
Three Common Factors

Elena Andreou and Patrick Gagliardini and Eric Ghysels and Mirco Rubin*

Abstract

We present a set of novel theoretical results providing a solution that addresses the perils of beta

dynamics misspecification in the estimation of conditional asset pricing models. We show em-

pirically relevant conditions under which the true factors are those common between conditional

asset pricing models for individual stocks and models estimated from sorted portfolios. We find

that there are at least three common factors. These are not entirely spanned by the three or five

Fama-French factors, and are also related to some proxies of idiosyncratic risk and liquidity. The

three factors feature superior out-of-sample pricing performance compared to standard asset pric-

ing models.
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I. Introduction

Currently, the dominant research theme in empirical asset pricing is the low dimensional

factor representation of a large set of asset returns. Ideally any high dimensional set of asset

returns should contain the information necessary to recover the factors. In practice, the literature

has taken two different approaches. Jensen, Black, and Scholes (1972) and Fama and MacBeth

(1973), among many others, have advocated to collect stocks into portfolios and subsequently run

cross-sectional regressions using portfolios as test assets. An alternative approach is to estimate

cross-sectional risk premia using the entire universe of stocks as advocated by Litzenberger and

Ramaswamy (1979), among others.

The message of our paper is the following: if one is interested in estimating the latent

factors in conditional asset pricing models using statistical techniques such us Principal

Component Analysis (PCA), or recent extensions allowing for time varying betas such as

Instrumented Principal Component Analysis (IPCA), and one has concerns about potential

specification errors in the assumed beta dynamics (necessary to implement these statistical

techniques for factor extraction), then one benefits from estimating models from both panels of

individual stocks and sorted portfolios. Hence, contrary to the conventional wisdom in the

literature, it is not about either individual stocks or sorted portfolios. Instead, estimating two

potentially misspecified models from the two datasets helps in extracting a smaller set of factors

which are not prone to beta dynamics misspecification, and explain well both the variability and

the risk premia of both panels of returns.

Our paper starts with a set of novel theoretical results regarding conditional asset pricing

models for individual stocks. Such models have two critical inputs: (a) the specification of risk
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factors, and (b) the time series behavior of exposures to those risk factors, i.e. the specification of

the time-varying betas. We establish a connection between beta dynamics prone to specification

errors and the discovery of risk factors. One can think of many reasons why specification errors

might occur, either related to the functional form specification of the betas and/or the economic

variables driving those betas. In particular, misspecification errors in the dynamic exposure to risk

spill over into additional “spurious” risk factors with the assumed beta dynamics. Our theory also

predicts that potentially misspecified conditional beta models using individual stocks will lead to

an overstatement of the number of risk factors. The situation is similar with portfolios where

additional spurious factors will appear due to the interactions among the specific types of portfolio

sorting and underlying and “true”, but unknown (or only partially known), beta dynamics.

More importantly, we provide a solution to account for the perils of beta dynamics

misspecification. We show that under a set of mild regularity conditions the true factors are those

common between conditional asset pricing models for individual stocks and models estimated

from sorted portfolios. Put differently, the factors that are common between the panels of (a)

individual stocks and (b) sorted portfolios, identify the true factors, even though the time-varying

exposures are misspecified.

The task for finding the pervasive factors that are common between two large panels is not

trivial and requires theoretical insights so far not explored in the empirical asset pricing literature.

To achieve the task set forth we need to expand the theory underpinning a procedure proposed by

Andreou, Gagliardini, Ghysels, and Rubin (2019) (henceforth AGGR). They study a situation

where (latent) factors h1,τ and h2,τ , are estimated from two separate panels of data by classical

PCA, assume constant loadings, and one is interested in testing how many factors are common
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between them. However, AGGR show that the common factor space is identified by examining

how many linear combinations of respectively h1,τ and h2,τ are perfectly correlated. Equivalently,

they introduce a test for the number of canonical correlations between h1,τ and h2,τ equal to one

and derive its asymptotic distribution.1 The AGGR setting does not directly translate into a

procedure suitable for asset pricing applications. In particular, we need to generalize the AGGR

asymptotic theory to (a) estimators for conditional asset pricing models, i.e. linear models with

time-varying betas, and (b) estimators where the means of the latent factors represent risk premia

and the risk premia of the test assets enter explicitly in the factor’s estimation objective function.

Indeed, one of the contributions of this paper is the extension of the theory of AGGR to allow

factors to be estimated by means of Instrumented PCA (or IPCA) of Kelly, Pruitt, and Su (2019),

which allows betas to be linear functions of stock characteristics and Risk Premium PCA

(RP PCA) advocated by Lettau and Pelger (2020b), a version of PCA with a penalty term

accounting also for the cross-sectional pricing error in expected returns.

The novel testing procedure identifies at least 3 factors at the intersection of larger factor

spaces extracted by potentially misspecified IPCA and RP PCA from individual US stock returns

and a large set of sorted portfolios of the same stocks during the historical period

1966M1-2020M12. Surprisingly, we find that neither the Fama and French 3 (FF3) nor 5 (FF5)

factor models, both with or without a momentum factor (hence up to 6 factors), span those 3

factors, i.e. span the factor space common between individual stocks and sorted portfolios. In fact

out of the 6 factors considered, only the excess market returns factor seems to be the most related

to the common factors, while all the other 5 factors are only partially spanned by the common

1To sort out genuine risk factors Pukthuanthong, Roll, and Subrahmanyam (2019) also rely on canonical

correlations, but do not present a formal statistical procedure.
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factors, and a large part of their variability is specific to portfolio sorting. For convenience we will

call the 3 common factors 3CF. As our theory predicts, Kelly et al. (2019) find more factors,

namely 5, applying IPCA to individual stocks, and Lettau and Pelger (2020b) applying RP PCA

to sorted portfolios find between 5 and 10 factors depending on which penalty is used.

The search for factors has been on steroids with literally hundreds of potential additional

candidate factors beyond FF3 suggested in the literature. The endeavor has been dubbed the factor

zoo by Cochrane (2011) and terms such as p-hacking (meaning data-snooping or data-mining)

have been used to describe the hunt for factors.2 The literature started of with the pretty tame

single factor model, i.e. the CAPM. It is perhaps more appropriate to say that we moved from a

petting zoo to a jungle. For example, Harvey and Liu (2019) have documented over 400 factors

published in top journals. In our empirical application we use a data set of over a thousand

portfolios associated with 205 characteristics. It takes up to 10 PCs from this factor zoo to span

the space of 3CF.

Using multiple in-sample performance evaluation measures we find that 3CF perform

better than a large collection of observable and latent factor models in pricing individual stock

and sorted portfolios assets. Turning to the out-of-sample (OOS) analysis the results yield several

interesting empirical findings. The 3CF yield the highest total, pricing and predictive OOS R2s

with respect to the same benchmark models. For the individual stocks as well as sorted portfolios

the OOS predictive R2s gains using 3CF can be 80% and 50% vis-à-vis for example the

Fama-French factors.

2See Harvey, Liu, and Zhu (2016), McLean and Pontiff (2016), Chorida, Goyal, and Saretto (2020) Hou, Xue,

and Zhang (2020), Feng, Giglio, and Xiu (2020), Chen (2019), among others.
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In order to provide economic interpretation, we regress the observable factors from the

zoo one by one onto 3CF and document which ones yield the best fit. We find two of the three

Fama and French factors (CAPM Beta and Size) partially explain 3CF. Other factors in the zoo

also explain part of the variation of 3CF. These portfolios are mostly different proxies of

idiosyncratic risk and liquidity or uncertainty, such as Bid-ask Spread, Cash-flow to price

variance, Volume to market equity, EPS Forecast Dispersion, Days with zero trades, Volume

Variance, and Price delay R-squared. Our findings corroborate those of Dello-Preite, Uppal,

Zaffaroni, and Zviadaze (2024), who use a different methodology from ours involving only sorted

portfolios as test assets. They also find that a model with only three factors, one being the market

and another one being related to different idiosyncratic/unsystematic risk factors, prices well a

large cross-section of sorted portfolio returns similar to ours.

The rest of the paper is organized as follows. Section II contains novel theoretical results

on the relationship between conditional asset pricing models for individual stocks, beta dynamics,

and sorted portfolios. Section III introduces the spanning test and details the data on the various

cross-sections of asset returns used to estimate common latent factor spaces. Section IV covers

the empirical implementation of the testing procedure, followed by Section V where we report the

results of an extensive empirical study comparing the asset pricing performance of the common

factors with widely used factors in the asset pricing literature. Section VI revisits the topic of the

factor zoo. Conclusions appear in Section VII. Technical details and additional empirical results

appear online as Supplementary Material.
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II. Conditional Asset Pricing Models and Common Factors

We present a number of theoretical results pertaining to the estimation of conditional asset

pricing models where the dynamic specification of latent factor exposure is potentially

misspecified. In a first subsection we present results for individual stocks, whereas in a second we

cover sorted portfolios. The final subsection deals with group-factor models.

A. Factors and Time-Varying Betas - Individual Stocks

A researcher is interested in extracting factors from the cross-section of individual stock

expected returns, but faces potential model specification issues. We start with the IPCA estimator

of Kelly et al. (2019) for the conditional linear factor asset pricing model for individual stocks:

(1) yindi,τ = β′
i,τ−1f

c
τ + εi,τ ,

with latent factors f c
τ (the reason for the superscript ’c’ will become clear later) and where the

betas are linear functions of so called instruments:

(2) βi,τ−1 = ΓZi,τ−1 + ηi,τ−1.

We can interpret (2) as a cross-sectional (multivariate) linear regression of the betas onto the

instruments for any τ, with residual ηi,τ−1. Because such a projection is always possible, the only

restriction is that the matrix Γ is time-independent (see Gagliardini and Ma (2022) for further

discussion). Intuitively, a constant Γ means that the time-variation in instruments Zi,τ−1 is rich

enough to guarantee that the cross-sectional relationship between betas and instruments Zi,τ−1 is
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stable across time. Substituting (2) into (1) we get:

(3) yi,τ = [C Zi,τ−1]
′f c

τ + ei,τ ,

where C = Γ and ei,τ = η′i,τ−1fτ + εi,τ .3

The perils of specification errors in conditional betas are well known, see e.g. Ghysels

(1998). It is therefore reasonable to suppose that the researcher faces model specification

challenges and uses instruments Zi,τ−1 not necessarily equal to Zi,τ−1. One can think of many

reasons for potential specification errors, including omitted instruments or the assumed linear

functional form - where sieve estimators and neural net approximations have been suggested (see

e.g. Chen, Roussanov, and Wang (2023) and references therein). Polynomial approximations in

particular would expand the set of instruments and therefore the sources of specification errors. In

addition, the specification error causes the cross-sectional relationship with betas to be time

varying:

(4) βi,τ−1 = Γτ−1Zi,τ−1 + ηZi,τ−1,

3Note that the error term ei,τ contains the component η′i,τ−1fτ which may be cross-sectionally correlated. Kelly,

Pruitt, and Su (2020) argue that this is not an issue for the consistent estimation of the factor values and the matrix Γ,

because the error component η′i,τ−1fτ is cross-sectionally orthogonal to the instruments, namely

1/N
∑N

i=1 Zi,τ−1η
′
i,τ−1fτ → 0 in probability as N → ∞ (see their Assumption A). Such an orthogonality is of

course a consequence of the error term ηi,τ−1 being the residual of the cross-sectional regression of betas onto

instruments. That error term contributes to the asymptotic distribution of the IPCA estimates.
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yielding:

(5) yindi,τ = Z ′
i,τ−1gτ + eZi,τ ,

where gτ := Γ′
τ−1f

c
τ and eZi,τ = (ηZi,τ−1)

′f c
τ + εi,τ . To proceed we make the following assumption:

ASSUMPTION 1 It is assumed that the linear dynamics appearing in equation (4) has the

following decomposition: Γτ = Γ0 +
∑J

j=1 Γ
jζjτ , with ζjτ latent scalar stochastic processes and Γj

for j = 0, 1, ..., J deterministic matrices, such that the m× k1 compound matrix

C ′ := [Γ0′ : Γ1′ : · · · : ΓJ ′] is full column rank, where k1 := (J + 1)kc ≤ m.

The full rank condition on the matrix C is used to exclude that one can rewrite the model in terms

of a smaller number of latent factors upon rotation. Then the following Proposition characterizes

how specification errors impact the time-varying beta model, when a researcher uses instruments

Zi,τ−1 which feature cross-sectional variation Γτ−1, instead of Zi,τ−1 with fixed Γ.

PROPOSITION 1 Let Assumption 1 hold with the data generating process appearing in

equations (1)-(2). Then under the model specification appearing in (5) we obtain: gτ = Γ′
τ−1f

c
τ =

Γ0′f c
τ +

∑J
j=1 Γ

j′ζjτ−1f
c
τ = C ′f1,τ where f1,τ = (f c′

τ , f
s′
1,τ )

′ and f s
1,τ = ζτ−1 ⊗ f c

τ , for

ζτ := (ζ1τ , ..., ζ
J
τ )

′. Then, equation (5) can be written as:

(6) yindi,τ = (CZi,τ−1)
′f1,τ + eZi,τ .

The proof of the proposition appears in Appendix Section A. A few remarks about model

specification are in order. First, so far we have not included a constant vector in the time-varying

beta specification. This is easy to do and in fact it is equivalent to including a constant (across
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assets and dates) in the instrument vector Zi,τ−1. If we make the constant explicit (without

including it in the instrument set), equation (3) becomes: yindi,τ = [B + C Zi,τ−1]
′f c

τ + ei,τ . Then, a

result similar to equation (6) in Proposition 1 is as follows: yindi,τ = (B + CZi,τ−1)
′f1,τ + eZi,τ ,

where the lower block of B is nil. Second, what about having the effect of macro-variables in the

time-varying betas? This would be something like: yindi,τ = [B0 + B1Zτ−1 + C Zi,τ−1]
′f c

τ + ei,τ .

Because the part (B0 + B1Zτ−1)
′f c

τ is stock-independent we can get rid of it by cross-sectional

demeaning of the returns and then estimate the rest of the model. In our empirical investigation

we do not consider macroeconomic instruments, and therefore do not apply such a demeaning to

individual stock returns. Finally, we do not include stock-indexed parameter matrices B0
i , B1

i and

Ci, since this would be a significant departure from the IPCA framework.

B. Factors and Time-Varying Betas - Sorted Portfolios

Let us now consider portfolio formation. Assuming that the weight of individual assets i at

time τ in portfolio j equals αj,i,τ−1 and the model for the individual stock is:

yindi,τ = [C Zi,τ−1]
′f c

τ + ei,τ , then the portfolio returns are

(7) ypj,τ =
1

N1

N1∑
i=1

αj,i,τ−1y
ind
i,τ = [C Z p

j,τ−1]
′f c

τ + epj,τ ,

where Z p
j,τ−1 :=

1
N1

∑N1

i=1 αj,i,τ−1Zi,τ−1 and epj,τ = 1
N1

∑N1

i=1 αj,i,τ−1ei,τ . Next, we suppose the

following assumption about the large cross-sectional limit holds.

ASSUMPTION 2 It is assumed Z p
j,τ−1 → W 0

j +WjZ
∗
τ−1 as N1 → ∞, for a latent vector of

macro-variables Z∗
τ .
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Furthermore, we want that the variables driving the conditional betas, and portfolios

formation, do not mask the common factor f c
τ . Hence, the following assumption.

ASSUMPTION 3 The elements of CW 0
j are non-zero for a non-vanishing fraction of portfolios.

It is worth noting that the above assumption puts few restrictions on how sorted portfolios

are formed. The sorted portfolio panel in our empirical analysis is based on standard

portfolio-formation methods used to construct the Chen and Zimmermann (2022) data set. But

this is not key to the analysis in our paper. For example, Bryzgalova, Pelger, and Zhu (2024)

suggest to used random forest models to construct portfolios. That would work perfectly fine for

us as well as long as the portfolios do not mask any of the factors f c
τ .

PROPOSITION 2 Under Assumptions 2 and 3 the portfolios excess returns are such that:

(8) ypj,τ = λ′
jf2,τ + epj,τ ,

where f2,τ = (f c′
τ , f

s′
2,τ )

′ with the factor spaces spanned by f c
τ and f s

2,τ = Z∗
τ−1 ⊗ f c

τ , do not

intersect.

From equation (6) we learned that the cross-section of individual stock returns features a set of

factors f1,τ when a researchers uses a IPCA estimator with Zi,τ−1, not necessarily the proper set

of instruments. From equation (8) we observed that sorted portfolio returns features factors f2,τ

when estimated with PCA. Vectors f1τ and f2τ consist of a common subgroup of latent factors f c
τ

as well as factors f s
1τ and f s

2τ that are specific to the panel of respectively individual stocks and

sorted portfolios. This is essentially a group-factor setup we discuss next.
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C. Group-factor models and (I)PCA

A group-factor model, studied by AGGR, applies to a situation where one has two panel

data sets - in our application one will be a panel of individual stocks and the other of sorted

portfolios. AGGR only considered fixed loadings PCA applications in group-factor models. Here

we extend their framework to a setting where one uses IPCA in (at least) one of the groups. The

panel data in group ℓ is denoted by yℓ,τ with:

(9)

 y1,τ

y2,τ

 =

 Λc
1,τ Λs

1,τ 0

Λc
2 0 Λs

2




f c
τ

f s
1,τ

f s
2,τ

+

 ε1,τ

ε2,τ

 ,

where without loss of generality, the group-specific factors f s
1,τ and f s

2,τ are unconditionally

orthogonal to the common factor f c
τ . Since the unobservable factors can be standardized, we have:

(10) E


f c
τ

f s
1,τ

f s
2,τ

 =


µc

µs
1

µs
2

 , and ΣF := V


f c
τ

f s
1,τ

f s
2,τ

 =


Ikc 0 0

0 Iks1 Υ

0 Υ′ Iks2

 ,

where the expected values of the factors are finite, and matrix ΣF is positive-definite. Note that

the group-specific factors can be correlated with a non-zero covariance Υ. Indeed, in our

application we expect that f s
1,τ = ζτ−1 ⊗ f c

τ and f s
2,τ = Z∗

τ−1 ⊗ f c
τ (see Proof of Proposition 2) are

correlated. The factor f c
τ is common to the two panels (groups). For our methodology to apply we

need that this factor is indeed pervasive in both panels, and is the only one having this property

(up to normalization). For this to hold, we allow the group-specific factors to be correlated but
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they do not share common linear transformations that are perfectly correlated, as stated in the next

assumption.

ASSUMPTION 4 The canonical correlations between ζτ−1 ⊗ f c
τ and Z∗

τ−1 ⊗ f c
τ are all strictly

smaller than 1.

Then we have the following result:

PROPOSITION 3 Under Assumptions 1 through 4 the group-factor model appearing in

equations (9) - (10) will yield estimates of f c
τ unlike IPCA alone applied to individual stocks when

proper characterization of instruments is in doubt.

Hence the combination of (misspecified) IPCA on the panel of single stocks, and PCA on the

panel of portfolios, yields a group-factor model with the fundamental factor f c
τ that is common

among the two.

III. Factor Space Spanning Test

Summarizing the results in the previous section, we have shown that if individual stocks

were used, a researcher would conclude that f c
τ and f s

1,τ are risk factors, if we cannot rule out the

possibility of specification errors in the dynamics of loadings. Conversely, a researcher starting

from sorted portfolio returns would conclude that the risk factors are instead f c
τ and f s

2,τ . In the

former case IPCA or some variation thereof is used, in the latter IPCA, PCA or some variation

thereof. Whilst to the best of our knowledge, other methods cannot address this, our testing

procedure allows us to identify and estimate f c
τ , despite the fact that a researcher faces

specification errors in the formulation of conditional asset pricing models. In this section we will
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focus on a succinct presentation of the econometric methods, while Appendix Sections A.1 and

A.2 and Supplementary Material Section OA.3 cover all the technical details, including the

definitions of the RP PCA and IPCA estimators. There are four steps, namely:

Step 1: We start with extracting factors from each panel separately. This means extracting factors

from individual stock returns and doing the same for sorted portfolios. As is typically done (see

e.g. Lehmann and Modest (1988) and recently Kim and Korajczyk (2024), among many others),

we will study non-overlapping sample blocks of generic length w of the panels covering data

from t− w + 1 to t.4

Step 2: Let kj = kc + ks
j , for j = 1, 2, be the dimensions of the factor spaces for the two panels,

and define k = min(k1, k2). We collect the factors of each group in the kj-dimensional vectors

hj,τ then h1,τ = H1

[
f c′
τ , f s′

1,τ

]′ and h2,τ = H2

[
f c′
τ , f s′

2,τ

]′, meaning that the factors we extract

from each group are some linear transformation Hj of the underlying factors, with Hj full rank

kj × kj matrices, for j = 1, 2. This means that some linear combinations of h1,τ - namely those

corresponding to f c
τ - are perfectly correlated with linear combinations of h2,τ and vice versa. Let

us recall at this point the purpose of canonical correlation analysis. In general canonical

correlation applies to a setting where we have two random vectors, in our application h1,τ and

h2,τ , and one finds linear combinations of respectively h1,τ and h2,τ which have maximum

correlation with each other. Therefore we are interested in finding how many of these linear

4As noted by Kelly et al. (2019) there is no need to look at block sampling for IPCA using individual stocks. We

will implement IPCA on the full sample as well as on block samples. We use a block sampling scheme to avoid look

ahead biases in full sample factor extraction as well as survivorship biases for individual firms: see Section OA.1 in

the Supplementary Material for further discussion.
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combinations, also known as canonical variables, are perfectly correlated, i.e. have canonical

correlation equal to one.

Step 3: Proposition A.1 in the Appendix tells us that the dimension kc is the number of unitary

canonical correlations between h1,τ and h2,τ . The largest possible number of common factors is

k = min(k1, k2). We develop a test for kc : H0(r) : k
c = r against H1(r) : k

c < r, for any given r

= k, k − 1, . . . , 1. More precisely, we sort the canonical correlations from high to low and let ρ̂ℓ

be the ℓ-th sorted sample canonical correlation between the factors ĥ1,τ and ĥ2,τ estimated on a

sample of length w, and let:

(11) ξ̂(r) =
r∑

ℓ=1

ρ̂ℓ,

be the sum of the r largest sample canonical correlations. We reject the null for r = kc common

factors H0 = H(kc) when ξ̂(kc)− kc is negative and large - namely the sum of the largest kc

estimated canonical correlations is substantially less than kc.5 The test statistic is a re-centered

and standardized version of ξ̂(r), namely with N = min{N1, N2}. The terms Ω̂ipc
U,1 and Σ̂ipc

U are

defined in Appendix A.2 and are highly non-linear functions of the estimation errors of the factors

in each group. As N and T grow large, under the generic null hypothesis H0(r) : k
c = r we have,

ξ̃(r)
d−→ N (0, 1), while under the alternative hypothesis H1(r) : k

c < r, we have ξ̃(r)
p−→ −∞.6

Step 4: Once the dimension kc is identified, we can recover the common factors f c
τ via the

5When we reject the null H(k) we look at the null hypothesis: H(k − 1) =
{
ρ1 = ... = ρk−1 = 1

}
, and so forth

until we identify the dimension of the common factor space. Sequential testing issues are addressed in AGGR.

6See Theorem 2 of AGGR, and its extension Theorem A.2 in Appendix A.2. The asymptotic distribution and rate

of convergence of the test statistic ξ̃(kc) in Theorem A.2 are unchanged when the true numbers of factors k1 and k2

are unknown, and are estimated by some consistent empirical selection method.

15



canonical directions - i.e. the weights of the linear combinations yielding unitary canonical

correlations - applied to the factors estimated from each of the separate panels.

It is worth highlighting a number of theoretical contributions of the paper. The theory in

AGGR only covers panel data centered at zero and the PCA estimator, which is appropriate for a

model with constant loadings. Appendix A.2 extends the estimators and theoretical results of

AGGR to the models where i) factors are allowed to have any finite mean, and ii) loadings are

time-varying. In particular, we cover RP PCA and IPCA estimators for respectively the sorted

portfolios and the individual stock panels. This general set-up is more relevant for asset pricing

applications.

IV. Testing Test Assets

We implement the four-step procedure described in Section III for each of the

non-overlapping sample blocks from Jan. 1966 until Dec. 2020 with 5-year increments. These are

5-year panels y1,τ of individual stocks, and panels y2,τ of test asset portfolios monthly returns.7

Broadly speaking we consider four monthly data sets in our analysis, namely (i) individual US

stock returns from CRSP, (ii) the panel of test asset portfolios returns from the April 2021 release

of the database “Open Source Cross-Sectional Asset Pricing” created by Chen and Zimmermann

(2022), CZ21 hereafter, (iii) the panel of factors from the zoo considered by CZ21, and (iv) the

7More precisely, we have 11 panels ending at t = Dec. 1970, Dec. 1975, ..., Dec. 2020 with observations y1,τ and

y2,τ for τ = t− 59, t− 58, . . . , t. We also report findings with full-sample estimates, although most of the discussion

here will focus on the 5-year block samples. In Supplementary Material Section OA.1 we provide a detailed

description of the data.
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values of the 35 individual stock characteristics from Freyberger, Neuhierl, and Weber (2020)

constructed using the new characteristics dataset of Jensen, Kelly, and Pedersen (2023).

The factors are estimated using IPCA of Kelly et al. (2019) for individual stocks

implemented with the linear instruments for the time-varying loadings using the characteristics

from Freyberger et al. (2020) and the Jensen et al. (2023) update. The second panel consists of

quantile portfolios from Chen and Zimmermann (2022) where we use Lettau and Pelger’s

RP-PCs , fixing γRP = −1 to estimate factors: henceforth, we simply refer to them as PCs.8

Similar to Pukthuanthong et al. (2019) we decide to fix a priori the maximum number of

pervasive factors (i.e. IPCs ans PCs) in each panel to 10.

A. Common Factors

Panel (a) of Figure 1 displays the first seven canonical correlations between 10 PCs from

each panel. There is a noticeable gap between the top three canonical correlations and the

remaining four. Applying our formal test we reject the null hypothesis that the number kc
τ of

common factors between the first 10 PCs of individual stocks and the first 10 PCs of portfolio test

8In the main body of the paper we report empirical results where models for sorted portfolios (resp. individual

stocks) are estimated by RP PCA with tuning parameter γRP = −1 (resp. IPCA). In the Supplementary Material we

also report results of the same analyses performed by estimating the latent factors for CZ21 test assets by RP PCA

with different values of the tuning parameter, namely γRP = +1,+5, and +10, i.e. progressively increasing the

relative importance of fitting the risk premia (i.e the realized means) instead of time-series variation of the returns of

the CZ21 test assets, when estimating their latent factors. In unreported empirical results, appeared in previous

version of this paper and available upon request, we have considered factors estimated by PCA on balanced

non-overlapping panels of individual stock returns and obtained qualitatively similar results to those reported in the

following sections.
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assets is more than 3 for all 5-year blocks. While there is some variation we will proceed with the

number of factors being equal to 3 and then investigate whether a fourth common factor has any

significant impact on our findings. Henceforth we will refer to these three factors as the

“common” factors and use the acronym 3CF.9

Panel (b) of Figure 1 displays the sum of the canonical correlations of the three common

factors with (1) the 3 Fama and French factors (henceforth FF3 - blue circles, thick dotted line),

(2) the 5 Fama and French factors (henceforth FF5 - black stars, thick dashed line). In addition, it

also displays FF3/FF5 augmented with the momentum factor (FF3+Mom - blue circles, thin

dotted line, FF5+Mom - black stars, thin dashed line). The red line across the plot marks the

3-factor benchmark common factor space.

[Insert Figure 1 approximately here]

The results in Panel (b) of Figure 1 convey a surprisingly simple and clear message. We observe

that over the entire sample the canonical correlations between FF3 and common factors (blue

circles, thick dotted line) are well below 3. This implies that over this sample period FF3 does not

span the common factor space. What happens if we move from FF3 to FF5, i.e. we add

RMW-operating profitability and CMA-investment style? In the same figure, using the same

approach, the black thick dashed line with stars shows that adding two FF factors falls again short

of spanning the common factor space. In fact, in most years the improvements of the two

additional factors appears to be only minor. The same analysis is repeated with observable factors

9We also conducted the same exercise with the full sample where we only find one common factor. More

specifically, the top three canonical correlations for the full sample are: 0.98, 0.72, and 0.59. While this would favor

the time-varying beta CAPM, it is based on only roughly two thirds of the sorted portfolios that are available

throughout the full sample (see Supplementary Material Section OA.1 for further details).
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FF3 and FF5 plus momentum (FF3+Mom - blue circles, thin dotted line, FF5+Mom - black stars,

thin dashed line). While the higher number of observable factors increases mechanically the value

of the sum of non-zero canonical correlations, it remains the case that adding the momentum

factor is not enough to span the common factors. This means that the popular factor models fall

short of capturing the three common factors.10 Andreou, Gagliardini, Ghysels, and Rubin (2024)

derive a formal test between latent and observed factors similar in spirit to the test of AGGR

covered in the previous section. Applying an extension of such a test, we reject the null that the

FF5 and momentum factors span the kc = 3 common factors - put differently all the lines in Panel

(b) of Figure 1 are significantly below 3. Finally, this also begs the question whether members of

the zoo might help us out in recovering the common factor space, a topic addressed in Section VI.

B. Comparing 3CF with Observable Factors

So far we established the existence of common factors between individual stocks and

sorted portfolios, and shown that they are only partially spanned by FF5 and momentum. We now

study how each of the FF5 and momentum observable factors taken one-by-one are related to (a)

the common factors and (b) the factors which are specific respectively to the sorted portfolios or

to the CRSP individual stocks. This analysis allows us to check (a) whether and to what degree

the common factors, i.e. f c
τ , are spanned by some of the observable factors, and (b) to understand

the nature of the panel-specific factors: f s
2,τ portfolio-specific and f s

1,τ individual stock-specific

factors as they were referred to in Section II.

To achieve the task at hand, we regress each of the 6 observable factors on (i) the 3CF

10In Section VI we further discuss the plausible interpretation of the three common factors in terms of their

correlations with hundreds of observable factors collected by CZ21, i.e. the factor zoo, as well as macro factors.
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factors and (ii) all the panel-specific factors, and report the R2s of these regression for FF3,

RMW, CMA and momentum in Supplementary Material Figures OA.2 and OA.3. Not

surprisingly, typically over 90% of the variability of the market factor is explained by the

common factors, and f s
2,τ portfolio-specific factors tend to explain almost all the remaining part of

its variability, with their R2s ranging between 2% and 20%, depending on the time period. We

also find that the factors specific to individual stocks are not able to capture the same amount of

the variability unexplained by the common factors, as their R2s are typically below 10%.

The fact that CRSP stock-specific factors explain much less of the variability of observable

factors compared to the f s
2,τ portfolio-specific factors is an empirical regularity that we observe

across all the FF5 and momentum factors. We also note that on average only about 50% of the

variability of SMB is explained by the 3CF, and the remaining 50% is mostly portfolio sorted

specific factors that explain SMB. For HML a similar pattern appears and analogous conclusions

can be drawn for RMW, CMA and momentum as detailed in the Supplementary Material.

The finding implies that out of the 6 factors considered, only the market is predominantly

related to the common factors, while all the other FF and momentum factors are only partially

spanned by 3CF, and a large part of their variability is due to a risk dimension which is specific to

portfolio sorting.

We can examine the same question from a different angle. Recall that we started with 10

IPCs for the panel of individual stocks, 10 PCs for the panel of test asset portfolios and found

three common factors. Therefore, we have 7 remaining group-specific factors in each panel.

Figure 2 displays the sum of the canonical correlations of the 7 group-specific factors (Panel (a)

the CZ21- f s
2,τ portfolio-specific and in Panel (b) CRSP-specific f s

1,τ ) with FF3 (blue circles, thick

dotted line), FF5 (black stars, thick dashed line), FF3 factors and momentum (blue circles, thin
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dotted line), and FF5 factors and momentum (black stars, thin dashed line). Recall that the

group-specific factors reflect (1) specification errors in the time variation of betas and (2)

characteristic-sorting mixed with beta dynamics. Since we showed that the market factor is

basically one of the 3CF, we expect for FF3 at most a sum of canonical correlations equal to 2,

and for FF5 equal to 4, adding momentum increases both numbers by one. Panels (a) and (b) of

Figure 2 show that the FF factors with or without momentum are well below those numbers. The

sum of canonical correlations is equal to about one for FF3, two for FF3 plus momentum and FF5

and finally the sum equals about three for FF5 plus momentum. The f s
2,τ portfolio-specific factors

appearing in Panel (a) yield higher sums of canonical correlations, particularly when momentum

is added. This finding is perhaps not surprising, since the FF factors are constructed by sorting.

If we combine the findings in Figures 1 and 2 in the it appears that one linear combination

of FF3 (putting most of the weight on the market) is perfectly correlated with one common

factors. Adding the evidence from Figure OA.2 in the Supplementary Material it appears that

another linear combination of FF3 highly correlates with a sorting-specific factor (Panels (c)

through (f) in Figure OA.2 suggest this is a combination of SMB and HML).

V. Asset Pricing Performance of Common Factors

How do the common factors perform as predictors? How does their performance compare

with widely used factors in the asset pricing literature? These are questions we address in this

section.
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A. Empirical Models

We model the excess returns of CRSP individual stocks and test asset sorted portfolios as

linear functions of different sets of K factors. In particular, we consider the following sets of

factors:

(i) FF + mom: Under this header we have a set of models starting with the market factor only,

defined as the value-weighted index of all CRSP stocks minus the risk-free (K = 1); FF3

and FF5 only (K = 3, 5); FF3 + Momentum, FF5 + Momentum, (K = 4, 6);

(ii) 3CF: K = kc = 3 common factors;

(iii) 3CF + CRSP-spec.: kc = 3 common factors and ks
1 = 1, 2, 3 group-specific factors from the

panel of CRSP stocks (K = 4, 5, 6);

(iv) 3CF + CZ21-spec.: kc = 3 common factors and ks
2 = 1, 2, 3 group-specific factors from the

panel of CZ21 test assets portfolios (K = 4, 5, 6);

(v) PCA on CZ21: factors estimated as the first K = 1, 3, 4, 5, 6 PCs on CZ21 test assets

portfolios;

(vi) IPCA on CRSP: factors estimated as the first K = 1, 3, 4, 5, 6 IPCs on CRSP individual

stocks.

All the models, factors and betas/loadings are estimated from the 60 monthly returns in each of

the eleven non-overlapping 5-years blocks ending in year t, with t = 1970, ..., 2020. Therefore,

loadings/betas of PCA, and the matrix Γ mapping stock-specific characteristics to IPCA loadings,

are constant for all the dates τ within each non-overlapping block, but are allowed to change

across different blocks.11

11See definition of the IPCA estimator and its parametrization in Supplementary Material Section OA.3.
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B. Performance Evaluation Measures

We describe the in-sample and out-of-sample performance evaluation measures.12

In-sample performance evaluation

We compute the following in-sample performance measures across the entire sample, that

is across all B blocks:

• Total R2 of Kelly et al. (2019) which represents the fraction of return variance for all the

assets explained by both the dynamic behavior of the loadings (for IPCA) and the

contemporaneous factor realizations across different blocks, aggregated over all assets and

all time periods.

• Pricing error R2 of Kelly, Palhares, and Pruitt (2023) which pertains to the fraction of the

squared unconditional mean excess returns, i.e. risk premium, that is described by factors

and betas. This metric is close to (one minus) the numerator of formal tests (like the GRS

test) for the null hypothesis that the pricing errors for the test assets are zero.

• Predictive R2 from Kelly et al. (2019) which represents the fraction of realized return

variation explained by the model’s description of conditional expected returns, and

summarizes the model’s ability to describe risk compensation only through exposure to

systematic risk.

Additionally, we test the significance of the CZ21 group-specific factors in explaining the

cross-section of returns for the CZ21 test assets when added to the 3 common factors in

12The technical details appear in Supplementary Material Section OA.6.
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Fama-MacBeth regressions.13 Failure to reject the null, implies that the 3CF suffice in explaining

the cross-section of risk premia of the CZ21 portfolios. As we re-estimate the loadings and the

factors in each one of the eleven five-years blocks, this implies that the regressors in the

Fama-MacBeth cross-sectional regressions change across blocks, and therefore we perform the

test in each block.

Out-of-sample performance evaluation

We implement the out-of-sample version of the Total R2, Pricing R2 and Predictive R2

with betas and factor loadings computed using information from block ending in year t− 5 to

price month τ assets in the following 5-years block ending in year t, with t = 1975, ... , 2020.

Analogously to Lettau and Pelger (2020b) we also compute the annualized Sharpe ratio (SR) of

the “Maximum Sharpe-ratio portfolio” that can be obtained by an optimal (in a mean-variance

sense) linear combination of the factors, which are ultimately portfolios of individual stocks. The

13 Using estimated factors instead of true unobserved factors as regressors does not affect asymptotically the R2

measures because the factor estimates are consistent. Indeed, the estimation errors for factors obtained by PCA or

IPCA on panel ℓ are of the order Op(1/
√
Nℓ + 1/T ) and shrink to zero when both panel dimensions grow, see e.g.

Bai and Ng (2006). One can show that the same holds for common factors obtained from canonical analysis applied to

PCs or IPCs; we refer to AGGR and the OA for details. In fact, the use of estimated factors from large cross-sections

in the first pass of the Fama-MacBeth procedure is also inconsequential for inference on risk premia asymptotically.

Indeed, the estimation errors on factor values induce a supplementary term at order Op(1/
√
Nℓ + 1/T ) in beta

estimates. However, when Nℓ ≫ T , this term is negligible with respect to the usual term at order Op(1/
√
T ) from

first-pass time-series regression, which yields the well-known Error-in-Variable (EIV) problem in the second-pass;

we refer to Gagliardini, Ossola, and Scaillet (2016) for risk premia estimation with large Nℓ, T .
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out-of-sample performance measures are defined as: (a) OOS Total R2, (b) OOS Pricing R2, (c)

OOS Predictive R2, and (d) Maximum Sharpe-ratio, OOS SR.

C. In- and Out-of-sample Performance Evaluation of Factor Models

The objective of this subsection is to compare the role of the factor model specifications in

explaining the variation of returns for individual CRSP stocks as well as CZ21 test assets, both in-

and out-of-sample, during the period 1966-2020. Panels A - C in Table 1 present respectively the

Total, Pricing and Predictive R2 evaluation measures. The first two rows in each panel pertain to

the benchmark models which consist of the FF and momentum factors, starting with the

one-factor market (CAPM), then FF3, FF3 with momentum, FF5 and finally FF5 plus

momentum. The columns are therefore labeled 1, 3, 4, 5 and 6 corresponding to the number of

factors K in each model. For comparison, the next two rows refer to the corresponding R2s of the

three common factors (3CF). These are followed by the models which consider both the three

common factors as well as the panel-specific factors (individual CRSP stocks and CZ21 test

assets) in order to evaluate whether the latter have additional explanatory power for the variation

of returns beyond the three common factors. Finally, the last four rows in each panel of Table 1

pertain to the R2s for models with factors based on the PCs from each of the two panels as well as

the PCs across the two panels (namely IPCs from CRSP are used to price CZ21 assets, assuming

constant loadings estimated by OLS regressions of the CZ21 test assets on IPCs, and vice versa).

[Insert Table 1 approximately here]

From the in-sample analysis reported in Table 1 we can draw the following two important

observations. First, the three common factors typically yield better or comparable in-sample

Total, Pricing and Predictive R2s vis-à-vis the benchmark models (i.e. CAPM K =1, FF3 K = 3,
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FF3 plus momentum, K = 4, FF5 K = 5 and FF5 plus momentum K = 6). There are a number of

cases, particularly involving CRSP individual stocks data, where the traditional models do better

in-sample. Second, adding the corresponding group-specific factors from the two panels (of

individual stock and test assets) leads only to marginal improvements compared to models with

3CF. Of greater interest are the out-of-sample results in Table 1. They yield the following key

empirical findings:

• the three common factors yield the highest OOS Total, Pricing and Predictive R2s

compared to any FF (plus momentum) benchmark model (with up to K = 6). The relative

gains of the OOS Total, Pricing and Predictive R2s are often orders of magnitude larger

particularly for individual stocks;

• the 3CF model does much better than IPCA on CRSP with any number of factors and any

metric (with the exclusion of K = 6 for Pricing R2 only) in explaining CZ21 returns and

does as good as or better than IPCA on CRSP with 3 IPCs according to any metric. The

differences are quite substantial in many cases. The FF type factors applied to CRSP reach

a max of roughly 16% Total R2 whereas 3CF yields almost 25% and applying IPCA on

CRSP gets similar results only with 5 factors. More dramatic is the OOS Pricing R2, where

variations on FF reach a max of 8% while 3CF yields almost 35%. Applying IPCA in this

case is comparable to 3CF;

• when we use (RP PCA) PCs from portfolios (CZ21 assets) to explain the risk premia of the

CRSP stocks out of sample the OOS performance is extremely poor: the Pricing R2 in

Table 1 (and Supplementary Material Table OA.3) is among the lowest among all the

26



models, and the lowest compared to other models with latent factors. In fact, the OOS

Pricing R2 decreases when more PCs from the CZ21 portfolios are added;

• adding to 3CF the corresponding panel-specific factors (from individual stock and CZ21

assets) leads sometimes to only marginal improvements;

• RP PCA on CZ21 yields slightly better results than 3CF for OOS Total and Pricing (but not

Predictive) R2s for CZ21 returns. However, those factors poorly predict individual stocks

out-of-sample according to the three types of R2s considered.

[Insert Table 2 approximately here]

Next we test, at least in-sample, using the Fama-MacBeth procedure whether the CZ21

group-specific factors explain beyond 3CF, the risk premia of the CZ21 portfolios. The results

appear in Panel A of Table 2.14 Testing for the joint significance of the risk premia - estimated in

cross-sectional regressions - of the three CZ21-specific factors when added to the 3CF, is an

14We conduct the test for each one of the 5-years blocks for which we estimate our model, by computing the risk

premia of the factors with Weighted Least Squares (WLS) cross-sectional regressions, and estimate their covariance

matrix by applying the Fama-MacBeth procedure. The variance covariance matrix of estimated factors’ risk premia in

Table 2 are computed using the Fama-MacBeth procedure, with 3-lags (optimally selected) Newey-West weighting.

In unreported results available upon request, we verify that our results are robust to different choices of the number of

lags for the Newey-West weighting. As a further robustness check, we also consider ordinary least squares

cross-sectional regressions, instead of WLS, and obtain similar results, although for one block out of eleven the null

hypothesis of the insignificance of the risk premia of the CZ21-specific factors is not rejected at 1% significance level

(p-value = 0.003), and in another block the null is not rejected at the 5% significant level (p-value = 0.036). For all the

other nine 5-years blocks the joint test of significance of the risk premia is not rejected at 5% significance level.
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indirect way to test for the significance of the slight increase from 93.0 to 95.7 observed for the

Pricing R2 in Panel B of Table 1.15

Interestingly, the risk premia of the three CZ21-specific factors considered in Table 1, are never

significant, indicating the CZ21-specific factors seem not to be relevant to explaining the (large)

cross-section of risk-premia of the CZ21 portfolios that we consider, when added to the 3

common factors. The results in Panel A of Table 2 confirm that across all subsamples, the

addition of the CZ21-specific factors has no statistically significant impact on risk premia.

D. Macro Factors and 3CF

So far we focused on factors extracted from equity returns. Macroeconomic factors are

often cited as drivers of stock prices and in Panel B of Table 2 we examine whether macro

indicators/factors contain relevant pricing information beyond that embed in the three common

factors.We consider a wide range of macro indicators/factors.16 This includes fixed income

market factors, such as term spreads 10y-1y, 10y-3m , 1y-FEDfund, default spread BAA-AAA

and the Cochrane-Piazzesi factor. It also covers various key real economy series such as

consumption, labor income growth, various measures of industrial production and principal

components extracted from panels of macroeconomic indicators. Finally, different inflation

measures (including expected and unexpected inflation), the Baker, Bloom, and Davis (2016)

economic policy uncertainty and Jurado, Ludvigson, and Ng (2015) macroeconomic uncertainty

measures are also included. There are a total of 219 statistics in Panel B of Table 2 covering all

15To the best of our knowledge no formal test exists, yet, for the increase of the R2′s displayed in Table 1. The

construction of such tests, although being on our research agenda, is beyond the scope of this paper.

16The details appearing in Supplementary Material Table OA.1.
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the series considered across the 11 non-overlapping 5-year samples. Under the null that none of

the macro factors considered is significant, we expect to find (in large independent samples) 2

(and there is one in Panel B), 10 (and there are two)and 20 (and there are seven) rejections of the

null at respectively the 1, 5 and 10 percent level. Of course, these are not large and independent

samples, but the few significant tests suggest that overall the macroeconomic factors do not

provide incremental pricing gains beyond what is embedded in the 3CF. Put differently, although

the three common factors are extracted from the cross-section of asset returns - individual stocks

and sorted portfolios - they do incorporate the macroeconomic drivers of stock returns.

E. Out-of-sample Portfolio Performance

Last but not least, Table 3 presents the out-of-sample annualized maximum Sharpe ratio

for the different factor model specifications. Interestingly, we find that the three common factors

perform relatively better producing a SR of 0.66, vis-à-vis the CAPM and FF3 models which have

SRs of 0.39 and 0.30, respectively. Nevertheless, the FF5 factor model plus momentum (K = 6)

produces the highest SR of 0.81 among the traditional benchmark models. If we limit ourselves to

K = 3, then the common factor model outperforms all other specifications in Table 3 except for

IPCA on individual stocks. Adding factors beyond K = 3 does increase SR, however, and the best

model is IPCA on CRSP with K = 6.

[Insert Table 3 approximately here]

When compared with models with a larger number of factors, the 3CF model is not consistently

the best according to the different metrics we consider across both panels of test assets. In

particular, an IPCA model with K = 6 factors produces a 7.6% (resp. 0.6%) higher out-of-sample

Pricing R2, when compared to the 3CF for the panel of individual stocks (resp. CZ21 portfolios).
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Nevertheless, when CRSP-specific factors are added to the 3CF some metrics, such as the OOS

Pricing and Predictive R2, show that the model with K = 6 IPCs is slightly inferior to explain

CZ21 portfolio returns. These results, together with the Total R2 of a model for individual stocks

with K = 6 IPCs being systematically inferior to one of other models with either 3 or 6 factors,

and the high SR of the 6 IPCs in Table 3, could be explained by the fact that the higher order IPCs

- especially the 6th - are able to explain the returns of a relatively small set of stocks with very

high realized risk premia, and possibly low return variability.

We repeat the empirical analyses summarized in Tables 1 - 3 with one notable difference,

namely we estimate the latent factors for CZ21 test assets by RP PCA with the tuning parameter

γRP taking values +1,+5, and +10, and report the results in Supplementary Material Section

OA.5.1. We find that, overall, by progressively increasing the relative importance of fitting the

risk premia when estimating the latent factors on the CZ21 test assets, the results reported in

Tables 1 - 3 (produced using classical PCA, i.e. RP PCA with γRP = −1) are mostly robust to

different values of γRP , with some exceptions that do not change the main message. As expected,

by increasing γRP RP-PCs explain better the risk premia of CZ21 test assets as reflected by the

slight increases in their in-sample Pricing R2 of between 1% and 1.5%, depending on the number

of RP-PCs considered and values of γRP . More surprisingly, the RP-PCs from the CZ21 assets

improve the in-sample Pricing R2 for the CRSP individual stocks from 2.4% to 11.3%.

Nevertheless, these improvements in pricing abilities of the RP-PCs almost completely disappear

in the out-of-sample analysis, where RP-PCs seem to perform very similarly to PCs. The models

with 3CF (with or without group-specific factors) have improvements of the Pricing R2 ranging

from -0.2%, i.e. a deterioration, to 0.5%. On the other hand, the predictive R2 generated by the

models with RP-PCs decreases slightly for almost all specifications. Additionally, Fama
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MachBeth regressions of CZ21-specific factors obtained by RP-PCs confirm the results obtained

by PCs, that the 3CF are enough to explaining the risk premia of CZ21 test assets, with the

exception of only one 5 year block (different for different values of γRP ), where the p-value of the

test is 4%. Finally, the out-of-sample Sharpe Ratios of the 3CF for the first 3 RP-PCs do not

improve when RP-PCs are considered instead of classical PCs, but improvements are noticed

when adding the higher order PCs from the fourth onward and CZ-21 -specific factors based on

RP-PCs, but not for the CRSP-specific factors. Overall, we conclude that the nature and the

properties of 3CF do not change when we consider RP-PCs instead of PCs in the estimation of

latent factors in the CZ21 test assets.

The results in Table 2 also inform us about whether augmenting the 3 common factors by

a fourth one (4CF) improves the pricing of risk. Starting with individual stocks, we can read these

results as follows: the third row, CRSP/3CF K = 3 needs to be compared with the fifth row K = 4

as we consider one group-specific factor as common. This means that for example the

out-of-sample Total R2 increases from 25.5 to 26.4. Similarly, for sorted portfolios we need to

compare row four, CZ21/3CF with the sixth where for example the out-of-sample Total R2 moves

from 91.2 to 92.0. The results in Table 2 can be used here again to inform us of the fact that

moving from 3CF to 4CF has no significant impact on pricing. Hence, while for some of the

subsamples there might be evidence of more than 3 common factors, it does not seem to matter in

terms of pricing the cross-section of stocks and sorted portfolios.

Finally, as mentioned above, it is worth noting that the empirical results reported in

Sections IV and V, but also those in the next Section VI remain qualitatively similar when PCA is

used to extract factors on balanced panels of individual stocks returns, instead of IPCA (results

appeared in previous versions of this paper and are available upon request). Therefore, it is

31



unlikely that our identification of the 3CF is coming simply from the differences of the smaller set

of characteristics used to estimate the loadings in the IPCA model, and those used by CZ21 to

construct the sorted portfolios used in our analysis as second panel of test assets.

VI. Plausible Interpretations of 3CF and the Factor Zoo

We address two related questions in this section. First we explore the relationship between

3CF and the factor zoo. Second, we try to understand which factors from the zoo might help us

with finding an economic interpretation of 3CF. The factor zoo is represented by all the factors

collected by CZ21.17

A. Common Factors and the Zoo

We investigate first the ability of PCs extracted from the factor zoo, which we call zoo

PCs, to price and explain the variability of the panels of individual stocks and the CZ21 portfolios.

Figure 3 shows the sum of the canonical correlations of the three common factors with the first 3,

5, 10 and 15 zoo PCs. As before, all PCs and common factors are estimated from non-overlapping

5-year balanced panels of monthly data over the period 1966-2020. The figure allows us to

understand whether the PCs from the zoo panel span the space of the common factors. The first

observation emerging from Figure 3 is that 3 zoo PCs yield a sum of canonical correlations

between 2 and 2.5 as if there is constantly a missing factor. Going to 5 zoo PCs gets us above 2.5,

but it takes up to 10 PCs from the factor zoo to approximately span the set of 3 common factors.

17As detailed in Supplementary Material Section OA.1, when we refer to the factor zoo we use a data set of over a

thousand portfolios associated with 205 characteristics.
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[Insert Figure 3 approximately here]

[Insert Table 4 approximately here]

Table 4 documents which factors from the zoo are the most related (a) to 3CF, and (b) to

3CF augmented with the first three group-specific factors of the CZ21 portfolios. Panel A reports

the twenty factors with the largest average R2s - across all non-overlapping windows - when

regressed on the 3CF factors. Among them, we find two of the three Fama-French factors (CAPM

Beta and Size) along with portfolios based on market beta put forward by Frazzini and Pedersen

(2014) and Price (which can be considered a cruder alternative to the Size factor).18 In addition,

among the zoo factors we also find different measures of idiosyncratic risk and liquidity or

uncertainty, such as bid-ask Spread, cash-flow to price variance, volume to market equity, trading

volume, EPS Forecast Dispersion, days with zero trades, Volume Variance, and Price delay

R-squared. Interestingly, book-to market using the most recent market equity also appears among

one of the most correlated factors with the 3CF (with an average R2 of 77.1%), nevertheless it is

worth mentioning that the “classical” book-to-market factor of Fama and French (1992) - which

uses as denominator the previous year December value of the equity - is not on the list, although

across the entire sample it has a correlation of 0.58. This implies that the difference between two

similar, but not identical factors, matters in their ability to explain the 3CF.19

It is also interesting to note that idiosyncratic risk measures (i.e. those suggested by Ang,

Hodrick, Yuhang, and Zhang (2006) and Ali, Lee-Seok, and Trombley (2003)), a factor reflecting

market frictions such as the betting-against beta of Frazzini and Pedersen (2014),

18The Price and the Size factors have a correlation of 0.78 computed over the entire sample in our analysis.

19And makes the results compatible with those in Panel (e) of Supplementary Material Figure OA.2.
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i.e. Frazzini-Pedersen Beta factor in Table 4, and a factor reflecting behavioral biases, in

particular the factor reflecting expectations of future earning growth by La Porta (1996),

i.e. Long-term EPS forecast in Table 4, are among the portfolio strategies that Dello-Preite et al.

(2024) find to be related, although not perfectly, to their “unsystematic risk component”, i.e. the

third component of their SDF which added to two other systematic factors prices well the returns

of a large cross-section of sorted portfolios. Turning to Panel B, we report the factors in the zoo

showing the highest increase in the R2 - averaged across all non-overlapping years windows -

when the first 3 CZ21-specific factors are added as regressors to 3CF. Interestingly, the majority

of the factors which are the most related to the three CZ21 group-specific factors are associated

with momentum.

Overall, these findings complement the results of Supplementary Material Figures OA.2

and OA.3 confirming that the market and size are the factors most correlated with 3CF (for size

this is especially true for the first half of our sample), while the majority of the variability of

momentum is mostly explained by CZ21-specific factors.

Table 5 reports the performance evaluation measures for the zoo PCs. For convenience of

comparison we repeat the results for 3CF from Panels A - C in Table 1. The zoo PCs have positive

in- and out-of-sample Total R2s for individual stocks which is better than the observable factors,

but worse than all the other latent factor models (comparing with results in Table 1). Moreover,

they perform worse than the other set of factors in explaining CZ21 portfolio returns. The pricing

performance of the zoo PCs is also the worst, as evident from their low or negative Pricing R2

appearing in Table 5.

[Insert Table 5 approximately here]

The results of Table 5 are obtained by estimating factors from the returns of the factors in the Zoo
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assets by classical PCA. In Tables OA.7 - OA.9 in Supplementary Material Section OA.2 we

repeat the same analyses by estimating the latent factors in the Zoo by RP PCA setting the tuning

parameter γRP = +1, +5 and +10, and the results are slightly worse that those reported for PCA,

with the exception of the out-of-sample pricing R2 which increases slightly for CZ21 test assets

when explained by the 3CF only.

Overall, these results for (RP-)PCs obtained from the Zoo of factors are not surprising. In

fact, RP-PCs are meant to capture most of the variation and, (implicitly or explicitly) the risk

premia of the assets from which they are estimated. The factors in the Zoo are, by construction,

very special linear combinations of the CZ21 test assets (which are themselves special linear

combinations of returns of individual stocks). Therefore, fitting the risk premia of a special

combination (portfolio) of assets does not guarantee that the risk premia of all the components of

the linear combinations, or assets not included in the linear combination themselves.

Finally, we also report on an exercise where we pick two factors from the zoo in addition

to the market and find the highest canonical correlation among any two combined with the market

with 3CF. To illustrate for 200 (say) factors in the zoo (other than the market) there are 19,900 =

(200!/(2!198!) possible three observable factor models with the market and two other zoo

members. For these 19900 combinations we compute the sum of the canonical correlations with

the three common (latent) factor and look at the max among all 19,900. The analysis is repeated

for each of the five-years non-overlapping blocks and reported in Table 6. The size factor is the

most prominent (again) featured in the table, particularly in the early part of the sample. Other

than that there does not seem to be a consistent pattern. This may explain why there are so many

factors in the zoo. While the 3CF are parsimonious, they are latent, and do not seem to

consistently relate to observable factors. Also noteworthy are the numbers in the last column.
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They reflect the maximal sum of correlations attained by each of the selected combinations.

Applying the test of Andreou et al. (2024) of observable versus latent factors rejects the null

hypothesis that these sums are equal to three. This means we need to search for at least four

observable factors to match 3CF.

[Insert Table 6 approximately here]

B. On the Macroeconomic Factors Embedded in 3CF

Recall that in Panel B of Table 1 we examined whether macro factors contain relevant

pricing information beyond that embedded in the three common factors. We found that although

the three common factors are extracted from the cross-section of asset returns - individual stocks

and sorted portfolios - they do incorporate the macroeconomic drivers of stock returns. This begs

the question which macroeconomic factors are mostly related to 3CF. In Table 7 we report an

exercise similar to that in Table 6 but instead look ad the maximum canonical correlations

between macroeconomic indicators/factors and 3CF. The table reports the highest canonical

correlation among any three combined macro factors (Panel A) or two macro factors and market

(Panel B) with 3CF for each of the 11 five-years non-overlapping blocks. The numbers reflect the

maximal sum of correlations attained by each of the selected combinations. In Panel A, where we

only look at macro factors, we note that most canonical correlations are barely above one, with on

exception the last subsample where it reaches 1.75. The macro PCs innovations (namely, the

MacCracken and Ng (M&N) MacroFRED MD PCs and the Ludvigson and Ng (L&N)

Macro PCs V AR innovations) PCs appear most prominently across the subsamples. Panel B,

where the market return is paired with two macro factors, we see that the canonical correlations
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increase by about 0.50 on average, which is still substantially below the maximum canonical

correlations between observed zoo factors and 3CF reported in Table 6.

[Insert Table 7 approximately here]

The existing (factor zoo) literature has added 200+ observable factors to explain the

cross-section of returns. From the evidence in Tables 6 and 7, we must conclude that the 3CF

embed macroeconomic signals as well as information from the cross-section of returns, but

combinations of a small number of observable factors from either stock returns or the real

economy do not fully capture the 3CF risk factors.

VII. Conclusions

For a number of decades we have been debating the selection of test assets, with

arguments pro and con individual stocks versus sorted portfolios. In addition, we also have been

debating about the drivers of time-varying betas. The fact many studies resort to sieve and neural

network type searches for functional specifications for time-varying loadings is indicative of the

complexity of the task. Our paper proposes an alternative to account for the well-known

challenges in specifying beta dynamics of single stocks, different from the ’machine-learning’

trend (which uses complex beta dynamics, for which however there may be issues of overfitting,

robustness, etc.) or recent approaches that use short time series panel methods (which however

focus on short rolling time-windows instead of a global picture of the factor structure).

The argument put forward in our paper is that we should not look at either individual

stocks or sorted portfolios separately. We should consider the information from both of these

panels and find the factor space that is common among the two. Doing so, shields us from the
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thorny issue of specifications errors in beta dynamics. The task of finding the common factor

space is non-trivial and one of the key contributions of our paper. We extract factors from both

panels and find the common factor space between the two panels, yielding factors which price

both individual stocks and sorted portfolios. We labeled these three common factors 3CF. We

show that this provides a path toward extracting factors neither affected by sorting characteristics

nor by varying risk exposures and recalcitrant features of individual stocks.

The projection arguments put forward in Hansen and Jagannathan (1991) imply, as noted

by Kozak, Nagel, and Santosh (2018), that there exists a factor representation of the stochastic

discount factor (SDF). Moreover, there is practically no disagreement that the space of factors

spanning the SDF is low-dimensional. In this paper we found 3 factors which were selected via a

novel procedure addressing a longstanding debate in the empirical asset pricing literature. These

three factors are related to the first two FF factors, namely Market and Size, but also to an

idiosyncratic/unsystematic risk factor, similarly to Dello-Preite et al. (2024), liquidity and

uncertainty proxies. Importantly, 3 PCs from a large panel of sorted CZ21 portfolios, or 3 IPCs

extracted from individual stock returns cannot explain both panels of stock returns and the 3CF.

Adding more panel-specific factors to either the 3CF or the 3 PCs or IPCs increases only

marginally the ability of the models to explain both panels of returns.

Last but not least, it should be noted that the testing procedure introduced in our paper can

be applied in many other asset pricing settings. A few examples are: comparing panels of private

equity and publicly traded companies, international asset pricing comparing systematic risks in

stock returns in different countries, among others.
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TABLE 1

In- and Out-of-sample Performance Evaluation of Factor Models

Panels A - C of the table report Total, Pricing and Predictive R2s in percent for observable factor models (lines 1-2 in each panel), a latent factor

model with 3 factors common between individual stocks and CZ21 portfolios (lines 3-4 in each panel), the same 3 common factors together with 1,

2, or 3 CRSP-specific factors (line 5 in each panel), again the same 3 common factors together with 1, 2, or 3 CZ21-specific factors (line 6 in each

panel), a latent factor model where the factors are K PCs extracted from the CZ21 portfolios only (lines 7-8 in each panel), and a latent factor

model where the factors are K IPCs extracted from the CRSP individual stocks only (lines 9-10). Observable factor model specifications are

CAPM, FF3, FF3 + Momentum, FF5, and FF5 + Momentum in the K = 1 ,3 ,4 ,5 , 6 columns, respectively. The models (IPCA on individual

stocks and PCs on CZ21 portfolios, and group-factor model based on the previous two models) are estimated on non-overlapping windows starting

in year t− 4 and ending in year t, for each t = 1970, ..., 2020. The R2’s in-sample (left table) and out-of-sample (right table) are computed

either for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21) as described in Section B.

In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A: Total R2

r: CRSP, f : FF + mom 21.5 29.4 32.2 33.1 35.8 16.3 15.9 13.1 11.9 9.4
r: CZ21, f : FF + mom 73.9 89.8 91.5 90.7 92.3 70.8 83.6 84.7 83.6 84.8
r: CRSP, f : 3CF 23.5 25.5
r: CZ21, f : 3CF 93.6 91.2
r: CRSP, f : 3CF + CRSP spec. 24.1 24.8 25.4 26.4 27.6 28.6
r: CZ21, f : 3CF + CZ21 spec. 94.3 94.9 95.4 92.0 92.4 92.7
r: CRSP, f : PCA on CZ21 24.5 31.8 34.2 36.8 38.8 18.7 18.4 17.9 17.4 16.9
r: CZ21, f : PCA on CZ21 89.3 94.5 95.2 95.7 96.1 87.3 91.9 92.5 92.9 93.1
r: CRSP, f : IPCA on CRSP 5.4 17.8 22.2 24.2 25.1 5.3 18.7 22.1 24.8 27.1
r: CZ21, f : IPCA on CRSP 21.4 65.6 80.3 86.5 88.8 9.0 52.9 60.7 68.9 73.4

Panel B: Pricing R2

r: CRSP, f : FF + mom 32.5 51.0 56.3 54.3 59.1 7.5 8.1 6.5 4.2 1.2
r: CZ21, f : FF + mom 75.2 89.0 88.4 90.0 89.7 78.8 85.5 84.4 86.7 86.4
r: CRSP, f : 3CF 45.1 34.8
r: CZ21, f : 3CF 93.0 92.9
r: CRSP, f : 3CF + CRSP spec. 49.3 49.1 49.6 36.4 37.8 36.8
r: CZ21, f : 3CF + CZ21 spec. 94.7 95.2 95.7 93.5 93.9 94.5
r: CRSP, f : PCA on CZ21 43.8 57.4 59.2 61.8 64.8 8.9 6.3 7.0 5.5 4.4
r: CZ21, f : PCA on CZ21 89.4 93.9 95.0 95.9 96.4 90.7 93.2 94.0 94.7 95.0
r: CRSP, f : IPCA on CRSP 17.1 33.9 40.8 45.8 45.8 6.9 33.3 35.6 39.9 42.4
r: CZ21, f : IPCA on CRSP 66.1 94.0 91.6 94.7 95.5 32.0 81.1 85.1 91.9 93.5

Panel C: Predictive R2

r: CRSP, f : FF + mom 0.51 0.89 1.03 0.96 1.07 0.35 0.40 0.36 0.17 0.17
r: CZ21, f : FF + mom 2.60 4.00 4.03 4.07 4.12 2.63 3.92 4.09 3.91 4.11
r: CRSP, f : 3CF 0.80 0.79
r: CZ21, f : 3CF 4.18 4.75
r: CRSP, f : 3CF + CRSP spec. 0.80 0.86 0.91 0.82 0.84 0.89
r: CZ21, f : 3CF + CZ21 spec. 4.30 4.33 4.36 4.79 4.81 4.83
r: CRSP, f : PCA on CZ21 0.77 1.04 1.08 1.15 1.20 0.47 0.40 0.38 0.29 0.28
r: CZ21, f : PCA on CZ21 4.02 4.30 4.36 4.40 4.43 4.49 4.71 4.73 4.75 4.77
r: CRSP, f : IPCA on CRSP 0.39 0.85 0.95 1.05 1.02 0.36 0.79 0.94 0.97 0.94
r: CZ21, f : IPCA on CRSP 1.90 2.54 3.79 4.15 4.22 1.94 3.75 4.30 4.36 4.14
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TABLE 2

Wald Tests

The table reports the values of the Wald test statistics (first row) and associated p-values (second row) for the joint significance of the risk premia

of the three CZ21-specific factors estimated by cross-sectional regressions of the risk premia of the CZ21 portfolios on the betas of 3CF, and the

three CZ21-specific factors considered in Table 1. Details and data sources of the macro indicators/factors are provided in Supplementary Material

Table OA.1. Cross-sectional regressions are estimated by Weighted Least Squares, where each cross-sectional observation is scaled by the square

root of the pricing error from the regression itself. P-values are obtained using the asymptotic distribution of the Wald test for the joint significance

of the three coefficients, namely a χ2(3), with variance covariance matrix of estimated factors’ risk premia computed using the Fama-MacBeth

procedure and 3-lags Newey-West weighting. Stars are related to p-values as follows: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10. The model (PCs on

CZ21 portfolios, and group-factor model) and cross-sectional WLS regressions (of risk premia of CZ21 quantile portfolios on factors’ betas) are

estimated on non-overlapping windows of 60 months starting in year t− 4 and ending in year t, for each t = 1970, ..., 2020.

Sample 66-70 71-75 76-80 81-85 86-90 90-95 96-00 01-05 06-10 11-15 16-20

Panel A: 3 CZ21-specific factors, controls: 3 CFs

3 CZ21-spec. 5.012 1.999 2.409 6.246 2.991 2.100 0.297 4.577 2.810 0.784 1.731

Panel B: observable macro factors, controls: 3 CFs

Term Spread 10y-1y 0.27 0.37 0.06 1.78 0.12 0.08 0.33 2.06 3.31∗ 0.12 0.33
Term Spread 10y-3m 0.14 0.41 0.04 1.14 0.15 0.07 2.81∗ 1.43 1.16 0.03 0.66
Term Spread 1y-FEDfund 0.25 0.06 0.07 1.26 0.00 0.00 0.56 1.10 0.64 0.08 1.37

Default Spread BAA-AAA 0.14 0.25 0.22 0.38 0.63 0.17 0.41 5.41∗∗ 1.95 1.22 1.33
Cochrane Piazzesi factor 0.39 0.00 0.05 0.05 0.26 0.67 1.61 5.75∗∗ 0.24 0.00 0.69

Consumption growth 0.97 0.62 0.07 0.36 1.03 0.32 0.01
Labor Income growth 0.02 0.06 1.51 0.10 0.00 0.05 0.03 0.96 0.00 0.14 0.03

IP growth 0.49 0.28 0.63 0.89 0.02 0.00 0.05 0.11 0.66 0.04 0.03
IP growth innov 0.77 0.76 0.71 1.45 0.01 0.29 0.13 0.41 0.48 0.01 0.00
L&N Macro PCs (1:3) VAR innov 1.18 0.82 3.13 3.20 0.85 0.45 1.72 0.40 1.01 0.41 2.70
M&N Macro FRED MD PCs (1:4) 4.17 1.53 2.38 4.57 5.41 1.43 3.98 19.27∗∗∗ 5.87 1.30 9.03∗

Inflation 0.18 0.42 0.01 0.41 0.46 3.33∗ 0.06 0.21 0.10 0.28 0.00
Lagged Inflation 0.01 0.12 0.02 1.11 1.70 0.35 0.69 2.01 0.69 0.03 0.00
Expected Inflation 0.03 0.16 0.01 2.99∗ 1.79 0.91 0.33 1.36 1.28 0.19 0.94
Unexpected Inflation 0.29 0.12 0.08 0.59 0.00 0.90 0.11 0.09 0.54 0.72 0.10
Inflation innov 0.13 1.23 0.31 1.97 0.05 0.24 0.25 0.00 0.89 0.33 0.00

EPU 0.03 0.00 2.88∗ 2.48 0.77 0.04 2.54
EPU growth 0.33 0.13 0.12 0.52 2.08 0.02 0.16

Macro Uncertainty (h=1m) 0.11 0.13 0.14 0.69 0.13 0.12 2.06 0.41 1.60 0.00 2.19
Macro Uncertainty (h=3m) 0.19 0.01 0.29 1.02 0.28 0.13 2.27 0.40 2.00 0.01 1.69
Macro Uncertainty (h=12m) 0.02 0.22 0.29 0.90 0.01 0.07 3.03∗ 0.55 0.59 0.02 1.65
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TABLE 3

Out-of-sample Sharpe ratios of factor portfolios

The table reports out-of-sample annualized Sharpe ratios for the mean-variance efficient portfolio of the first K factors in each model - see caption

Table 1 for details on the different factor models. Factors and loadings for each model are first estimated on non-overlapping windows starting in

year t− 4 and ending in year t, for each t = 1970, ..., 2020. On the same windows, mean-variance efficient (i.e. maximum Sharpe ratio) portfolio

weights are computed from the first K factors. Then, the loadings estimated in the previous block are used to reconstruct the factor returns on the

next 5-years block, jointly with the returns of that block, and finally the OOS returns are combined together using mean-variance efficient portfolio

weights form the previous block, to form the OOS maximum Sharpe ratio portfolio returns, from which the reported ex-post Sharpe Ratios are

computed.

N. of factors, K 1 3 4 5 6

FF + mom 0.39 0.30 0.62 0.63 0.81

3CF 0. 66

3CF + CZ21 spec. 0.79 0.89 0.93

3CF + CRSP spec. 0.24 0.37 0.61

PCA on CZ21 0.49 0.54 0.81 0.98 0.84

IPCA on CRSP 0.31 0.77 1.09 1.10 1.44
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TABLE 4

3CF and the Zoo

The table documents which factors from the zoo are the most related (a) to 3CF, and (b) to 3CF augmented with the first three group-specific

factors of the CZ21 portfolios. Panel A reports the twenty factors with the largest average R2s - across all our 5 non-overlapping windows - when

regressed on the 3CF factors. Panel B reports the factors in the zoo showing the highest increase in the R2 - averaged across all non-overlapping 5

years windows - when the first 3 CZ21-specific factors are added as regressors to 3CF.

Panel A: 3 Common factors only Panel B: 3 CZ21-specif. added to 3 common factors

Factor R2 Factor ∆R2

CAPM beta (1973) 90.9 Momentum and LT Reversal (2006) 31.7
Price (1972) 87.7 Junk Stock Momentum (2007) 28.6
Bid-ask spread (1986) 87.6 Momentum in high volume stocks (2000) 27.7
Frazzini-Pedersen Beta (2014) 86.5 Option to stock volume (2012) 26.1
Cash-flow to price variance (1996) 85.4 gross profits / total assets (2013) 25.1
Volume to market equity (1996) 84.6 Momentum based on FF3 residuals (2011) 24.4
Past trading volume (1998) 81.2 Composite equity issuance (2006) 24.3
52 week high (2004) 79.4 Conglomerate return (2012) 23.8
Size (1981) 79.2 Intangible return using EP (2006) 23.7
EPS Forecast Dispersion (2002) 77.3 Firm Age - Momentum (2004) 23.6
Book to market, most recent ME (1985) 77.1 Inst Own and Forecast Dispersion (2005) 23.1
Idiosyncratic risk (AHT) (2003) 76.7 Taxable income to income (2004) 23.0
Days with zero trades (2006) 76.6 Momentum without the seasonal part (2008) 22.1
Days with zero trades (2006) 75.4 Volatility smirk near the money (2010) 21.7
Price delay R-squared (2005) 73.7 O Score (1998) 21.4
Intangible return using Sale2P (2006) 72.8 Total assets to market (1992) 21.1
Days with zero trades (2006) 72.5 Market leverage (1988) 21.0
Idiosyncratic risk (3 factor) (2006) 72.1 Industry Momentum (1999) 20.6
Idiosyncratic risk (2006) 71.5 Earnings Surprise (1984) 20.5
Long-term EPS forecast (1996) 71.0 Breadth of ownership (2002) 20.4
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TABLE 5

Total, Pricing and Predictive R2s - Common factors versus zoo PCs

The table reports Total, Pricing and Predictive R2s in percent for a latent factor model with only 3 common factors (lines 1-2 in each of the three

panels) - a repeat of lines 3-4 in Panels A - C of Table 1, and a latent factor model where the factors are K PCs extracted from the factors in the

zoo only (lines 3-4). The models are estimated on the rolling window starting in year t− 4 and ending in year t, for each t = 1970, ..., 2020.

R2’s in-sample (left table) and out-of-sample (right table) are computed either for the excess returns of individual stocks (r : CRSP) or CZ21

portfolios (r : CZ21) as described in Section B.

In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A: Total R2

r: CRSP, f : 3CF 23.5 25.5
r: CZ21, f : 3CF 93.6 91.2
r: CRSP, f : PCA on Zoo 15.8 26.1 29.5 32.3 35.1 6.6 6.6 7.4 6.9 8.3
r: CZ21, f : PCA on Zoo 42.2 68.6 72.6 75.6 77.7 29.4 49.0 53.5 56.0 59.0

Panel B: Pricing R2

r: CRSP, f : 3CF 45.1 34.8
r: CZ21, f : 3CF 93.0 92.9
r: CRSP, f : PCA on Zoo <0 <0 10.4 21.7 22.4 5.3 <0 <0 <0 <0
r: CZ21, f : PCA on Zoo <0 <0 <0 9.2 7.7 <0 <0 <0 <0 <0

Panel C: Predictive R2

r: CRSP, f : 3CF 0.80 1.13
r: CZ21, f : 3CF 4.18 4.77
r: CRSP, f : PCA on Zoo <0 <0 0.14 0.39 0.41 <0 <0 <0 <0 <0
r: CZ21, f : PCA on Zoo <0 <0 0.07 0.85 1.04 0.11 <0 <0 0.05 0.25
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TABLE 6

Maximum Canonical Correlations Observed Zoo Factors and 3CF

The table reports the highest canonical correlation among any two combined zoo factors with the market with 3CF. The analysis is repeated for

each of the 11 five-years non-overlapping blocks. The numbers in the last column reflect the maximal sum of correlations attained by each of the

selected combinations.

1966-1970 Gross profits/total assets + Size 2.61
1971-1975 Earnings-to-Price Ratio + Share issuance (5 year) 2.54
1976-1980 Book leverage (annual) + Size 2.46
1981-1985 Operating leverage + Size 2.68
1986-1990 Analyst earnings per share + Size 2.51
1991-1995 Accruals + Past trading volume 2.32
1996-2000 Change in PPE and inv/assets + O Score 2.49
2001-2005 Industry concentration (sales) + Short term reversal 2.50
2006-2010 BTM using most recent ME + Intangible return using EP 2.58
2011-2015 Off season reversal years 6 to 10 + Size 2.49
2016-2020 Predicted div yield next month + Net payout yield 2.46

49



TABLE 7

Maximum Canonical Correlations between 3CF and observed factors

The table reports the highest canonical correlation among any three combined macro factors (Panel A) or two macro factors and market (Panel B)

with 3CF. The analysis is repeated for each of the 11 five-years non-overlapping blocks. The numbers in the last column reflect the maximal sum

of correlations attained by each of the selected combinations.

Panel A. Observed factors: macro

1966-1970 Term Spread 1y-FEDfund + Default Spread BAA-AAA + Expected Inflation 1.22
1971-1975 Default Spread BAA-AAA +L&N Macro PC2 VAR innov + Unexpected Inflation 1.07
1976-1980 L&N Macro PC1 VAR innov + Unexpected Inflation + M&N Macro FRED MD PC2 1.16
1981-1985 L&N Macro PC1 VAR innov + M&N Macro FRED MD PC1 + M&N Macro FRED MD PC2 1.16
1986-1990 L&N Macro PC1 VAR innov + EPU growth + M&N Macro FRED MD PC1 1.42
1991-1995 IP growth + Macro PC var innov 1 + Expected Inflation 1.30
1996-2000 Consumption growth + Macro Uncertainty (h=1m) + M&N Macro FRED MD PC2 1.05
2001-2005 Term Spread 1y-FEDfund + EPU + EPU growth 1.17
2006-2010 L&N Macro PC2 VAR innov + L&N Macro PC3 VAR innov + CP 1.10
2011-2015 IP growth innov + L&N Macro PC3 VAR innov + EPU growth 0.81
2016-2020 IP growth innov + L&N Macro PC2 VAR innov + Macro Uncertainty (h=1m) 1.75

Panel B. Observed factors: market and two macro

1966-1970 Default Spread BAA-AAA + L&N Macro PC1 VAR innov 1.67
1971-1975 Unexpected Inflation + M&N Macro FRED MD PC3 1.59
1976-1980 L&N Macro PC1 VAR innov + M&N Macro FRED MD PC2 1.64
1981-1985 Macro Uncertainty (h=1m) + M&N Macro FRED MD PC1 1.68
1986-1990 L&N Macro PC1 VAR innov + M&N Macro FRED MD PC1 1.85
1991-1995 L&N Macro PC1 VAR innov + EPU growth 1.69
1996-2000 Consumption growth + Macro Uncertainty (h=1m) 1.54
2001-2005 Term Spread 1y-FEDfund + EPU growth 1.70
2006-2010 Default Spread BAA-AAA + L&N Macro PC2 VAR innov 1.65
2011-2015 Labor Income growth + IP growth innov 1.42
2016-2020 Labor Income growth + Macro Uncertainty (h=1m) 2.21
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FIGURE 1

Canonical correlations

Panel (a) displays the first seven canonical correlations between 10 IPCA factors (implemented using individual stocks from CRSP and the

characteristics used in Freyberger et al. (2020), updated by Jensen et al. (2023)) and 10 PCs from Chen and Zimmermann (2022) quantile

portfolios. Panel (b) displays the sum of the canonical correlations of the three factors common across CRSP and CZ21 test assets with the 3 Fama

and French factors (FF3): Market, SMB and HML factors (blue circles, thick dotted line), and the sum of the canonical correlations of the three

common factors with the 5 Fama and French factors (FF5) - adding RMW-operating profitability, CMA-investment style (black stars, thick dashed

line). In addition, it also displays FF3/FF5 augmented with the momentum factor (FF3+Mom - blue circles, thin dotted line, FF5+Mom - black

stars, thin dashed line). The red line across the plot marks the 3-factor benchmark common factor space. For each year the 10 IPCs from individual

stocks, the 10 PCs from the quintile portfolios, the three common factors among them and the different sets of canonical correlations in both panels

are computed on the 5-years block of monthly data starting in year t− 4, for each t = 1970, 1975, ..., 2020.

(a) Canonical correlations between 10 IPCs on individual stocks and 10 PCs sorted portfolios

(b) Sum of canonical correlations between 3 common factors (3CF) and observable factors
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FIGURE 2

Sum of canonical correlations of the group-specific factors

Panel (a) displays the sum of the canonical correlations of the seven specific factors in CZ21 test asset portfolios with: (i) FF3 (blue circles, thick

dotted line): (ii) FF5 (black stars, thick dashed line); (iii) the FF3 factors and momentum (blue circles, thin dotted line); (iv) the FF5 factors and

momentum (black stars, thin dashed line). Panel (b) displays the sum of the canonical correlations of the seven specific factors in CRSP individual

stocks with the same four sets of observable factors. For each year we report results computed on the rolling window starting in year t− 4 and

ending in year t, for each t = 1970, ..., 2020.

CZ21 test assets

CRSP individual stocks
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FIGURE 3

Sum of canonical correlations between 3CF and PCs from the zoo.

The figure displays the sum of the canonical correlations of 3CF factors with the first 15 PCs (magenta circles, dashed line), 10 PCs (blue circles,

dotted thin line), 5 PCs (black stars, dashed thin line), and finally the first 3 PCs from the factor zoo (green diamonds, dotted thin line). For each

year we report results computed on the block starting in year t− 4, for each t = 1970, 1975, ..., 2020.
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Appendix

Section A.1 covers the proofs of the Propositions appearing in Section II. Section A.2 extends Theorems 1 and 2 in

AGGR to the case in which the latent factors are estimated by the variations of PCA described in Supplementary

Material Section OA.3, namely IPCA for the first group of individual stock returns, and RP PCA for the second

group of portfolio returns, which are not covered in the original work of AGGR, who only considered classical PCA

on demeaned data. The estimators of the canonical correlations among the factors from the two groups and the test

statistics in Theorems 1 and 2 of AGGR need to be adjusted accordingly. The technical assumptions of the theorems

and a sketch of their proofs is provided in the Supplementary Material. We will denote the sample mean of a generic

sequence zτ , τ = 1, ..., T as z̄ = 1
T

∑T
τ=1 zτ , the T -dimensional vector of ones as 1T = [1, ..., 1]′, and the identity

matrix of order T as IT . Finally, the upper index (c) denotes the upper (kc, 1) block of a vector, and the upper index

(c, c) denotes the upper-left (kc, kc) block of a matrix.

A.1. Proof of Propositions in Section II

A. Proof of Proposition 1

The proof of the proposition follows from writing the time-varying beta model in terms of the assumed beta

dynamics appearing in equation (4) using the decomposition in Assumption 1.

B. Proof of Proposition 2

Under Assumptions 2 and 3 the portfolios excess returns are such that:

(A.1) ypj,τ = [B0
j +BjZ

∗
τ−1]

′f c
τ + epj,τ ,
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where B0
j := CW 0

j and Bj := CWj . By rearranging terms in this scaled factor model, using (BjZ
∗
τ−1)

′f c
τ =

(f c
τ )

′BjZ
∗
τ−1 = vec( (f c

τ )
′BjZ

∗
τ−1) = (Z∗

τ−1 ⊗ f c
τ )

′ vec(Bj), and by plugging this equation into (7) we get

(A.2) ypj,τ = λ′
jf2,τ + epj,τ ,

where f2,τ = (f c′
τ , fs′

2,τ )
′ with fs

2,τ = Z∗
τ−1 ⊗ f c

τ . By the projection argument we get that the factor spaces spanned by

f c
τ and fs

2,τ do not intersect. Q.E.D.

A.2. Group Factor Model: Extension for Time-varying

Loadings and Factors with Generic Mean

A more general version of the group-factor model with constant loadings for both groups considered in

AGGR is one where we allow for time varying loadings for the returns of the assets in group 1, while still allowing

for constant loadings in group 2. In particular, let us consider the special version of model (6) for group 1 that we

estimate in our empirical analysis for individual stocks (our group 1), namely

(A.3) y1,i,τ = (CZi,τ−1)
′f1,τ + ε1,i,τ = λ′

1,i,τh1,τ + ε1,i,τ

where h1,τ = f1,τ = (f c
τ , f

s′
1,τ )

′, and with λ1,i,τ = (λc′
1,i,τ , λ

s′
1,i,τ )

′ = CZi,τ−1. The L-dimensional vector

Zi,τ−1 = [Zi,τ−1,1, ..., Zi,τ−1,L]
′ collects the stock-specific characteristics observable at date t− 1, and

C = [Cc′, Cs′]′ is a full-column k1 × L matrix, with k1 ≤ L ≤ N1, and usually k1 < L ≪ N1. Moreover, Cc

(resp. Cs) is also a full-column kc ×L (resp. ks1 ×L) matrix, implying λc
1,i,τ = CcZi,τ−1 (resp. λs

1,i,τ = CsZi,τ−1).

To keep the appendix self-contained, we also re-write the model (8) that we estimate in our empirical analysis for

portfolios (our group 2), as

(A.4) y2,i,τ = λ′
2,ih2,τ + ε2,i,τ
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where h2,τ = (f c
τ , f

s′
2,τ )

′, and with λ2,i = (λc′
2,i, λ

s′
2,i)

′. Then, the group-factor model appearing with constant

loadings in AGGR can be generalized as

(A.5)

 y1,τ

y2,τ

 =

 Λc
1,τ Λs

1,τ 0

Λc
2 0 Λs

2




f c
τ

fs
1,τ

fs
2,τ

+

 ε1,τ

ε2,τ

 ,

for a generic sample of dates τ = 1, ..., T , where Λc
1,τ = [λc

1,1,τ , ..., λ
c
1,N1,τ

]′ = [Z1,τ−1, ..., ZN1,τ−1]
′Cc′ and

Λs
1,τ = [λs

1,1,τ , ..., λ
s
1,N1,τ

]′ = [Z1,τ−1, ..., ZN1,τ−1]
′Cs′ are the time-varying matrices of factor loadings for group 1.

Moreover, Λc
2 = [λc

2,1, ..., λ
c
2,N2

]′ and Λs
2 = [λs

2,1, ..., λ
s
2,N2

]′ are the matrices of constant factor loadings for group 2,

and εj,τ = [εj,1τ , ..., εj,Njτ ]
′ and εj,τ = [εj,1,τ , ..., εj,Nj ,τ ]

′ the error terms, with j = 1, 2.

As in AGGR we assume, without loss of generality, that the group-specific factors fs
1,τ and fs

2,τ are

unconditionally orthogonal to the common factor f c
τ . Since the unobservable factors can be standardized, we have:

(A.6) E


f c
τ

fs
1,τ

fs
2,τ

 =


µc

µs
1

µs
2

 , and ΣF := V


f c
τ

fs
1,τ

fs
2,τ

 =


Ikc 0 0

0 Iks
1

Υ

0 Υ′ Iks
2

 ,

where the expected values of the factors are finite, and matrix ΣF is positive-definite. We allow for a non-zero

covariance Υ between group-specific factors, but differently from AGGR, we allow the factors to have expected value

different from zero.

Model (A.5) together with Assumption (A.6) is identified by the same arguments based on canonical

correlation analysis used by AGGR, which we summarize here as our identification argument is constructive for the

estimation. Let hj,τ = [f c′
τ , fs′

j,τ ]
′, with j = 1, 2, and Vjℓ = Cov(hj,τ , hℓ,τ ), with j, ℓ = 1, 2. The k = min(k1, k2)

largest eigenvalues of the matrices R = V −1
11 V12V

−1
22 V21 and R∗ = V −1

22 V21V
−1
11 V12 are the same, and are equal to the

squared canonical correlations ρ2ℓ , ℓ = 1, ..., k, between h1,τ and h2,τ . The associated eigenvectors w1,ℓ (resp. w2,ℓ),

with ℓ = 1, ..., k, of matrix R (resp. R∗) standardized such that w′
1,ℓV11w1,ℓ = 1 (resp. w′

2,ℓV22w2,ℓ = 1) are the

canonical directions which yield the canonical variables w′
1,ℓh1,τ (resp. w′

2,ℓh2,τ ). The next Proposition A.1 deals
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with determining kc, the number of common factors, using canonical correlations between the vectors h1,τ and h2,τ ,

which are unobserved and can be estimated by performing IPCA as in Kelly et al. (2019) in group 1, and PCA or

RP PCA as in Lettau and Pelger (2020b) in group 2. It corresponds to Proposition 1 in AGGR where the zero mean

assumption of the factors is replaced with our new Assumption (A.6).

PROPOSITION A.1 Under Assumption (A.6), the following hold: (i) If kc > 0, the largest kc canonical

correlations between h1,τ and h2,τ are equal to 1, and the remaining k − kc canonical correlations are strictly less

than 1, (ii) Let Wj be the (kj , k
c) matrix whose columns are the canonical directions for hj,τ associated with the kc

canonical correlations equal to 1, for j = 1, 2. Then, f c
τ = W ′

jhj,τ (up to an orthogonal matrix), (iii) If kc = 0, all

canonical correlations between h1,τ and h2,τ are strictly less than 1.

(iv) Let W s
1 (resp. W s

2 ) be the (k1, k
s
1) (resp. (k2, ks2)) matrix whose columns are the eigenvectors of matrix R (resp.

R∗) associated with the smallest ks1 (resp. ks2) eigenvalues. Then fs
j,τ = W s′

j hj,τ (up to an orthogonal matrix) for

j = 1, 2.

Proposition A.1 shows that the number of common factors kc, the common factor space spanned by f c
τ , and the

spaces spanned by group-specific factors, can be identified from the canonical correlations and canonical variables of

h1,τ and h2,τ . Therefore, the factor space dimensions kc, ksj , and factors f c
τ and fs

j,τ , j = 1, 2, are identifiable (up to

a rotation) from information that can be inferred by disjoint IPCA and PCA (or RP PCA) described in Section OA.3,

on the two groups.

A. Estimation of Factors and Loadings

When the true number of factors kj > 0 in each subgroup j = 1, 2 and kc > 0 are known, Proposition A.1

suggests the following estimation procedure. Let ĥipc
1,τ be the IPCA estimator of the k1 factor values in the vector

h1,τ , and Ĉ be the IPCA estimator of matrix C mapping stock-specific characteristics to factor loadings, and

Λ̂1,τ = Ĉ ′Zτ−1 be the IPCA estimator of the N1 × k1 matrix of factor loadings Λ1,τ at date τ , for the generic dates

τ = 1, ..., T , of model (A.3), as defined in Kelly et al. (2019), and summarized in Section OA.3.2 in the

Supplementary Material. Let also ĥ2,τ be the PCA, or RP PCA, estimate of the k2 factors h2,τ , and Λ̂2 be the PCA,

or RP PCA, estimator of the loading matrix Λ2, as summarized in Section OA.3.1.
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Let V̂jℓ denote the empirical covariance matrix between ĥj,τ and ĥℓ,τ , i.e. V̂jℓ =
∑T

τ=1 ĥj,τ ĥ
′
ℓ,τ/T

−
(∑T

τ=1 ĥj,τ/T
)(∑T

τ=1 ĥℓ,τ/T
)′

, for j, ℓ = 1, 2, and let:

R̂ := V̂ −1
11 V̂12V̂

−1
22 V̂21, and R̂∗ := V̂ −1

22 V̂21V̂
−1
11 V̂12,(A.7)

be the estimators of matrices matrices R and R∗, respectively. Differently from AGGR, the estimators of the

variance-covariance matrices V̂jℓ take into account that the estimated factors might have non-zero mean. Matrices R̂

and R̂∗ have the same non-zero eigenvalues. The kc largest eigenvalues of R̂ (resp. R̂∗), denoted by ρ̂2ℓ , ℓ = 1, ..., kc,

are the first kc squared sample canonical correlations between ĥ1,τ and ĥ2,τ . The associated kc canonical directions,

collected in the (k1, k
c) matrix Ŵ1 (resp. (k2, kc) matrix Ŵ2), are the eigenvectors associated with the kc largest

eigenvalues of matrix R̂ (resp. R̂∗), normalized to have length 1 with respect to V̂11 (resp. V̂22). It also holds that:

(A.8) Ŵ ′
1V̂11Ŵ1 = Ikc , and Ŵ ′

2V̂22Ŵ2 = Ikc .

DEFINITION 1 Two estimators of the common factors vector are f̂ c
τ = Ŵ ′

1ĥ1,τ and f̂ c∗
τ = Ŵ ′

2ĥ2,τ .

Definition 1 and equation (A.8) imply that the estimated common factors have identity sample variance-covariance

matrix: V̂ (f̂ c
τ ) :=

∑T
τ=1 f̂

c
τ f̂

c′
τ /T −

(∑T
τ=1 f̂

c
τ/T

)(∑T
τ=1 f̂

c′
τ /T

)
= Ikc , and analogously V̂ (f̂ c∗

τ )

=
∑T

τ=1 f̂
c∗
τ f̂ c∗′

τ /T −
(∑T

τ=1 f̂
c∗
τ /T

)(∑T
τ=1 f̂

c∗′
τ /T

)
= Ikc , i.e. the estimated common factor values match

in-sample the normalization condition of identity variance-covariance matrix in (A.6).

Let matrix Ŵ s
1 (resp. Ŵ s

2 ) be the (k1, k
s
1) (resp. (k2, ks2)) matrix collecting ks1 (resp. ks2) eigenvectors

associated with the ks1 (resp. ks2) smallest eigenvalues of matrix R̂ (resp. R̂∗), normalized to have length 1 with

respect to the matrix V̂11 (resp. V̂22). It also holds: Ŵ s ′
j V̂jjŴ

s
j = Iks

j
, j = 1, 2. The estimators of the group-specific

factors can be defined analogously to the estimators of the common factors

DEFINITION 2 Two estimators of the group-specific factors are f̂s
1,τ = Ŵ s ′

1 ĥ1,τ and f̂s
2,τ = Ŵ s ′

2 ĥ2,τ .

The fact that, by definition, canonical directions satisfy Ŵ s′
j V̂jjŴ

c
j = 0(ks

j ,k
c) for j = 1, 2, see ch. 17 in Magnus and

Neudecker (2007), implies that f̂ c
τ and f̂s

1,τ (resp. f̂ c∗
τ and f̂s

2,τ ) are orthogonal in-sample, i.e. their sample covariance

is zero.
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The estimators of the loadings can be obtained by noting that W̃j := [Ŵj , Ŵ
s
j ]

′ is a full-rank kj × kj

matrix of (transposed) eigenvectors such that: W̃1h1,τ = [f̂ c′
τ , f̂s′

1,τ ]
′, W̃2h1,τ = [f̂ c∗′

τ , f̂s′
2,τ ]

′, W̃j V̂jjW̃
′
j = Ikj for j

= 1,2, and that following equations holds y1,τ = Λ1,τh1,τ + ε1,τ = Λ1,τW̃
−1
1 W̃1h1,τ + ε1,τ and

y2,τ = Λ2h2,τ + ε2,τ = Λ2W̃
−1
2 W̃2h2,τ + ε2,τ .20 Let (W̃−1

j )c (resp. (W̃−1
j )s) the kj × kc (resp. kj × ksj ) matrix

collecting the first kc (resp. last ksj ) columns of W̃−1
j , i.e. we partition the inverse of W̃j as

W̃−1
j = [(W̃−1

j )c , (W̃−1
j )s], then the loadings of the common factors and group-specific can be defined as follows.

DEFINITION 3 The estimators of the common factors loadings are Λ̂c
1,τ = Λ̂1,τ (W̃

−1
1 )c = Ĉ ′Zτ−1(W̃

−1
1 )c and

Λ̂c
2 = Λ̂2(W̃

−1
2 )c. Moreover, the estimators of the common factors loadings are

Λ̂s
1,τ = Λ̂1,τ (W̃

−1
1 )s = Ĉ ′Zτ−1(W̃

−1
1 )s and Λ̂s

2 = Λ̂2(W̃
−1
2 )s.

B. Inference on the Number of Common Factors

In order to infer the dimension kc of the common factor space, we consider the case where the number of pervasive

factors k1 and k2 in each sub-panel is known, hence k = min(k1, k2) is also known. As explained in AGGR, all the

results remain unchanged when the numbers of pervasive factors k1 and k2 are estimated consistently. From

Proposition A.1, dimension kc is the number of unit canonical correlations between h1,τ and h2,τ . We consider the

hypotheses: H(0) =
{
1 > ρ1 ≥ . . . ≥ ρk

}
, H(1) =

{
ρ1 = 1 > ρ2 ≥ . . . ≥ ρk

}
, . . . , H(kc) ={

ρ1 = . . . = ρkc = 1 > ρkc+1 ≥ . . . ≥ ρk
}
, . . . , and finally H(k) =

{
ρ1 = ... = ρk = 1

}
, where ρ1, ..., ρk are the

ordered canonical correlations of h1,τ and h2,τ . Generically, H(kc) corresponds to the case of kc common factors

and k1 − kc and k2 − kc group-specific factors in each group, and H(0) corresponds to the absence of common

factors. In order to select the number of common factors, let us consider the following sequence of tests: H0 = H(kc)

against H1 =
⋃

0≤r<kc H(r), for each kc = k, k − 1, ..., 1. To test H0 against H1, for any given kc = k, k − 1, ..., 1

we consider the test statics ξ̂(kc) defined in equation (11). The null hypothesis H0 = H(kc) is rejected when

ξ̂(kc)− kc is negative and large. The critical value is obtained from the large sample distribution of the statistic when

20Let W̆1 and W̆2 be the “usual” orthonormal eigenvectors of R̂ and R̂∗, such that W̆ ′
1W̆1 = Ik1 and

W̆ ′
2W̆2 = Ik2

, and easily obtainable from most statistical software. Then, W̃j can be easily computed from

W̃ ′
j := [Ŵj , Ŵ

s
j ]

′ = V̂
−1/2
jj W̆j , see e.g. the proof of Theorem 13 of ch. 17 Magnus and Neudecker (2007).
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N1, N2, T →∞, provided below. The number of common factors is estimated by sequentially applying the tests

starting from kc = k, the maximum number of common factors.

Let us denote N = min{N1, N2} and µN =
√

N2/N1. Without loss of generality, we set N = N2, which

implies µN ≤ 1. We assume that:

(A.9)
√
T/N = o(1), N/T 2 = o(1) and µN → µ, with µ ∈ [0, 1].

Notably, the assumption N/T 2 = o(1) is made also by Lettau and Pelger (2020a), and is more restrictive than the

assumption N/T 5/2 = o(1) made by AGGR in their equation (4.1), and simplifies the derivation and the form of the

asymptotic distribution of our test statistics. To further simplify the analysis, and similarly to AGGR, we assume that

the errors εj,i,τ are a conditionally homoscedastic martingale difference sequence for each individual i, conditional

on the sigma field F ipc
τ = {Fτ , Fτ−1, ...;Z

1:N
τ−1, Z

1:N
τ−2, ...} generated by current and past factor values

Fτ = (f c′
τ , fs′

1,τ , f
s′
2,τ )

′ and past characteristic values Z1:N
τ−1 = [vec(Z1,τ−1)

′, ..., vec(ZN,τ−1)
′]′, that is,

E[εj,i,τ |{εj,i,τ−h}h≥1,F ipc
τ ] = 0, E[ε2j,i,τ |{εj,i,τ−h}h≥1,F ipc

τ ] = γj,ii > 0 (say),(A.10)

for all j, i, τ, h, see Assumptions A.7 (b) and (c) in the Supplementary Material. We further assume that the errors

εj,i,τ are conditionally uncorrelated at all leads and lags, both within and across groups, conditionally on F ipc
τ , that is,

Cov(εj,i,τ , εk,ℓ,τ−h|F ipc
τ ) = 0, when h ̸= 0, and for all j, k, i, τ.(A.11)

Nevertheless we allow for some contemporaneous correlation between the errors within and across panels, i.e. we

allow the conditional variance-covariance matrix V (ετ |F ipc
τ ) of the stacked errors from the two panels

ετ = [ε′1,τ , ε
′
2,τ ]

′, to be sparse and time-invariant, namely

Cov(εj,i,τ , εk,ℓ,τ |F ipc
τ ) = γjk,iℓ, for all τ, i = 1, ..., Nj , k, ℓ = 1, ..., Nk,(A.12)

and j, k = 1, 2. Recall that ĥipc
1,τ is the IPCA estimator of factors h1,τ , while λ̂1,i,τ = (λ̂c′

1,i,τ , λ̂
s′
1,i,τ )

′ is the IPCA
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estimator of loadings λ1,i,τ , for all τ = 1, ..., T and i = 1, ..., N1, of model (A.3), as defined in Kelly et al. (2019),

and summarized in Supplementary Material Section OA.3.2.21 Then, Kelly et al. (2020) in their Theorem 4 show

that, for τ = 1, . . . , T the estimator ĥipc
1,τ is asymptotically equivalent, up to negligible terms, to

Ĥipc
1 (h1,τ + uipc

1,τ/
√
N1) where

uipc
1,τ =

(
1

N1

N1∑
i=1

λ1,i,τλ
′
1,i,τ

)−1

1√
N1

N1∑
i=1

λ1,i,τε1,i,τ ,(A.13)

as shown in equation (111) of their Section C.15, and Ĥipc
1 is a nonsingular k1 × k1 stochastic factor “rotation”

matrix, common to all sample dates τ = 1, .., T , which depends on the factor normalization imposed in the IPCA

estimation algorithm.22

Moreover, let ĥ2,τ be the (RP-)PCA estimator of factors h2,τ and λ̂2,i = (λ̂c′
2,i, λ̂

s′
2,i)

′ be the (RP-)PCA

estimator of loadings for all τ = 1, ..., T and i = 1, ..., N1, of model (A.4), as defined in Lettau and Pelger (2020b),

and summarized in Section OA.3.1 of the Supplementary Material. The estimator ĥ2,τ is asymptotically equivalent,

up to negligible terms, to Ĥrppc
2 (h2,τ + u2,τ/

√
N2) where

u2,τ =

(
1

N2

N2∑
i=1

λ2,iλ
′
2,i

)−1

1√
N2

N2∑
i=1

λ2,iε2,i,τ ,(A.14)

and Ĥrppc
2 is a nonsingular k2 × k2 stochastic factor “rotation” matrix, common to all sample dates τ = 1, .., T ,

which depends on the factor normalization imposed in the RP PCA estimation algorithm.23 The asymptotic

expansion of factor estimators ĥ1,τ and ĥ2,τ allows to obtain the infeasible asymptotic distribution of our test

statistics ξ̂(kc), as its asymptotic bias and variance depend on Σ̃ipc
u,jk,τ = Cov(uj,τ , uk,τ |F ipc

τ ), that is the true and

21The explicit equation for λ1,i,τ is given in (OA.11) in Supplementary Material Section OA.3.2.

22Kelly et al. (2020) discuss extensively in their Sections 3, 4 and 6 the possible choices of the factor

normalization and rotation in IPCA.

23See Section 4 in Lettau and Pelger (2020a) for the definition and the properties of Ĥrppc
2 .
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unknown covariance between uj,τ and uk,τ−h conditional on the sigma field F ipc
τ , namely

(A.15)

Σ̃ipc
u,11,τ =

(
1

N1

N1∑
i=1

λ1,i,τλ
′
1,i,τ

)−1

1

N1

N1∑
i=1

N1∑
ℓ=1

λ1,i,τλ
′
1,i,τCov(ε1,i,τ , ε1,ℓ,τ |F ipc

τ )

(
1

N1

N1∑
i=1

λ1,i,τλ
′
1,i,τ

)−1

(A.16) Σ̃ipc
u,22,τ =

(
1

N2

N2∑
i=1

λ2,iλ
′
2,i

)−1

1

N2

N2∑
i=1

N2∑
ℓ=1

λ2,iλ
′
2,iCov(ε2,i,τ , ε2,ℓ,τ |F ipc

τ )

(
1

N2

N2∑
i=1

λ2,iλ
′
2,i

)−1

(A.17)

Σ̃ipc
u,12,τ =

(
1

N1

N1∑
i=1

λ1,i,τλ
′
1,i,τ

)−1

1√
N1N2

N1∑
i=1

N2∑
ℓ=1

λ1,i,τλ
′
2,iCov(ε1,i,τ , ε2,ℓ,τ |F ipc

τ )

(
1

N2

N2∑
i=1

λ2,iλ
′
2,i

)−1

and Σ̃ipc
u,21,τ = Σ̃ipc′

u,12,τ . We set Σipc
u,jk,τ = plim

Nj ,Nk→∞
Σ̃ipc

u,jk,τ . The following Theorem A.1 provides the asymptotic

distribution of the infeasible test statistic ξ̂(kc). Note that, conditionally on Z1:N
τ−1, the values of the loadings

λ1,i,τ = C ′Zi,τ−1 are not stochastic.

THEOREM A.1 Under Assumptions A.1 - A.7 (in the OA) (b) and (c), and the null hypothesis H0 = H(kc) of kc

common factors, we have:

ξ̃ipcinf (k
c) := N

√
T · (Ωipc

U,1)
−1/2 ·

[
ξ̂(kc)− kc +

1

2N
tr
{
Σ̃−1
cc Σ̃

ipc
U

}]
d−→ N (0, 1) ,(A.18)

where Σ̃cc = 1
T

∑T
τ=1 f̆

c
τ f̆

c′
τ , and

Σ̃ipc
U =

1

T

T∑
τ=1

(
µ2
N Σ̃

ipc(cc)
u,11,τ + Σ̃

ipc(cc)
u,22,τ − µN Σ̃

ipc(cc)
u,12,τ − µN Σ̃

ipc(cc)
u,21,τ

)
,

Ωipc
U,1 =

1

2
lim
T→∞

E

[
1

T

T∑
τ=1

tr
{
Σipc
U,τ · Σ

ipc ′
U,τ

}]
,

Σipc
U,τ = µ2Σ

ipc(cc)
u,11,τ +Σ

ipc(cc)
u,22,τ − µΣ

ipc(cc)
u,12,τ − µΣ

ipc(cc)
u,21,τ , h = ...,−1, 0, 1, ...,

with f̆ c′
τ := f c

τ − f̄ c, and f̄ c =
∑T

τ=1 f
c
τ/T .

Theorem A.1 corresponds to Theorem 1 in AGGR, where the estimator of the canonical correlations of the estimated
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factors (used to compute ξ̂(kc)), and the sample covariance matrix of the true factors Σ̃cc have been modified to take

into account that the factors are allowed to have a non-zero mean, and that the factor loadings for group 1 are allowed

to be time-varying as in the IPCA model. We note that matrices Σ̃ipc
u,jk,τ and Σipc

u,jk,τ , with j, k = 1, 2, do depend on

time as the loadings are time varying in the IPCA model, differently from AGGR where the loadings were constant

over time as they considered a static factor model estimable with classical PCA.

To get the distribution of the feasible counterpart of the infeasible statistic ξ̃ipcinf (k
c), we need consistent

estimators for the unknown scalar tr
{
Σ̃−1

cc Σ̃ipc
U

}
and matrix Ωipc

U,1 in Theorem A.1.

Theorem A.2 shows the asymptotic distribution of the feasible version of the test statistics ξ̃ipcinf (k
c) obtained

by replacing Σ̃cc with its large sample limit Ikc , and both matrices Σ̃ipc
U and Ωipc

U,1 by consistent estimators, which are

built starting from the following quantities:

Σ̂ipc
u,11,τ =

(
1

N1

N1∑
i=1

λ̂1,i,τ λ̂
′
1,i,τ

)−1 [
1

N1

N1∑
i=1

N1∑
ℓ=1

λ̂1,i,τ λ̂
′
1,i,τ · 1{| ˆcorrT (ε̂1,i,τ , ε̂1,ℓ,τ )| > c∗} · ε̆1,i,τ · ε̆1,ℓ,τ

]

×

(
1

N1

N1∑
i=1

λ̂1,i,τ λ̂
′
1,i,τ

)−1

(A.19)

Σ̂ipc
u,22,τ =

(
1

N2

N2∑
i=1

λ̂2,iλ̂
′
2,i

)−1 [
1

N2

N2∑
i=1

N2∑
ℓ=1

λ̂2,iλ̂
′
2,i · 1{| ˆcorrT (ε̂2,i,τ , ε̂2,ℓ,τ )| > c∗} · ε̆2,i,τ · ε̆2,ℓ,τ

]

×

(
1

N2

N2∑
i=1

λ̂2,iλ̂
′
2,i

)−1

(A.20)

Σ̂ipc
u,12,τ =

(
1

N1

N1∑
i=1

λ̂1,i,τ λ̂
′
1,i,τ

)−1 [
1√

N1N2

N1∑
i=1

N2∑
ℓ=1

λ̂1,i,τ λ̂
′
2,i · 1{| ˆcorrT (ε̂1,i,τ , ε̂2,ℓ,τ )| > c∗} · ε̆1,i,τ · ε̆2,ℓ,τ

]

×

(
1

N2

N2∑
i=1

λ̂2,iλ̂
′
2,i

)−1

(A.21)

(A.22) Σ̂ipc
u,21,τ = Σ̂ipc′

u,12,τ ,
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where ε̂j,i,τ = yj,i,τ − λ̂c ′
j,if̂

c
τ − λ̂s ′

j,if̂
s
j,τ , ˆcorrT (ε̂j,i,τ , ε̂k,ℓ,τ ) is the sample correlation between ε̂j,i,τ and ε̂k,ℓ,τ

computed over the entire sample of T dates, for j, k = 1, 2, c∗ ∈ (0, 1) is a trimming constant, ε̆j,i,τ := ε̂j,i,τ − ¯̂εj,i,τ ,

and ¯̂εj,i,τ =
∑T

τ=1 ε̂j,i,τ/T , and 1{condition} is the indicator function which is equal to 1 if the condition is

satisfied, and 0 otherwise.24 Importantly, as we allow the errors to be weakly correlated in the cross-section with

sparse covariance (and therefore correlation) matrix, but not over time, consistent estimation of Σ̃ipc
U and Ωipc

U,1 require

thresholding of estimated cross-sectional covariances appearing in the terms Σ̂ipc
u,jk,τ , with j, k = 1, 2.

THEOREM A.2 Define Σ̂ipc
U := 1

T

∑T
τ=1 Σ̂

ipc
U,τ , and Ω̂ipc

U,1 := 1
2

1
T

∑T
τ=1 tr

{
Σ̂ipc

U,τ · Σ̂ipc ′
U,τ

}
, where Σ̂ipc

U,τ :=

µ̂2
N Σ̂

ipc(cc)
u,11,τ + Σ̂

ipc(cc)
u,22,τ - µ̂N Σ̂

ipc(cc)
u,12,τ − µ̂N Σ̂

ipc(cc)
u,21,τ , with terms Σ̂ipc

u,jk,τ , for j, k = 1, 2 defined in equations (A.19) -

(A.22), and µ̂N :=
√
N2/N1. Define the test statistic:

ξ̃ipc(kc) := N
√
T
(
Ω̂ipc

U,1

)−1/2
[
ξ̂(kc)− kc +

1

2N
tr
{
Σ̂ipc

U

}]
,(A.23)

and let Assumptions A.1 - A.7 (in the Supplementary Material) hold. Then: (i) Under the null hypothesis

H0 = H(kc) we have: ξ̃ipc(kc) d−→ N (0, 1) . (ii) Under the alternative hypothesis H1 =
⋃

0≤r<kc

H(r), we have:

ξ̃ipc(kc)
p−→ −∞.

Our Theorem A.2 corresponds to Theorem 2 in AGGR where their original estimators of the residuals’ variances has

been modified to take into account that, in the more general set up of this paper, i) the observed variables yj,i,τ are not

demeaned and the estimated factor models do not include a constant so the residuals of these models are not

necessarily zero mean (in case the estimated factors do not perfectly explain the risk premia of all the assets in both

groups)25, and ii) as the errors are allowed to be weakly correlated across individuals, consistent estimation of Σ̃ipc
U

and Ωipc
U,1 requires thresholding of the cross-sectional covariances between the residuals ε̂j,i,τ and ε̂k,ℓ,τ when either

j ̸= k, or i ̸= ℓ, or both.

24As ˆcorrT (ε̂j,i,τ , ε̂k,ℓ,τ ) = 1 when j = k, and i = ℓ, variances are never trimmed by the indicator function,

which therefore thresholds only covariances among different assets, both within group and across the two groups.

25This could not happen in the framework of AGGR who considered classical PCA applied to demeaned data, as

typically done in classical PCA. For more details on this subtle issue, with references the different approaches used in

the finance literature to estimate PCs, see the discussion in Supplementary Material Section OA.3.1.
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OA.1 Data Description - Individual Stocks and Portfolios

We consider three panels of monthly returns in our analysis, namely (i) individual US stock returns

from CRSP, (ii) the panel of test asset portfolios from the April 2021 release of the database “Open

Source Cross-Sectional Asset Pricing” created by Chen and Zimmermann (2022), CZ21 hearafter,

and (iii) the panel of factors from the zoo considered by CZ21.1 For all three panels, we consider

two samples: (i) the chronological time sample which includes all data available in each dataset

from Jan. 1966 to Dec. 2020, and (ii) the publication time sample which goes from Jan. 1996 to

Dec. 2020, where the CZ21 test assets portfolios and factors enter with their publication date in the

database. We split the 660 (resp. 300) months in the chronological time (resp. publication time)

sample into B = 11 (resp. 5) non-overlapping blocks of 60 months, denoted as b = 1, ..., B. The

first block in the chronological time (resp. publication time) sample is from Jan. 1966 to Dec. 1970

(resp. Jan. 1996 to Dec. 2000) and the last block is from Jan. 2016 to Dec. 2020. Within each block,

we consider only a balanced sample of individual stocks and test asset portfolios, that is we only

include assets with returns available for all the 60 months. We work with 5-year non-overlapping

samples to address the concern of survivorship bias if we were to use the full sample of individual

stocks. Similar to the arguments in Kim and Korajczyk (2021), one can view the 5-year span as a

compromise between a sample large enough for our test procedure to have desirable finite sample

properties and the concern of capturing new and disappearing stocks. Figure OA.1 displays the

number of individual CRSP stocks, test assets portfolios and factors available in each of the B

blocks in the chronological time and publication time samples, respectively. Both samples are

described in more detail below.
1Data for the “Open Source Cross-Sectional Asset Pricing” project are available on: https://www.

openassetpricing.com/
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The first chronological time sample panel of test assets consists of individual stocks available

from the Center for Research in Security Prices (CRSP) traded on the New York Stock Exchange

(NYSE), the American Stock Exchange (AMEX) and the NASDAQ for the period from January

1966 through December 2020. We focus on common stocks (CRSP share codes 10 and 11) and

delete all stocks having less than 60 consecutive monthly returns. We end up having an unbalanced

panel for the returns of 14948 different stocks. The average cross-sectional size, computed in each

month, is about 4270 stocks. In the first (resp. last) block, that is the block 1966-1970 (resp. 2016-

2020), we have 1539 (resp. 2668) stocks. The publication time sample is constructed analogously

but goes from January 1996 to December 2020. Applying the same filters as above, we end up

having an unbalanced panel for the returns of 8131 different stocks. The average cross-sectional

size, computed in each month, is about 4170 stocks. In the first (resp. last) block, that is the block

1996-2000 (resp. 2016-2020), we have 3779 (resp. 2668) stocks.

Turning to the test assets portfolios and factors from CZ21, we consider the unbalanced panel

of 1215 portfolios formed starting from the 205 firm-level characteristic, or predictors, having

predictive ability for firm-level returns according to the four asset pricing meta-studies by McLean

and Pontiff (2016), Green, Hand, and Zhang (2017), Hou, Xue, and Zhang (2020), Harvey,

Liu, and Zhu (2016). The returns of the 205 factors in our zoo panel are those of long-short

portfolios of the upper and bottom quantile portfolios constructed by sorting stocks according to

each characteristic.2 Following CZ21, we consider test asset portfolios and factors associated only

with characteristics classified either as “clearly” or “likely” returns predictors in their study.3

2CZ21 construct factors following the methodology of the papers where they have been introduced, therefore most
factors are constructed from long-short portfolios of equal-weighted quintiles. Value-weighting or other quantiles are
used in the factor construction only for the few papers that emphasize these constructions.

3CZ21 define as “clear predictor” a characteristic which is expected to achieve statistically significant mean raw
returns in long-short portfolios (e.g. t-stat > 2.5 in a long-short portfolio, monotonic portfolio sort with 80 bps spread,
t-stat > 4 in a regression, t-stat > 3 in 6-month event study). On the other hand, a “likely predictor” is a characteristic
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Figure OA.1: Number test assets and factors in the Zoo, full sample: 1966-2020

(a) CRSP and CZ21 test assets

(b) CZ21 Factors in the zoo

Panel (a) displays the number of assets in the balanced panel of CZ21 test assets (blue horizontal segments) included
in the 5-years block of monthly data ending in year t, for each t = 1970, ..., 2020, and the number of stocks (red
circles) available in our unbalanced panel of individual stocks for every month in our sample ranging from Jan. 1966
to Dec. 2020. Panel (b) displays the number of factors in our zoo, that is the number of factors in the Chen and
Zimmermann (2022) dataset (blue horizontal segments and dashed lines). In every 5-year window we include in our
analysis and report in this figure quantile portfolios and factors from the zoo (long-short portfolios) with non-missing
returns for all the 60 months as available in the CZ21 dataset. On the other hand, for the IPCA estimation we consider
the unbalanced panel of individual stocks for which all the returns are available in CRSP and all the 35 stock-specific
and time-varying characteristics considered in Kelly, Pruitt, and Su (2019) and originally proposed by Freyberger,
Neuhierl, and Weber (2020).
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In the chronological time sample we include all the quantile portfolios and factors available in

the baseline version of the database of CZ21, leading to an unbalanced panel of 1214 portfolios

associated with 205 characteristics.4 The average cross-sectional size, computed in each month, is

about 1113 portfolios. In the first (resp. last) block, that is the block 1966-2000 (resp. 2016-2020),

we have 855 (resp. 1001) test asset portfolios and 141 (resp. 171) factors.

In the publication time sample we include all the quantile portfolios available in the baseline

version of the database of CZ21, after excluding all (binary) portfolios associated to binary

characteristics. This leads to 1159 portfolios associated to 177 characteristics.5 In each 5-year

block going from January of year t − 4 to December of year t, a factor and the relative test assets

portfolios from CZ21 are included for all the dates corresponding to the rolling window only if the

paper introducing the factor was published in year t + 1, or before.6 These choices allow us to

have in the first rolling window (resp. the last), that is the window 1996-2000 (resp. 2015-2020),

59 (resp. 171) factors, and 276 (resp. 959) test asset portfolios.

Finally, for both samples we also download from Kenneth French website the 5 Fama and

French factors: Market, SMB, HML, Operating Profitability (RMW), and Investment Style

(CMA), together with the momentum factor (and based on prior 2-12 months returns), and the

1 month risk free rate which is used to compute excess returns for the panels of test assets.

expected to achieve borderline evidence for the significance of mean raw returns in long-short portfolios (e.g. t-stat =
2.0 in long-short with factor adjustments, t-stat between 2 and 3 in a regression, large t-stat in 3-day event study).

4For 28 characteristics only 2 quantile portfolios are available, for 7 characteristics 3 quantile portfolios are
available, for 5 characteristics 4 quantile portfolios are available, for 105 characteristics 5 quintile portfolios are
available, for 1 characteristic 6 quantile portfolios are available, for 1 characteristic 7 quantile portfolios are available,
and finally for 58 characteristics all 10 decile portfolios are available.

5More precisely, for 7 characteristics only 3 quantile portfolios are available, for 5 characteristics 4 quantile
portfolios are available, for 105 characteristics 5 quintile portfolios are available, for 1 characteristic 6 quantile
portfolios are available, for 1 characteristic 7 quantile portfolios are available, and finally for 58 characteristics all
10 decile portfolios are available.

6Publication dates are also available in CZ21.
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OA.2 Macroeconomic indicators/factors

In Table OA.1 we display the information about the macroeconomic indicators/factors used in

Section D

Table OA.1: Macro Indicators/Factors

Full name Description Data Source

Term Spread 10y-1y Difference between the 10-year Treasury bond and FRED
the one-year constant maturity Treasury bill rates

Term Spread 10y-3m Difference between yields on 10-year Treasury FRED
and 3-month T-bill rates

Term Spread 1y-FEDFund Term spread is proxied by the difference FRED
between yields on 1-year Treasury and
Federal Funds Rate.

Default spread BAA-AAA The default spread is the difference between FRED
Moody’s Baa and Aaa corporate bond yields

Cochrane Piazzesi factor A single linear combination of forward rates CRSP

Consumption growth Consumption growth (non-durables plus services) FRED

Labor Income growth Labor income growth FRED

IP growth Industrial Production growth FRED

IP growth innov AR(1) innovations in Industrial Production growth FRED

L&N Macro PC (1:3) VAR innov VAR(1) innovations in the first three PCs (1:3) of 279 Ludvigson and Ng (2009)
macro-finance variables from Ludvigson and Ng (2009)

M&N Macro FRED-MD PCs (1:4) First four PCs (1:4) estimated from the Macro variables FRED-MD
in the FRED-MD panel from McCracken and Ng (2016)

Inflation Inflation (t) FRED

Lagged Inflation Inflation (t− 1) FRED

Expected Inflation Expected Inflation based on FRED
Fama and Gibbons (1984)

Unexpected Inflation Unexpected inflation based on FRED
Fama and Gibbons (1984)

Inflation innov AR(1) innovations in inflation FRED

EPU Economic Policy Uncertainty level FRED

EPU growth Economic Policy Uncertainty growth rate FRED

Macro Uncertainty (h=1m, 3m, 12m) Jurado, Ludvigson, and Ng (2015) Macro Uncertainty Jurado et al. (2015)
indexes for horizons h = 1, 3 and 12 months

All Macro indicators/factors have been downloaded or reconstructed at monthly frequency. The Cochrane Piazzesi factor is based on the

computations based on their original replication code and updated Fama-Bliss discount bonds data from CRSP. Similarly, the methodology from

Fama and Gibbons (1984) is applied to decompose the growth rate of the CPI index from FRED into Expected and Unexpected inflation.
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OA.3 Factor estimation: PCA and its recent extensions

In this section we discuss extensions of PCA to RP-PCA of Lettau and Pelger (2020a and 2020b)

and IPCA of Kelly et al. (2019). A subsection is devoted to each case.

OA.3.1 RP-PCA estimation

To simplify the exposition we will use a generic notation here for the discussion of various

estimators which can be applied to different panel data settings. Let yτ be N -dimensional vector

of returns, and assume that the data generating process of yτ is a linear factor model as the APT of

Ross (1976), that is:

yτ = Λhτ + ετ , τ = 1, ..., T, (OA.1)

where hτ is the (k, 1) vector of unobservable factors with expected value µh ≡ E[hτ ], possibly

different from zero, Λ = [λ1 , ..., λN ]
′ is the (N, k) full column rank matrix of unknown loadings,

and the idiosyncratic innovations E[ετ ] = 0. These assumptions imply E[yτ ] = Λµh, possibly

different from zero. Model (OA.1) can be written as:

Y = HΛ′ + ε, (OA.2)

where Y = [y1, ..., yT ]
′ is the (T,N)-dimensional matrix of observed excess returns, and H =

[h1, ..., hT ]
′ is the (T, k)-dimensional matrix of factor values.

Lettau and Pelger (2020a, 2020b) and Zaffaroni (2025) suggest that estimating model (OA.2)

by performing PCA on the demeaned returns ỹτ = yτ − ȳ, as typically done in the finance and

macroeconomics literature, is restrictive as the mean of the factors and the returns should contain
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information on the factor structure. Let h̃τ = hτ−h̄ be the demeaned factors, and ȳi =
1
T

∑T
τ=1 yi,τ

be the time series mean of the returns of the i-th asset, with i = 1, ..., N . Lettau and Pelger (2020a)

address the estimation of the non-demeaned factors in model (OA.1) with their RP-PCA procedure,

which consists in solving the following minimization problem:

min

λ1, ..., λN ,

h1, ..., hT ,

1

NT

N∑
i=1

T∑
τ=1

(ỹi,τ − h̃′
τλi)

2 + (1 + γRP )
1

N

N∑
i=1

(ȳi − h̄′λi)
2 , (OA.3)

subject to normalization restrictions. The first double summation in (OA.3) corresponds to the

average unexplained (time-series) variation of the data, the second summation correspond to the

(cross-sectional) average of the squared “pricing errors” across all N assets, and γRP ∈ [−1,+∞)

is a constant which can be interpreted as a tuning parameter: as it increases more weight is given

to the pricing errors in the factor estimation. Lettau and Pelger (2020a) show that the solution to

(OA.3) can be obtained by performing the following two steps:

(i) Estimate the loading matrix Λ is as
√
N times the (N, k) matrix of the eigenvectors

associated to the largest k eigenvalues of matrix

MRP (γRP ) :=
1

T

T∑
τ=1

yτy
′
τ + γRP

(
1

T

T∑
τ=1

yτ

)(
1

T

T∑
τ=1

yτ

)′

. (OA.4)

The estimated loadings, that we denote as Λ̂RP , are such that Λ̂′
RP Λ̂RP/N = Ik. 7

7Lettau and Pelger (2020a), in their online appendix, show that Λ̂RP can be obtained as the conventional PCA
estimator of the loadings applied to the “projected” model: Y̌ = ȞΛ + ε̌ where Y̌ := W (γRP )Y , Ȟ := W (γRP )H ,
ε̌ := W (γRP )ε, and W (γRP ) = IT +

(√
γRP + 1− 1

)
(1T1

′
T )/T . That is, the loading matrix Λj,RP can be

estimated as
√
N times the (N, k) matrix of the eigenvectors associated to the largest k eigenvalues of MRP (γRP ) =

Y̌ ′Y̌ /T.
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(ii) Estimate the latent factors in model (OA.1) at each date τ by a cross-sectional regression of

the returns yτ on the estimated loadings Λ̂RP :

ĥτ,RP :=
(
Λ̂′
RP Λ̂RP

)−1

Λ̂′
RP yτ . (OA.5)

We denote as ĤRP = [ĥ1,RP , ..., ĥT,RP ]
′ the (T, k) matrix of estimated factors.

As linear latent factor models are identified up to an invertible transformation, an equivalent

estimator Ĥ∗
RP of the factors is obtained by rescaling ĤRP such that the (uncentered) second

moment of the estimated factors is Ĥ∗′
RP Ĥ

∗
RP/T = Ik, that is Ĥ∗

RP := ĤRP

(
Ĥ ′
RP ĤRP/T

)−1/2

.

Following Lettau and Pelger (2020a), we refer to ĤRP and Ĥ∗
RP as “RP-PCA estimators”.

Importantly, the factors estimated by RP-PCA have a mean ˆ̄h = 1
T

∑T
τ=1 ĥτ which is not

necessarily equal to zero. In fact, equation (OA.5) shows that ĥτ,RP is a linear combination of

the original returns which are not-demeaned.8

Special case of the RP-PCA: γRP = 0

When γRP = 0, the matrix MRP (γRP ) characterizing the RP-PCA estimator (OA.5) coincides with

the conventional PCA estimator but with loadings estimated from the uncentered second moment

matrix of the returns MRP (γRP = 0) = 1
T

∑T
τ=1 yτy

′
τ . The RP-PCA estimators of the factors and

the loadings with γRP = 0 coincides with those proposed by Zaffaroni (2025).

8See Section 3 of Zaffaroni (2025) showing that the estimated factors ĥτ,RP are portfolio (excess-) returns, and
correspond to “the feasible PCA-estimators” of the infeasible “mimicking portfolios” (of the true latent factors)
proposed by Huberman, Kandel, and Stambaugh (1987) and Breeden, Gibbons, and Litzenberger (1989). See
Lehmann and Modest (2005) for a discussion of factor-mimicking portfolio estimators.
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Special case of the RP-PCA: γRP = −1

When γRP = −1 the RP-PCA estimator of the loadings, denoted by Λ̂PCA, is computed as

√
N times the eigenvectors of the sample variance-covariance matrix of the returns V̂ (yτ ) =

MRP (γRP = −1) = 1
T

∑T
τ=1 ỹτ ỹ

′
τ . We denote the RP-PCA factor estimator in this special case as

ĥτ,PCA:

ĥτ,PCA :=
(
Λ̂′
PCAΛ̂PCA

)−1

Λ̂′
PCA yτ , (OA.6)

and name Λ̂PCA and ĥτ,PCA as the “conventional PCA” estimators of the loadings and factors,

respectively, as they are used by most of the financial literature. For instance, the factor estimators

used in Connor and Korajczyk (1988), Lehmann and Modest (2005), Kozak, Nagel, and Santosh

(2018), Kozak, Nagel, and Santosh (2020), Giglio and Xiu (2021), and Pukthuanthong, Roll, and

Subrahmanyam (2019), among others all coincide with ĥτ,PCA. Another frequently used estimator,

denoted by ˆ̃hτ,PCA, is obtained by a cross-sectional regression of the demeaned returns ỹτ on Λ̂PCA:

ˆ̃hτ,PCA :=
(
Λ̂′
PCAΛ̂PCA

)−1

Λ̂′
PCA ỹτ . (OA.7)

Differently from ĥτ,PCA and ĥτ,RP , factors ˆ̃hτ,PCA have zero-mean as they are linear combinations

of the demeaned data ỹτ .9

Let Ỹ = [ỹ1, ..., ỹT ]
′ be (T,N) matrix collecting the demeaned returns. AGGR consider

the estimator ˆ̃H∗
PCA = [ˆ̃h∗

1,PCA, ...,
ˆ̃h∗
T,PCA]

′ of the k factors which is defined as
√
T

9As discussed in Section 2 of Zaffaroni (2025), ˆ̃
hτ,PCA is the estimator of the (demeaned) latent factors

h̃τ := hτ − h̄ of model (OA.1) for the demeaned data ỹτ . This can be easily seen by noting that the model for
the demeaned data can be written as: ỹτ = Λj(hτ − h̄) + (ετ − ε̄).
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times the eigenvectors associated to the k largest eigenvalues of the matrix 1
NT

Ỹ Ỹ ′. By

construction the estimated factors are zero mean, and their (sample) variance-covariance matrix

is ˆ̃H∗′
PCA

ˆ̃H∗
PCA/T = Ik. Using the arguments in Bai and Ng (2002), it can be shown that

ˆ̃H∗′
PCA is equal to the PCA estimator in (OA.7) rescaled to have unit variance: ˆ̃H∗

PCA =

ˆ̃HPCA

(
ˆ̃H ′
PCA

ˆ̃HPCA/T
)−1/2

.

Importantly, ˆ̃hτ,PCA and ˆ̃h∗
τ,PCA are consistent estimators of the latent factors only when these

are assumed to have zero expected value, as in Assumption A.2 of AGGR. In the next Section A.2

we show that relaxing this assumption does not change the main results of their paper, but requires

modifications to their canonical correlations estimator as well as other statistics.

OA.3.2 IPCA estimator

The original IPCA model specification in Kelly et al. (2019) is:

yτ = Λipcτ · hτ + ετ , (OA.8)

with

Λipcτ = [λipc1,τ , ..., λ
ipc
i,τ , ..., λ

ipc
i,Nτ

]′ := Zτ−1ΓΛ + ντ , (OA.9)

where Zτ−1 = [z1,τ−1, ..., zi,τ−1, ..., zNτ ,τ−1]
′ is an Nτ−1 × L matrix containing the lagged values

of all the L company-specific characteristics (collected in the L-dimensional vector zi,τ−1 for

each stock i) for the Nτ−1 = Nτ stocks for which both returns and lagged characteristics are

observable at dates τ and τ−1, respectively. The Nτ -dimensional vector ετ collect the idiosyncratic

innovations, and is such that E[ετ ] = 0, the L × K matrix ΓΛ maps characteristics into loadings

of the K factors hτ , and the Nτ -dimensional unobservable vector ντ captures any residual feature
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loadings that is orthogonal to the characteristics, and does not affect the estimation of the model.

Each row of the system of equations in (OA.8) is

yi,τ = λipc′i,τ hτ + εi,τ , (OA.10)

where

λipci,τ := Γ′
Λzi,τ−1 + νi,τ . (OA.11)

Kelly et al. (2019) propose a recursive procedure that delivers estimates of the matrices ΓΛ and of

the T ×K factors h := [h1, h2, ..., hT ]
′. The estimator {ĥipc, Γ̂ipcΛ } minimizes the sum of squared

errors
∑T

τ=1(rτ − Zτ−1Γ
ipc
Λ hipcτ )′(rτ − Zτ−1Γ

ipc
Λ hipcτ ), under the constraints given by the IPCA

identification conditions: factors are orthogonal among each other, have positive mean (i.e. their

ex-post risk premium is positive), and Γ′
ΛΓΛ = IK .

The first order conditions of the constrained optimization problem allow to obtain the factor

estimator

ĥipcτ =
(
Γ̂ipc′Λ Z ′

τ−1Zτ−1 Γ̂
ipc
Λ

)−1

· Γ̂ipc′Λ Z ′
τ−1yτ , (OA.12)

and the estimator of (the vectorized version) of matrix ΓΛ:

vec(Γ̂ipc′Λ ) =

(
T∑
τ=1

Z ′
τ−1Zτ−1 ⊗ ĥτ ĥ

ipc′
τ

)−1

·
T∑
τ=1

[
Zτ−1 ⊗ ĥipc′τ

]′
yτ . (OA.13)

The estimates of hipcτ and ΓipcΛ are obtain by an alternating least squares (ALS) procedure which

iterates between (OA.12) and (OA.13) until convergence, starting from classical PCA estimation
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of the L×K loadings matrix for the panel of returns of the so-called “managed” portfolios defines

as Z ′
τ−1rτ = [z′1,τrτ , ..., z

′
Nτ ,τ

rτ ]. This approach for the choice of the starting value of the ALS

procedure is justified by the observation that, if the stock-specific characteristics were constant

over time (which is a reasonable assumption for characteristics such as companies’ financial rations

observed at monthly frequencies), then Zτ = Z for all τ, and the panel of returns of the manged

portfolios is Z ′rτ = Z ′ZΓΛhτ +(ετ +Z ′ντ ), i.e. it has the same structure of an approximate linear

factor model if appropriate assumptions are satisfied for the ντ and the idiosyncratic innovations

ετ , where the factor loadings loadings Z ′ZΓΛ are a linear transformation (given by the L × L

constant matrix Z ′Z) of matrix ΓΛ.

Finally, we note that, analogously to Kelly et al. (2019) in our specification of the IPCA model

we always include the constant characteristic which assumes value of 1 for all stocks and all dates,

i.e. the first element in the L-dimensional vector zi,τ is set to 1 for all stocks i and dates τ. A

risk factor that is loading mostly onto this constant characteristic, compared to the others, can be

interpreted as a special managed portfolio corresponding to an equally-weighted equity market

factor. The fact that we use IPCA, implies that the return i-th generic stock is included in our

dataset in month τ only if both its return ri,τ in month τ and all the 35 stock-specific and time-

varying characteristics at time τ − 1 are not-missing.

OA.4 Assumptions and proofs

Section OA.4.1 includes all the Assumptions required to prove Proportion A.1, Theorem A.1 and

Theorem A.2 in Appendix A. Section OA.4.2 provides the proof of Proposition A.1, while Sections

OA.4.3 and OA.4.4 provide the proofs of Theorems A.1 and A.2, respectively.

Online Appendix - 12



In this appendix, we denote by aτ = [A]τ the column vector corresponding to the τ -th row a′τ

of matrix A = [a1, ..., aτ , ..., aT ]
′.

OA.4.1 Assumptions for Proposition A.1 and Theorems A.1 and A.2

We make the following assumptions:

Assumption A.1. We have N1, N2, T → ∞ such that the conditions in (A.9) hold, that is:

√
T/N = o(1), N/T 2 = o(1), and µN =

√
N2/N1 → µ, with µ ∈ [0, 1].

Assumption A.2. The unobservable factor process Fτ = [ f c′τ , f
s′
1,τ , f

s′
2,τ ]

′ has vector of means,

and covariance matrix as defined in (A.6), that is:

E[Fτ ] =


µc

µs1

µs2

 , and ΣF := Var(Fτ ) =


Ikc 0 0

0 Iks1 Υ

0 Υ′ Iks2

 ,

with all the elements of vector E[Fτ ] being finite, and where ΣF is positive-definite.

Assumption A.3. The loadings matrix Λ1,τ = [ Λc1,τ
... Λs1,τ ] = [ λ1,τ,1, . . . , λ1,τ,Nj

]′ is

such that lim
N1→∞

1
N1,τ

Λ′
1,τΛ1,τ = Σλ,1,τ , where Σλ,1,τ is a positive-definite (k1, k1) matrix with

distinct eigenvalues and k1 = kc + ks1, for all τ = 1, ..., T . Analogously, the loadings matrix

Λ2 = [ Λc2
... Λs2 ] = [ λ2,1, . . . , λ2,N2 ]′ is such that lim

N2→∞
1
N2

Λ′
2Λ2 = Σλ,2, where Σλ,2 is a

positive-definite (k2, k2) matrix with distinct eigenvalues and k2 = kc + ks2.

Assumption A.4. The error terms εj,i,τ and the factors hj,τ = [f c′τ , f
s′
j,τ ]

′ are such that for j = 1, 2

and all i, τ ≥ 1: a) E[εj,i,τ |F ipc
τ ] = 0 and E[ε2j,i,τ |F ipc

τ ] ≤ M , a.s., where F ipc
τ = σ(Fs, s ≤ τ),
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b) E[ε8j,i,τ ] ≤ M and E[∥hj,τ∥2r∨8] ≤ M , for a constant M < ∞, and r > 2. Moreover, the

conditions in (A.10) hold.

Assumption A.5. Define the variables ξipc1,τ =
1√
N1

∑N1

i=1 λ1,i,τε1,i,τ and ξ2,τ =
1√
N2

∑N2

i=1 λ1,iε2,i,τ

a) For any τ ≥ 1 and h ≥ 0 have:

[ξipc′1,τ , ξ
′
2,τ ]

′ d→ N(0,Ωipc
τ ), (F ipc

τ -stably),

as N1, N2 → ∞, where the asymptotic variance matrix is:

Ωipc
τ (h) =

 Ωipc
11,τ Ωipc

12,τ

Ωipc
22,τ

 ,

where Ωipc
11,τ = plim

N1→∞

1
N1

∑N1

i=1

∑N1

ℓ=1 λ1,i,τλ
′
1,ℓ,τcov(ε1,i,τ , ε1,ℓ,τ |F ipc

τ ),

Ωipc
22,τ = plim

N2→∞

1
N2

∑N2

i=1

∑N2

ℓ=1 λ2,iλ
′
2,ℓcov(ε2,i,τ , ε2,ℓ,τ |F ipc

τ ), and

Ωipc
12,τ = plim

N1N2→∞

1√
N1N2

∑N1

i=1

∑N2

ℓ=1 λ1,i,τλ
′
2,ℓcov(ε1,i,τ , ε2,ℓ,τ |F ipc

τ ), for all h.

Moreover, for all N1, N2 ≥ 1 and j = 1, 2, we have: b) E(∥ξj,τ∥2r|F ipc
τ ) ≤ M , and r > 2.

Assumption A.6. a) The triangular array process Vτ ≡ VN1,N2,τ = [hj,τ , ξ
′
j,τ , j = 1, 2]′ is strong

mixing of size − r
r−2

, uniformly in N1, N2 ≥ 1, with ξ1,τ ≡ ξipc1,τ . Moreover,

b) ∥E(ξj,τξ′k,τ |F ipc
τ ) − E(ξj,τξ′k,τ |Fτ , ..., Fτ−m; Z̃1:N

τ−1, ..., Z̃
1:N
τ−m−1)∥2 = O(m−ψ), as m → ∞,

uniformly in N1, N2 ≥ 1.

Assumption A.7. The errors εj,i,τ are i) uncorrelated at all leads and lags, both within and across
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groups, conditionally on F ipc
τ , that is,

Cov(εj,i,τ , εk,ℓ,τ−h|F ipc
τ ) = 0, when h ̸= 0, and for all j, k, i, τ. (OA.14)

The contemporaneous conditional variance-covariance matrix of the stacked error terms ετ =

[ε′1,τ , ε
′
2,τ ]

′, denoted as V(ετ |F ipc
τ ), where ετ = [ε′1,τ , ε

′
2,τ ]

′ is sparse and time-invariant.

OA.4.2 Proof of Proposition A.1

From the covariance matrix ΣF of the factor vector
(
f cτ , f

s
1,τ , f

s
2,τ

)′ in equation (A.6), and the

definition of matrices R and R∗ given in Section A.2, it follows that:

R =

 Ikc 0

0 ΥΥ′

 , R∗ =

 Ikc 0

0 Υ′Υ

 . (OA.15)

Noting that also in our set-up matrix ΣF is assumed to be positive definite (see Assumption A.2),

then the proof of Proposition A.1 is omitted as it is analogous to the proof of Proposition 1 in

AGGR (see Section C.1 in their OA).

OA.4.3 Proof of Theorem A.1

OA.4.3.1 Asymptotic expansion of
∑kc

ℓ=1 ρ̂ℓ for IPCA

The next Lemma OA.4.1, which corresponds to Lemma B.5 in AGGR modified to take into account

that latent factors in the first group, namely h1,τ are estimated by IPCA, while the latent factors on

the second group are estimated by (RP-) PCA. The Lemma provides the asymptotic expansion for
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the sum of the kc largest canonical correlations
∑kc

ℓ=1 ρ̂ℓ, which are (square root of) the largest kc

eigenvalues of matrix R̂ in equation (A.7), computed with ĥ1,τ being the IPCA estimator of h1,τ ,

and ĥ2,τ being the (RP-) PCA estimator of h2,τ .

LEMMA OA.4.1. Under the Assumptions in Section OA.4.1, and other technical assumptions on

the higher order cross-moments of the errors εj,i,τ and factors in Fτ we have:

kc∑
ℓ=1

ρ̂ℓ = kc −
1

2N
tr

{
Σ̃−1

cc

1

T

T∑
τ=1

E[(µNu
ipc(c)
1τ − u

(c)
2τ )(µNu

ipc(c)
1τ − u

(c)
2τ )′|F ipc

τ ]

}

−
1

2N
√
T
tr

{
1

√
T

T∑
τ=1

[
(µNu

ipc(c)
1τ − u

(c)
2τ )(µNu

ipc(c)
1τ − u

(c)
2τ )′ − E[(µNu

ipc(c)
1τ − u

(c)
2τ )(µNu

ipc(c)
1τ − u

(c)
2τ )′|F ipc

τ ]
]}

+op
(
ϵN,T

)
,

where ϵN,T := 1
N
√
T
. The terms in the curly brackets are Op(1).

Recalling the definitions in (A.15) -(A.17), we get

1

T

T∑
τ=1

E[(µNu
ipc(c)
1τ − u

(c)
2τ )(µNu

ipc(c)
1τ − u

(c)
2t )′|F ipc

τ ] =
1

T

T∑
τ=1

(
µ2N Σ̃

ipc(cc)
u,11,τ + Σ̃

ipc(cc)
u,22,τ − µN Σ̃

ipc(cc)
u,12,τ − µN Σ̃

ipc(cc)
u,21,τ

)
,

where the last term is equal to Σ̃ipc
U defined in Theorem A.1. Moreover, let us define the process

Uτ := µNu
ipc(c)
1τ − u

(c)
2τ (OA.16)

= µN

( 1

N1

N1∑
i=1

λ1,i,τλ
′
1,i,τ

)−1

1√
N1

N1∑
i=1

λ1,i,τε1,i,τ

(c)

−

( 1

N2

N2∑
i=1

λ2,iλ
′
2,i

)−1

1√
N2

N2∑
i=1

λ2,iε2,i,τ

(c)

= µN

( 1

N2

N1∑
i=1

λ1,i,τλ
′
1,i,τ

)−1

ξipc1,τ

(c)

−

( 1

N2

N2∑
i=1

λ2,iλ
′
2,i

)−1

ξ2,τ

(c)

. (OA.17)

Process Uτ depends on N1, N2, but we do not make this dependence explicit for expository

purpose. By using these definitions, from Lemma OA.4.1 we get:

kc∑
ℓ=1

ρ̂ℓ − kc +
1

2N
tr
{
Σ̃−1

cc Σ̃ipc
U

}
= − 1

2N
√
T

(
1√
T

T∑
τ=1

[
U ′
τUτ − E(U ′

τUτ |F ipc
τ )

])
+ op (ϵN,T ) . (OA.18)
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Under our set of assumptions the term 1√
T

∑T
τ=1 [U

′
τUτ − E(U ′

τUτ |F ipc
τ )] is Op(1), as in the next

subsection we show that it is asymptotically Gaussian distributed. The remainder term op (ϵN,T ) in

the r.h.s. of equation (OA.18) is negligible with respect to the first term in the r.h.s. The result in

equation (OA.18) is analogous to the one in equation (B.15) in AGGR, with the notable differences

being the new definitions of the term in Uτ provided in our equation (OA.16), and of matrix Σ̃U .

OA.4.3.2 Asymptotic distribution of the test statistic under the null hypothesis H(kc)

From the asymptotic expansion (OA.18) we obtain the asymptotic distribution of ξ̂(kc) =
∑kc

ℓ=1 ρ̂ℓ

under the null hypothesis H(kc) of kc common factors. First, we apply a CLT for weakly dependent

triangular array data to prove the asymptotic normality of 1√
T

∑T
τ=1ZN,τ as N, T → ∞, where

ZN,τ := U ′
τUτ − E(U ′

τUτ |F ipc
τ )

depends on N1, N2 via process Uτ defined in (OA.16).

i) CLT for Near-Epoch Dependent (NED) processes

Consider the assumptions A.5 and A.6, and let process VN1,N2,τ ≡ Vτ be as defined in Assumption

A.6, and let Vτ+mτ−m = σ(Vs, τ −m ≤ s ≤ τ +m) for any positive integer m, with Vτ ≡ Vτ−∞.

LEMMA OA.4.2. Under the Assumptions in Section OA.4.1 and other technical assumptions on

the higher order cross-moments of the errors εj,i,τ and factors in Fτ we have:

(i) ZN,τ is measurable w.r.t. Vτ , and E[ZN,τ ] = 0 for all τ ≥ 1 and N1, N2 ≥ 1,

(ii) sup
τ≥1,N1,N2≥1

E [∥ZN,τ∥r] < ∞, for a constant r > 2,
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(iii) Process (ZN,τ ) is L2 Near Epoch Dependent (L2-NED) of size −1 on process (Vτ ), and (Vτ )

is strong mixing of size −r/(r − 2), uniformly in N1, N2 ≥ 1.

(iv) Matrix ΩU := limT,N→∞V
(

1√
T

∑T
τ=1ZN,τ

)
is positive definite and equal to

ΩU = lim
T,N→∞

1

T

T∑
τ=1

T∑
s=1

Cov (ZN,τ ,ZN,s) (OA.19)

= lim
T,N→∞

 1

T

T∑
τ=1

τ−1∑
h=−(T−t)

Cov (ZN,τ ,ZN,τ−h)

 (OA.20)

= lim
T,N→∞

(
1

T

T∑
τ=1

Cov (ZN,τ ,ZN,τ )

)
. (OA.21)

Then, by an application of the univariate CLT in Corollary 24.7 in Davidson (1994) and the Cramér-

Wold device, we have that:

1√
T

T∑
τ=1

ZN,τ
d−→ N (0,ΩU) , (OA.22)

as T,N → ∞.

Let us now compute the limit (auto)covariance matrix Cov (ZN,τ ,ZN,τ ) explicitly. By the Law

of Iterated Expectation and E[ZN,τ |F ipc
τ ] = 0, we have:

Cov (ZN,τ ,ZN,τ ) = lim
N→∞

E
[
Cov

(
ZN,τ ,ZN,τ |F ipc

τ

)]
. (OA.23)

Moreover, from Assumptions A.3 and A.5 a), vector (U ′
τ , U

′
τ )

′ is asymptotically Gaussian for
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any h, τ as N → ∞:

 Uτ

Uτ

 d→

 U∞
τ

U∞
τ

 ∼ N

0,

 Σipc
U,τ Σipc

U,τ

Σipc′
U,τ Σipc

U,τ


 , (F ipc

τ -stably). (OA.24)

We use the Lebesgue Lemma to interchange the limes for N → ∞ and the outer expectation

in the r.h.s. of (OA.23), and the fact that convergence in distribution plus uniform integrability

imply convergence of the expectation for a sequence of random variables (see Theorem 25.12 in

Billingsley (1995)) to show the next lemma.

LEMMA OA.4.3. Under Assumptions A.3 and A.5 b), we have:

Cov (ZN,τ ,ZN,τ ) = E
[
Cov(U∞ ′

τ U∞
τ , U∞ ′

τ U∞
τ |F ipc

τ )
]
.

Lemma OA.4.3 allows to deploy the joint asymptotic Gaussian distribution of (U∞ ′
τ , U∞ ′

τ )′ to

compute the limit autocovariance matrices Cov (ZN,τ ,ZN,τ ): we do so by using Theorem 12 p. 284

in Magnus and Neudecker (2007) and Theorem 10.21 in Schott (2005). We get

Cov(U∞ ′
τ U∞

τ , U∞ ′
τ U∞

τ |F ipc
τ ) = 2tr

{
Σipc
U,τΣ

ipc′
U,τ

}
(OA.25)

Therefore from (OA.19) and Lemma OA.4.3 we get:

ΩU = 2 ·

(
lim
T→∞

1

T

T∑
τ=1

tr
{
E
[
Σipc
U,τΣ

ipc′
U,τ

]})
= 4Ωipc

U,1 (OA.26)
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ii) Asymptotic Gaussian distribution of the test statistic

Let us define the constant DN,T = 1
2N

√
T
. From equations (OA.18) and (OA.26), and by using:

[D2
N,TΩ

ipc
U ]1/2 = 1

N
√
T
Ω

1/2
U,1 , and N

√
T [Ωipc

U,1]
−1/2 = O

(
N
√
T
)
= O(ϵ−1

N,T ) , under the hypothesis

of kc common factors in each group the statistics ξ̂(kc) =
∑kc

ℓ=1 ρ̂ℓ is such that:

N
√
T (Ωipc

U,1)
−1/2

[
ξ̂(kc)− kc +

1

2N
tr
{
Σ̃−1
cc Σ̃

ipc
U

}]
= −(D2

N,TΩ
ipc
U )−1/2DN,T

1√
T

T∑
τ=1

ZN,T + op(1).

From equation (OA.22), the r.h.s. converges in distribution to a standard normal distribution, which

yields Theorem A.1.

OA.4.4 Proof of Theorem A.2

To establish the asymptotic distribution of the feasible statistic in Theorem A.2 we need to control

the effect of replacing the re-centering and scaling terms by means of their estimates.

Proof of Theorem A.2 Part (i)

Let us first consider the asymptotic distribution of ξ̃ipcinf (k
c) under the null hypothesis of kc common

factors.

Theorem A.2 i) follows, if we prove:

tr
{
Σ̂ipc
U

}
= tr

{
Σ̃−1
cc Σ̃

ipc
U

}
+ op

(
1√
T

)
, (OA.27)

1

T

T∑
τ=1

tr
{
Σ̂ipc
U,τ · Σ̂

ipc ′
U,τ

}
= E

[
1

T

T∑
τ=1

tr
{
Σipc
U,τ · Σ

ipc′
U,τ

}]
+ op(1). (OA.28)
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Indeed, the statistic ξ̃ipcinf (k
c) can be rewritten as:

ξ̃ipc(kc) =
[
Ω̂ipc
U,1

/
Ωipc
U,1

]−1/2
{
N
√
T (Ωipc

U,1)
−1/2

[
ξ̂(kc)− kc +

1

2N
tr
{
Σ̃−1
cc Σ̃

ipc
U

}]
+Op

(√
T
[
tr
{
Σ̂ipc
U

}
− tr

{
Σ̃−1
cc Σ̃

ipc
U

}])}
,

where the ratio Ω̂ipc
U,1

/
Ωipc
U,1 converges in probability to 1 from (OA.28), the term within the curly

brackets in the first line in the r.h.s. converges in distribution to a standard normal distribution from

(A.18), and the term on the second line on the r.h.s. is op(1) from (OA.27).

Let us now prove equations (OA.27) and (OA.28) by deriving the asymptotic expansions of

Σ̂ipc
U , Σ̃−1

cc and Ω̂ipc
U,1. To derive the asymptotic expansion of Σ̂ipc

U , we use its definition

Σ̂ipc
U :=

1

T

T∑
τ=1

Σ̂ipc
U,τ , and Ω̂ipc

U,1 :=
1

2

1

T

T∑
τ=1

tr
{
Σ̂ipc
U,τ · Σ̂

ipc ′
U,τ

}
,

with

Σ̂ipc
U,τ := µ̂2

N Σ̂
ipc(cc)
u,11,τ + Σ̂

ipc(cc)
u,22,τ − µ̂N Σ̂

ipc(cc)
u,12,τ − µ̂N Σ̂

ipc(cc)
u,21,τ ,

where the matrices Σ̂u,ij,τ i, j = 1, 2, defined in equation (A.19) - (A.22), involve the estimated

loadings and residuals.

LEMMA OA.4.4. Under the Assumptions in Section OA.4.1, and other technical assumptions on

the higher order cross-moments of the errors εj,i,τ and factors in Fτ i) the following asymptotic
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expansion hold:

Λ̂′
1,τ Λ̂1,τ

N1

= Û ′
1 Σ̃Λ,1,τ Û1 + op

(
1√
T

)
, (OA.29)

Λ̂′
2Λ̂2

N2

= Û ′
2

[
Σ̃Λ,2 +

1√
T

(
LΛ,2 + L′

Λ,2

)]
Û2 + op

(
1√
T

)
, (OA.30)

where

Ûj =

 Ĥc 0

0 Ĥs,j

 , j = 1, 2

and Ĥc, Ĥs,j are non-singular matrices w.p.a. 1.,

Σ̃Λ,1,τ =
1

N1

Λ′
1,τΛ1,τ , Σ̃Λ,2 =

1

N2

Λ′
2Λ2

with Λ1,τ = [Λc1,τ
... Λs1,τ ],, and Λ2 = [Λc2

... Λs2], LΛ,2 = Σ̃Λ,2Q2 with

Q2 =

 0 0

√
T Σ̃2,cΣ̃

−1
cc 0

 .

ii) Under the same assumptions, we also have

1

T

T∑
τ=1

Σ̂
ipc(cc)
u,11,τ =

1

T

T∑
τ=1

(Λ̂′
1,τ Λ̂1,τ

N1

)−1
Λ̂′

1,τ

[
IT
ε,11(c

∗)⊙ ε̆1,τ ε̆
′
1,τ

]
Λ̂1,τ

N1

(
Λ̂′

1,τ Λ̂1,τ

N1

)−1
(cc)

=
1

T

T∑
τ=1

Σ̃
ipc(cc)
u,11,τ + op

(
1√
T

)
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1

T

T∑
τ=1

Σ̂
ipc(cc)
u,22,τ =

1

T

T∑
τ=1

(Λ̂′
2Λ̂2

N2

)−1
Λ̂′

2

[
IT
ε,22(c

∗)⊙ ε̆2,τ ε̆
′
2,τ

]
Λ̂2

N2

(
Λ̂′

2Λ̂2

N2

)−1
(cc)

=
1

T

T∑
τ=1

Σ̃
ipc(cc)
u,22,τ + op

(
1√
T

)

and

1

T

T∑
τ=1

Σ̂
ipc(cc)
u,12,τ =

1

T

T∑
τ=1

(Λ̂′
1,τ Λ̂1,τ

N1

)−1
Λ̂′

1,τ

[
IT
ε,12(c

∗)⊙ ε̆1,τ ε̆
′
2,τ

]
Λ̂2√

N1N2

(
Λ̂′

2Λ̂2

N2

)−1
(cc)

=
1

T

T∑
τ=1

Σ̃
ipc(cc)
u,12,τ + op

(
1√
T

)
,

where ⊙ denotes the Hadamard product (i.e. the element-wise product) among two matrices of

the same dimensions, c∗ ∈ (0, 1) is a trimming constant, ε̆j,i,τ := [ε̆j,1,τ , ..., ε̆j,Nj ,τ ]
′, with ε̆j,i,τ :=

ε̂j,i,τ − ¯̂εj,i,τ , and ¯̂εj,i,τ =
∑T

τ=1 ε̂j,i,τ/T , for j = 1, 2. Moreover, IT
ε,jk(c

∗) is a Nj × Nk matrix

defined such that its generic element in position (i, ℓ) is [IT
ε,jk(c

∗)]i,ℓ = 1{ ˆcorrT (ε̂j,i,τ , ε̂k,ℓ,τ ) > c∗}

with i = 1, ..., Nj , and ℓ = 1, ..., Nk, and j, k = 1, 2.

Therefore, from Lemma OA.4.4 and the definition of Σ̂ipc
U from Theorem A.1 :

Σ̂ipc
U :=

1

T

T∑
τ=1

(
µ̂2
N Σ̂

ipc(cc)
u,11,τ + Σ̂

ipc(cc)
u,22,τ − µ̂N Σ̂

ipc(cc)
u,12,τ − µ̂N Σ̂

ipc(cc)
u,21,τ

)

we get the asymptotic expansion :

Σ̂ipc
U = Ĥ−1

c Σ̃ipc
U

(
Ĥ′
c

)−1

+ op

(
1√
T

)
. (OA.31)

Moreover, adapting the arguments in the proof of Theorem 2 part (i) in AGGR it can be shown
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that Σ̃−1
cc =

(
Ĥ−1
c

)′
Ĥ−1
c + op

(
1√
T

)
. The last equation, together with the asymptotic expansion

(OA.31) and the commutative property of the trace operator, imply equation (OA.27). Similarly,

the asymptotic expansion (OA.31) and the convergence Σ̃ipc
u,jk,τ → Σu,jk,τ for all j, k = 1, 2 and τ,

imply equation (OA.28).

Proof of Theorem A.2 Part (ii)

The proof of Part (ii) of Theorem A.2 uses the same arguments as the Proof of part (ii) of Theorem

2 in AGGR, adapted to new assumptions in Section OA.4.1 and therefore is omitted.
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OA.5 Supplementary empirical results
Figure OA.2: Variability of the Fama and French 3 factors explained by common and specific
factors

(a) Market - Rf : CZ21 test assets (b) Market - Rf : CRSP stocks

(c) SMB : CZ21 test assets (d) SMB : CRSP stocks

(e) HML : CZ21 test assets (f) HML : CRSP stocks

For each of the FF3 factors the figure displays the fraction of variance (R2) explained by the three common factors
(blue bars which are the same in left and right column panels), seven CZ21’s group-specific factors (orange bars, left
column panels), seven CRSP group-specific factors (orange bars, right column panels), and unexplained by common
and group-specific factors (yellow bars). For each year we report results based on the block starting in year t− 4 and
ending in year t, for each t = 1970, ..., 2020.
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Figure OA.3: Variability of the FF factors RMW, CMA and Momentum explained by common and
specific factors in Chen and Zimmermann (2022) test assets and CRSP individual stocks.

(a) RWM (operating profitability): CZ21 test assets (b) RWM (operating profitability): CRSP stocks

(c) CMA (investment style): CZ21 test assets (d) CMA (investment style): CRSP stocks

(e) Momentum : CZ21 test assets (f) Momentum : CRSP stocks

For the two Fama and French factors related to Operating Profitability and Investment style, and Momentum, the figure
displays the fraction of variance (R2) explained by the three common factors between CRSP and CZ21 test assets (blue
bars which are the same in both panels), CZ21’s group-specific factors (orange bars, left panels), CRSP group-specific
factors (orange bars, right panels), and unexplained by common and group-specific factors (yellow bars). For each
year we report results based on the block starting in year t− 4 and ending in year t, for each t = 1970, ..., 2020.

Online Appendix - 26



Figure OA.4: Explanatory power of first 10 PCs for Chen and Zimmermann (2022) test assets and
IPCs from CRSP individual stocks, full sample: 1966-2020

(a) CZ21 test assets : Average time-series R2 of first ten PCs

(b) CRSP individual stocks: Total R2 of first ten IPCs

Panel (a) displays the average fraction of variance (time-series regressionR2) of the individuals on the balanced panel of CZ21 test assets explained
by the first 10 RP-PCs extracted from the same panel. The bottom blue area in each panel represents the average R2 of the first RP-PC, the
second (from the bottom) orange area represents the average R2 of the second RP-PC, and so on. Lettau and Pelger’s RP-PCs are computed (fixing
γRP = −1) on balanced panel of portfolios. In every year each panel of assets is constructed for the rolling window starting in year t − 4 and
ending in year t, for each t = 1970, ..., 2020. In every 5-years rolling window we only include assets with non-missing returns for all the 60 months.
Panel (b) displays the fraction of (in-sample) the Total R2, computed as described in Section OA.6 of the unbalanced panel of returns of individual
stocks explained by the first 10 IPCs extracted by estimating the IPCA model from the same unbalanced panel starting in year t− 4 and ending in
year t, for each t = 1970, ..., 2020. The bottom blue area in each panel represents the TotalR2 of the first IPC, the second (from the bottom) orange
area represents the Total R2 of the second IPC, and so on.
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OA.5.1 RP-PCs estimation of factors for the CZ21 test assets

Table OA.2: In- and Out-of-sample Total R2 of factor models, RP-PCs on CZ21 test assets with
different values of γRP

Total R2 In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A : RP-PCA on CZ21 with γRP = +1

r: CRSP, f : Comm. 23.5 25.7
r: CZ21, f : Comm. 93.4 91.3
r: CRSP, f : Comm. + CRSP spec. 24.2 24.8 25.4 26.8 27.7 28.5
r: CZ21, f : Comm. + CZ21 spec. 94.3 94.7 95.2 92.1 92.4 92.7
r: CRSP, f : RP-PCA on CZ21 24.5 31.9 34.2 36.6 38.7 18.7 18.5 17.8 17.8 17.0
r: CZ21, f : RP-PCA on CZ21 89.2 94.5 95.1 95.7 96.0 87.3 91.8 92.6 92.9 93.1

Panel B : RP-PCA on CZ21 with γRP = +5

r: CRSP, f : Comm. 23.4 25.7
r: CZ21, f : Comm. 93.4 91.3
r: CRSP, f : Comm. + CRSP spec. 24.1 24.6 25.3 26.8 27.7 28.4
r: CZ21, f : Comm. + CZ21 spec. 94.2 94.7 95.1 92.1 92.4 92.7
r: CRSP, f : RP-PCA on CZ21 24.5 31.8 34.1 36.2 38.4 18.7 18.8 17.7 17.8 17.0
r: CZ21, f : RP-PCA on CZ21 89.1 94.3 95.0 95.6 95.9 87.3 91.7 92.5 92.9 93.1

Panel C : RP-PCA on CZ21 with γRP = +10

r: CRSP, f : Comm. 23.5 25.7
r: CZ21, f : Comm. 93.4 91.3
r: CRSP, f : Comm. + CRSP spec. 24.1 24.6 25.2 26.8 27.7 28.5
r: CZ21, f : Comm. + CZ21 spec. 94.2 94.7 95.1 92.1 92.4 92.7
r: CRSP, f : RP-PCA on CZ21 24.4 31.6 34.0 36.1 38.4 18.8 18.9 17.7 17.8 17.0
r: CZ21, f : RP-PCA on CZ21 89.0 94.1 95.0 95.6 95.9 87.3 91.7 92.5 92.9 93.1

Panel D : other factors for comparison
r: CRSP, f : FF + mom 21.5 29.4 32.2 33.1 35.8 16.3 15.9 13.1 11.9 9.4
r: CZ21, f : FF + mom 73.9 89.8 91.5 90.7 92.3 70.8 83.6 84.7 83.6 84.8
r: CRSP, f : IPCA on CRSP 5.4 17.8 22.2 24.2 25.1 5.3 18.7 22.1 24.8 27.1
r: CZ21, f : IPCA on CRSP 21.4 65.6 80.3 86.5 88.8 9.0 52.9 60.7 68.9 73.4

Panels A, B and C of the table report Total R2s in percent for models involving estimates of the latent factors in the CZ21 test assets by means of

RP-PCA with tuning parameter γRP set to +1, +5 and +10, respectively. Models with observable factors and IPCs estimated on individual stocks

form CRSP are reported in Panel D to ease the comparison. In each of the first three panels, we report results for a latent factor model with 3 factors

common between individual stocks and CZ21 portfolios (lines 1-2 in each panel), the same 3 common factors together with 1, 2, or 3 CRSP-specific

factors (line 3 in each panel), again the same 3 common factors together with 1, 2, or 3 CZ21-specific factors (line 4 in each panel), and a latent factor

model where the factors are K RP-PCs extracted from the CZ21 portfolios only (lines 5-6 in each panel). Observable factor model specifications

are CAPM, FF3, FF3 + Momentum, FF5, and FF5 + Momentum in the K = 1, 3, 4, 5, 6 columns, respectively. The models (IPCA on individual

stocks and PCs on CZ21 portfolios, and group-factor model based on the previous two models) are estimated on non-overlapping windows starting

in year t− 4 and ending in year t, for each t = 1970, ..., 2020. The R2’s in-sample (left table) and out-of-sample (right table) are computed either

for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21) as described in Section B.
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Table OA.3: In- and Out-of-sample Pricing R2 of factor models, RP-PCs on CZ21 test assets with
different values of γRP

Pricing R2 In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A : RP-PCA on CZ21 with γRP = +1

r: CRSP, f : Comm. 44.6 35.1
r: CZ21, f : Comm. 91.9 92.7
r: CRSP, f : Comm. + CRSP spec. 49.3 50.0 48.4 36.7 38.3 37.7
r: CZ21, f : Comm. + CZ21 spec. 95.0 95.4 96.3 93.6 94.4 95.0
r: CRSP, f : RP-PCA on CZ21 43.4 60.0 65.5 66.2 70.5 8.9 6.6 5.1 6.4 4.5
r: CZ21, f : RP-PCA on CZ21 88.7 95.4 96.6 97.2 97.6 90.7 93.7 94.7 95.5 95.6

Panel B : RP-PCA on CZ21 with γRP = +5

r: CRSP, f : Comm. 44.2 35.2
r: CZ21, f : Comm. 91.7 92.7
r: CRSP, f : Comm. + CRSP spec. 47.1 48.9 46.9 36.7 38.9 37.3
r: CZ21, f : Comm. + CZ21 spec. 94.7 95.3 96.0 93.6 94.4 94.7
r: CRSP, f : RP-PCA on CZ21 43.1 65.3 67.3 67.5 75.0 8.8 7.4 4.9 6.5 4.5
r: CZ21, f : RP-PCA on CZ21 88.2 96.2 97.0 97.3 97.5 90.8 93.5 95.1 95.7 95.9

Panel C : RP-PCA on CZ21 with γRP = +10

r: CRSP, f : Comm. 44.3 35.1
r: CZ21, f : Comm. 91.7 92.7
r: CRSP, f : Comm. + CRSP spec. 47.0 48.4 47.5 36.7 38.8 37.6
r: CZ21, f : Comm. + CZ21 spec. 94.7 95.2 95.8 93.6 94.4 94.7
r: CRSP, f : RP-PCA on CZ21 42.9 66.9 68.2 69.2 76.1 8.8 7.8 4.9 6.5 4.5
r: CZ21, f : RP-PCA on CZ21 87.7 96.6 97.0 97.1 97.4 90.8 93.5 95.2 95.8 95.9

Panel D : other factors for comparison
r: CRSP, f : FF + mom 32.5 51.0 56.3 54.3 59.1 7.5 8.1 6.5 4.2 1.2
r: CZ21, f : FF + mom 75.2 89.0 88.4 90.0 89.7 78.8 85.5 84.4 86.7 86.4
r: CRSP, f : IPCA on CRSP 17.1 33.9 40.8 45.8 45.8 6.9 33.3 35.6 39.9 42.4
r: CZ21, f : IPCA on CRSP 66.1 94.0 91.6 94.7 95.5 32.0 81.1 85.1 91.9 93.5

Panels A, B and C of the table report Pricing R2s in percent for models involving estimates of the latent factors in the CZ21 test assets by means of

RP-PCA with tuning parameter γRP set to +1, +5 and +10, respectively. Models with observable factors and IPCs estimated on individual stocks

form CRSP are reported in Panel D to ease the comparison. In each of the first three panels, we report results for a latent factor model with 3 factors

common between individual stocks and CZ21 portfolios (lines 1-2 in each panel), the same 3 common factors together with 1, 2, or 3 CRSP-specific

factors (line 3 in each panel), again the same 3 common factors together with 1, 2, or 3 CZ21-specific factors (line 4 in each panel), and a latent factor

model where the factors are K RP-PCs extracted from the CZ21 portfolios only (lines 5-6 in each panel). Observable factor model specifications

are CAPM, FF3, FF3 + Momentum, FF5, and FF5 + Momentum in the K = 1, 3, 4, 5, 6 columns, respectively. The models (IPCA on individual

stocks and PCs on CZ21 portfolios, and group-factor model based on the previous two models) are estimated on non-overlapping windows starting

in year t− 4 and ending in year t, for each t = 1970, ..., 2020. The R2’s in-sample (left table) and out-of-sample (right table) are computed either

for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21) as described in Section B.
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Table OA.4: In- and Out-of-sample Predictive R2 of factor models, RP-PCs on CZ21 test assets
with different values of γRP

Predictive R2 In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A : RP-PCA on CZ21 with γRP = +1

r: CRSP, f : Comm. 0.75 0.79
r: CZ21, f : Comm. 4.06 4.73
r: CRSP, f : Comm. + CRSP spec. 0.80 0.89 0.90 0.80 0.82 0.83
r: CZ21, f : Comm. + CZ21 spec. 4.22 4.15 4.15 4.75 4.76 4.87
r: CRSP, f : RP-PCA on CZ21 0.77 1.10 1.21 1.26 1.32 0.46 0.34 0.17 0.10 0.11
r: CZ21, f : RP-PCA on CZ21 3.99 4.31 4.33 4.37 4.37 4.47 4.66 4.65 4.69 4.71

Panel B : RP-PCA on CZ21 with γRP = +5

r: CRSP, f : Comm. 0.76 0.78
r: CZ21, f : Comm. 4.03 4.71
r: CRSP, f : Comm. + CRSP spec. 0.80 0.84 0.85 0.80 0.78 0.84
r: CZ21, f : Comm. + CZ21 spec. 4.18 4.11 4.09 4.73 4.75 4.83
r: CRSP, f : RP-PCA on CZ21 0.77 1.21 1.25 1.29 1.42 0.45 0.24 <0 <0 0.05
r: CZ21, f : RP-PCA on CZ21 3.96 4.20 4.31 4.32 4.33 4.46 4.48 4.62 4.66 4.69

Panel C : RP-PCA on CZ21 with γRP = +10

r: CRSP, f : Comm. 0.77 0.78
r: CZ21, f : Comm. 4.02 4.71
r: CRSP, f : Comm. + CRSP spec. 0.81 0.83 0.83 0.79 0.78 0.84
r: CZ21, f : Comm. + CZ21 spec. 4.17 4.10 4.08 4.73 4.75 4.83
r: CRSP, f : RP-PCA on CZ21 0.77 1.23 1.28 1.33 1.45 0.44 0.11 <0 <0 0.04
r: CZ21, f : RP-PCA on CZ21 3.94 4.19 4.30 4.30 4.31 4.44 4.43 4.61 4.65 4.69

Panel D : other factors for comparison
r: CRSP, f : FF + mom 0.51 0.89 1.03 0.96 1.07 0.35 0.40 0.36 0.17 0.17
r: CZ21, f : FF + mom 2.60 4.00 4.03 4.07 4.12 2.63 3.92 4.09 3.91 4.11
r: CRSP, f : IPCA on CRSP 0.39 0.85 0.95 1.05 1.02 0.36 0.79 0.94 0.97 0.94
r: CZ21, f : IPCA on CRSP 1.90 2.54 3.79 4.15 4.22 1.94 3.75 4.30 4.36 4.14

Panels A, B and C of the table report Predictive R2s in percent for models involving estimates of the latent factors in the CZ21 test assets by means

of RP-PCA with tuning parameter γRP set to +1, +5 and +10, respectively. Models with observable factors and IPCs estimated on individual

stocks form CRSP are reported in Panel D to ease the comparison. In each of the first three panels, we report results for a latent factor model with

3 factors common between individual stocks and CZ21 portfolios (lines 1-2 in each panel), the same 3 common factors together with 1, 2, or 3

CRSP-specific factors (line 3 in each panel), again the same 3 common factors together with 1, 2, or 3 CZ21-specific factors (line 4 in each panel),

and a latent factor model where the factors areK RP-PCs extracted from the CZ21 portfolios only (lines 5-6 in each panel). Observable factor model

specifications are CAPM, FF3, FF3 + Momentum, FF5, and FF5 + Momentum in the K = 1, 3, 4, 5, 6 columns, respectively. The models (IPCA

on individual stocks and PCs on CZ21 portfolios, and group-factor model based on the previous two models) are estimated on non-overlapping

windows starting in year t − 4 and ending in year t, for each t = 1970, ..., 2020. The R2’s in-sample (left table) and out-of-sample (right table)

are computed either for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21) as described in Section B.
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Table OA.5: Significance of the CZ21-specific factors in Fama-MacBeth regressions, RP-PCs on
CZ21 test assets with γRP = +1,+5, and +10

Sample 66-70 71-75 76-80 81-85 86-90 90-95 96-00 01-05 06-10 11-15 16-20

Panel A : γRP = +1

Wald stat. 7.727 3.707 1.504 15.053 3.483 8.611 0.117 8.329 4.806 0.769 1.777
p-val. 0.052 0.295 0.681 0.002 0.323 0.035 0.990 0.040 0.187 0.857 0.620

Panel B : γRP = +5

Wald stat. 8.498 6.986 1.202 15.449 1.735 3.596 0.049 5.376 4.587 0.733 1.801
p-val. 0.037 0.072 0.753 0.001 0.629 0.309 0.997 0.146 0.205 0.865 0.615

Panel C : γRP = +10

Wald stat. 8.005 6.585 1.231 19.415 2.417 3.130 0.069 4.718 3.680 0.799 1.028
p-val. 0.046 0.086 0.746 0.000 0.491 0.372 0.995 0.194 0.298 0.850 0.795

The table reports the values of the Wald test statistics and associated p-values for the joint significance of the risk premia of the three CZ21-specific

factors estimated by cross-sectional regressions of the risk premia of the CZ21 portfolios on the betas of 3CF, and the three CZ21-specific factors

considered in Table OA.2, i.e. those obtained by first performing RP-PCA with different values of the RP-PCA tuning parameter set to +1 (Panel

A), +5 (Panel B) and +10 (Panel C). Cross-sectional regressions are estimated by Weighted Least Squares, where each cross-sectional observation

is scaled by the the square root of the pricing error from the regression itself. The variance covariance matrix of estimated factors’ risk premia is

computed using the Fama-MacBeth procedure, with 3-lags (optimally selected) Newey-West weighting. P-values are obtained using the asymptotic

distribution of the Wald test for the joint significance of the three coefficients, namely a χ2 with 3 degrees of freedom. The model (RP-PCs on

CZ21 portfolios, and group-factor model) and cross-sectional WLS regressions (of risk premia of CZ21 quantile portfolios on factors’ betas) are

estimated on non-overlapping windows of 60 months starting in year t− 4 and ending in year t, for each t = 1970, ..., 2020.
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Table OA.6: Out-of-sample Sharpe ratios of factor portfolios,RP-PCs on CZ21 test assets with
γRP = +1,+5 and +10

N. of factors, K 1 3 4 5 6

Panel A : RP-PCA on CZ21 with γRP = +1

Comm. 0.66
Comm. CZ21 spec. 0.89 1.20 1.26
Comm. CRSP spec. 0.14 0.25 0.87
RP-PCA on CZ21 0.49 0.62 1.03 1.32 1.02

Panel B : RP-PCA on CZ21 with γRP = +5

Comm. 0.66
Comm. CZ21 spec. 0.91 1.18 1.22
Comm. CRSP spec. 0.15 0.24 0.91
RP-PCA on CZ21 0.49 0.51 1.17 1.44 1.15

Panel C : RP-PCA on CZ21 with γRP = +10

Comm. 0.65
Comm. CZ21 spec. 0.92 1.18 1.21
Comm. CRSP spec. 0.16 0.25 0.91
RP-PCA on CZ21 0.49 0.46 1.22 1.47 1.19

Panel D : other factors for comparison
FF + mom 0.39 0.30 0.62 0.63 0.81

IPCA on CRSP 0.31 0.77 1.09 1.10 1.44

The table reports out-of-sample annualized Sharpe ratios for the mean-variance efficient portfolio of factors in each model involving RP-PCs

estimated with different values of the RP-PCA tuning parameter γRP , i.e. +1 (Panel A), +5 (Panel B) and +10 (Panel C). Models with observable

factors and IPCs estimated on individual stocks form CRSP are reported in Panel D to ease the comparison. See caption Table OA.2 for further

details.
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Table OA.7: In- and Out-of-sample Total R2 of factor models, RP-PCs on CZ21 test assets with
different values of γRP . Common and group specific factors versus zoo

Total R2 In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A : γRP = +1

r: CRSP, f : Comm. 23.5 25.7
r: CZ21, f : Comm. 93.4 91.3
r: CRSP, f : RP-PCA on Zoo 14.9 25.6 29.3 32.2 34.5 6.0 0.3 1.4 0.8 1.1
r: CZ21, f : RP-PCA on Zoo 40.1 68.5 74.9 78.3 79.8 25.8 24.3 31.1 32.6 35.6

Panel B : γRP = +5

r: CRSP, f : Comm. 23.4 25.7
r: CZ21, f : Comm. 93.4 91.3
r: CRSP, f : RP-PCA on Zoo 12.1 24.3 28.9 32.0 34.3 3.4 <0 <0 <0 <0
r: CZ21, f : RP-PCA on Zoo 27.4 67.2 75.4 78.3 79.9 12.7 <0 5.1 6.6 4.4

Panel C : γRP = +10

r: CRSP, f : Comm. 23.5 25.7
r: CZ21, f : Comm. 93.4 91.3
r: CRSP, f : RP-PCA on Zoo 8.7 24.0 28.9 32.0 34.3 2.7 <0 <0 <0 <0
r: CZ21, f : RP-PCA on Zoo 21.3 67.3 75.5 78.3 79.9 8.5 <0 <0 <0 <0

Panels A, B and C of the table report Total R2s in percent for models involving estimates of the 3CF only (first two lines in each panel), and latent

factors from the factors in the Zoo by means of K RP-PCs (last two lines in each panel) with tuning parameter γRP set to +1, +5 and +10,

respectively. The models are estimated on the rolling window starting in year t − 4 and ending in year t, for each t = 1970, ..., 2020. R2’s

in-sample (left table) and out-of-sample (right table) are computed either for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios

(r : CZ21) as described in Section B.
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Table OA.8: In- and Out-of-sample Pricing R2 of factor models, RP-PCs on CZ21 test assets with
different values of γRP . Common and group specific factors versus zoo

Pricing R2 In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A : γRP = +1

r: CRSP, f : Comm. 44.6 35.1
r: CZ21, f : Comm. 91.9 92.7
r: CRSP, f :RP- PCA on Zoo <0 14.6 43.7 67.5 68.1 5.8 <0 <0 <0 <0
r: CZ21, f :RP- PCA on Zoo <0 21.5 71.1 83.5 82.9 <0 34.0 26.6 26.0 33.3

Panel B : γRP = +5

r: CRSP, f : Comm. 44.2 35.2
r: CZ21, f : Comm. 91.7 92.7
r: CRSP, f :RP- PCA on Zoo <0 42.7 63.8 74.9 74.8 4.9 <0 <0 <0 <0
r: CZ21, f :RP- PCA on Zoo 2.3 59.2 85.1 88.4 87.5 <0 40.5 31.8 29.2 33.5

Panel C : γRP = +10

r: CRSP, f : Comm. 44.3 35.1
r: CZ21, f : Comm. 91.7 92.7
r: CRSP, f :RP- PCA on Zoo <0 56.1 71.3 76.2 76.1 5.0 <0 <0 <0 <0
r: CZ21, f :RP- PCA on Zoo 31.4 68.2 88.2 89.2 88.3 0.2 50.9 43.5 41.6 44.6

Panels A, B and C of the table report Pricing R2s in percent for models involving estimates of the 3CF only (first two lines in each panel), and

latent factors from the factors in the Zoo by means of K RP-PCs (last two lines in each panel) with tuning parameter γRP set to +1, +5 and

+10, respectively. The models are estimated on the rolling window starting in year t− 4 and ending in year t, for each t = 1970, ..., 2020. R2’s

in-sample (left table) and out-of-sample (right table) are computed either for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios

(r : CZ21) as described in Section B.
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Table OA.9: In- and Out-of-sample Predictive R2 of factor models, RP-PCs on CZ21 test assets
with different values of γRP . Common and group specific factors versus zoo

Predictive R2 In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A : γRP = +1

r: CRSP, f : Comm. 0.75 0.79
r: CZ21, f : Comm. 4.06 4.73
r: CRSP, f :RP- PCA on Zoo <0 0.22 0.87 1.26 1.28 <0 <0 <0 <0 <0
r: CZ21, f :RP- PCA on Zoo <0 1.18 3.37 3.93 3.94 0.02 0.50 1.70 2.31 2.35

Panel B : γRP = +5

r: CRSP, f : Comm. 0.76 0.78
r: CZ21, f : Comm. 4.03 4.71
r: CRSP, f :RP- PCA on Zoo <0 0.75 1.24 1.41 1.41 <0 <0 <0 <0 <0
r: CZ21, f :RP- PCA on Zoo <0 2.78 3.97 4.15 4.14 <0 0.25 0.47 1.07 0.99

Panel C : γRP = +10

r: CRSP, f : Comm. 0.77 0.78
r: CZ21, f : Comm. 4.02 4.71
r: CRSP, f :RP- PCA on Zoo <0 1.01 1.36 1.44 1.44 <0 <0 <0 <0 <0
r: CZ21, f :RP- PCA on Zoo <0 3.17 4.13 4.19 4.17 <0 0.26 0.52 1.14 1.04

Panels A, B and C of the table report Predictive R2s in percent for models involving estimates of the 3CF only (first two lines in each panel), and

latent factors from the factors in the Zoo by means of K RP-PCs (last two lines in each panel) with tuning parameter γRP set to +1, +5 and

+10, respectively. The models are estimated on the rolling window starting in year t− 4 and ending in year t, for each t = 1970, ..., 2020. R2’s

in-sample (left table) and out-of-sample (right table) are computed either for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios

(r : CZ21) as described in Section B.
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OA.6 Performance evaluation measures

We describe the various performance evaluation measures both in-sample and out-of-sample

starting with the former.

Let yj,i,τ be the excess return in month τ belonging to block b of the i-th asset in group j, with

j = 1 corresponding to individual stocks, and j = 2 to CZ21 test asset portfolios. Each model m

for the returns of the CZ21 test assets y2,i,τ can be expressed as

y2,i,τ = βm ′
2,i,b f

m
2,τ + εm2,i,τ , with τ ∈ b , (OA.32)

where fmj,τ = [fm,c′τ , f j,m,s′τ ]′ for j = 1, 2, βm2,i,b = [λm,c′2,i,b , λ
m,s′
2,i,b ]

′, while fm,cτ and λm,c′2,i,b (resp. fm,s2,τ

and λm,s′2,i,b) are the common (resp. group-specific) factors and betas/loadings. We also use the same

model with constant loadings (within each block b) also for the individual stocks when the factors

are observable. Similarly, each IPCA model m for the individual stocks, with the exclusion of the

models with observable factors, can be written as:

y1,i,τ = (z′i,τ−1Γ
m
β,i,b) f

m
1,τ + εm1,i,τ , with τ ∈ b . (OA.33)

where zi,τ−1 is the vector collecting the values of the 36 characteristics (35 time-varying and a

constant) of stock i in month τ − 1, and Γmβ,i,b is a 36 × (kc + ks1) matrix of constant coefficients.

Therefore, Γm′
β,i,bzi,τ−1 is the (kc + ks1) - dimensional vector collecting the time-varying (with each

block b) individual stocks’ factor loadings implied by the IPCA model.

Online Appendix - 36



OA.6.1 In-sample performance evaluation

Let Nj,b be the total number of assets for which the full sample of returns is available in group j

and block b, with j = 1, 2 and b = 1, ..., B. For each model m and for each group of assets j,

we compute the following six performance measures across the entire sample, that is across all B

blocks:

1. Total R2 of Kelly et al. (2019), which for our model with betas changing across blocks can

be expressed as:

Tot. R2
j (m) = 1−

∑B
b=1

∑Nj,b

i=1

∑
τ∈b

(
yj,i,τ − β̂m ′

j,i,b,τf
m
τ

)2
∑B

b=1

∑Nj,b

i=1

∑
τ∈b y

2
j,i,τ

.

It represents the fraction of return variance for all the assets present in group j explained

by both the dynamic behavior of the loadings across different blocks, as well as by the

contemporaneous factor realizations, aggregated over all assets and all time periods, that is

across all B blocks. The Total R2 summarizes how well the systematic factor in a given

model specification describes the realized riskiness in the panel of individual stocks. In the

case of observable factors, i.e. models in (i) in Section A, the coefficients βmj,i,b,τ are constant

across all the dates τ in block b, and are estimated by an OLS regression without intercept of

excess returns on factors, compatibly with model (OA.32). By construction, the βmj,i,b,τ and

factors for all other models (ii) - (vi) in Section A are also estimated by PCA, or variation of

it, compatible with a linear model without intercept. For all models not involving IPCA, the

loadings βmj,i,b,τ are constant across all the dates τ in block b. 10

10Note that in Kelly et al. (2019) the β̂i,τ can effectively be computed only using information up to time τ, as
they are a function of the stock-specific characteristics zit observed at time t. Kelly, Palhares, and Pruitt (2020) notes
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2. Predictive R2 from Kelly et al. (2019), which for our model with betas changing across

blocks can be expressed as:

Pred. R2
j (m) = 1−

∑B
b=1

∑Nj,b

i=1

∑
τ∈b

(
yj,i,τ − β̂m ′

j,i,b,τ f̄
m
b

)2
∑B

b=1

∑Nj,b

i=1

∑
τ∈b y

2
j,i,τ

.

where f̄mb = 1
Tb

∑
τ∈b f

m
τ is the sample average of the factors’realizations within all the Tb

dates in block b only, that is the same block in which the βm ′
j,i,τ are estimated compatibly with

a model without intercept. Predictive R2 represents the fraction of realized return variation

explained by the model’s description of conditional expected returns, and summarizes the

model’s ability to describe risk compensation only through exposure to systematic risk. Our

measure of the Predictive R2 is slightly different from the in-sample Predictive R2 of Kelly

et al. (2019) as ours allows for factor risk premia which vary across different blocks, while

theirs imposes constant risk premia across dates.11

3. Pricing error R2 of Kelly et al. (2020), which is defined as:

Pr.Err. R2
j (m) = 1−

∑B
b=1

∑Nj,b

i=1

[
1
Tb

∑
τ∈b(yj,i,τ − β̂m ′

j,i,b,τf
m
τ )
]2

∑B
b=1

∑Nj,b

i=1

(
1
Tb

∑
τ∈b yj,i,τ

)2 ,

that is the fraction of the squared unconditional mean excess returns that is described by

factors and betas. In contrast to the previous two R2 measures, this focuses on whether the

model’s fitted values do a good job of explaining assets’ average returns. This metric is close

in flavor to formal statistical tests (like the GRS test) of whether or not a cross section of test

that: “the factor realization estimate f̂t+1 is constructed from a combination of time t + 1 realized returns, time τ
instruments zi,τ , and Γ̂β estimated from data through time τ, according to equation.”

11Due to the rotational indeterminacy of factors which are re-estimated across different blocks, we cannot impose a
constant factor average across different blocks.
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assets’ pricing errors are zero.

OA.6.2 Out-of-sample performance evaluation

We implement the out-of-sample version of the Total R2, Pricing R2 and Predicitve R2 where

betas and factor loadings, needed to reconstruct the latent factors out-of-sample for date τ in block

b are computed using information from the previous block b−1. Analogously to Lettau and Pelger

(2020b) we also compute the annualized Sharpe Ratio of the “Maximum Sharpe-ratio portfolio”

that can be obtained by an optimal (in a mean-variance sense) linear combination of the factors,

which are ultimately portfolios of individual stocks. Our out-of-sample performance measures are

defined as:

1. OOS Total R2, which for our model with betas changing across blocks can be expressed as:

OOS Tot. R2
j (m) = 1−

∑B
b=2

∑Nj,b−1

i=1

∑
τ∈b

(
yj,i,τ − β̂m ′

j,i,b−1,τf
m
τ |b−1

)2
∑B

b=2

∑Nj,b−1

i=1

∑
τ∈b y

2
j,i,τ

.

The beta coefficients β̂mj,i,b−1,τ are estimated using information available in block b− 1 only

(this also explains why we use only the Nj,b−1 stocks or portfolios available at the end of the

block b − 1), while returns yj,i,τ are observed for the same stocks at dates τ in block b. For

models with observable factors, fmτ |b−1 is simply the observed value of the factor at date τ in

block b, as all our observable factors are returns of portfolios of individual stocks observed

at date τ with weights computed at date τ −1. Instead, when a model includes latent factors,

we compute their values at date τ by running cross-sectional regressions of the returns yj,i,τ

for all assets available both in the previous block b−1, and in the current one b, on the factor

loadings estimated in the previous block b− 1 only.
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For instance, model (v) in Section A implies that in block b the DGP for the returns of

the CZ21 portfolios is:

y2,τ = Λm2,b−1 f
m
τ |b−1 + εm2,τ , with τ ∈ b . (OA.34)

Let Λ̂m2,b−1 be the (RP-)PC estimator of matrix Λ2,b−1 obtained using the returns of all assets

in group j for dates τ ∈ b − 1. Then, compatibly with model (OA.34), factors fmτ |b−1 are

computed as fmτ |b−1 = (Λ̂m ′
2,b−1Λ̂

m
2,b−1)

−1Λ̂m ′
2,b−1 y2,τ , for all dates τ ∈ b. Analogously, for the

models involving IPCs the loadings (and therefore the factors) are computed using the values

of the characteristics Zτ in block b (appropriately lagged), but with the values of matrix C

linking the loadings to characteristics estimated in block b− 1.

2. OOS Pricing R2, which can be expressed as:

OOS Pr.Err. R2
j (m) = 1−

∑B
b=2

∑Nj,b−1

i=1

[
1
Tb

∑
τ∈b(yj,i,τ − β̂m ′

j,i,b−1,τf
m
τ |b−1)

]2
∑B

b=1

∑Nj,b−1

i=1

(
1
Tb

∑
τ∈b yj,i,τ

)2 ,

where all quantities are computed as described for the OOS Total R2.

3. OOS Predictive R2, which can be expressed as:

OOS Pred. R2
j (m) = 1−

∑B
b=2

∑Nj,b−1

i=1

∑
τ∈b

(
yj,i,τ − β̂m ′

j,i,b,τ f̄
m
τ |b−1,τ−1

)2
∑B

b=2

∑Nj,b−1

i=1

∑
τ∈b y

2
j,i,τ

.

where f̄mτ |b−1,τ−1 is the sample average of the factor realizations computed over the 60 months

ending at date τ − 1, and where the factor is reconstructed (if necessary) for each date as
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described for the computation of the OOS Total R2, that is regressing returns in each month

τ on loadings estimated in the previous block b− 1.

4. Maximum Sharpe-ratio, Max. SR, that is the realized Sharpe Ratio of a portfolio of

“factors” (returns) of each model fmτ |b−1 combined at each date τ in block b with weights

wm
f,b = (Σ̂m

f,b−1)
−1µ̂mf,b−1, where µ̂mf,b−1 and Σ̂m

f,b−1 are the sample mean and covariance,

respectively, of all factors in model m computed using their observations in block b − 1.

Therefore, both factors and their weights in the Maximum Sharpe Ratio portfolio in block b

are computed using the factor loadings estimated in block b− 1.
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