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Abstract

We exploit heterogeneity in decreasing returns to scale parameters across mutual
funds to analyze the importance of scalability for investors’ capital allocation deci-
sions. We find strong evidence that steeper decreasing returns to scale attenuate flow
sensitivity to performance. We calibrate a rational model of active fund management
and show that a large fraction of cross-sectional variation in assets-under-management
is due to investors anticipating the effects of scale on return performance. We con-
clude that decreasing returns to scale play a key role in achieving equilibrium in the
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1 Introduction

An important determinant of the Net Present Value (NPV) of an investment project is its
scalability. Even if the marginal profitability on a project is large at small scale, when the
profitability deteriorates quickly with size, agents will choose not to commit much capital
to such projects, and, in the presence of fixed costs, may choose to forgo them altogether.
Despite the importance of scalability, surprisingly little empirical work has quantitatively
evaluated how important its cross-sectional variation is for capital allocation. In this paper,
we fill this void by focusing on the mutual fund market, where measuring the scalability of
investment strategies has become commonplace[] In particular, the literature has argued that
decreasing returns to scale (DRS) play a key role in equilibrating the mutual fund market ]
Consistent with this argument, we show that scalability is an important driver of investors’
capital allocation decisions by exploiting heterogeneity across funds in DRS parameters:
steeper DRS attenuate flow sensitivity to performance (FSP). Further, we calibrate a rational
model of active fund management and show that 54% of the cross-sectional variation in fund

size can plausibly be attributed to heterogeneity in DRS.

Our approach closely follows the insights from Berk and Green (2004). As the percentage
fees charged by funds change infrequently, equilibration operates primarily through their size
(or Assets Under Management (AUM)). When a fund outperforms, investors rationally learn
that the fund is a positive NPV investment at its current size. In turn, flows go to that fund,

eroding this positive NPV due to decreasing returns to scale: as the fund grows, its manager

See, for example, Chen et al. (2004), Yan (2008), Zhu (2018), and Barras, Gagliardini, and Scaillet
(2022), all of which find that an active fund’s ability to outperform its benchmark declines as its size
increases.

2See Berk and Green (2004), Berk and van Binsbergen (2015), Pastor, Stambaugh, and Taylor (2020),
and Barras, Gagliardini, and Scaillet (2022).



finds it increasingly difficult to put the new inflows to good use, leading to a deterioration
of the fund’s performance. The inflows will stop when the fund is no longer a positive NPV

investment opportunity, and its abnormal return to investors has reverted back to zero.

We inspect this equilibrating mechanism more closely by formally deriving, in the context
of the Berk and Green model, the relation between DRS and flow sensitivity to performance:
as a fund’s returns decrease in scale more steeply (steeper DRS), the positive net alpha
is competed away with a smaller amount of capital inflows, making flows less sensitive to

performance (weaker FSP).

To test this theoretical insight, one needs a source of variation in DRS in addition to
observing investor reactions to this variation. We demonstrate that there is a substantial
amount of heterogeneity in DRS across individual funds, with correspondingly heterogeneous
FSP across funds. Our approach can be interpreted as inferring how the subjective size-
performance relation, perceived by investors in real time, is incorporated into the flow-
performance relation going forward. Consistent with our hypothesis, we find that a steeper

DRS parameter predicts a lower FSP.

The main challenge in estimating the effect of DRS on FSP is the estimation error in
fund-specific DRS (from fund-by-fund regressions), which is likely to induce attenuation bias
in the point estimates of the DRS-FSP relation. Indeed, adjusting these DRS-FSP relation
estimates for the errors-in-variable bias under the classical measurement error assumption—

the errors are independent to the actual DRS—suggests that they are biased toward zero.

To address this issue, we estimate the DRS-FSP relation by instrumenting for the hetero-

geneity in DRS with a set of fund characteristics that are plausibly related to the scalability



of investment strategies’] In particular, by regressing the fund-specific DRS estimates on
these characteristics, we obtain fitted values that we use as a more robust way of obtaining
cross-sectional variation. Importantly, we show that, while the characteristics-based esti-
mates of the DRS-FSP relation remain statistically significant, they become substantially
more negative, comparable in magnitude to those implied by the classical measurement error
assumption. This result suggests that the characteristics-based approach is able to alleviate

the errors-in-variables problem.

Next, we turn to the economic significance of our estimates. In particular, we assess how
equilibrium fund size is affected by the cross-sectional variation in DRS parameters. This
exercise does require model assumptions. We calibrate a rational model in the spirit of Berk
and Green (2004). After simulating data in which investors know the DRS can vary by
fund, we check how much of the simulated size can be explained by counterfactual fund sizes
computed under the assumption that investors believe the DRS is the same for all funds. We
find that, on average, more than half (54%) of the variance of fund sizes across funds and
periods can be related to cross-sectional variation in DRS parameters. Importantly, although
we do not target the DRS-FSP relation in our calibration, our model produces DRS-FSP
relation estimates that are quantitatively similar to those estimated from the actual data.
Thus, the model does a good job of approximating the observed equilibrium in the mutual

fund market.

Beyond implications for fund flows, the degree of DRS also has implications for fund

size. In the model, fund size is directly proportional to the ratio of perceived skill to per-

3We investigate a number of characteristics that seem relevant a priori (also from the previous literature)
for heterogeneity in scalability. For example, we find the degree of DRS is stronger for higher-volatility funds,
sole-managed funds, small-cap funds, as well as funds charging higher fees.



ceived scalability: all else equal (holding the alpha earned on the first dollar fixed), the DRS
parameter should be lower for larger funds. This prediction is confirmed in our empirical
analysis. Moreover, if investors learn about funds as in the model, the (log) fund size should
converge to the (log) optimal size—the ratio of true skill to true scalability—as funds grow
older. In Appendix [D] we provide empirical evidence consistent with this prediction: the
estimated optimal size largely explains capital allocation across older funds in the data. The
size of older funds remains significantly related to their estimated optimal size, even when
we control for an alternative proxy for optimal size that ignores cross-sectional heterogene-
ity in DRS. Again, investors seem to account for not only the average DRS, but also the

heterogeneity of DRS across funds.

Taken together, our results demonstrate that investors do account for the adverse effects
of fund scale in making their capital allocation decisions[] The previous literature has often
deemed mutual fund investors as naive return chasers because fund flows respond to past
performance although performance is not persistent | and because funds show little evidence
of outperformanceﬂ In contrast, Berk and Green (2004) argue that they are consistent
with a model of how competition between rational investors determines the net alpha in
equilibrium. We contribute to this debate by presenting findings that are hard to reconcile

with anything other than the existence of rational fund flows.

41t is plausible that some investors are better than others at understanding the role of scalability for
fund performance. Indeed, Choi and Robertson (2020) find that individual investors believe that actively
managed funds do not suffer from diseconomies of scale. What is testable, however, is whether the marginal
investor understands the role of scalability and accounts for this in making his capital allocation decisions.
For example, even if individual investors allocate too much capital to a fund because they ignore the adverse
effects of fund scale, sophisticated investors of the fund can allocate their capital away from it to adjust its
size on the margin.

5See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others.

6See Carhart (1997), Fama and French (2010), and Del Guercio and Reuter (2013), among others.



Closely related to our paper is Barras, Gagliardini, and Scaillet (2022), who also find that
both skill and scalability—the degree of fund-level DRS—vary substantially across funds.
They find that the majority of funds add value, consistent with rational equilibrium models of
active mutual fund management. In contrast, we propose scalability as a key determinant of
the flow-performance relation based on such models[’| a hypothesis that we test by exploiting
the fact that scalability varies substantially across funds. Furthermore, contrary to their
analysis, we quantify the importance of cross-sectional variation in DRS for capital allocation

decisions.

2 Definitions and Hypothesis

Let R}, denote the return in excess of the risk-free rate earned by fund ¢’s investors at time ¢
and let RE denote the excess return of the manager’s benchmark over the same time interval.

At time ¢, the investor observes the manager’s net return outperformance,

iyl = R — RS (1)

We assume throughout that «a;; can be expressed as follows:

it = a; — bih (qir—1) + €, (2)

where ¢;;_1 denotes the size (i.e., real AUM) of fund ¢ at time ¢ — 1, a; denotes a parameter

that captures fund ¢’s gross alpha on the first dollar net of the percentage fee its manager

"Studies that discuss other cross-sectional determinants of the flow-performance relation include Huang,
Wei, and Yan (2007) and Chen, Goldstein, and Jiang (2010).



charges, and €; is the noise in observed performance. Here b;h (¢) captures the decreasing
returns to scale (DRS) the manager faces, which can vary by fund: b; > 0 is a parameter that
captures the cross-sectional variation in DRS technology. For the form of DRS technology,
we use the logarithmic specification (h (¢) = log (¢)) commonly used in empirical studies for
simplicity in the rest of the paper and provide a necessary and sufficient condition on the

DRS technology for our hypothesis (Proposition |1]) in Appendix E]

Now note that «;; is an informative signal about a;: high «;; implies good news about a;
and low «a;; implies bad news about a;. Thus, at time ¢, investors use the time-¢ information

set [; to update their beliefs on a; implying that the expectation of a; at time ¢ is:

0t = FEla; |1;] . (3)

Let @ (¢) denote investors’ subjective expectation of ay;, 1 when fund i has size ¢ at time ¢,

i.e., fund i’s net alpha:

@it (q) = 0y — bk (q) . (4)

In equilibrium, the size of the fund ¢; adjusts to ensure that there are no positive NPV

investment opportunities so @; (¢;;) = 0 and

- = h(gi) =1og (¢ir) - (5)

Following Berk and Green (2004), we assume in the rest of the paper that (i) investors’ prior

8 Another widely used functional form of DRS technology in the size-performance analysis is the linear
model (h(q) = ¢q). In Appendix [B] we demonstrate that the data favor a log DRS technology specification
over a linear one.



is that a; is normally distributed with mean 6,y and variance o7, and (ii) €; is normally
distributed with mean zero and variance o2, but we relax these assumptions in Appendix
[AIP] Then, it is straightforward that the mean of investors’ posteriors satisfies the following

recursion:

2
9

O = 01 + 5«
! LT 2 ol

it- (6)

Next, let the flow of capital into mutual fund 7 at time ¢ be denoted:

2
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where the first equality follows from (|5) and the last equality follows from @ Differentiating
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so good (bad) performance results in an inflow (outflow) of funds. This result is one of the

important insights from Berk and Green (2004).

Taking the derivative of the flow-performance sensitivity with respect to b;, we see that

steeper DRS lead to a weaker flow sensitivity to performance (FSP):

a(aﬂt>:_<f_31 0. (8)

- <
8[)@ 8041-,5 0'62 + tO’g b?

This leads to the following proposition, which will be our main hypothesis that we take to

9 All we need is that the time-t — 1 conditional probability density of at, fi—1 (), satisfies the monotone

likelihood ratio property—fi—1 (e |a;) /fi—1 (ct |af) is increasing (decreasing) in i if a; > (<)a$.



the data.

Proposition 1 Steeper DRS lead to a weaker FSP.

Intuitively, as a fund’s returns decrease in scale more steeply (steeper DRS), the positive net
alpha is competed away with a smaller amount of capital inflows, making flows less sensitive

to performance (weaker FSP)[/

Remark 1 Note that the scalability parameter is assumed to be constant for a given fund,
but this assumption is not essential for Proposition [I} If the scalability parameter is time-
varying—with b; denoting the true DRS fund i faces at time ¢t—it is straightforward to show

that the derivative becomes

0 aEt O'g 1
=————5 <0 9
Obis (aait> 02 + tog by, 7 )
so steeper DRS still lead to a weaker FSP.

Remark 2 Note that the scalability of a fund is implicitly assumed to be known by investors,
as in much of the earlier literature, but this assumption is not essential for Proposition
If the scalability parameter obeys an AR(1) process—with b;; = ¢o + ¢1b;—1 + ni—and

investors’ prior is that a; and b;; follow a bivariate normal distribution, it is straightforward

0 Equation further suggests that the relationship between FSP and scalability is nonlinear, specifically
that the coefficient of FSP on DRS squared should be positive. Motivated by this, we test for nonlinearity
in the DRS-FSP relation and find some evidence of convexity, although the estimated convexity is small
relative to the linear term. These results are available upon request.

"For models that relate capital allocation to learning about scalability, see Pastor and Stambaugh (2012)
and Kim (2022).



to show that the derivative becomes

~
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The derivative in equation (10)) is negative under two sufficient conditions: (i) the conditional
covariance covy_1 (a;, by_1) is sufficiently small and (ii) both 0;; and 0;;_; are sufficiently large.
The first condition implies that investors interpret strong performance as a signal of both
higher-than-expected skill (6;; > 0;;_1) and better-than-expected scalability (Ezt < Eiq (by)).
If, instead, investors believe a priori that skill and scalability are tightly positively correlated,
they may interpret superior performance as a sign of lower skill or worse scalability, resulting
in a negative flow-performance relation. The second condition is likely to hold in practice,
since funds face fixed operating costs and will optimally exit when they can no longer cover
these costs. This behavior naturally bounds 6;; and 6;;_; from below. In sum, even when the

scalability parameter is time-varying and unobservable, steeper DRS (perceived by investors

in real time) still lead to a weaker FSP under empirically plausible conditions.



3 Data

Our data come from CRSP and Morningstar. We require that funds appear in both the
CRSP and Morningstar databases, which allows us to validate data accuracy across the two.
We merge CRSP and Morningstar based on funds’ tickers, CUSIPs, and names. We then
compare assets and returns across the two sources in an effort to check the accuracy of
each match following Berk and van Binsbergen (2015) and Péstor, Stambaugh, and Taylor
(2015). We refer the readers to the data appendices of those papers for the details. Our
mutual fund data set contains 3,066 actively managed domestic equity-only mutual funds in
the U.S. between 1991 and 2014["?| Finally, we drop any fund observations before the fund’s

(inflation-adjusted) AUM reaches $5 million.

We now define the key variables used in our empirical analysis: fund performance, fund

size, and fund flows. Summary statistics are in Table [I}

3.1 Fund Performance

We take two approaches to measuring fund performance. First, we use the standard risk-
based approach. The recent literature finds that investors use the CAPM in making their
capital allocation decisions (Berk and van Binsbergen (2016) and Barber, Huang, and Odean

(2016)), so we adopt the CAPM. In this case the risk adjustment RG*M is given by:

REATM — 3, MKT;,

12We start the sample in 1991, the first year in which CRSP provides monthly data on funds’ size.

10



where MKT, is the realized market excess return and ;; is the market beta of fund i. We
estimate 3;; by regressing the fund’s excess return to investors onto the market portfolio over
the 60 months prior to month ¢. To produce reliable beta estimates, we require a fund to have

at least two years of track record to estimate its betas from the rolling window regressions.

Second, we follow Berk and van Binsbergen (2015) by taking the set of available Vanguard
index funds as the alternative investment opportunity set|”| so the benchmark of a fund is
defined as the closest portfolio in that set to it. Let R/ denote the excess return earned by
investors in the j’th Vanguard index fund at time ¢. Then the benchmark return for fund @
is given by:

n(t) o
Ry¢ =) AR},
j=1
where 7 (t) is the number of Vanguard index funds available at time ¢t and 3/ is obtained
from the appropriate linear projection of fund 7 onto the set of Vanguard index funds. As
pointed out by Berk and van Binsbergen (2015), using Vanguard funds as the benchmark
ensures that this alternative investment opportunity set was marketed and tradable at the

time. Again, we require a fund to have at least 24 months of data to estimate its projection

coefficients (/) used to calculate the Vanguard benchmark for fund i.

Our measures of fund performance are then a$**™ and @Y, the realized return for the
fund in month ¢ less RGAPM and RY“, respectively. The average of aSA™ is 41.0 basis

points per month, while the average a},“ is —1.7 basis points per month.

13Gee Table 1 of that paper for the list of Vanguard Index Funds used to calculate the Vanguard benchmark.
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3.2 Fund Size and Flows

We adjust all AUM numbers by inflation by expressing them in January 1, 2000 dollars.
Adjusting AUM by inflation reflects the notion that the fund’s real (rather than nominal)
size is relevant for capturing decreasing returns to scale in active management—lagged real
AUM corresponds to ¢;;—1 in the model from Section There is considerable dispersion
in real AUM: the inner-quartile range is from $44 million to $621 million, while the 99th

percentile is orders of magnitude larger at $16 billion.

Flows are measured in two different ways. First, as in the model, we define fund flow F'
as the logarithmic change in real AUM—the percentage change in fund size. Alternatively,

we calculate flows for fund 7 in month ¢ as:

o AUM;, — AUM;, 1 (1 + Ry)
" AUM;_1 (14 Ry) ’

where AU M;; is fund 7’s nominal AUM at the end of month ¢, and R;; is fund i’s total return
in month tE] Under this more standard definition of F', flows represent the percentage change
in new assets. The flow of fund data contain some implausible outliers, so we winsorize the
two flow variables at their 1st and 99th percentiles. Mean monthly changes in fund size and

in new assets are 0.8% and 0.5%, respectively.

MNote that we use AUM;;_1 (1 + R;;) in the denominator rather than AU M;;_1, which is more common
in the literature. Unfortunately, this definition distorts the flow for very large negative returns (see Berk
and Green (2004)). Regardless, our findings are unaffected if we were to use AUM;;_1 in the denominator.

12



4 Method

Our analysis relies on a theoretical link between DRS and flow sensitivity to performance.

We discuss how we estimate each part in the following sections.

4.1 Fund-Specific Decreasing Returns to Scale (DRS)

Empirically, the net alpha earned by fund ¢’s investors in month ¢ is given by:

o = a; — b;log (Qit—l) + €it, (11)

where a; is the fund fixed effect, b; captures the size effect, which can vary by fund, and ¢;;_,
is the fund’s lagged real AUMJ[™| This simple regression model corresponds to the model in

Section [2

We depart from much of the literature by allowing for heterogeneity in the size-performance
relation across funds. Indeed, the effect of scale on a fund’s performance is unlikely to be
constant across funds. For example, a fund’s returns should be decreasing in scale more

steeply for those that invest in small and illiquid stocks.

We start our analysis by estimating fund-specific b; parameters. It is well known that the
OLS estimators of b; in are subject to a small-sample bias (Stambaugh (1999)). The
small-sample bias arises because changes in fund size tend to be positively correlated with
unexpected fund returns. To address this bias, we follow Amihud and Hurvich (2004) and

Barras, Gagliardini, and Scaillet (2022) and include a proxy for the size innovation v§. (see

5 0ur results going forward are the same if we were to use gross (instead of net) alpha in equation .
This robustness is consistent with existing literature showing that fee changes are rare, so they are unlikely
to play an important role in equilibrating the mutual fund market.

13



Appendix for each fund i at time ¢, we define the fund-specific DRS estimate git to
be the coefficient of —log (¢;-—1) in the time-series regression of @;, on —log (¢;;—1) and v,
(including an intercept) using sixty months of data before time t. We require at least 3 years

of data to estimate fund-specific DRS of a fund.

Intuitively, the estimate of b;, /b\it, represents investors’ perception of the effect of size on
performance for fund 7 at time ¢ based on information prior to time ¢. Panel A of Figure
shows how the cross-sectional distribution of /b\it using the CAPM alpha varies over time.
For each month in 1991 through 2014, the figure plots the average as well as the percentiles
of the estimated fund-specific b parameters across all funds in that month. The plot shows
considerable heterogeneity in DRS across funds{”| the interquartile range is more than 4
times larger than the estimates’ cross-sectional median. We find that, for the average fund,
a 1% increase in fund size is associated with a sizeable decrease in performance of about 0.4
basis points per month. This evidence suggests that the subjective size-performance relation,
perceived by investors in real time, provides identifying variation in the extent of DRS.

Panel B of Figure (1| shows how the cross-sectional distribution of /b\it varies over time
when we estimate fund-specific DRS using ay°. Similar to when we use the CAPM alpha
to estimate /b\it in Panel A, this plot shows considerable heterogeneity in DRS across funds,

although these estimates typically indicate milder DRS.

160nline Appendix considers alternative proxies for v¢ using approaches from the existing literature,
as well as using a novel approach that relies on our model. Our results are robust to these alternative
approaches.

17Some of the heterogeneity in DRS could be attributable to estimation error. See Barras, Gagliardini,
and Scaillet (2022) who also find substantial heterogeneity in DRS even after adjusting for the bias arising
from estimation error.

14



4.2 Fund-Specific Flow Sensitivity to Performance (FSP)

We estimate the fund-specific FSPs by estimating the following regression fund-by-fund:

Fy = ¢; +viPy—1 + vit, (12)

where P;;_; is annual alpha for the year leading to month ¢ — 1, computed by compounding
the monthly alphas. This regression is consistent with empirical evidence that investors
do not respond immediatelyF_g] Parameter v; > 0 captures the positive time-series relation

between performance and fund flows, which can vary by fund.

For each fund ¢ at time ¢, we calculate the fund’s FSP by estimating using its data
over the subsequent 5 years. Let ]*{573“ be the flow-performance sensitivity estimate from
that model. We require these coefficient estimates to be obtained from at least 3 years of
data. For the average fund, we observe that an increase of 1% in the annual CAPM alpha

is associated with a 0.1% increase in monthly flows next month.

Panel A of Figures |2 and |3| display the evolution of the FSP;, distributions over time
measuring flows as percentage changes in fund size and in new assets, respectively. Both
plots manifest considerable heterogeneities in the flow-performance relation across funds.
Moreover, these plots show that while the average P/’Sﬁj,-t do not exhibit any obvious trend,
they are certainly time varying. Also noteworthy is the fact that the distributions remain

roughly the same over our sample period, conditional on the median.

Panel B of Figures |2| and [3| display the evolution of the P/’S\Pit distributions over time

18For example, Busse and Irvine (2006) show that long-term performance predicts flows better than short-
term performance.

15



when we estimate fund-specific FSP using a%C. Similar to when we use the CAPM alpha
to estimate F/’STDit in Panel A, these plots manifest considerable heterogeneities in the flow-

performance relation across funds.

5 Results

5.1 DRS and Flow Sensitivity to Performance

To examine whether fund-specific DRS parameters affect capital allocation decisions, we run
panel regressions of fund i’s FSP going forward in month ¢, 1*{57%5, on its DRS estimated as
of the previous month-end, Et. We test the null hypothesis that the slope on Eit is zero
We report the results based on raw estimates in Table FE] In Panel A, we present results
using estimates of fund-specific DRS and FSP based on the CAPM alpha, and in Panel B,

we present results based on a¢.

We focus on variation in sensitivity coming from the market equilibrating mechanism by
including both fund and month fixed effects. Fund fixed effects absorb variation in FSP,
e.g., due to cross-sectional differences in investor clienteleT] or baseline fund scalability,
while month fixed effects soak up variation in FSP due to factors like time-varying investor
attention allocationF_?] Conceptually, we think the relationship between FSP and scalability

in our regression models is driven by within-fund variation in perceived scalability over time:

19VVhilAe the measurement error in 1*{5731',5 will not induce bias in the OLS coeflicients, the measurement
error in b;; will bias the OLS estimator toward zero. For now, we do not worry, as the errors-in-variables
problem will work against us from finding a statistically significant relation that the model predicts.

20Table [2 reports the double-clustered (by fund and time) standard errors.

21See Berk and Tonks (2007) for evidence of clientele differences—some investors tend to update faster
than others.

22These fixed effects also subsume any potential time-series variation in FSP due to different stages of
development in the US (Ferreira et al. (2012)) and/or across market states (Franzoni and Schmalz (2017)).

16



as investors update their beliefs by observing a fund’s returns and size, the fund’s perceived

scalability fluctuates, leading to fluctuations in the flow sensitivity to the fund’s performance.

In the odd columns, we only include month and fund fixed effects. The results in Panel
A are consistent with the main prediction of our model: the estimated coefficients on /b\it are
significantly negative, with t-statistics of —6.3 in column 1 and —3.0 in column 3. These
findings are unaffected by including a host of controls in the even columns, where we add
proxies for participation costs considered by Huang, Wei, and Yan (2007)17_3] as well as per-
formance volatility and fund age The slopes on /I;it remain negative and highly significant,

with t-statistics of —7.1 in column 2 and —3.3 in column 4, and their magnitude increases.

In Panel B, the same conclusions continue to hold when we use estimates of fund-specific
DRS and FSP based on &\XG. Just like in Panel A, the estimated coefficients on Et are

significantly negative, and their magnitude increases when we include a host of controls.

Table [3| repeats this exercise with percentile ranks in each month based on Et and ]*{573“.
Now, we do not use month fixed effects: percentile ranks already control for time variation in
the flow-performance relation. In each column, the estimated coefficient on /b\it is significantly

negative at the 1% confidence level.

To summarize, we find a strong negative relation between DRS and FSP, consistent with
the presence of investors rationally accounting for the adverse effects of fund scale in making
their capital allocation decisions. Unfortunately, the coefficient values in Table [2| are likely

biased towards zero because of the measurement error in git. In Section we first gauge

23Gpecifically, we use marketing expenses, star family affiliation, family size, and fund size to proxy for the
variation in investors’ information costs across funds.

24Huang, Wei, and Yan (2012) find a weaker flow-performance sensitivity for funds with more volatile past
performance and longer track records.
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the severity of attenuation bias under the classical measurement error assumption. In Section
we then exploit a set of fund characteristics that are plausibly related to the scalability
of investment strategies as instruments for heterogeneity in DRS parameters across funds
to address the attenuation bias associated with estimating the DRS-FSP relation. Finally,
in Section [5.1.3] we propose a way of assessing the economic magnitude of these estimated

coefficients by computing counterfactual fund sizes.

5.1.1 DRS-FSP Relation Under the Classical Measurement Error Assumption

To gauge the severity of attenuation bias, we adjust the estimated coefficients on /b\it in Table
for the errors-in-variable (EIV) problem, assuming that the errors are of the classical type:
they are purely random, mean zero, and uncorrelated with the regressors, including the
actual b;, and with the regression errors. Using the standard errors of /b\it to estimate the
variance of measurement error in b;, we calculate the EIV-adjusted coefficients and their

standard errors, reported in the last two row of the panel.

As expected, the simple DRS-FSP relation estimates tend to be too small in magnitude.
For example, when the DRS-FSP relation is estimated based on the CAPM controlling for
other determinants of the flow-performance relation (column 2 of Panel A), the coefficient
becomes substantially more negative with the EIV adjustment: —16.11, compared to —1.30
without this adjustment. Interestingly, the EIV adjustment suggests that the estimated
coefficients on /l;it based on the Vanguard benchmark are even more severely biased toward
zero: the EIV adjustment makes the coefficients 26 to 45 times larger in magnitude (see
the last row of Panel B). Of course, these results are only true if the errors are indeed of
the classical type, but they illustrate that our DRS-FSP relation estimates are likely to
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be severely biased against confirming our model prediction. Thus, the fact that we find a
strong relation between DRS and FSP despite this counterveiling effect further strengthens

the support for the model.

5.1.2 DRS-FSP Relation Using the Characteristic Component of DRS

We explore which fund characteristics are correlated with the observed heterogeneity in
scalability. Based on this analysis, we obtain an economically interpretable component of g@
related to fund characteristics, using which we re-estimate the DRS-FSP relation. The prior
evidence of fund-level DRS depending on fund characteristics suggests that this method
is likely to deliver a more accurate measure of b;, thus mitigating the errors-in-variable
problem. Indeed, the characteristic-based approach taken here leads to substantially more

negative estimates of the DRS-FSP relation.

Determinants of Fund-Level DRS We investigate a number of characteristics that seem
relevant a priori (also from the previous literature) for heterogeneity in scalability. The first
characteristic is the number of managers. About 59% of our funds are multi-manager funds.
The second characteristic is volatility: the standard deviation of fund alphas over the prior
1 year. The next two characteristics we examine are expense ratios and marketing expenses.
The fifth characteristic is the international exposure dummy: for any given fund, it is equal to
one if we reject the null hypothesis that the coefficients on three Vanguard international index
funds are 0 at the 5% confidence level | Although we focus on domestic funds, about 28%

of them are significantly exposed to international shocks. The sixth characteristic is average

2> Three Vanguard index funds are international: European Stock Index, Pacific Stock Index, and Emerging
Markets Stock Index.
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annual turnover (from CRSP)@ Median annual turnover is 64%. The last characteristic
is log real AUM, which checks for nonlinearity in the DRS technology. In analyzing the
dependence of scalability on fund characteristics, we also control for loadings on the market,

size, value, and momentum factors to capture fund style and risk "]

The selection of these characteristics to capture heterogeneity in DRS followed two steps.
First, we adopt volatility and turnover from Pastor, Stambaugh, and Taylor (2015), which,
to the best of our knowledge, is the most recent paper touching on how scalability depends
on fund characteristics. They examine three characteristics: volatility, turnover, and a small-
cap indicator. High-turnover funds and small-cap funds tend to face greater trading costs
and therefore steeper DRS; similarly, high-volatility funds—being effectively larger in terms
of their trading—also exhibit steeper DRS. We exclude the small-cap indicator because its
effect is subsumed by our controls for funds’ investment styles—specifically, their loadings

on the market, size, value, and momentum factors.

Second, given the absence of systematic evidence on the determinants of scalability,
we add four further characteristics based on our a priori reasoning that they are likely to
influence a fund’s scalability: the number of managers, expense ratios, marketing expenses
and the fund’s international exposure. A multi-manager fund may exhibit milder DRS
because the division of labor might alleviate the negative performance impact of size, enabling
the fund to deploy capital more easily. We hypothesize that funds charging higher expense
ratios face steeper DRS, based on the model of Stambaugh (2020), which predicts that such

funds deviate more from benchmark weights and consequently incur higher trading costs.

26We winsorize turnover at the 1st and 99th percentiles.
2TWe estimate these risk exposures by regressing the fund’s return on the four Fama-French-Carhart factors
over the prior sixty months.
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In contrast, we hypothesize that funds with higher marketing expenses exhibit flatter DRS
because funds are likely to undertake marketing efforts to attract flows only when they can
manage the performance erosion associated with growth¥| Finally, funds with international
exposure may face less severe DRS, as international markets tend to have less competition
among active funds/’| and access to such diversification opportunities can help mitigate the

performance decline associated with asset growth.

We study how these characteristics affect the impact of a fund’s scale on its performance
by running panel regressions of fund ¢’s backward-looking DRS estimate in month ¢, Et,
on the fund’s characteristics as of the previous month-end. Table [4] shows the estimation

~CAPM,

results | Panel A reports the results using estimates of fund-specific DRS based on a$"™;

Panel B reports the results based on outperformance relative to the Vanguard benchmark.

We find significant relations between b and three characteristics: the number of managers,
volatility, and expense ratios (see the first three columns). The slope on marketing expenses
(column 4) is insignificantly negative, while the slope on fund size (column 7) is insignificantly
positive. The slope on turnover (column 6) is insignificant as well, but its sign is mixed,
depending on how we measure fund performance. Finally, the relation between scalability

and international exposure (column 5) is both statistically and economically insignificant.

When all seven fund characteristics are added simultaneously, the estimated slopes on

volatility and expense ratios are robust, indicating steeper DRS for higher-volatility funds

281t is well documented that funds’ marketing efforts are positively related to investor flows (e.g., Gallaher,
Kaniel, and Starks (2009), Christoffersen, Evans, and Musto (2013), and Roussanov, Ruan, and Wei (2021)).

29 Consistent with this argument, Dyakov, Jiang, and Verbeek (2020) find that the active fund industry
in the U.S. appears to have exceeded its optimal size, whereas, outside of the U.S., there is still room for
growth.

30Standard errors of these regressions are double-clustered by fund and time.
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and funds charging higher expense ratios. We continue to find a negative, albeit insignificant,
relation between b and the number of managers, indicating steeper DRS for sole-manager
funds. Marketing expenses now enter with a significantly negative slope, indicating that DRS
are less pronounced for funds with higher marketing expenses. The relation between b and
fund size remains insignificantly positive. Finally, the slopes on turnover and international
exposure now flip to negative, albeit still insignificant. Hence, in the final column of Table [4]

we focus on the specification that includes the three jointly significant fund characteristics.

Implications for DRS-FSP Relation Using the estimates from Table |4, we now ob-
tain predicted values of 32 based on fund characteristics, denoted by Eich‘“". This approach
increases the accuracy of the b; estimate insofar as differences in DRS are well captured
by fund characteristics. This assumption seems reasonable since the characteristics-based
approach substantially reduces the percentage of negative b; estimates from 37% to 5% in
line with the fact that, theoretically, all funds must face DRS in equilibrium. Figure 4| shows
how the cross-sectional distribution of thf" estimated from the specification in column 8
of Table 4| varies over time. The distribution of /l;ghc”” is clearly tighter than that of /b\it,
consistent with the characteristics-based approach eliminating the estimation error in DRS.
Importantly, the plot continues to reveal clear heterogeneity in scalability across funds, in-

dicating that a significant portion of the variation in /b\it reflects genuine differences rather

than estimation error.

To address the attenuation bias associated with estimating the DRS-FSP relation, we
replace /b\z by E-Ch‘” and rerun the regressions in Table [2| with results tabulated in Table .

Given that we have multiple characteristics which are significantly related to /l;i, we report
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/l;iCh‘“” estimated using various first-stage specifications from Table . We

the results based on
now obtain even stronger evidence that steeper DRS attenuate FSP: not only are the slopes
on @Oh‘”’ significant throughout, but they are substantially more negative than those on Bz
For example, when flows are measured as the change in fund size, the estimated coefficients
in the first four columns of Table [5| are more than seven times larger than the corresponding
estimate in column 2 of Table 2] Moreover, we find that the DRS-FSP relation estimates
are very similar in magnitude across the four alternative first-stage specifications: in any

pairwise comparison, the estimate from one specification lies well within one standard error

of the estimate from the other.

In summary, when we conduct the analysis using cleaner measures of DRS, the estimated
effects of DRS on capital allocation only become stronger. The magnitudes of these DRS-
FSP relation estimates are comparable to those implied by the classical measurement error

assumption, and they are also robust to the choice of first-stage specification.

Discussion of the Effect Size Here, we discuss the estimated effect size of scalability
on FSP. The coefficient estimates from the last four columns of Panel A of Table || (ranging
from —5.69 to —6.24) indicate that a one standard deviation increase in fund DRS (ranging
from 0.0023 to 0.00Bl)ﬂ is associated with a decrease in FSP of 0.0137-0.0193, or 18%—25%

of the median FSP (0.0756) in our sample (Table 1).

To illustrate, consider two funds, A and B, that begin with the same size and produce
the same positive net alpha. The coefficient estimates indicate that, if (i) fund A faces one-

standard-deviation steeper DRS than fund B and (ii) fund B faces the median FSP, then fund

3 Note that the standard deviation of ?)\gh” depends on the first-stage specification used to estimate /l;icth”.
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A would attract only about 80% of the new money that fund B would receive. This effect is
economically meaningful, especially given that managerial compensation primarily depends
on fund size (Berk and van Binsbergen (2015)). Notably, this calculation is conservative in
that the estimates from the first four columns of Panel A would suggest a much larger effect

of DRS on FSP.

We further benchmark scalability’s explanatory power relative to other determinants
of FSP. To that end, we also show the coefficient estimates of the controls in Table [5
First, note that scalability is the only determinant that is always statistically significant.
Second, fund size and star family affiliation are the only controls that are significant in
most specifications. Two other controls are statistically significant in a few specifications:
volatility (even columns of Panel A) and marketing expenses (final column of Panel B).
The fact that proxies for participation costs considered by Huang, Wei, and Yan (2007) are
mostly statistically insignificant is consistent with their argument that the effect of investors’
participation costs depends on the performance level: funds with lower participation costs
have a higher (lower) flow sensitivity to medium (high) performance. Our evidence suggests

that these opposing effects cancel out, yielding an insignificant unconditional effect on FSPF?]

Using the same four columns of Panel A, we estimate that a one standard deviation
increase in log fund size (1.89) reduces FSP by 0.0378, while a one standard deviation
increase in star family affiliation (0.496) reduces FSP by 0.0060. In the two specifications
where volatility is also significant (columns 6 and 8), a one standard deviation increase in

volatility (0.0116) raises FSP by 0.012]]

32Given that many of the controls are insignificant, we checked to make sure that our findings are unaffected
by excluding controls that are statistically insignificant. All of these results are available upon request.
33In unreported results, we find that the estimated coefficients on volatility turn negative when we exclude
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Thus, in terms of estimated effect size, scalability dominates all other determinants of FSP
except fund size. However, this likely understates the economic importance of scalability, as
the substantial cross-sectional dispersion in fund size inflates its seeming variability relative

to that of scalability, making scalability’s effect appear smaller by comparison.

Since our fixed-effect approach identifies the relationship between FSP and its various
determinants from within-fund variation, it is more appropriate to compare the coefficients
using within-fund—rather than pooled—measures of variability. Consistent with many funds
following highly dynamic strategies (Mamaysky, Spiegel, and Zhang (2008)), the within-fund
standard deviation of scalability (ranging from 0.0016 to 0.0023) is about 70% of its pooled
standard deviation. In contrast, fund size shows much less within-fund variability (0.876),
less than half its pooled value, consistent with strong persistence of fund size. Using within-
fund measures of variability, we find that one standard deviation increases in DRS and fund
size are associated with reductions in FSP of around 15% and 24% of the median FSP,
respectively—effects that are much more similar in magnitude than the pooled analysis

suggests.

Taken together, these findings highlight scalability as a key determinant of FSP.

5.1.3 Simulated DRS-FSP Relation

Finally, we use our model to ask how much capital is allocated the way it is because of these
differences in DRS—we compute counterfactual fund sizes by assuming the investors believe

a priori that returns are decreasing in scale at the same (average) rate for all funds.

scalability, consistent with the evidence of Huang, Wei, and Yan (2012) who find that mutual funds with
more volatile performance have weaker flow-performance sensitivity. Our evidence suggests that their result
is driven by how alpha volatility affects flow-performance relationship through its impact on scalability.
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Two factors determine the magnitude of capital response to performance in a rational
model: (i) the degree of DRS and (ii) the prior and posterior beliefs about fund skill. Thus,
for a given value of b in equation (11]), the prior uncertainty about a, oo, can be inferred

from the flow-performance relation, provided investors update their posteriors as Bayesians.

We simulate fund alphas from equation by drawing the error terms €;; from N (0, 02).

Using (), we compute fund size as:

where the mean of investors’ posteriors 6;; satisfies recursion ().

Following Berk and Green (2004), we set ¢ = 20% per year, or 5.77% per month.
Since investors are assumed to have rational expectations, we draw each fund’s skill a; from
N (050, 02), while we draw b; from a scaled Beta distribution that approximates the empirical
distribution of b;, i.e., the distribution of /b\gh” using the CAPM alpha Assuming that
0,0 = 0y for all funds leads to a considerably more disperse size distribution than in our ac-
tual sample: simulated fund sizes tend to be too big (small) for funds whose returns decrease
in scale more gradually (steeply). Accordingly, we model the prior mean as a linear function
of b;, 0y (b;), setting the coefficients such that the simulated mean and standard deviation of

log fund size match the empirical benchmark values of 5.13 and 1.89, respectively.

Given all other parameters, we set the prior uncertainty (o) so that the average 7; across

—

funds in a typical simulated sample matches the average F'SP;; in our actual sample, where

34Speciﬁcally,A we calibrate the scaled Beta distribution so that the first four moments of the simulated b;
match those of 5" (estimated using the specification in column 8 of Panel A of Table .
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74; is each fund’s estimated FSP from the following regression using data for just that fund:

log (qit/qit—1) = ¢; + Yicu + Vi

Panel A of Table [6] shows the calibrated parameter values used in our simulation analysis.
Panel A also reports the moments we target in our calibration. Note that the simulated

moments in the model closely match the target moments from the actual data.

To assess the economic magnitude of the DRS-FSP relation estimates from the actual
data, we estimate the DRS-FSP relation in our simulated samples. Panel B of Table [6]
reports summary statistics across simulations. Note that the DRS-FSP relation estimates
in the model correspond to columns 1-2 of Panel A of Table 2] and columns 1-4 of Panel
A of Table [5 which use the CAPM for risk adjustment and the log change in fund size
as the flow measure. The simulated estimates tend to be larger in magnitude than the
corresponding EIV-adjusted estimates in columns 1-2 of Panel A of Table[2[(—16.1 to —9.14)
and the estimates based on the characteristic component of DRS in columns 1-4 of Panel
A of Table |5 (—11.1 to —9.11). But importantly, the empirical DRS-FSP relation estimates
lie comfortably within the 90% confidence interval for simulated estimates, and vice versa.
Thus, the magnitude of the empirical DRS-FSP relation estimates is consistent with what
the model predicts, suggesting that the calibrated model does a good job of capturing capital

allocation patterns in the data.

To quantitatively assess the role of heterogeneity in scalability in capital allocation, we
must construct a counterfactual. We construct the counterfactual by assuming investors
wrongly believe that every fund exhibits the same, average degree of DRS: b; = 0.0047
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for all funds. Then, by updating investors’ beliefs about each fund’s skill with its history
{ar, qh,l}izl under the counterfactual assumption, we compute what the size of the fund
would have been, ¢, for every i and t. In a given simulated sample, we calculate the R?

from a regression of log (¢;;) on log(q5) to check the goodness of fit by the counterfactual.

We report the results from counterfactual simulations in Panel C of Table [l The coun-
terfactually computed fund sizes explain about 46% of the variation of simulated fund sizes.
While counterfactual sizes are positively related to actual sizes, they are considerably larger
than actual sizes and their distributions are substantially tighter than those of actual sizes.
Thus, the counterfactuals ignoring heterogeneity in DRS are very different than the actual
size. In this sense, we can interpret 1 — R? as a lower bound on the role of heterogeneity in
scalability on capital allocation: more than half of the variance of fund sizes can be related

to cross-sectional variation in DRS parameters, which is economically significant.

To summarize, Table [6] shows that a significant fraction of equilibrium capital allocation
can be plausibly explained by investor response to differences in DRS. Moreover, the mag-
nitude of empirical DRS-FSP relation estimates is quantitatively consistent with what our

simple model would predict when calibrated to match the empirical fund size distribution.

5.2 DRS and Fund Size

Another immediate implication of our model is that steeper DRS shrink fund size. Recall
that, in the model, fund size is directly proportional to the ratio of perceived skill to perceived
scalability (see equation (|5])). That is, large funds either earn a high alpha on the first dollar

and/or implement strategies that are highly scalable. We now investigate the significance of
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the latter effect, controlling for the former | Table [7] presents the results of this exercise.

To control for the effect of perceived skill, we sort funds into quintiles based on a$"*" i.e.,

fund #’s estimated skill in month ¢. Skill is measured by the average of a;, +th‘" log (gir—1)

over the prior sixty months, where /b\gh” is the characteristic component of fund i’s DRS

estimate in month ¢ (see Section [5.1.2). Within each a$"*" quintile, we again sort funds into

quintiles based on /b\icth“’“. We conduct this double sort for funds in the same Morningstar

category and the same age group This control procedure creates th‘”" quintiles with

comparable distributions of perceived skill, fund style, and fund age, thereby controlling for

differences in skill, style, and age. For each thm“ quintile, we calculate the average fund

size (log real AUM) at the end of month ¢, whose time-series average is reported in the last
~Char X/ggh(w

column of Table El The table also reports the average fund size for each of the 25 @y,

portfolios.

The last row of Table [7] reports the difference in average fund size between the first
and fifth Zghm" quintiles in each column The differences in fund size in the bottom right
entry indicate that the real AUM of funds perceived to face steepest DRS is typically 85%
smaller than that of funds perceived to be relatively immune to diseconomies of scale. These
differences have robust t-statistics more negative than —14. Moreover, fund size declines in
an almost perfectly monotonic fashion from the lowest /b\gh‘" quintile to the highest Egh‘”’

quintile (reading down each column).

35Given that we control for perceived skill, the process of fund size adjustments that compete away alpha
in equation is necessary but not sufficient for fund size to increase with scalability. The pattern further
requires that our DRS measure capture variation in scalability that is largely independent of perceived skill.
Hence, the empirical confirmation of this pattern would demonstrate that scalability represents an important
dimension of fund heterogeneity, distinct from skill.

30Specifically, we assign funds to three groups based on fund age: [0, 5], (5,10], and > 10 years.

3TTo account for strong persistence in fund size, we calculate standard errors for these differences using 60
Newey-West lags.
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Hence, steeper DRS shrink fund size, consistent with the above prediction of our model.
This effect is both economically and statistically significant. Also noteworthy is that the real
AUM of funds with higher perceived skill is typically larger than that of funds with lower

perceived skill (reading from left to right), again consistent with our model.

In Appendix [D] we further explore whether fund size converges toward an optimal level
over time: if investors learn about funds as in the model, their perception of skill and
scalability should become more accurate as funds grow older, implying that fund size should
become more closely aligned with “optimal” fund size—the size at which the net alpha is
driven to zero—over a typical fund’s lifetime. We find empirical support for this prediction.
A detailed discussion of this convergence result is relegated to the appendix, however, as it

relies on a stronger assumption that the optimal fund size is time-invariant.

6 Conclusion

One important feature that determines the value of an investment opportunity is its degree
of scalability. In this paper, we empirically study the scalability of investment projects in
the context of actively managed mutual funds. One common assumption in that literature
is that all investment managers face the same degree of DRS while differing in the marginal
profitability (gross alpha) on the first dollar invested. In this paper, we show that that
assumption does not hold in the data. Heterogeneity in the degree of scalability is a key
determinant of investors’ capital allocation decisions. Not only do we find that steeper DRS
attenuate flow sensitivity to performance, we also find that differences in DRS across funds

are quantitatively important for explaining capital allocation in the market for mutual funds.
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This heterogeneity is thus a key driver of the cross-sectional distribution of fund size (AUM).
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Appendix

A Necessary—Sufficient Condition for Our Hypothesis

Let R}, denote the return in excess of the risk-free rate earned by fund ¢’s investors at time ¢
and let R denote the excess return of the manager’s benchmark over the same time interval.

At time ¢, the investor observes the manager’s net return outperformance,
g1 = R — RS (A1)
We assume throughout that «;; can be expressed as follows:
e = a; — bih (Gie—1) + €, (A2)

where ¢;;_; denotes the size (i.e., real AUM) of fund ¢ at time ¢ — 1, a; denotes a parameter
that captures fund i’s gross alpha on the first dollar net of the percentage fee its manager
charges, and €; is the noise in observed performance. Here b;h (¢q) captures the decreasing
returns to scale (DRS) the manager faces, which can vary by fund: b; > 0 is a parameter
that captures the cross-sectional variation in DRS technology and & (g) is a strictly increasing

function of ¢, which determines the form of DRS technology common across all funds.

Now note that «;; is an informative signal about a;: high «;; implies good news about
a; and low «;; implies bad news about a;. Formally, this is equivalent to assuming that the

conditional probability density of «;; at time t—1, f;_; («;), satisfies the monotone likelihood
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ratio property—/fi_1 (a |a;) / fi—1 (i |a$) is increasing (decreasing) in ayy if a; > (<)as—

which ensures that

903

@ait

>0 (A3)

(see Milgrom (1981)). Thus, at time ¢, investors use the time-¢ information set I, to update

their beliefs on a; implying that the expectation of a; at time ¢ is:

Oy = E[a; |1;] . (A4)

Note that ¢;, R}, Rﬁ are elements of [;. Let @; (¢) denote investors’ subjective expectation

of a;;11 when fund 7 has size ¢ at time ¢, i.e., fund ¢’s net alpha:

@it (q) = 0ix — bk (q) . (A5)

In equilibrium, the size of the fund ¢;; adjusts to ensure that there are no positive NPV

investment opportunities so @; (¢;;) = 0 and

— = h(qu)- (A6)

The following lemma shows how ¢;; depends on the information in oy or the parameter
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Lemma 2

Ot N 1 005
Doy B bl (Qit) oy (A7)
It . h (qit) (A8)

0b; B _bih, (Qit)

Proof. First, note that s;; = a; + €; corresponds to the new information about fund skill
contained in . Since rescaling the fund’s DRS technology—changing the parameter b;—
does not change the signal s;;, we can conclude that

00y
0b;

~ 0. (A9)

Now differentiating with respect to s, using the Inverse Function Theorem, and

using the fact that these signals are independent of b; (0b;/0sy = 0), gives

Osi W (qu) Osi  bih' (qi) Osit’

That sy has a unit beta with respect to the realized performance (0sy/0ay = 1) then gives
. Stmilarly, differentiate with respect to b;, use the Inverse Function Theorem, and

use (@ to substitute for 00, /0b; in this expression. This gives . [

Next, let the flow of capital into mutual fund 7 at time ¢ be denoted by Fj;:

Fiy = log (qit/ Git—1) -
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Differentiating this expression with respect to a;,

= — = > 0, A10
Oay qit Oy qit+1 bl (Qit—i-l) Oy ( )

where the second equality follows from (A7) and the inequality follows from (A3)), so good
(bad) performance results in an inflow (outflow) of funds. This result is one of the important

insights from Berk and Green (2004).

We are now ready to state the necessary and sufficient condition on the DRS technology
for our hypothesis. Taking the derivative of the flow-performance sensitivity with respect to

b;, steeper DRS lead to a weaker flow sensitivity to performance (FSP) if and only if

0 (OFy
5 (6%) <0, (A11)

We show in Proposition [3| that (A11]) is equivalent to

0 (0dlog(h(qu))
Iqit < dlog (qit) ) <0, (A12)

which means that the size elasticity of performance is decreasing in fund size. This as-
sumption is satisfied for many functional forms, including the logarithmic specification
(h(q) = log(q)) commonly used in empirical studies. In practice, such “concavity” of DRS
technology can arise endogenously from funds changing their investment behavior as they
grow: indeed, prior studies find that larger funds trade less and hold more-liquid stocks to

mitigate the performance erosion due to diseconomies of scale*| This leads to the following

3 See, e.g., Pollet and Wilson (2008), Péstor, Stambaugh, and Taylor (2020), and Busse et al. (2021).
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proposition, which is our hypothesis that we take to the data.

Proposition 3 Steeper DRS lead to a smaller FSP if and only if condition holds.

Proof.

0 (0Fy\ 0 (1 1 '\ 96y
0b; \ Oy B 0b; qit OilV (Qit) Oavjy

_qith, (qit) + %Llf; (bl (Git) + qibih” (qir)) 00,

@ (k! (qir))? Oai
_ _Qith/ (git) — P (git) (1 + qi;L?(in;t)) 005 (A13)
qz; (bl (Qz’t))z Oaviy”

where the first equality is implied by expression (A10) and the fact that % (89“) =0 (since

Bait

0;; 1s solely a function of the history of realized signals and is not a function of b;), and the
last equality invokes expression . What combined with tells us is that steeper

DRS must lead to a smaller flow of funds response to performance if and only if

qich’ (i) — P (qi) (1 + W) > 0. (A14)

Condition is equivalent to

hl (Qit) Cp () )
—(h (0))? X |quh' (it) — P (qa) (1 +

C_Iz'th"(%'t)ﬂ S I (gir) % 0 (A15)

b (qit) (h(gi))?

because h (q) is a strictly increasing function of q, ensuring that h' (g;;) > 0. Notice that the
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left-hand side of (A19) is equal to —% (%W), so (A1) can be rewritten as

0 (0log(h(qy))
_a%’t ( Olog (Qit) ) >0,

which 1s also equivalent to , completing the proof. m

B Log vs. Linear Specifications for DRS Technology

The key assumption underpinning the main hypothesis is concavity in the DRS technology.
This assumption is satisfied for the log specification (h(q) = log(q)) in the paper, which
is widely used in empirical studiesF_g] In practice, such “concavity” of DRS technology can
arise endogenously from funds changing their investment behavior as they grow: indeed,
prior studies find that larger funds trade less and hold more-liquid stocks to mitigate the
performance erosion due to diseconomies of scale["’] But this assumption is not satisfied for
the linear model (h(¢) = ¢), another commonly used functional form of DRS technology
in the size-performance analysis["T| To the best of our knowledge, none of these studies has
tested whether the log specification is a more (or less) suitable functional form of decreasing
returns to scale than the linear model. We demonstrate that the data support the logarithmic

specification for DRS technology over a linear one in this appendix.

Recall that, for each fund i at time ¢, we estimate the regression «y;; = a;—b; 10g (qir—1) +€it

using sixty months of the fund’s data before time ¢, which we use to compute the 1-month

-~

ahead forecast error based on the log specification €; = ay; — |ay — by log (¢ir—1)|. There is

398ee, e.g., Chen et al. (2004), Yan (2008), Ferreira et al. (2013), and Zhu (2018).
10Gee, e.g., Pollet and Wilson (2008), Pastor, Stambaugh, and Taylor (2020), and Busse et al. (2021).
41Gee, e.g., Péstor, Stambaugh, and Taylor (2015) and Barras, Gagliardini, and Scaillet (2022).
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an analogous calculation of forecast errors for the linear model that we compare with €;: for
each fund 7 at time ¢, we estimate the regression ol = @l — b g;; | + €l using sixty months
of the fund’s data before time ¢, which we use to compute the 1-month ahead forecast error

: ~in _  lin ~lin Tlin )
based on the linear model €;" = a3} — |a;;" — b qir—1|-

A commonly used measure to quantify the forecasting performance of statistical models

is the root mean square of forecast errors (RMSFE) in an out-of-sample exercise, which is

_ Zit ezzt
RMSFE = \/ Z0bs

where e;; denotes the forecast error using the log specification or the linear model. We find

given by

that, measuring return outperformance relative to the CAPM (Vanguard benchmark), the
log specification, with an RMSFE of 0.02216 (0.01619), outperforms the linear model, which
has a higher RMSFE of 0.02283 (0.01659). Another measurements of forecasting performance
is the mean absolute forecast errors

D i leitl
MAFE = =2 —,
#0Obs

Again, we find that, measuring return outperformance relative to the CAPM (Vanguard
benchmark), the log specification, with an MAFE of 0.01598 (0.01150), outperforms the
linear model, which has a higher MAFE of 0.01663 (0.01189). In short, the log specification

is a better description of DRS technology than the linear model.

The same conclusions continue to hold if we were to assume away heterogeneity in the

size-performance relation across funds following much of the literature: when we estimate
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panel regressions a;; = a; — b; log (gi;—1) + € and o = ai® — bi%g;_ + € measuring return
outperformance relative to the CAPM (Vanguard benchmark),@ their root mean square
errors are 0.02239 (0.01603) and 0.02251 (0.01607), respectively, so the log specification has

a smaller RMSE and still outperforms the linear model.

C Estimation Procedure for Fund-Specific DRS

This appendix describes the details of how we estimate fund-specific b; parameters in the
time-series regression oy = a; — b;log (gir—1) + €. It is well known that the OLS estimators
of the coefficients b; are subject to a small-sample bias. The small sample-bias arises because
of the flow-performance relation, which induces a positive correlation between the regression

disturbance €;; and the innovation in log (g;:): if log (¢;:) obeys an AR(1) process,

log (¢it) = xi + pilog (qit—1) + Vit, (C1)

Stambaugh (1999) shows that B?LS is upward biased, and proposes a first-order bias-corrected
estimator of b;. Amihud and Hurvich (2004, hereafter “AH”) improve upon this estimator
by noting that adding a proxy v§, for the innovations in the autoregressive model can reduce
the small-sample bias. The proxy v, takes the form, vf, = log (¢i:) — (X5 + pflog (¢it—1)),
where Y¢ and pf are any estimators of x; and p; constructed based on size data. We adopt
this estimation procedure, except we use a different estimator of p; than AH["| Specifically,

for each month ¢,

42We estimate these panel regressions by applying the recursive demeaning procedure of Zhu (2018).
43This choice is guided by a horse race among various p; estimators for recovering the b; coefficients using
simulations from our calibrated model in the Online Appendix.
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1. pPL9 FE (the coefficient of log (¢ir—1) in a panel regression of log (g;x) on log (gir—1)

with fund fixed effects based on sixty months of size data for all funds prior to month
t) is used to construct the panel median-unbiased estimator (PMUE) pf of the size’s

~OLS FE

persistence p; as pf = m™~* (p ), where m (p) is the unique median of p?&s F'£

when the true p € (—1, 1) is homogeneous across funds["]

2. the proxy for size innovations is vf, = log(¢ir) — (X5 + 5 log (gir—1)), where X5, is
chosen to ensure that {v§ } has zero mean for each fund ¢; and

~

3. by is the coefficient of —log (¢;r—1) in the time-series regression of a;, on —log (gir—1)

and v¢_, with intercept, using data from months 7 =t — 60, ...,t — 1 for each fund <.

1T

D DRS and Optimal Fund Size

If investors learn about funds as in the model, their perception of optimal size should converge
to the true optimal size over a typical fund’s lifetime. This logic predicts that the (log) fund
size should converge to the (log) optimal size—the ratio of true skill to true scalability—as
funds grow olderf‘r_gl In this appendix, we test this prediction and find empirical support for
it.

As noted earlier, we find that 36% of the fund-by-fund b; estimates (i.e., Zn) are negative.
This has not been an issue so far because our analysis has relied on the relative steepness of

the DRS technology. However, it is a problem for estimating the fund’s optimal size, which

requires b; > 0 since, theoretically, all funds must face DRS in equilibrium. A simple way

4“4 Key to this estimator is the fact that the distribution of p©%° F'F depends only on p when the homoge-
neous dynamic panel model is correct (see Phillips and Sul (2003)).
4>Note that the optimal fund size here is the size at which the net alpha is driven to zero.
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to deal with this econometric defect is to “shrink” the b; estimates toward their prior mean,
specifically, the homogeneous fund-level DRS parameter b estimated using the recursive
demeaning (RD) procedure of Zhu (2018) The RD estimate 6702, which is statistically
significant, indicates that an 1% increase in fund size results in a decrease in a fund’s CAPM
alpha of 0.47 bp per month All of the “shrinkage” b; estimates, denoted by Eg’”’, are

r

posmve. Then, the corresponding estimator of skill, denoted by @7, is equal to the

average of ;, + E-Sthr log (¢ir—1) over the prior sixty months. We measure fund i’s (log)

Shr/bShr

optimal size, log (¢F), by the average of the ratios @ over its lifetime.

This measure of optimal size can be different than what investors come to think of as
optimal (ex-post) if they ignore individual heterogeneity in DRS—they use the homogeneous
fund-level DRS parameter estimate, bED2 Tp this case, the corresponding estimator of skill,
denoted by afiP?, is equal to the average of a, +bRP2og (g;r_1) over the prior sixty months,

( *RD2)

and the alternative measure of fund i’s optimal size, log is given by the average of

RDQ/bRD2

the ratios @ over its lifetime.

To test the above prediction, we examine how the relation between our measure of optimal
size and fund size depends on fund age. Specifically, we assign funds to three groups based on
fund age: [0,5], (5,10], and > 10 years. In each age-based sample, we run panel regressions

of fund 4’s log real AUM in month ¢ on its estimated log optimal size, log (¢f). We report

16Pgstor, Stambaugh, and Taylor (2015) develop an RD procedure to analyze returns to scale. They find
coefficients indicative of fund-level DRS, albeit statistically insignificant. Zhu (2018) improves upon the
empirical strategy in PST and establishes strong evidence of fund-level diseconomies of scale.

4TWhen we calculate outperformance relative to the Vanguard benchmark, the RD estimate bRD 2, which
is again statistically significant, indicates that an 1% increase in size results in a decrease in expected fund

performance of 0.15 bp per month.
/Ub

48Formally, the shrinkage estimator of b; is bSh” = w,'tgit +(1- wit)/l;RDQ, where w;; = m, Ob,, 18

the standard error of bit, and k is a constant controlling the amount of shrinkage toward ERD 2, We set this

constant to ensure that the resulting /b\fth”’ values are positive.
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the results in the first three columns of Table [

The slopes on log (¢) are consistently significantly positive, and their magnitude increases
as we move from the samples of young funds to middle-aged funds, and, then, to old funds.
In addition, the R? of the regressions increases monotonically as we move from the samples
of young funds to old funds. In short, as funds get older, the estimated optimal size plays
an increasingly important role in capital allocation.

In columns 4 through 6 of Table[§, we run multiple regressions of log (¢;;) on both log (¢;)

and log (¢;"?)

in all three age-sorted samples. While the slopes on log (¢}) become much
smaller, they continue to be significantly positive in the samples of middle-aged and old
funds, and their magnitude increases monotonically as we move from the samples of young
funds to old funds. In contrast, although the slopes on log (¢f) are significantly positive,
their magnitude decreases monotonically as we move from the samples of young funds to old
funds. Taken together, these results suggest that investors allocate capital to older funds
using the sophisticated measure of optimal size, but allocate capital to young funds using

the simple measure of optimal size. Consistent with this interpretation, the R? improvement

q;P?) decreases as we move from the samples of young funds to middle-

from adding log ( ;

aged funds, and, then, to old funds (for which the R? remains about the same).

Our results offer the following narrative. Investors want to account for DRS heterogeneity,
but they need to learn about fund-specific values. Given that such fund-specific information
is not yet available for young funds, investors use the sample-wide b instead, and they only

use fund-specific b; in making their capital allocation decisions when funds grow old enough

49Table |§ reports the double-clustered (by fund and time) standard errors.
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such that the remaining Bayesian uncertainty on these values is relatively modest. Thus, it

seems that investors are learning about not only skill but also scalability. Future research

can explore the capital allocation implications of learning about fund heterogeneity in DRS.

E Variable Definitions

Variable Names

Variable Definitions

Net return (R;;)
Net alpha (a$ATM)

Net alpha (a)%)

Total AUM (AU M;;)
Fund size (g;—1)

Log fund size (log (git—1))
Flow, v.1 (F%1)

Flow, v.2 (F3?)
Fund-specific DRS (Zzt)

Fund-specific FSP (I*{S\Pzt)

Return received by investors (in units of fraction per month)

Net return minus the return on benchmark portfolio, constructed
using the CAPM (in units of fraction per month)

Net return minus the return on benchmark portfolio, constructed
using a set of Vanguard index funds (in units of fraction per month)
Nominal assets under management at the end of month ¢

Total AUM at the end of the previous month, adjusted for inflation
(in 2000 $millions)

Natural logarithm of lagged real AUM

log (Qit/Qit—l)
AUM;1—AUM;—1(1+Rit)
AUM;¢—1(14+Rs¢)

Bias-corrected estimator of b; in & = a; — b; log (qir—1) + €;; using

sixty months of data before month ¢

t—1
OLS estimator of v; in Fy; = ¢; — v < [T (+as) — 1) + vy
112

S=
using sixty months of data after month ¢
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Variable Names

Variable Definitions

Expense ratio
Marketing expenses

Star family affiliation

Log family size

Diverse offerings

Fund age

Log fund age
Volatility (SD(d))

Number of managers

Intl exposure

Turnover

Amkt
it

Dsmb
it

2hmi
it

mkt
it

Annual expense ratio as of the previous month-end (in units of
fraction per year)

Expense ratio plus 1/7th of the up-front load fees (in units of
fraction per year)

Dummy variable that is equal to one if a fund is affiliated with
a star family—parent company of a fund with a five-star rating
based on the 3-year Morningstar rating—but is not a star itself,
and zero otherwise

Natural logarithm of the sum of lagged real AUM across all funds
within the same fund family

Dummy variable that is one if the number of different fund cate-
gories offered by a fund family is larger than the median number
for all fund families in the same month, and zero otherwise
Number of years since a fund’s first offer date (from CRSP or, if
missing, from Morningstar)

Natural logarithm of fund age

Standard deviation of a fund’s monthly net alpha estimates over
the prior twelve months

Number of managers in a fund as of the previous month-end
Indicator equal to one if a fund has significant international risk
exposure, and zero otherwise (based on rejecting the joint null that
its loadings on all three Vanguard international index funds are 0
at the 5% level)

Average annual turnover (in units of fraction per year)
Estimated market beta from the regression of a fund’s return on
the four Fama-French-Carhart factors over the prior sixty months
Estimated size loading from the regression of a fund’s return on
the four Fama-French-Carhart factors over the prior sixty months
Estimated value loading from the regression of a fund’s return on
the four Fama-French-Carhart factors over the prior sixty months
Estimated momentum loading from the regression of a fund’s re-
turn on the four Fama-French-Carhart factors over the prior sixty

months
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Variable Names

Variable Definitions

Characteristic component
of DRS (bGhar)

Perceived skill (a$"")

Log optimal size, v.1

(log (q;))

Log optimal size, v.2
(log (¢7"?))

Fitted value of /l;it from a panel regression on fund characteristics;

see Table [4] for the various specifications of the regression

Average of a;, —l—gioth‘“" log (gir—1) over the prior sixty months, where
Bg’m is the characteristic component of DRS estimated using the

specification in column 8 of Table

Average of the ratios @ /b3 over a fund’s lifetime, where b

~Shr

is the shrinkage estimator of b; (see footnote 47) and a3"" is equal

to the average of @, +3§’”’ log (¢ir—1) over the prior sixty months
Average of the ratios a2 /bRP2 over a fund’s lifetime, where bFP2
is the recursive demeaning (RD) estimator of the common fund-
level DRS parameter b (see Zhu (2018)) and afP? is equal to the

average of ay;, + pRD2 log (gir—1) over the prior sixty months
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Table 2: Relation Between DRS and Flow Sensitivity to Performance (FSP)

The table presents results from running panel regressions of fund i’s FSP going forward in month ¢, 1*{573“,

on its DRS estimated as of the previous month-end, g,t Panel A shows the results when fund-specific DRS

is estimated using the CAPM, and Panel B shows the results using Vanguard index funds as benchmark

portfolios. In the odd columns, we only include month and fund fixed effects; in the even columns, we add

proxies for participation costs, as well as performance volatility and fund age. Standard errors, two-way

clustered by fund and by month, are in parentheses. We also report the EIV-adjusted coefficients and their

standard errors in the last two row of each panel.

Panel A: Using Estimates Based on the CAPM
FSP;

by —0.937 —1.299 —0.262 —0.386

(0.148) (0.182) (0.087) (0.117)
Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 182,675 114,623 182,675 114,623
Flow as % Change in Fund Size Fund Size New Assets New Assets
EIV Adj. Coefficient —9.143 —16.112 —2.560 —4.788
SE of the EIV Adj. Coefficient 0.375 0.752 0.224 0.365

Panel B: Using Estimates Based on the Vanguard BM
FSPy

bit ~1.551 ~1.714 —0.370 —0.549

(0.288) (0.328) (0.199) (0.182)
Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 221,743 136, 365 221,743 136, 365
Flow as % Change in Fund Size Fund Size New Assets New Assets
EIV Adj. Coefficient —40.984 —77.384 —9.772 —24.781
SE of the EIV Adj. Coefficient 2.786 9.906 1.323 3.658
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Table 3: Relation Between Percentile Ranks of DRS and FSP
This table is the same as Table [2| but, instead of using /b\it and F/’@m uses their percentile ranks in each
month. Standard errors, two-way clustered by fund and by month, are in parentheses.

Panel A: Using Estimates Based on the CAPM

Pctl. rank based on ]*{573%

Pctl. rank based on Zit —0.1083 —0.1251 —0.0659 —0.0753
(0.0109) (0.0129) (0.0095) (0.0117)
Fund FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 182,675 114,623 182,675 114,623
Flow as % Change in Fund Size Fund Size New Assets New Assets

Panel B: Using Estimates Based on the Vanguard BM

Pctl. rank based on ]*{57%

Pctl. rank based on Zl-t —0.0918 —0.0951 —0.0560 —0.0593
(0.0095) (0.0117) (0.0086) (0.0108)
Fund FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 221,743 136, 365 221,743 136, 365
Flow as % Change in Fund Size Fund Size New Assets New Assets
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Panel A shows the calibrated parameter values used in our simulation analysis. It also reports the moments
we target in our calibration. We simulate 10,000 samples of fund alphas («) and size (q) for 300 funds
over 100 months. We first draw each fund’s scalability b; from Beta (A, B) x C, and then draw its skill a;
from N (6y (b;),00), where 0y (b;) = ps + Oopb;. Simulated alphas follow a;; = a; — b; log (git—1) + €it, and

Table 6: Simulation Exercise Quantifying the Role of Heterogeneity in DRS

size follows log (qi¢/qit—1) = (cvir/b;) / (0.0577% /02 +t). In each sample, we estimate the DRS-FSP relation,

where 7; is each fund’s estimated FSP from log (git/qit—1) = ¢i + vicur + vir. Panel B shows its summary
statistics across the simulated samples. To quantify the role of heterogeneity in DRS for capital allocation,
we construct a counterfactual by assuming investors wrongly believe that every fund exhibits the same,
average degree of DRS: b; = 0.0047 for all funds. Then, under the counterfactual assumption, we compute

what the size of the fund would have been, ¢, for every i and ¢. In each sample, we calculate the R? from

a regression of log (¢;;) on log(qg ). Panel C reports the results from the counterfactual simulations.

Panel A: Calibrated Parameters
Variable Value Target Emp. Sim.
Value Value
x ~ Beta (A, B),b; = Cx
First shape parameter (A) 1.15 Mean of b; 0.0047  0.0047
Second shape parameter (B) 9.93 Std dev of b; 0.0040  0.0040
Scale parameter (C) 0.045 Skewness of b; 1.13 1.38
Kurtosis of b; 6.73 5.23
o (b;) = boa + Oobi
Prior mean for CRS funds (6y,) 0.06% Mean of log (¢;;) 5.13 5.13
Prior mean slope on DRS () 4.59 Std dev of log (gi) 1.89 1.87
Prior uncertainty (o) 0.05% Mean of 7; 0.56 0.56
Panel B: Simulated DRS-FSP Relation
Percentiles
Mean 2.5% 5% 25% 50% 75% 95% 97.5%
h) —20.4 —62.7 —40.2 —17.6 —12.9 —10.1 —7.73 —-7.13
Panel C: Capital Allocation Explained by Counterfactual
log (¢;) = mo 4 m log (qﬁ) + €t
Percentiles
Mean 2.5% 5% 25% 50% 5% 95% 97.5%
To —681 —1118 —1106 —947 —683 —433 —220 —177
m 145 38.5 47.7 92.9 146 202 236 238
R? 0.463 0.123 0.155 0.298 0.464 0.639 0.745 0.753
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Table 7: Relation Between DRS and Fund Size

We first sort funds into quintiles based on 65’;}”7', i.e., fund’s estimated skill. Within each ag’m quintile,

we again sort funds into quintiles based on th‘”, i.e., the characteristic component of fund’s DRS estimate.
We conduct this double sort for funds in the same Morningstar category and the same age group. Panel A
shows the results using estimates based on the CAPM, and Panel B shows the results based on Vanguard
index funds as benchmark portfolios. The table reports the average fund size (log real AUM) for each of
the 25 @S, x Eic;h“"' portfolios. The column labeled “Average” reports the average fund size at the end of

month ¢ for each Bicthm quintile, controlling for differences in perceived skill, style, and age. The row labeled
“High-low” reports the difference in average fund size between the first and fifth b$;"%" quintiles in each

column. We calculate standard errors for these differences using 60 Newey-West lags.

Panel A: Using Estimates Based on the CAPM

~Char S
ai " Quintiles

Group 1 Low 2 3 4 5 Average
1 Low /b\ghar 5.578 6.463 6.880 7.259 7.501 6.712
2 5.697 6.160 6.387 6.767 7.195 6.410
3 5.326 5.394 5.701 6.083 6.689 5.813
4 4.860 4.846 5.026 5.576 6.565 5.340
5 High b$or 3.911 3.973 4.247 4.899 6.461 4.658
High-low —1.667 —2.490 —2.634 —2.361 —1.040 —2.054

(0.173)  (0.127)  (0.143)  (0.165)  (0.206)  (0.137)

Panel B: Using Estimates Based on the Vanguard BM

~Char L
az™" Quintiles

Group 1 Low 2 3 4 5 Average
1 Low Zgh‘" 5.229 6.029 6.511 6.924 7.338 6.364
2 5.428 5.871 6.271 6.659 7.014 6.213
3 5.097 5.190 5.580 5.968 6.548 5.651
4 4.681 4.647 5.031 5.541 6.496 5.239
5 High bgh‘” 3.824 3.888 4.261 4.963 6.349 4.612
High-low —1.405 —2.140 —2.250 —1.961 —0.989 —1.752

(0.071)  (0.097)  (0.117)  (0.099)  (0.171)  (0.083)
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Table 8: Relation Between Optimal Size and Fund Size

The table presents results from running panel regressions of fund i’s log real AUM in month ¢ on the fund’s

estimated (log) optimal size, log (¢}), across three age-sorted samples. The optimal fund size is defined as

the size at which the net alpha is driven to zero. The last three columns control for an alternative measure of

*RD2

optimal size, log (ql

), that ignores fund heterogeneity in DRS. Panel A shows the results using estimates

based on the CAPM, and Panel B shows the results based on Vanguard index funds as benchmark portfolios.

Standard errors, two-way clustered by fund and by month, are in parentheses. We also report the standard

deviations of the regressors for each sub-sample in the last two rows of each panel.

Panel A: Using Estimates Based on the CAPM
Dependent Variable: Log Real AUM
log (q}) 0.367 0.674 0.905 —0.052 0.271 0.597
(0.016)  (0.015) (0.012)  (0.021)  (0.023) (0.037)
log (g;"*?) 0.585 0.517 0.332
(0.025)  (0.023) (0.038)
R? 0.24 0.63 0.78 0.39 0.71 0.79
Observations 84,310 100,048 176,375 84,310 100,048 176,375
Fund ages [0,5] yr. (5,10] yr. > 10yr. [0,5] yr. (5,10] yr. > 10 yr.
Subsample SD(log (¢})) 1.952 1.917 1.844 1.952 1.917 1.844
Subsample SD(log (¢;7*?)) 2.021 1.760 1.791
Panel B: Using Estimates Based on the Vanguard BM
Dependent Variable: Log Real AUM
log () 0.203 0.416 0.659 0.031 0.181 0.361
(0.011)  (0.028) (0.024)  (0.011)  (0.025) (0.038)
log (g;7P?) 0.300 0.354 0.340
(0.014)  (0.024) (0.038)
R? 0.17 0.44 0.65 0.31 0.54 0.68
Observations 98,088 102,325 176,505 98,088 102,325 176,505
Fund ages [0,5] yr. (5,10 yr. > 10yr. [0,5] yr. (5,10] yr. > 10 yr.
Subsample SD(log (¢})) 3.089 2.604 2.315 3.089 2.604 2.315
Subsample SD (log (q- 2.689 2.309 2.235
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Panel A: CAPM
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Figure 1: Cross-Sectional Distribution of Fund-Specific DRS Estimates Over
Time. The figure displays how the cross-sectional distribution of b;—fund i’s DRS es-
timated using sixty months of data before month t—varies over time. Panel A shows the
plot when fund-specific DRS is estimated using the CAPM, and Panel B shows the plot
using Vanguard index funds as benchmark portfolios.
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Panel A: CAPM
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Figure 2: Cross-Sectional Distribution of Fund-Specific FSP Estimates Over Time
When Flow Is Measured As Percentage Change in Fund Size. The figure displays
the distributions of Z@it—the fund’s FSP estimated using its data over the subsequent 5
years—over time. Panel A shows the plot when fund-specific FSP is estimated using the
CAPM, and Panel B shows the plot using Vanguard index funds as benchmark portfolios.
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Figure 3: Cross-Sectional Distribution of Fund-Specific FSP Estimates Over Time
When Flow Is Measured As Percentage Change in New Assets. The figure displays

the distributions of Z@it—the fund’s FSP estimated using its data over the subsequent 5
years—over time. Panel A shows the plot when fund-specific FSP is estimated using the
CAPM, and Panel B shows the plot using Vanguard index funds as benchmark portfolios.
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Figure 4: Cross-Sectional Distribution of the Characteristic Component of DRS
Estimates Over Time. The figure displays how the cross-sectional distribution of b;
fund ’s DRS estimate in month ¢ explained by contemporaneous fund characteristics—varies
over time. Panel A shows the plot when fund-specific DRS is estimated using the CAPM,
and Panel B shows the plot using Vanguard index funds as benchmark portfolios.
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Online Appendix
to
“Capital Allocation and the Market for Mutual Funds:
Inspecting the Mechanism”

OA Alternative Approaches to DRS Estimation

This appendix considers alternative approaches to estimating fund-specific b; parameters in
the time-series regression a;;; = a;—b; log (gi;—1)+¢€5. It is well known that the OLS estimators
of the coefficients b; are subject to a small-sample bias. The small sample-bias arises because
of the flow-performance relation, which induces a positive correlation between the regression

disturbance €;; and the innovation in log (g;;): if log (¢;:) obeys an AR(1) process,

log (git) = xi + pilog (qir—1) + vit, (OA1)

Stambaugh (1999) shows that /I;ZOLS is upward biased, and proposes a first-order bias-corrected
estimator of b;. Amihud and Hurvich (2004, hereafter “AH”) improve upon this estimator
by noting that adding a proxy vj, for the innovations in the autoregressive model can reduce
the small-sample bias. The proxy v, takes the form, v§, = log (g:ir) — (X§ + pflog (git—1)),
where \¢ and pf are any estimators of x; and p; constructed based on size data. Specifically,
if we let /b\f be the coefficient of log (¢;;—1) in a time-series regression of a;; on —log (g;—1)

1



and v§,, AH show that the bias of this estimator is given by:
E (5 —b| = 0B [ - i, (0A2)

where ¢ = 0., /0%. We adopt this estimation procedure, except we use different estimators of
pi; than AH, guided by a horse race among various p; estimators using simulations as further

explained in the next subsection.

OA.1 Reduced-Bias Estimators of the AR(1) Parameter

AH’s bias expression (OA2)) says that the smaller the bias in the estimator pf, the smaller
the bias in the estimator Zg. AH suggest using a second-order bias-corrected estimator,

/p\lg,AH :I/O\iOLS+ (1+3I/0‘OLS) /ﬂ+3(1+31/o‘OLS) /7}2,

3 7

where pP1¥ is the coefficient of log (g;;_1) in a time-series regression of log (¢;;) on log (gi;—1)
and T; is the number of months. Barras, Gagliardini, and Scaillet (2022) use a variant of
this estimator as given by Z)f’BGS = min (Z)f’AH, O.999>. Andrews (1993) proposes a median-

unbiased estimator (MUE) of the AR parameter p;,



where my; (p;) is the unique median of pP** when p; € (—1,1) is the true parameter]l]

Phillips and Sul (2003) extend this estimator to the fixed-effects setting under homogeneous

p across funds by using p©%° F'F (the coefficient of log (gi;_1) in a panel regression of log (g;;)
on log (¢g;z—1) with fund fixed effects) to infer the true p. Similar to the MUE, the panel
median-unbiased estimator (PMUE) is p=PMUE = L (545 FE) - where my,, (p) is the

pnl

unique median of 7L ' when the true p € (—1,1) is homogeneous across fundsf]

We now assess the effectiveness of these various p; estimators for recovering the b; coef-
ficients, which motivates us to propose an improved estimator in the next subsection: we
simulate alphas and sizes from our calibrated model to generate 10, 000 samples of panel data
7B§,BGS”5§,MUE7”5?,PMUE

for 300 funds over 100 months. In each sample, we estimate ES’AH ,

. . . : AH ~¢,B MUE ~c,PMUE
which denote the bias-corrected b; estimators corresponding to p;" ", p;’ as ,poMuE GePMUE

respectively; we then compute the positive bias in each ?)\f as the average difference between
gf and b; across funds. Another way to assess the effectiveness of these b; estimators is to
run a cross-sectional regression of gf on b; in each sample: gf = g + YP1b; + &;. The results

of these exercises are in Table [OA1l

The first takeaway is that the reduced-bias p; estimators from the existing literature do
reduce the biases in the corresponding b; estimators, compared to the OLS estimator of b;
whose bias is equal to 3.91. Further, these b; estimators do approximate the b; coefficients in

2e,PMUE
bj

the sense that every 3;? is positively related to the actual b;. In particular, performs

the best, which is why we use the PMUE to estimate fund-specific b; parameters in our main

'Key to this estimator is the fact that the distribution of 5% depends only on p; when is correct.
In particular, it does not depend on y; or o2 in .

2 As with the MUE, key to this estimator is the fact that the distribution of p2%% ¥ depends only on p
when the homogeneous dynamic panel model is correct.



analysis.

Unfortunately, none of the reduced-bias p; estimators from the existing literature com-
pletely eliminates the bias in the corresponding b; estimator if data were generated in a Berk

and Green equilibrium, which motivates us to propose our own estimator of b;.

OA.2 Novel Approach to Estimating the AR(1) Parameter

We now propose a novel estimator of b; motivated by AH’s bias expression (OA2): set

pi; to minimize the average size of the bias of the resulting b; estimates across simulated

samples. This process results in the value of p; = 0.999906, which we denote by ﬁf’BKK,

Te.BKK
by . We use the same

with the corresponding bias-corrected b; estimator, denoted by
simulation exercise as before: we use our calibrated model to generate 10,000 samples of
panel data for 300 funds over 100 months, in each of which we estimate EE’BKK. We then
assess the effectiveness of this bias-corrected b; estimator by (i) computing its bias (the

Te,BKK 7e,BKK _
b, b; =

average difference between and b; across funds) and (ii) regressing it on b; (

o + Y1b; + €;); see the last column of Table [OA1]

Fortunately, ZE’BKK does eliminate the bias completely, so we report our main empirical

results (Paper’s Tables 2 through 5) when we use the model-implied p; estima,tor—f)f’BKK =
0.999906—to estimate fund-specific DRS in Tables through This alternative

approach leads to very similar results.



OA.3 Further Discussion

We end this appendix by explaining how reduced-bias p; estimators from the existing liter-
ature cannot effectively eliminate the bias in the corresponding b; estimators if data were
generated in a Berk and Green equilibrium, and yet our empirical results are robust to the
choice of the bias-corrected estimator gf.

Consistent with AH’s bias expression , Table shows that the effectiveness of
gf monotonically worsens in the underlying p; estimator’s distance from ﬁf’BKK—the “true”
p; in the simulated dataE] But every pf from the existing literature is actually very close to
,’Of’BKK (see Panel C), which implies that the poor effectiveness of these b; estimators must
involve very high values of ¢ = o.,/c2. Such high values of ¢ arise in our model for two
reasons. The first is the fact that ¢; is perfectly correlated with v;: a high fund return in
period t is the sole reason for a larger fund size that period in a Berk and Green equilibrium.

Therefore, o, is very high in our model. The second is the fact that o2 = (1 — p)°

0'2 °
75 in our
model{] a high persistence in fund size coincides with tighter beliefs about skill in a Berk

and Green equilibrium and thus a weaker flow-performance relationship—smaller changes in

fund size in response to unexpected fund returns. Therefore, o2 is very small in our model.

In reality, a substantial fraction of flows remain unexplained by performance in the data

(Berk and van Binsbergen (2016)) | Consistent with this observation, the average of the ¢

estimates in our actual data is 0.115, which implies that the bias of 0.0058 in ﬁf’PMUE results

in a bias of 0.000667 in /b\f’PMUE, which is about 14% of 0.0047 (the mean of b;). So, our

3The PMUE of p; in our actual data is 0.9988.

4Technically, p is a function of the fund’s age in our model, but the variation in p due to fund age is
negligible.

5Similarly, Barber, Huang, and Odean (2016) find that less than 18% of flows are explained by perfor-
mance.



empirical results are robust to the choice of the bias-corrected estimator because small biases
in p¢ do lead to small biases in the corresponding Bf in the actual data. Importantly, this
observation suggests that the estimation error in fund-specific DRS are mostly of the classical
type (i.e., mean zero and independent to the actual DRS parameter) in the actual data, so
correcting the DRS-FSP relation estimates under the classical measurement error assumption
should be able to recover the true relation. This reassures us that the approaches taken in
our paper are delivering estimates of the DRS-FSP relation that avoid the errors-in-variable

bias.



Table OA1: Horse Race Among the Various Estimators of DRS Using Simulations

This table reports the results of a horse race among the various estimators of the AR parameter p; governing
the size process log (git) = x:+ pi log (git—1) + v for the sake of recovering the b; coefficients using our model.
We simulate equilibrium alphas and sizes from the calibrated model to generate 10,000 samples of panel data
for 300 funds over 100 months. In each sample, we estimate Zf as the coefficient of log (g;;—1) in a time-series
regression of a;; on —log (giz—1) and v, where v, is a proxy for the size innovation. The proxy v§, takes
the form, v§, = log (¢;¢) — (X5 + p5 log (git—1)), where X5 and pf are any estimators of y; and p; constructed
based on size data. To obtain the proxy v§,, we consider four popular reduced-bias estimators of p; from the
existing literature, details of which are in Section Importantly, we propose yet another bias-corrected
estimator of b; motivated by AH’s bias expression (OA2)): set p; to minimize the magnitude of the mean
bias of the b; estimates across simulated samples. This process results in the value of p; = 0.999906, which
we denote by p;”*, with the corresponding bias-corrected b; estimator, denoted by 32* In each sample, we
then compute the non-negative biases in each of the Ef’s as the average difference between Ef and b; across
funds. Panel A shows the median biases of the b; estimates across simulated samples. Another way to assess
the performance of these bias-corrected estimators of b; is to regress each of the g‘;’s on b; in each sample:
Ef = g + Y1 b; + €;. Panel B shows the medians of the 1y and 1, estimates across simulated samples. Panel

C reports the medians of the p; estimates (averaged across funds in each sample) across simulated samples.

Panel A: Bias in estimators of ); corresponding to

reduced-bias estimators of p; our approach to estimating p;
from the existing literature

Bias in /b\?,AH gg,BGS EQ,MUE /l;g,PMUE /l;q*
Median 0.934 1.717 1.802 0.438 —0.000
Panel B: Relation between b; and its estimators corresponding to
reduced-bias estimators of p; our approach to estimating p;
from the existing literature
peAH peBGS  peMUE e PMUE Jo
Median @Zg 0.033 0.043 0.044 —0.000 —0.000
Median v, | 1924 357.3 374.9 93.9 1.002
Panel C: Mean estimated p; across funds corresponding to
reduced-bias estimators of p; our approach to estimating p;
from the existing literature
~c,AH ~¢,BGS ~,MUE ~,PMUE ~C,%
Pi Pi Pi Pi Pi
Mean 0.9874  0.9769  0.9758  0.9941 0.999906




Table OA2: Relation Between DRS and Flow Sensitivity to Performance (FSP)

This table is the same as Paper’s Table 2 but uses the model-implied estimator of the size’s persistence p;

(poPEE = 0.999906) to estimate fund-specific b; parameters.
Panel A: Using Estimates Based on the CAPM
FSP;
by —0.943 —1.308 —0.263 —0.386
(0.148) (0.182) (0.087) (0.117)
Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 182,675 114,623 182,675 114,623
Flow as % Change in Fund Size Fund Size New Assets New Assets
EIV Adj. Coefficient —9.815 —17.99 —2.739 —5.315
SE of the EIV Adj. Coefficient 0.409 0.892 0.240 0.415
Panel B: Using Estimates Based on the Vanguard BM
FSP;
by —1.551 —1.709 —0.384 —0.559
(0.288) (0.327) (0.197) (0.181)
Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 221,743 136, 365 221,743 136, 365
Flow as % Change in Fund Size Fund Size New Assets New Assets
EIV Adj. Coefficient —50.64 —135.3 —12.53 —44.28
SE of the EIV Adj. Coefficient 4.002 29.42 1.723 10.14




Table OA3: Relation Between Percentile Ranks of DRS and FSP
This table is the same as Paper’s Table 3 but uses the model-implied estimator of the size’s persistence p;
(pSPEE = 0.999906) to estimate fund-specific b; parameters.

Panel A: Using Estimates Based on the CAPM

Pctl. rank based on ]*{573%

Pctl. rank based on Zit —0.1084 —0.1250 —0.0657 —0.0750
(0.0109) (0.0128) (0.0094) (0.0117)
Fund FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 182,675 114,623 182,675 114,623
Flow as % Change in Fund Size Fund Size New Assets New Assets

Panel B: Using Estimates Based on the Vanguard BM

Pctl. rank based on ]*{57%

Pctl. rank based on Zl-t —0.0914 —0.0943 —0.0563 —0.0597
(0.0095) (0.0117) (0.0085) (0.0108)
Fund FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 221,743 136, 365 221,743 136, 365
Flow as % Change in Fund Size Fund Size New Assets New Assets
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