcement cycle are earned in the 5% of the cycle just before the

announcement. If learning stops earlier, at t∗ = 75% (dashed purple lines), about two-thirds of the

returns in an announcement cycle are earned in the 25% of time just ahead of the announcement.
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Figure 5: Excess returns and cumulative returns around announcements. The left graph shows the
contemporaneous (expected) excess returns µ− r, and the right graph shows the cumulative returns. Two
announcements are marked at times τ and 2τ . The solid lines are for t∗ = 95% and the dashed lines for
t∗ = 75%.
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3. Volatility and Volume

As in many information models, volatility and trading volume go hand in hand. To

understand both volatility and volume in an announcement cycle, one must identify the

components that drive the price changes and hedging needs. Each variable is decomposed into two

components: one that persists regardless of the information extracted, ϕt, denoted by the subscript

(RL), and another that appears only when investors A learn from the signal, i.e., when ϕt > 0.

Beginning with volatility, an application of Itô’s lemma allows the terms in equation (17)

to be grouped as

dPt = µ(RL) dt+

 σ(RL)︸ ︷︷ ︸
independent of learning

ϕtσf

(
∂P

∂f̂t

1

P
+
∂P

∂gt

1

P

)
︸ ︷︷ ︸

present only if learning


dZA

D,t

dZA
S,t

 ,
where µ(RL) and σ(RL) are present regardless of whether investors learn from the signal or not.

The term related to the signal shock dZA
S,t is present only when investors A learn from the signal.
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Thus, learning from the signal injects additional volatility into the returns because of the shock

dZS,t, which disappears once investors A stop learning at t∗. Hence, volatility decreases as an

announcement approaches and investors stop learning.

Turning now to trading volume, equation (19), which defines the portfolio allocations, can

be decomposed into

[
MU

(RL) ϕtσf

(
∂UA

t

∂f̂A
t

+
∂UA

t

∂gt

)]
=
[
θP θB

] MP
(RL) ϕtσf

(
∂Pt

∂f̂A
t

+ ∂Pt

∂gt

)
MB

(RL) ϕtσf

(
∂Bt

∂f̂A
t

+ ∂Bt

∂gt

)
 ,

where MU
(RL), M

P
(RL), and MB

(RL) are present regardless of whether investors learn from the signal

or not.21 Trading volume is calculated as the squared turnover over time, (dθp)2. Thus, the change

in position dθp arises from applying Itô’s lemma to the previous equation, resulting in

dθp = µ(RL) dt+

 σ(RL)︸ ︷︷ ︸
independent of learning

ϕtσfF(f̂A
t , gt, U

A
t , Bt, Pt)︸ ︷︷ ︸

present only if learning


dZA

D,t

dZA
S,t

 ,
where the terms µ(RL) and σ(RL) are present regardless of whether investors learn from the signal

or not, and F(·) is a function of f̂A
t , gt, and a combination of the utility UA

t , bond price Bt, and

equity price Pt. The volume calculation uses (dθp)2, making the drift term irrelevant. As with

volatility, the term related to the signal shock dZS,t is present only when investors A learn from

the signal. When the next announcement is imminent, investors stop learning from the signal,

eliminating the hedging needs related to the signal shock and thus decreasing the trading volume.

For illustration, the volatility of prices and the average squared turnover of equity are

shown in the left and right graphs of Figure 6, respectively. As an announcement approaches, the

volatility decreases since the signal fluctuations no longer affect prices, which manifests as a

21These terms represent matrices of partial derivatives of the utility UA
t , the equity price Pt, and the bond price

Bt, respectively, with respect to the state variables Dt and ηt.
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reduction in sentiment risk. Similarly, lower sentiment risk prompts investors to change their

positions less frequently, resulting in lower trading volume.

Figure 6: Volatility and volume around announcements. The left graph shows the volatility and the
right graph shows the trading volume over two announcement cycles. Two announcements are marked at
times τ and 2τ with red vertical lines. The solid lines are for t∗ = 95% and the dashed lines for t∗ = 75%.
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B. Endogenous ϕt

Section III.A showed that when investors A stop learning from the signal (ϕt = 0), a

positive price drift emerges, coupled with low volatility and trading volume. While the timing t∗

of this learning cessation was exogenous there, this section demonstrates that investors A

endogenously choose to stop learning when an announcement is imminent.

This choice stems from the introduction of a fixed cost C per unit time for learning from

the continuous signal in equation (4).22 The benefit of learning is reduced variance in the growth

rate filter of investors A, γAt . However, if extracting information is costly, investors A must weigh

the benefit of variance reduction against such an expense. In contrast, investors B, who deem the

signal uninformative, never find it worthwhile to pay this cost.

22The cost is minimal, akin to the slight effort required to read an online report.
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1. Properties of Learning

The variance reduction of investors A has the following properties:23

Proposition 3. (a) The marginal variance reduction due to learning from the signal decreases

monotonically over time.

(b) The maximum variance reduction is achieved if a non-learning period ∆ is positioned

as late as possible in an announcement cycle.

Proposition 3(a) states that the signal’s ability to reduce the posterior variance γAt

decreases over time, meaning that its benefit diminishes as the announcement nears.

Proposition 3(b) follows as a consequence, indicating that investors prefer to learn earlier in the

announcement cycle. If an investor were to ignore the signal for a period ∆ to save on the cost

∆C, they would optimally place this break as close to the announcement as possible. In

expectation, an investor would rather stop learning once than pause and restart later within the

same announcement cycle.

Since the variance reduction diminishes over time while the cost C remains constant,

investors A must compare the utility of extracting information (ϕt > 0) with that of stopping

altogether (ϕt = 0). By such a comparison, the marginal investor A would be indifferent between

these choices, ensuring no strategic interactions or deviations from the equilibrium learning.

Using equation (12) and its closed-form solution in Proposition 1, the gain per unit time of

extracting information is as follows:24

23The proof is provided in Appendix C.3.

24The proof is given in Appendix C.4.
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Proposition 4. The gain per unit of time of extracting information ϕt is

GA
t (Yt, t) =

−α∑
j=0

h(j)
(
Hg(ϕt, ·)

[
Hf (ϕt, ·)−Hf (0, ·)

]
+Hf (0, ·)

[
Hg(ϕt, ·)−Hg(0, ·)

])
,

where Yt represents the state variables {Dt, f̂
A
t , gt, ηt}, h(j) is a deterministic function of the

summation index j, and Hf (ϕt, ·) and Hg(ϕt, ·) are the exponential functions in Proposition 1,

such that

(a) Hf (ϕt, ·)−Hf (0, ·) is decreasing in t; and

(b) Hg(ϕt, ·)−Hg(0, ·) is hump-shaped in g and decreasing in g2.

Proposition 4(a) formalizes the intuition that as an announcement approaches, investors

have less incentive to extract information from the signal, a consequence of the diminished

benefits of the signal over time (Proposition 3(a)). Proposition 4(b) states that higher sentiment

risk (g2) further discourages information extraction. This is because higher g2 implies a riskier

economy, which increases investors’ sensitivity to uncertainty (Proposition 1), making them less

willing to incur the cost of learning from the signal.

2. Properties of the Decision to Stop Learning

The decision of how much information to extract ultimately depends on the

five-dimensional space of the state variables {Dt, f̂
A
t , gt, ηt} and time. However, the effects of the

dividend Dt, sentiment ηt, and expected growth rate f̂A
t are straightforward (increasing for the

first two, decreasing for the latter). Furthermore, from Proposition 2, stopping has consistent

implications only for g2t and γAt , making them the key drivers in the decision to stop learning.
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Figure 7 illustrates the gain GA
t as a function of extracted information ϕt, showing its decline as

time progresses (left graph) and as disagreement g rises (right graph).

Figure 7: Gain as a function of information extracted. The left graph shows the gain GA
t as a function of

extracted information ϕt at different times. The right graph shows GA
t as a function of ϕt for different

levels of disagreement g. The red line represents the cost C.
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Since the gain function is convex in ϕt, an interior equilibrium for stopping learning is

unattainable. Investors A fully extract the signal information (ϕt = 1) when the gain exceeds the

cost but stop learning entirely (ϕt = 0) otherwise. Thus, the decision is binary: investors A either

extract information or ignore the signal.

Simulated across cycles, the average extracted information ϕ̄ declines as an announcement

nears; averaging is required since the binary switch from learning to non-learning is random

depending on the state variables. Investors find it optimal, on average, to stop learning when they

foresee an imminent announcement. The pattern of ϕ̄ depends on the cost of information C; a

higher cost leads to less information extraction across announcement cycles.

For illustration, the left graph in Figure 8 shows the average ϕ̄ over two announcement

cycles simulated for different levels of C. The right graph in Figure 8 shows the corresponding

consequence for excess returns µ− r, where the pre-announcement drift as per Definition 1 is

evident. Intuitively, with a lower cost of information C, investors A choose to learn for a longer
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time, i.e., the average amount of information ϕ̄ extracted is higher, which coincides with an earlier

increase in excess returns.

Figure 8: Average information extracted and excess returns. The left graph displays the average amount
of information extracted, ϕ̄, across announcement cycles for various levels of the cost C. The right graph
presents the corresponding average excess returns, µ− r, across announcement cycles.
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The speed of the pre-announcement drift is directly tied to the cost C. All figures are

calibrated to align the drift’s timing with the pre-FOMC drift documented by Lucca and Moench

(2015), which is extremely fast, occurring within 24 hours before an announcement. Matching

this pace requires a minimal cost of C = 4.25× 10−6 (solid line in Figure 8). In an economy

generating $80 trillion in dividends, this translates to an information cost of roughly $100 a day.25

C. Further Analysis

This section further examines pre-FOMC drift characteristics that the proposed model

reproduces beyond the initial evidence on drift, volatility, and trading volume that motivated this

paper. This strengthens the paper’s contribution by demonstrating its ability to explain additional

empirical evidence that existing theories often fail to capture.

25This estimate illustrates that a unit dividend corresponds to an information cost C that is several orders of

magnitude smaller.
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1. Evidence of VIX Explaining the Pre-Announcement Drift

The CBOE Volatility Index (VIX) generates a 30-day forward projection of volatility

derived from S&P 500 index options. Empirically, Lucca and Moench (2015) documented that a

higher VIX measured on a Friday before a FOMC meeting coincides with a higher pre-FOMC

drift in the 24-hour period preceding the meeting. The proposed model can match these empirical

findings by approximating the VIX with realized volatility around the meeting.26

In this model, stopping learning earlier in an announcement cycle has two effects: (i) a

larger pre-announcement drift and (ii) higher realized volatility post-announcement. Stopping

learning earlier allows more time for risk to decrease gradually, increasing the pre-announcement

drift. Simultaneously, it leads to greater imprecision in investors A’s estimate of the growth rate

(higher posterior variance), causing them to react more strongly to the announcement

information. This heightened reaction increases post-announcement volatility. Therefore, the

model predicts a positive relationship between the pre-announcement drift and realized volatility

after the announcement.

Proposition 2 supports the positive relationship between pre-announcement drift and

post-announcement volatility. Part (a) shows that stopping earlier increases γAt−, leading to higher

volatility after the announcement. Part (c) explains that stopping earlier allows more time for the

disagreement fluctuations to decrease gradually, resulting in a larger pre-announcement drift.

Simulated data from the model confirms this relationship. Plotting realized volatility two

days post-announcement (as a proxy for the VIX) against the pre-announcement drift observed

two days before reveals a positive correlation, as shown in Figure 9, along with the line of best fit

26The explicit calculation of a VIX equivalent is too technical to include in the current modeling framework.
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and model summary. A larger pre-announcement drift is generally followed by higher realized

volatility.

Figure 9: Scatter plot of pre-announcement drift versus realized post-announcement
volatility based on simulation. Returns two days before an announcement plotted against
realized volatility two days after the announcement, including the line of best fit (solid gray line),
with corresponding t-statistics in parentheses, the mean of the low- and high-volatility groups
(dashed red line), and the model summary as a table.
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Estimate Standard Error t-Statistic p-Value

1 0.000643058 0.0000545292 11.7929 1.40861 x 1031

x 0.0019204 0.000110035 17.4526 8.53881 x 1066

2. Apparent Lack of Pre-Announcement Drift in the Treasuries Market

A puzzling aspect of the pre-FOMC drift, as noted by Lucca and Moench (2015), is the

absence of a corresponding drift in treasury markets. This could stem from time-varying

stock-bond correlations, which were notably positive in the 1990s and negative since the 2000s,

with an average close to zero (see Campbell, Sunderam, and Viceira (2017)). In fact, Laarits

(2019) leveraged this empirical observation, using a rolling-CAPM beta, and found a positive

drift during periods with a positive beta and a negative drift during periods with a negative beta.

This paper’s model features only a positive stock-bond correlation, which arises from both
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asset classes sharing exposure to sentiment risk. As shown in equation (15), when investors stop

learning from the signal and sentiment risk decreases (lower g2), the risk-free rate also drops. This

decline in the risk-free rate manifests as a positive pre-announcement drift in treasury prices,

aligning with the empirical evidence of a positive stock-bond beta. Du (2021) presents a

theoretical model that includes disagreement about not only economic growth but also inflation,

capturing the complex dynamics of time-varying stock-bond correlations that this paper does not

address.

3. Empirical Evidence for Disagreement Generating a Pre-Announcement Drift

There are two main economic models that explain how prices, volatility, and volume

respond to information. On the one hand, noisy rational-expectation equilibrium models assume

that investors agree on how to interpret news, though their information sets differ. On the other

hand, differences-of-opinion models, which this paper features, assume that investors observe the

same information but interpret it differently. In noisy rational-expectation models, the relationship

between volume and volatility is linear: order flow (volume) directly causes price changes

(volatility). In contrast, in differences-of-opinion models, the relationship is looser because

disagreement can generate additional trading volume without volatility.27 In extreme cases of

disagreement, trading volume may rise without any price change.

Testing how financial markets process information requires a careful empirical procedure

using high-frequency intraday data around scheduled announcements. Bollerslev, Li, and Xue

(2018) pioneered this approach, finding a weak relationship between trading volume and volatility

27Banerjee (2011) explores the contrasting relationships between volatility and volume in noisy

rational-expectation models and in differences-of-opinion models.
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around events such as FOMC announcements. Abnormal trading volume cannot be explained by

abnormal price changes, suggesting that investors have additional motives, such as disagreement.

Bollerslev et al. (2018) concluded that disagreement is the main driver, as volume-volatility

elasticity estimates approach unity when known disagreement proxies are controlled for.

Figure 10: Empirical evidence of disagreement. The left graph shows a scatter plot of the average
change in minute volume versus the average change in minute volatility for the pre- and
post-announcement periods, along with their respective trend lines. The right graph shows the pre-FOMC
drift classed into “high disagreement” and “low disagreement” cases based on the slope of the univariate
regression of volume explained by volatility. The vertical black lines represent days, and the yellow line
represents the time at which the FOMC statement was released. The sample period is from January 2001
through March 2011.

Trading volume versus volatility Pre-FOMC drift: high- and low-disagreement cases

Their methodology motivates an exploration of the explanatory power of volatility for

volume in pre- and post-FOMC periods using the proposed model. We define the

pre-announcement period as the interval from the market opening on the day before the FOMC

meeting until the release, and the post-announcement period as the interval from the release until

the market closing on the following day. The left graph in Figure 10 depicts the findings: the

relationship between trading volume and volatility is looser, indicated by a flatter slope, in the

pre-announcement period than in the post-announcement period. This suggests more
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disagreement, on average, among investors ahead of announcements.28 Next, if announcements

are divided into those preceded by high disagreement and those preceded by low disagreement

based on the slope of the volume-volatility relationship in the pre-announcement period (with

high disagreement corresponding to a flatter slope and low disagreement to a steeper slope), then,

as shown in the right graph of Figure 10, the pre-announcement drift is significantly positive only

when low disagreement precedes the FOMC announcement. According to our proposed model,

the cause of the pre-announcement drift is a reduction in sentiment risk, i.e.,

disagreement-squared, a conclusion that is supported by empirical evidence of a higher

pre-FOMC drift in instances of lower disagreement.

IV. Reduced Models

This section demonstrates that without information costs (Section IV.A) or without

disagreement (Section IV.B), the model cannot fully account for the observed patterns in prices,

volume, and volatility before announcements. It analyzes two reduced models: one with a costless

signal to isolate the role of disagreement from its interaction with intermittent learning, and

another without disagreement or a costly signal, used to show that scheduled announcements

alone do not generate a pre-announcement drift.

28Define ∆ log(σt) = log(σt)− log(σt−1) and ∆ log(mt) = log(mt)− log(mt−1), where σt is the root of the

squared return per minute and mt is the sum of all trades sizes per minute.
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A. Reduced Model: No Information Cost

This section incorporates scheduled announcements into a disagreement model à la

Dumas et al. (2009). The economy follows the setup in Section II.A, with the same information

structure as in Section II.B, except that the signal’s informativeness (equation (4)) is fixed at a

constant ϕ. To interpret the model’s implications, it is useful to examine the behavior of the state

variables before and after the announcement.

1. Pre-Announcement Behavior

Ahead of an announcement, the only variables that follow a persistent pattern are the

posterior variances γAt and γBt . As in the main model, γAt and γBt increase throughout an

announcement cycle and drop when an announcement occurs (see Figure 1). Furthermore, the

difference γAt − γBt decreases throughout an announcement cycle because investors A extract

information from the signal while investors B do not, so that γAt increases more slowly than γBt .

From equation (17), both of these behaviors contribute to decreasing the fundamental volatility of

returns:

σ̄R︸︷︷︸
↓

= σD +
γAt
σD︸︷︷︸
↑

∂P

∂f̂t︸︷︷︸
<0

1

P
+

(γAt − γBt )

σD︸ ︷︷ ︸
↓

∂P

∂gt︸︷︷︸
>0

1

P
.

Since the fundamental volatility of returns is reduced leading up to an announcement, excess

returns are reduced ahead of an announcement (see equation (18)). Therefore, a positive

pre-announcement drift, as per Definition 1, is impossible in this model.

2. Post-Announcement Behavior

Immediately after an announcement, several changes occur simultaneously:
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(i) The posterior variances γAt and γBt drop, as in the main model.

(ii) The difference between the posterior variances, γAt − γBt , increases because investors B

extract more information from the announcement than investors A, who are relatively

“agnostic” about the announcement.

(iii) The disagreement-squared, g2t , increases due to the differing interpretations of the

announcement information by the two groups of investors (ψ ̸= 1). The signed

disagreement, gt, can either increase or decrease depending on the realization of the

announcement It and the prior estimates of the growth rates, f̂A−
t and f̂B−

t .

(iv) The sentiment variable, ηt, rises under the objective measure due to the assumption that the

truth is represented by the beliefs of investors B about the announcement, which reduces

the consumption share of investors A.

The implications for the excess returns in equation (18) are that

µ− r = K0︸︷︷︸
↑

+K1gt + K2︸︷︷︸
↓<0

g2t︸︷︷︸
↑

,

where K0 increases due to the rise in fundamental volatility from (i) and (ii); K1 cannot be signed

due to the conflicting effects of (i) and (ii) versus (iv); and K2 decreases (becomes more negative)

due to (iv), while g2 rises from (iii). Intuitively, two opposing forces influence excess returns at an

announcement: on the one hand, the information released reduces the posterior variance of the

growth rate, increasing excess returns; on the other hand, the differing opinions on the

announcement’s content increase the disagreement-squared (variance of sentiment), which

decreases excess returns. These effects directly counterbalance each other. Simulations with the

parameters in Table 1 show that the reduction in posterior variance slightly outweighs the increase
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in disagreement-squared at the announcement. Thus, while prices may jump, they do not

consistently drift up or down, as there is no directional change in risk perception.

Although the occurrence of an announcement has no definite effect on returns, its effects

on the volatility and trading volume (which go hand in hand) can be precisely signed. From

equation (17), it is evident that (i) and (ii) increase the fundamental volatility, even though the

sentiment component depends on the direction of disagreement. Furthermore, the increase in

volatility upon an announcement increases hedging needs and trading volume. Hence, trading

volume, calculated as the squared turnover over time, increases when an announcement occurs.

The previous three phenomena that occur after an announcement—no average effect on returns,

high volatility, and high trading volume—match well-established empirical evidence around

scheduled announcements and justify the introduction of disagreement about announcements, i.e.,

ψ ̸= 1, even though it does not affect the pre-announcement drift.29

Figure 11 shows simulation results for excess returns, volatility, and volume before and

after an announcement, together with confidence intervals. The simulation makes evident the

absence of a pre-announcement drift, as in Definition 1, while accurately capturing the

post-announcement empirical patterns for volatility and trading volume.

29See the empirical evidence in Bollerslev et al. (2018) for FOMC announcements, in Kandel and Pearson (1995)

for corporate earnings announcements, and in Li, Maug, and Schwartz-Ziv (2022) for shareholder meetings.
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Figure 11: Simulated excess returns, volatility, and trading volume around an announcement. The
left graph shows the contemporaneous (expected) excess returns, the middle graph shows the volatility, and
the right graph shows the trading volume around an announcement at time τ , marked in red.
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B. Baseline Model: No Disagreement

This section presents a baseline model that focuses solely on scheduled announcements

while disregarding elements such as disagreement or information costs. The model explores

whether the mere existence of scheduled announcements in an economy defined as in Section II.A

can generate a pre-announcement drift. We first describe the economy’s equilibrium assuming

that only investors A populate the economy. Specifically, ψ = 0 in equation (3), and ϕt in

equation (4) is fixed at all times. This section concludes with the finding that a positive

pre-announcement drift is unattainable within such a model.

1. Equilibrium and Excess Returns

The problem that investors wish to solve is reduced to

sup
ct

E

∫ ∞

0

e−ρt 1

α
(ct)

α dt subject to E

∫ ∞

0

ξtct dt = E

∫ ∞

0

ξtθDt dt,
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where θ represents the initial portfolio allocations. The solution of this optimization gives the

state price density ξt as

ξt = e−ρt

[(
1

λ

) 1
1−α

]1−α

Dα−1
t ,(20)

where λ is the Lagrange multiplier. The pricing of assets depends on the expectation of the

distribution of Du, where u is a future time relative to t, to certain powers, as summarized in the

following proposition.

Proposition 5. The conditional expected value of the future discount factor is

E

[(
Du

Dt

)ϵ ∣∣∣∣ f̂t] = Hf (f̂t, u, t, ϵ)

where
∂Hf (f̂t, u, t, ϵ)

∂f̂t
=
ϵ(1− e−ζ(u−t))

ζ
Hf (f̂t, u, t, ϵ)

has the sign of ϵ. The function Hf (f̂t, u, t, ϵ) is given in closed form in Appendix C.5.

The pricing measure in equation (20) encompasses both the equilibrium’s risk-free rate

and market prices of risk. Applying Itô’s lemma yields explicit expressions for these. The

contemporaneous (expected) excess returns are the product of the market prices of risk and the

volatility of stock returns, resulting in

µ− r = (1− α)σ2
D + γt(1− α)

∂P

∂f̂t

1

P︸ ︷︷ ︸
<0

.(21)

Contemporaneous (expected) excess returns increase with the dividend’s volatility, σD, but

decrease with the uncertainty about (i.e., posterior variance of) the growth rate of the dividend, γt.

The latter relationship is due to ∂P

∂f̂t
< 0, as stated in Proposition 5 (the derivative has the sign of ϵ,

which is negative) and stems from the anticipation that an increase in today’s growth rate will lead
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to higher consumption tomorrow. Consequently, investors reduce their savings in the asset,

thereby driving prices down.30

It is worth delving deeper into the contrasting effects of σD and γt on excess returns. Both

quantities reflect certain aspects of “risk,” but while a higher volatility σD increases the risk

premium, a higher posterior variance γt decreases it by making the asset more attractive for

hedging. Recall that the growth rate is unobservable, but dividend realizations shed light on it. A

negative dividend realization prompts investors to revise their expectations of the future growth

rate downward, leading them to anticipate lower future consumption. In response, they increase

savings in the asset, driving up its price. As this high price coincides with low consumption

(following a negative dividend realization), the resulting negative correlation induces a negative

risk premium. With higher γt, investors’ hedging demand becomes more sensitive to dividend

realizations, further diminishing the risk premium as the asset becomes indispensable for

hedging. In contrast, when γt = 0, investors know the growth rate with certainty, and there is no

revision regardless of the dividend realization; thus, their hedging demand for the asset remains

unaffected.31

2. Results

In this model, the only variable that follows a periodic pattern is the posterior variance γt,

which increases during an announcement cycle and drops immediately after the announcement

(as shown in Figure 1). From Proposition 5 and equation (21), an increase in γt leads to a decrease

30With risk aversion greater than 1, the income effect dominates the effect of increased future dividends; see

Veronesi (2000).

31See Veronesi (2000) for further discussion on the lack of a risk premium for noisy signals.
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in expected returns. Figure 12 illustrates the excess returns (left graph) and cumulative returns

(right graph) over three announcement cycles. As an announcement nears, expected returns

decrease due to the rising posterior variance γt. Consequently, this model does not allow for a

positive pre-announcement drift, as per Definition 1, in anticipation of future announcements.

Figure 12: Excess returns and cumulative returns. The left graph shows the contemporaneous
(expected) excess returns, µ− r, for three announcement cycles. The right graph shows the cumulative
returns for the same three announcement cycles.
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V. Conclusion

This paper proposes an economic mechanism that can explain, within a unified

framework, the pre-announcement drift—a puzzling positive price drift in the aggregate equity

market, accompanied by low volatility and low trading volume, ahead of scheduled

announcements. A differences-of-opinion model à la Dumas et al. (2009) is developed and shown

to reproduce the empirical phenomena surrounding the pre-announcement drift, in contrast to

alternative asset pricing explanations.

In the proposed general equilibrium model, investors interpret a costly signal differently.

This heterogeneous reaction to information creates sentiment risk, which manifests itself in the

44



movement of prices. The scheduled nature of the announcements and the cost of learning from the

continuous signal generate intermittent learning: investors who pay to learn from the continuous

signal optimally choose to stop learning as an announcement approaches. The decision to stop

learning decreases sentiment risk just before an announcement and hence causes a positive

realized price drift. The decrease in sentiment risk simultaneously results in low volatility and low

trading volume when an announcement is imminent.

The proposed modeling framework can be helpful not only for explaining the

pre-announcement drift but also as a basis for analyzing the behavior of other heterogeneous sets

of players. For example, it can be adapted to study investors that follow fundamental

(idiosyncratic) versus macro (systematic) news, or the new wave of high-frequency trading

compared with trading based on information received at lower frequencies. These are settings in

which investors with different beliefs coexist in financial markets, and the model developed in this

paper may be helpful for gaining a better understanding of their interactions.
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A. Appendix: Leakage of Information

This section summarizes evidence against information leakage as the cause of the

pre-announcement drift. The leakage hypothesis is unlikely since the drift is always positive,

implying selective leakage of good news, though it remains plausible under short-sell constraints.

Lucca and Moench (2015) rejects the leakage explanation for two reasons: (1) the drift is

uncorrelated with post-announcement price movements, and (2) the Fed enforces a one-week

blackout period before each FOMC meeting, preventing public statements and making leakage

improbable.

We test the information leakage hypothesis by splitting the S&P 500’s cumulative returns

into “good news” and “bad news” in a three-day window around FOMC meetings. The

classification is based on market reaction (defined as the price change from the announcement, at

2:30 p.m., to the market close, at 3:59 p.m.) rather than on the statement content. The right graph

in Figure 13 shows the result of this decomposition.
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Figure 13: Cumulative returns on the S&P 500 index in three-day windows. The left graph shows the
the pre-FOMC drift as the average cumulative return on the S&P 500 index between 9:30 a.m. EST on the
day before a scheduled FOMC announcement and 4:00 p.m. EST on the day after the announcement. The
vertical black lines represent days, and the yellow line represents the moment when the FOMC statement is
released. The right graph shows the pre-FOMC drift decomposed into “good news” (green) and “bad news”
(red) based on the market reaction. The shaded areas are pointwise 95% confidence bands around the
average returns. The sample period is from September 1994 through March 2011.

Average cumulative return, showing pre-FOMC drift Pre-FOMC drift split into “good news” and “bad news”

The pre-announcement drift occurs before both “good news” and “bad news” without

significant statistical differences, despite the latter having a higher mean. This undermines the

information leakage hypothesis: if investors expected negative reactions, short-selling would have

caused a price drop. Even with partial leakage, the “bad news” drift should have been smaller than

the “good news” one. While leakage may reduce risk, as suggested by Ying (2020b), this effect is

secondary to the price response to the announcement.32

32The risk reduction would dominate if it came from massive information leakage. However, such a massive

leakage would imply a reaction of close to zero price after the announcement, which contradicts the empirical

evidence, too.
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B. Appendix: Simulation Parameters

The average dividend growth rate f̄ , the dividend volatility σD, and the growth rate

volatility σf are set to the values in Dumas et al. (2009), which are similar to the estimation

results reported in Brennan and Xia (2001). The announcement volatility, σI , is arbitrarily set to

an annual value of 10%; equivalent results can be obtained using a wide range of values, the sole

restriction being that σI > σf .33

Table 1: Parameter values used for figures.

Parameter Symbol Value
Long-term average growth rate of the dividend process f̄ 0.015
Reversion parameter of the dividend process ζ 0.2
Volatility of dividends σD 0.13
Volatility of announcements σI 0.15
Volatility of dividend shock σf 0.03
Investors’ relative risk aversion 1− α 3
Rate of impatience ρ 0.1
Informativeness of continuous signal ϕt 0.95
Informativeness of announcements ψ 0.5

33Time-separable preferences in this CRRA framework provide tractable formulas but pose challenges for

quantitative analysis. The model focuses on the qualitative economic mechanism; quantitative calibration is beyond

the scope of this paper.
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C. Appendix: Proofs

Throughout this appendix, the subscript t in ϕt is omitted for convenience.

1. Proof of Proposition 1

Proof. The solution depends on the joint conditional distribution of ηu and Du given the state

variables {gt, ηt, f̂A
t , Dt} and time t:

EA
f̂A,g,t

[
Dε

uη
χ
u

]
= H(Dt, ηt, f̂

A, g, t, u; ε, χ).

The solution H should satisfy

0 = LH(Dt, ηt, f̂
A, g, t, u; ε, χ) +

∂H(Dt, ηt, f̂
A, g, t, u; ε, χ)

∂t

where L is the differential generator of (Dt, ηt, f̂
A
t , gt) under the probability measure of investors

A. Written out in full while omitting the subscripts t of the state variables, the preceding equation

is

0 =
∂H

∂D
Df̂A − ∂H

∂f̂A
ζ(f̂A − f̄)− ∂H

∂g
g

(
ζ +

γB

σ2
D

)
+

1

2

∂2H

∂D2
D2σ2

D +
1

2

∂2H

∂η2
η2g2

σ2
D

+
1

2

∂2H

∂g2

(
(γA − γB)2

σ2
D

+ ϕ2σ2
f

)
+

1

2

∂2H

∂(f̂A)2

(
(γA)2

σ2
D

+ ϕ2σ2
f

)
− ∂2H

∂D∂η
Dηg

+
∂2H

∂D∂g
D(γA − γB) +

∂2H

∂D∂f̂A
DγA − ∂2H

∂η∂g

(
gη(γA − γB)

σ2
D

)
− ∂2H

∂η∂f̂A

ηgγA

σ2
D

+
∂2H

∂g∂f̂A
γA
(
γA(γA − γB)

σ2
D

+ ϕ2σ2
f

)
+
∂H

∂t
,

and the solution is of the form

H(Dt, ηt, f̂
A
t , gt, t, u; ε, χ) = Dε

tη
χ
t Hf (f̂

A
t , t, u; ε)Hg(gt, t, u; ε, χ).
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Substituting the expressions for the partial derivatives yields

0 = εf̂A − ∂Hf

∂f̂A

1

Hf

ζ(f̂A − f̄)− ∂Hg

∂g

1

Hg

g

(
ζ +

γB

σ2
D

)
+

1

2
ε(ε− 1)σ2

D

+
1

2
χ(χ− 1)

g2

σ2
D

+
1

2

∂2Hg

∂g2
1

Hg

(
(γA − γB)2

σ2
D

+ ϕ2σ2
f

)
+

1

2

∂2Hf

∂(f̂A)2
1

Hf

(
(γA)2

σ2
D

+ ϕ2σ2
f

)
− εχg +

∂Hg

∂g

ε

Hg

(γA − γB) +
∂Hf

∂f̂A

εγA

Hf

− ∂Hg

∂g

χ

Hg

(
g(γA − γB)

σ2
D

)
− ∂Hf

∂f̂A

χ

Hf

gγA

σ2
D

+
∂Hf

∂f̂A

∂Hg

∂g

1

HgHf

(
γA(γA − γB)

σ2
D

+ ϕ2σ2
f

)
) +

∂Hf

∂t

1

Hf

+
∂Hg

∂t

1

Hg

,

where again the subscripts t of f̂A
t , γ

A
t , γ

B
t , and gt have been omitted. Grouping together the terms

involving only f̂A and functions of time such as γA and γB, and collecting the terms with g and η

separately, results in two equations. One equation defines the partial differential equation that Hf

should satisfy,

0 = εf̂A − ∂Hf

∂f̂A

1

Hf

ζ(f̂A − f̄) +
1

2
ε(ε− 1)σ2

D +
1

2

∂2Hf

∂(f̂A)2
1

Hf

(
(γA)2

σ2
D

+ ϕ2σ2
f

)
+
∂Hf

∂f̂A

εγA

Hf

+
∂Hf

∂t

1

Hf

,

which, using Hf (f̂
A
t , t, t; ε) = 1 as the boundary condition, is solved by

Hf (f̂t, u, t) = exp

[
ϵ

(
(f̂t − f̄)(1− e−ζ(u−t))

ζ
+ f̄(u− t)

)
+

(γϵ2)
(
ζ(u− t)− (1− e−ζ(u−t))

)
ζ2

+
ϵ2
(
4e−ζ(u−t) − e−2ζ(u−t) + 2ζ(u− t)− 3

)(
γ2 + σ2

Dσ
2
fϕ

2
)

4ζ3σ2
D

+
1

2
σ2
D(u− t)(ϵ− 1)ϵ

]
.

The other equation, which contains g and η and cross terms, is

0 =− ∂Hg

∂g

1

Hg

g

(
ζ +

γB

σ2
D

)
+

1

2
χ(χ− 1)

g2

σ2
D

+
1

2

∂2Hg

∂g2
1

Hg

(
(γA − γB)2

σ2
D

+ ϕ2σ2
f

)
− εχg

+
∂Hg

∂g

ε

Hg

(γA − γB)− ∂Hg

∂g

χ

Hg

(
g(γA − γB)

σ2
D

)
− ∂Hf

∂f̂A

χ

Hf

gγA

σ2
D

+
∂Hf

∂f̂A

∂Hg

∂g

1

HgHf

(
γA(γA − γB)

σ2
D

+ ϕ2σ2
f

)
+
∂Hg

∂t

1

Hg

.
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The solution for Hg is quadratic in g and of the form

Hg(g, t, u; ε, χ) = exp
{
A1(χ;u− t) + ε2A2(χ;u− t) + εgB(χ;u− t) + g2C(χ;u− t)

}
.

Define the following constants at time t:

a = 2

(
(γA − γB)2

σ2
D

+ ϕ2σ2
f

)
, b = ζ +

γB + χ(γA − γB)

σ2
D

, c =
χ(χ− 1)

2σ2
D

,

q =
√
b2 − ac, k = −χ

(
1 +

γA

σ2
Dζ

)
, l =

χγA

σ2
Dζ
,

m = (γA − γB)

(
1 +

γA

σ2
Dζ

)
+
ϕ2σ2

f

ζ
, n = −

(
γA

ζ

(γA − γB)

σ2
D

+
ϕ2σ2

f

ζ

)
and

υ1 = 0, υ2 = 2q, υ3 = ζ, υ4 = 2q + ζ, υ5 = q

ϑ1 =
k (b+ q) + 2cm

q
, ϑ2 =

k (b− q) + 2cm

q
, ϑ3 =

l (b+ q) + 2cn

q − ζ
,

ϑ4 =
l (b− q) + 2cn

q + ζ
, ϑ5 = −(ϑ1 + ϑ2 + ϑ3 + ϑ4).

The differential equations and initial conditions that determine Hg are

C ′(u− t) = aC2(u− t)− 2bC(u− t) + c, C(0) = 0,

B′(u− t) = B(u− t)[aC(u− t)− b] + 2C(u− t)(m+ ne−ζ(u−t)) + k + le−ζ(u−t), B(0) = 0,

A′
1(u− t) =

a

2
C(u− t), A1(0) = 0,

A′
2(u− t) = B(u− t)

(a
4
B(u− t) + d+ ne−ζ(u−t)

)
, A2(0) = 0.
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The solutions to these equations are

C(u− t) =
c
(
1− e−2q(u−t)

)
(q − b)e−2q(u−t) + b+ q

,

B(u− t) =

∑5
i=1 ϑie

−υi(u−t)

(q − b)e−2q(u−t) + b+ q
,

A1(u− t) =
1

2

(
(u− t)(b− q)− log

(
(q − b)e−2q(u−t) + b+ q

)
+ log(2q)

)
,

A2(u− t) =

∫ u

t

B(h− t)
(a
4
B(h− t) + d+ ne−ζ(h−t)

)
dh,

where the integral that defines A2(u− t) can be obtained in closed form.

This solution for Hg is well-defined when b2 − ac > 0, i.e., when q is real. Note that

b2 − ac can be written as a quadratic equation in χ:

f(χ) = b2 − ac = k1 + k2χ+ k3χ
2

=
(γB)2

σ4
D

+ χ

(
(γB − γA)2

σ4
D

+
(ϕγA)2

σ2
D

− 2γB(γB − γA)

σ4
D

)
− χ2 (ϕγ

A)2

σ2
D

.

Because k3 is negative, the function f(χ) defines a parabola that opens downward. Since

f(0) = k1 > 0 and f(1) = (γA)2

σ2
D

> 0, the parabola defined by f(χ) is always positive in the

interval χ ∈ [0, 1].

The next step is to show that C(χ;u− t) ≤ 0 so that Hg(·) is decreasing in g2. Note that

the sentiment variable ηt is a change of measure, hence a martingale, and must satisfy

EA
t

[
ηu
ηt

]
= 1.

By using the solution for Hg(·), the expectations of ηt are given by

EA
t

[(
ηu
ηt

)χ]
= Hg(g, t, u; 0, χ) = eA1(χ;u−t)+g2C(χ;u−t).
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Since χ ∈ [0, 1], applying a concave transformation by Jensen’s inequality yields

EA
t

[(
ηu
ηt

)χ]
≤ 1,

which implies that A1(χ;u− t) ≤ 0 and C(χ;u− t) ≤ 0. □

2. Proof of Proposition 2

Proof. (a) Begin with the solution to the law of motion of the posterior variance γAt in equation

(6):

γAt =
γA0 κ

A(e2tκ
A
+ 1) +

(
σ2
f (1− ϕ2)− ζγA0

)
(e2tκ

A − 1)

κA(e2tκA + 1) +
( γA

0

σ2
D
+ ζ
)
(e2tκA − 1)

,(22)

where κA ≡
√
ζ2 +

σ2
f

σ2
D
(1− ϕ2). It follows that

∂γAt
∂ϕ

= −
σ2
fϕ

κA
(
κA(e2tκA + 1) +

( γA
0

σ2
D
+ ζ
)
(e2tκA − 1)

)2
[
γA0
σ2
D

(
2ζ +

γA0
σ2
D

)(
−4tκAe2tκ

A

+ e4tκ
A − 1

)︸ ︷︷ ︸
>0

+

(
2ζ2 +

σ2
f

σ2
D

(1− ϕ2)

)
(e4tκ

A − 1) + κA
(
2ζ + 2

γA0
σ2
D

)
(e2tκ

A − 1)2 +
σ2
f

σ2
D

(1− ϕ2)
(
4tκAe2tκ

A)]
.

This derivative is negative because the underbraced expression is of the form

f(x) = −4xe2x + e4x − 1, which is increasing and non-negative for all x > 0, since f(0) = 0 and

f ′(x) = 4e2x(e2x − 2x− 1). Therefore, γAt decreases in ϕ, which implies that γAt increases as ϕ

decreases to zero.

(b) The increase of γAt − γBt follows from the fact that γBt does not depend on ϕ, so that

∂(γA
t −γB

t )

∂ϕ
=

∂γA
t

∂ϕ
, which is negative as shown in part (a). Therefore, γAt − γBt increases as ϕ

decreases to zero.

For the absolute value of the difference, |γAt − γBt |, it is important to note that when

investors A stop learning the signal, i.e., ϕ = 0, the law of motion of their posterior variance is the
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same as that for the posterior variance of investors B. Specifically, the solution of the posterior

variance of investors A becomes

γAt =
γA0 κ

A(e2tκ
A
+ 1) + (σ2

f − ζγA0 )(e
2tκA − 1)

κA(e2tκA + 1) +
( γA

0

σ2
D
+ ζ
)
(e2tκA − 1)

where κA ≡
√
ζ2 +

σ2
f

σ2
D

. This solution is a monotonic function of time since its derivative

∂γAt
∂t

=
4e2tκ

A
(κA)2

(
σf − (γA

0 )2

σ2
D

− 2ζγA0
)

(
κA(e2tκA + 1) +

( γA
0

σ2
D
+ ζ
)
(e2tκA − 1)

)2
has a consistent sign over the entire domain t ≥ 0. Furthermore, as time increases, this function

converges to a unique value. Specifically, from equation (6), it converges to

lim
t→∞

γBt = lim
t→∞

γAt = γ̄ = σ2
D

√ζ2 +
σ2
f

σ2
D

− ζ

 .

Although the starting points of the law of motion for γAt and γBt are different, both converge

monotonically to the same constant over time. Therefore, their absolute difference |γAt − γBt |

must decrease when investors A stop learning from the signal.

(c) From equation (7),

dg2t =
(γBt − γAt )

2

σ2
D

dt+ ϕ2 dt.

It follows from part (b) that (γBt − γAt )
2 decreases with time when ϕ = 0 and hence the riskiness

of the sentiment variable (i.e., g2t ) decreases. Nevertheless, when ϕ = 0, the process of gt remains

an Orstein–Uhlenbeck process:

dgt = ϑtgt dt+ σg
D,t dZ

A
D,t,

ϑt = −
(
ζ +

γBt
σ2
D

)
, σg

D,t =
γAt − γBt
σD

.

□
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3. Proof of Proposition 3

Proof. (a) Define the marginal variance reduction per unit time due to learning from the signal as

∂γA
t

∂t
. Using the solution in equation (22), for any ϕ,

∂γAt
∂t

=
4e2tκ

A
(κA)2

(
σf (1− ϕ2)− (γA

0 )2

σ2
D

− 2ζγA0
)

(
κA(e2tκA + 1) +

( γA
0

σ2
D
+ ζ
)
(e2tκA − 1)

)2 .
Note that ∂γA

t

∂t
is a monotonic function of time since

∂2γAt
∂t2

= −
8e2tκ

A
(κA)3γA0

(
κA(e2tκ

A − 1) +
( γA

0

σ2
D
+ ζ
)
(e2tκ

A
+ 1)

)
(
κA(e2tκA + 1) +

( γA
0

σ2
D
+ ζ
)
(e2tκA − 1)

)3 (
σf (1− ϕ2)− (γA0 )

2

σ2
D

− 2ζγA0

)

is strictly positive for σf (1− ϕ2)− (γA
0 )2

σ2
D

− 2ζγA0 < 0 or strictly negative for

σf (1− ϕ2)− (γA
0 )2

σ2
D

− 2ζγA0 > 0, so ∂γA
t

∂t
is monotone regardless of the choice of parameters.

It follows that, since κA > 0, ∂γt
∂t

→ 0 as t→ ∞ by L’Hospital rule:

lim
t→∞

4e2tκ
A
(κA)2

(
σf (1− ϕ2)− (γA

0 )2

σ2
D

− 2ζγA0
)

(
κA(e2tκA + 1) +

( γA
0

σ2
D
+ ζ
)
(e2tκA − 1)

)2
= lim

t→∞

2(κA)2γA0
(
σf (1− ϕ2)− (γA

0 )2

σ2
D

− 2ζγA0
)

( γA
0

σ2
D
+ ζ + κA

)(
κA(e2tκA + 1) +

( γA
0

σ2
D
+ ζ
)
(e2tκA − 1)

) = 0.

Therefore, as time increases, the marginal variance reduction of the signal monotonically

decreases.

(b) Consider two cases: In Case I, investors A extract information from t = 0 to t = t∗,

with a non-learning interval of ∆ = τ − t∗ until the next announcement at τ . In Case II, investors

A learn from t = 0 to t = t1, pause, and resume learning at t = t1 + τ − t∗, maintaining the same

non-learning interval ∆ = τ − t∗. Since both cases have identical information costs, for t1 < t∗,

Case II is effectively a time-shifted version of Case I. Thus, Case I represents learning followed

by non-learning, while Case II represents the reverse; see Figure 14.
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Figure 14: Posterior variance of investors A in two cases. The posterior variance γAt if investors learn

first and then stop learning at time t∗ (Case I) or if they don’t learn initially and then start learning at time

τ − t∗ (Case II).

In Case I, γAt decreases from the original level γ0 to γ− < γ0 by time t∗. In Case II, γAt

increases from γ0 to γ+ > γ0 by time τ − t∗. It is shown below that the total variance, i.e., the area

under the curve in Figure 14, is larger in Case II (shaded orange) than in Case I (shaded blue).

From equation (22), the integral over time t of the variance process that starts at γ0 is

Γ(γ, t, ϕ). Using this notation, the following difference is positive:

total variance in Case II − total variance in Case I

= Γ(γ0, τ − t∗, 0) + Γ(γ+, t
∗, ϕ)−

(
Γ(γ0, t

∗, ϕ) + Γ(γ−, τ − t∗, 0)
)

= gL(γ+)− gL(γ0) + gN(γ0)− gN(γ−) > 0,
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where gL(γ) and gN(γ) are functions of γ given by

gL(γ) = −σ2
D(ζ + κA)t∗ log

[
2κA

κA(e2t∗κA + 1) +
(

γ
σ2
D
+ ζ
)
(e2t∗κA − 1)

]
,

gN(γ) = −σ2
D(ζ + κB)(τ − t∗) log

[
2κB

κB(e2(τ−t∗)κB + 1) +
(

γ
σ2
D
+ ζ
)
(e2(τ−t∗)κB − 1)

]
,

with κA ≡

√
ζ2 +

σ2
f

σ2
D

(1− ϕ2) and κB ≡

√
ζ2 +

σ2
f

σ2
D

.

It suffices to show that these are increasing functions of γ, since their derivatives are positive:

∂gL(γ)

∂γ
=

e2t
∗κA − 1

κA
(
e2t∗κA + 1

)
+
(

γ
σ2
D
+ ζ
) (
e2t∗κA − 1

) > 0,

∂gN(γ)

∂γ
=

e2(τ−t∗)κB − 1

κB
(
e2(τ−t∗)κB + 1

)
+
(

γ
σ2
D
+ ζ
) (
e2(τ−t∗)κB − 1

) > 0.

Given that γ+ > γ0 and γ0 > γ−, it follows that gL(γ+)− gL(γ0) > 0 and gN(γ0)− gN(γ−) > 0.

Therefore, the total variance in Case II (non-learning first) is higher than that in Case I (learning

first). □

4. Proof of Proposition 4

Proof. Begin by writing the utility of investors A in terms of the solution in equation (14):

EA

∫ τ

t

e−ρ(u−t) 1

α
(cAu )

α du =

∫ τ

t

e−ρ(u−t) 1

α
EA
[
(ω(ηu)Du)

α
]
du.

The expectation term in the integrand can be written as

EA
f̂A
t ,gt

[
(ω(ηu)Du)

α
]
= EA

f̂A
t ,gt

 (
1
λA

) 1
1−α(

1
λA

) 1
1−α +

(
ηu
λB

) 1
1−α

α

Dα
u


= EA

f̂A
t ,gt

(1 + (ηuλA
λB

) 1
1−α

)−α

Dα
u

 .
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By focusing on positive integer values of the risk aversion 1− α, so that −α ∈ Z, the binomial

formula can be used to expand the first term of the expectation as

EA
f̂A
t ,gt

(1 + (ηuλA
λB

) 1
1−α

)−α

Dα
u

 = EA
f̂A
t ,gt

[
Dα

u

−α∑
j=0

(−α)!
j!(−α− j)!

(
ηuλ

A

λB

) j
1−α

]

=
−α∑
j=0

(−α)!
j!(−α− j)!

(
λA

λB

) j
1−α

EA
f̂A
t ,gt

[
Dα

u (ηu)
j

1−α
]

=
−α∑
j=0

(−α)!
j!(−α− j)!

(
λA

λB

) j
1−α

Dα
t (ηt)

j
1−α Hf (f̂

A, t, u;α)×Hg

(
g, t, u;α,

j

1− α

)
.

Therefore, the gain function can be expressed as the expectation when ϕ > 0 minus the

expectation when ϕ = 0, which can be written as

GA
t (Yt, t) =

−α∑
j=0

(−α)!
j!(−α− j)!

(
λA

λB

) j
1−α

Dα
t (ηt)

j
1−α

[
Hϕt ̸=0

f (f̂A, t, u;α)×Hϕt ̸=0
g

(
g, t, u;α,

j

1− α

)

−Hϕt=0
f (f̂A, t, u;α)×Hϕt=0

g

(
g, t, u;α,

j

1− α

)]
.

(a) From the solution of Hf (·) in equation (14), it follows that

∂Hf (·)
∂ϕ

=
σ2
fϵ

2ϕ

2ζ3
Hf (·)

[
2ζ(u− t) + 4e−ζ(u−t) − e−2ζ(u−t) − 3

]
≥ 0.

This is non-negative because the function in brackets is of the form h(x) = 2x+ 4e−x − e−2x − 3,

which is non-negative in the range x ≥ 0 since h(0) = 0 and h′(x) = 2e−2x (1− ex)2 ≥ 0. The

derivative with respect to t is negative:

∂2Hf (·)
∂ϕ∂t

= −
σ2
fϵ

2ϕ

2ζ3
Hf (·)

[
ζ
(
2e−2ζ(u−t) − 4e−ζ(u−t) + 2

)
+ ϵ
(
2ζ(u− t) + 4e−ζ(u−t) − e−2ζ(u−t) − 3

)
×
(
f̄ + (f̂A − f̄)e−ζ(u−t) +

ϵ(1− e−ζ(u−t))2
(
(γA)2 + σ2

Dσ
2
fϕ

2
)

2ζ2σ2
D

+
γAϵ(1− e−ζ(u−t))

ζ
+
σ2
D(ϵ− 1)

2

)]
< 0,

where the first function in parentheses is of the form h(x) = 2e−2x − 4e−x + 2, which is

64



non-negative in the range x ≥ 0 since h(0) = 3, a minimum occurs at x = ln(4), and the function

increases thereafter as h′(x) = e−2x (ex − 4)2 > 0 for all x > ln(4).

(b) Recall that the function Hg(·) is of the form

Hg(g, t, u; ε, χ) = exp
{
A1(χ;u− t) + ε2A2(χ;u− t) + εgB(χ;u− t) + g2C(χ;u− t)

}
,

which is quadratic and decreasing in g2, since C(χ;u− t) ≤ 0 (see the proof of Proposition 1).

For small values of g, one can approximate the difference Hg(ϕ, ·)−Hg(0, ·) by the ratio

Hg(ϕ, ·)/Hg(0, ·). Therefore, for the function to be decreasing in g2, the sign of

C(ϕ, χ;u− t)− C(0, χ;u− t) must be positive, which is the case since ∂C(χ;u−t)
∂ϕ

> 0 from

∂C(χ;u− t)

∂ϕ
= −

4cσ2
fϕ

2
√
b2 − ac

c
(
e4q(u−t) − 4q(u− t)e2q(u−t) − 1

)(
b (e2q(u−t) − 1) + q (e2q(u−t) + 1)

)2 ,
where the function h(x) = e4x − 4xe2x − 1 in the numerator is non-negative in the range x ≥ 0

because h(0) = 0 and h′(x) = 4e2x (e2x − 1− 2x)
2 ≥ 0. □

5. Proof of Proposition 5

Proof. The solution depends on the current state variable f̂t in the following way:

E
[
(Du)

ϵ
∣∣ f̂t] = H(f̂t, u, t) = Dϵ

tHf (f̂t, u, t).

In equilibrium it should satisfy

LH(f̂t, u, t) +
∂H(f̂t, u, t)

∂t
= 0,

where L is the differential generator of (Dt, f̂t). Writing this out in full gives

0 =
∂H

∂D
Dtf̂t −

∂H

∂f̂t
ζ(f̂t − f̄) +

1

2

∂2H

∂D2
t

D2
t σ

2
D +

1

2

∂2H

∂(f̂t)2

(
(γ)2

σ2
D

+ ϕ2σ2
f

)
+

∂2H

∂Dt∂f̂t
Dtγ +

∂H

∂t
.
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Replacing by H(·) = Dϵ
tHf (·) results in

0 = ϵf̂t −
∂Hf (·)
∂f̂t

1

Hf (·)
ζ(f̂t − f̄) +

1

2
ϵ(ϵ− 1)σ2

D +
1

2

∂2Hf (·)
∂(f̂t)2

1

Hf (·)

(
(γ)2

σ2
D

+ ϕ2σ2
f

)
+
∂Hf (·)
∂f̂t

1

Hf (·)
ϵγ +

∂Hf (·)
∂t

1

Hf (·)
,

which is solved by the function

Hf (f̂ , u, t) = exp

[
ϵ

(
(f̂t − f̄)(1− e−ζ(u−t))

ζ
+ f̄(u− t)

)
+

(γϵ2)
(
ζ(u− t)− (1− e−ζ(u−t))

)
ζ2

+
ϵ2
(
4e−ζ(u−t) − e−2ζ(u−t) + 2ζ(u− t)− 3

)(
γ2 + σ2

Dσ
2
fϕ

2
)

4ζ3σ2
D

+
1

2
σ2
D(u− t)(ϵ− 1)ϵ

]
.

□
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