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Abstract
We introduce a method to determine the investor’s optimal portfolio size that maximizes the
expected out-of-sample utility under parameter uncertainty. This portfolio size trades off
between accessing investment opportunities and limiting the number of estimated parameters.
Unlike sparse methods such as lasso that exclude assets during the optimization step, our
approach fixes the optimal number of assets before optimizing the portfolio weights, which
improves robustness and provides greater flexibility in practical implementations.
Empirically, our size-optimized portfolios outperform their counterparts applied to all
available assets. Our methodology renders portfolio theory valuable even when the dataset
dimension and sample size are comparable.
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I. Introduction

Given a chosen universe of M assets, conventional wisdom argues that an unconstrained

rational investor should invest in all M assets so as to diversify idiosyncratic risk and improve the

efficient frontier. However, this is at odds with the concentrated portfolios typically observed in

practice among individual investors (Campbell, 2006; Calvet, Campbell, and Sodini, 2007;

Goetzmann and Kumar, 2008) and institutions (Koijen and Yogo, 2019).1 As reviewed by Boyle,

Garlappi, Uppal, and Wang (2012), various papers aim to rationalize the concentrated portfolios

of investors or to explain them with behavioral biases. Existing explanations consider, e.g.,

transaction costs, short-sale constraints, prospect theory, overconfidence, cost of information,

geographical closeness and familiarity, private incentives, or preferences for higher-order

moments.

Besides behavioral and financial arguments, another motivation for reducing portfolio size

is parameter uncertainty, i.e., the parameters governing the asset return distribution are unknown

and must be estimated. In theory, the optimal portfolio can only benefit from increased investment

opportunities associated to a higher portfolio size. In practice, however, more parameters and

portfolio weights must be estimated, which increases estimation risk and hurts out-of-sample

performance (DeMiguel, Garlappi, and Uppal, 2009b; Barroso and Saxena, 2021).

Sparse portfolio selection aims at alleviating parameter uncertainty precisely by reducing

the portfolio size. This is typically achieved by imposing lasso-type constraints also known as

soft-thresholding (DeMiguel, Garlappi, Nogales, and Uppal, 2009a; Fan, Zhang, and Yu, 2012;

1Institutional investors are typically more diversified than individual investors, but still, Koijen and Yogo (2019)

find in their dataset of US stocks that the median institution held 67 stocks in the period 2015–2017.
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Yen, 2016; Ao, Li, and Zheng, 2019) or cardinality constraints (Gao and Li, 2013; Du, Guo, and

Wang, 2023). However, these methods suffer from five main drawbacks. First, the optimization

programs must be solved in dimension M , hence, face large estimation risk, even if the output

portfolio is ultimately of lower dimension. Second, they can be computationally intensive in high

dimension. For instance, cardinality constraints render the portfolio problem NP-hard. Third, they

entangle the selection of the assets with the optimization of portfolio weights in one single step.

Therefore, sparse methods do not allow for different rebalancing frequencies for portfolio weights

and the asset selection, or for flexibility in the asset selection. Fourth, they generally feature

hyperparameters that are often estimated by cross-validation, which is time consuming and adds

an extra layer of estimation risk. Lastly, the resulting portfolio size N is implicit from the

portfolio weights and does not have a clear meaning.

To address these drawbacks of sparse portfolio selection, we propose a sequential

three-stage process. First, select a portfolio strategy. In this paper, we consider a class of portfolio

strategies that consists of different combinations of sample mean-variance (MV),

global-minimum-variance (GMV), and equally weighted (EW) portfolios. Although more

sophisticated strategies exist, this class has the benefit of being simple, theoretically important,

commonly considered in the literature, and allows analytical tractability in finite samples.

Second, compute an optimal portfolio size N ≤M . Third, select which N assets to invest in

among the M available ones and optimize the weights on the N assets with the strategy in step

one. Interestingly, Ao et al. (2019) propose a similar sequential process for reasons of

computational efficiency, selecting a chosen number of N assets to maximize the Sharpe ratio and

then implementing their MAXSER strategy on this subset. Specifically, among the S&P500

stocks, they arbitrarily select 50 of them. In contrast, we show how to select an optimal N for
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several portfolio rules based on estimation-risk considerations.

Two key questions remain in our three-stage process: How do we find the optimal

portfolio size N? How do we then select the N assets? We focus on the first question.

Specifically, we introduce a methodology for finding the optimal N and leave flexibility to the

investor as to the choice of the N assets. In our empirical analysis, we evaluate the performance

of our optimal N on 10 simple and sensible asset selection rules as an illustration.

To find the optimal N , we consider a classical setting where investors are expected utility

maximizers with MV preferences, there are no investment constraints, and returns are i.i.d.

multivariate elliptically distributed. In this setting, parameter uncertainty stems from the unknown

mean, covariance matrix, and fat tails of returns, which we assume are constant over time. For

different portfolio rules within the class of MV portfolio combination strategies we consider, we

find the optimal portfolio size N , using a finite-sample setting, that trades off between two

opposite goals: increasing investment opportunities and reducing estimation risk. This N is

optimal as it maximizes the expected out-of-sample utility (EU), the standard portfolio

performance measure under parameter uncertainty (Kan and Zhou, 2007; Tu and Zhou, 2011;

Kan, Wang, and Zhou, 2021), and it varies across portfolio rules depending on their estimation

risk. We observe empirically that determining the optimal N using our theory and then selecting

the N assets using different selection rules significantly outperforms investing in all M assets in

almost 90% of considered configurations.

Our approach has five main benefits compared to the aforementioned sparse methods.

First, because we derive the portfolio size before optimizing the portfolio weights, these weights

depend on a more limited number of parameters, and thus, face less estimation risk. Second, our

approach is computationally less expensive because our optimal N can be found very efficiently
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and the portfolio weights are then optimized on a universe of smaller dimension. Third, our

optimal N depends on the data, the portfolio strategy, and the objective function, but is agnostic

as to the selection rule determining which N assets to invest in, i.e., the investor has flexibility

regarding asset selection. This allows different rebalancing frequencies for portfolio weights and

asset selection, which is valuable in practice.2 Fourth, our approach does not require the

calibration of any hyperparameter such as a constraint threshold. Lastly, the optimal N has an

intuitive meaning from trading off between investment opportunities and estimation risk when

maximizing expected utility.

Our theoretical analysis starts with the sample MV (SMV) portfolio, which is optimal in

sample, but not out of sample. Assuming that asset returns are equicorrelated as advocated by

Engle and Kelly (2012) and Clements, Scott, and Silvennoinen (2015),3 we express the EU of this

portfolio as a function of the portfolio size, the sample size, the correlation, the assets’ Sharpe

ratios, and three parameters that measure the impact of fat tails.4 We show that because SMV is

2In our empirical analysis, we rebalance the weights every month but the selected assets every year, which

reduces asset turnover and outperforms selecting assets every month. Nonetheless, we show in Section OA.7.5 of the

Online Appendix that our optimal N outperforms investing in all M assets also when the selected assets change

every month. This disentanglement is not feasible under lasso or cardinality constraints because asset selection and

weights optimization is simultaneous.
3Equicorrelation yields a satisfying tradeoff between specification and estimation error (Engle and Kelly, 2012)

and allows us to express the EU of our different MV portfolio rules as an explicit function of N . We use this

assumption only for finding the optimal N , not the portfolio weights. In Section OA.1 of the Online Appendix, we

show that the optimal N found under equicorrelation is similar to that under a single-factor model. Moreover, we find

that our method performs well also when returns are not equicorrelated.
4Most of the literature on portfolio choice with estimation risk assumes i.i.d. multivariate normally distributed

returns. Our incorporation of elliptical fat tails builds on the recent work by Kan and Lassance (2025).
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highly sensitive to estimation errors, its optimal N is typically very small. As a remedy for this

large estimation risk, Kan and Zhou (2007) introduce a two-fund rule that scales down the SMV

portfolio by combining it with the risk-free asset to maximize the EU, which Kan and Lassance

(2025) extend to the case with i.i.d. multivariate elliptical returns. Building on this, we derive the

optimal N for the two-fund rule. Remarkably, for typical levels of rather high correlations in

equity data, this optimal N is slightly below half the sample size. Given commonly used sample

sizes (e.g., 120 months), this result means that, under the two-fund rule, a finite-sample setting,

and our model assumptions, it is optimal to limit the portfolio size so as to optimize the

out-of-sample performance.

In addition to the two-fund rule, we derive the optimal N for three-fund rules combining

the SMV portfolio, the sample GMV (SGMV) portfolio, and the risk-free asset as in Kan and

Zhou (2007), DeMiguel, Martı́n-Utrera, and Nogales (2015), and Yuan and Zhou (2024), or

combining the SMV portfolio, the equally weighted (EW) portfolio, and the risk-free asset as in

Tu and Zhou (2011), Kan and Wang (2023), and Lassance, Vanderveken, and Vrins (2024b).

Similar to the two-fund rule, the optimal N for these rules is slightly below half the sample size

for typical equity-return correlations. These results extend the literature on portfolio choice with

estimation risk by showing that it is beneficial to substantially reduce the portfolio size even after

optimally combining the SMV portfolio with robust strategies.

We test our theory first in simulations where we assess the performance of our optimal N

when (i) it is subject to estimation errors, (ii) asset returns are not equicorrelated, and (iii) the

selection of the N assets out of the M available ones is random. The main conclusion is that the

size-optimized two-fund and three-fund rules still deliver an EU close to the maximum and

substantially larger than that when investing in all M assets or in too few assets. This shows that
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our method delivers a satisfying performance even when relaxing the theoretical assumptions,

highlighting its practical relevance. Moreover, the simulation analysis allows us to illustrate that,

for realistic values of the sample size, our size-optimized two-fund and three-fund rules can

outperform more sophisticated benchmark MV portfolios that reduce the portfolio size using soft

or hard-thresholding, as well as a factor-plus-alpha strategy built on PCA and the arbitrage

portfolio of Da, Nagel, and Xiu (2024).

Finally, we turn to empirical data. We consider six datasets of characteristic and

industry-sorted portfolios and one dataset of individual stocks, with M around 100. Using a

rolling window of 120 months, we compare the net out-of-sample utility of 11 portfolio

strategies, including our size-optimized two-fund and three-fund rules. For the latter, we propose

10 simple and sensible selection rules to decide which N assets to select. We find large benefits

from optimizing N using our theory. In the vast majority of cases, the two-fund and three-fund

rules implemented with the 10 asset selection rules outperform the same rules applied to all M

assets. The improvement is particularly large and statistically significant when we shrink the

covariance matrix. Moreover, for some asset selection rules, our size-optimized portfolio rules

consistently outperform the EW and SGMV portfolios, a notoriously difficult task when the

dataset dimension M is comparable to the sample size, as well as soft and hard-thresholding MV

portfolios and the factor-plus-alpha strategy.

Our paper complements existing work that studies the effect of the portfolio size N using

asymptotic theories. In particular, Ao et al. (2019) and Da et al. (2024) consider a class of more

sophisticated portfolio strategies that treats estimation risk differently from ours via

soft-thresholding and a factor model, respectively. They find, under specific assumptions, that

they can asymptotically achieve the performance of the population optimal portfolio as both the
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portfolio size and the sample size go to infinity. That is, in their asymptotic theories, it is optimal

to increase N . We complement these results by studying a simpler, but nonetheless important,

class of portfolio strategies for which we can study the out-of-sample performance analytically in

a finite-sample setting. In that case, we find that it is optimal to reduce the portfolio size N . Our

simulation and empirical results signal that asymptotic theories like those of Ao et al. (2019) and

Da et al. (2024), which suggest that increasing N is beneficial, might not kick in for realistic

sample sizes and typically deliver a performance inferior to that of our size-optimized portfolios.

The paper is structured as follows. In Section II., we study the optimal portfolio size for

the MV portfolio with no parameter uncertainty. In Section III., we show how to derive an

optimal N for the SMV portfolio and the two-fund rule under parameter uncertainty. Sections IV.

and V. contain our simulation and empirical analysis, respectively. Section VI. concludes. The

Appendix contains results and proofs that are central to the main text. The Online Appendix

provides additional theoretical, simulation, and empirical results.

II. Optimal Portfolio Size without Parameter Uncertainty

In this section, we study the optimal portfolio size for an unconstrained MV investor who

knows the parameters of asset returns without uncertainty. We suppose the investor starts from a

universe of M assets and wishes to find an optimal number N ≤M of assets.

Given a fixed number N of assets, let rt be the N × 1 vector of asset excess returns at

time t, which has a mean µN and a positive-definite covariance matrix ΣN . We denote by µi, σ2
i ,

and si = µi/σi the mean excess return, variance, and Sharpe ratio of asset i. An MV investor with
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risk-aversion coefficient γ > 0 selects the portfolio weights on the risky assets as

w⋆ = argmax
w∈RN

U(w) = argmax
w∈RN

w′µN − γ

2
w′ΣNw,(1)

where U(w) is the MV utility of portfolio w. Solving (1) yields the MV portfolio satisfying

(2) w⋆ =
1

γ
Σ−1
N µN and U(w⋆) =

θ2N
2γ

with θ2N = µ′
NΣ

−1
N µN ,

where θN is the maximum Sharpe ratio. We have that w⋆ combines two funds: the fully invested

tangency portfolio, w = (1′
NΣ

−1
N µN)

−1Σ−1
N µN , and the risk-free asset, w = 0N .

Clearly, U(w⋆) is non-decreasing with N because one can set the weight of an additional

asset to zero and keep the same utility. Thus, without parameter uncertainty, it is optimal to

consider the whole investment universe and set N =M . To relate U(w⋆) and N explicitly, we

assume the following about ΣM .

Assumption 1 The covariance matrix ΣM takes the form ΣM(ρ) = DMPM(ρ)DM with DM

the diagonal matrix of standard deviations and PM(ρ) the equicorrelation matrix,

PM(ρ) = (1− ρ)IM + ρ1M1′
M ,(3)

where 1M and IM are the unit vector and matrix, and ρ ∈
(
− 1

M−1
, 1
)

so that ΣM is invertible.

Under Assumption 1, the dependence structure depends on a single parameter, ρ. It

follows that for any N ≤M , ΣN has the same form as in Assumption 1. This assumption is

commonly used in portfolio selection to trade off between specification and estimation error.5 We
5Elton and Gruber (1973) find that assuming equicorrelation improves portfolio performance relative to a wide
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use Assumption 1 only as a way to express the EU of our portfolio rules as an explicit function of

N , which will allow us to find the optimal N . We do not need this assumption for the portfolio

weights. In Section OA.1 of the Online Appendix, we find the optimal N under another

commonly used approximation, the single-factor model, which we show is essentially equivalent

to that under equicorrelation.

In the next proposition, we provide the analytical expression of U(w⋆) under

Assumption 1.6 This is a novel result to the best of our knowledge.

Proposition 1 Under Assumption 1, the utility of the MV portfolio is U(w⋆) = θ2N/(2γ) with

θ2N =
N

1− ρ
δN(θ̄N), δN(θ̄N) = θ̄N,2 −

Nρ

1− ρ+Nρ
θ̄2N,1 ≥ 0,(4)

where θ̄N = (θ̄N,1, θ̄N,2) and θ̄N,k = 1
N

∑N
i=1 s

k
i . Moreover, U(w⋆) is non-decreasing in N and is

strictly increasing from N to N + 1 whenever sN+1 ̸= ρNθ̄N,1/(1− ρ+Nρ).

Proposition 1 shows that the maximum utility is non-decreasing in N . In Figure 1, we

depict U(w⋆) as a function of N ∈ {1, . . . ,M} for ρ ∈ {0.2, 0.5, 0.8} and assets’ monthly Sharpe

range of alternatives. Ledoit and Wolf (2003) shrink the sample covariance matrix toward an equicorrelation model.

Boyle et al. (2012) study an ambiguity-averse portfolio and assume the parameters, including correlations, are

homogeneous. Engle and Kelly (2012) propose a dynamic equicorrelation covariance matrix and find that it “[...]

improves portfolio selection compared to an unrestricted dynamic correlation structure.” Clements et al. (2015) “[...]

find evidence in favour of assuming equicorrelation across various portfolio sizes, particularly during times of crisis.”

Finally, Chung, Lee, Kim, Kim, and Fabozzi (2022) find that errors in correlations dominate those in means and

variances for MV optimization.
6The proofs of all results in the main text are available in Section A.III. of the Appendix.
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ratios si calibrated to a dataset of M = 96 decile portfolios7 sorted on size and book-to-market

(96S-BM) spanning July 1963 to August 2023.8

[Insert Figure 1 approximately here]

III. Optimal Portfolio Size under Parameter Uncertainty

In this section, we show that it is no longer optimal for an MV investor to invest in all M

assets when the assets’ parameters are unknown and the investor relies on sample estimates.

A Sample Estimates and Distributional Assumption

Given a sample of asset excess returns of size T , (r1, . . . , rT ), let

µ̂N =
1

T

T∑
t=1

rt and Σ̂N =
1

T

T∑
t=1

(rt − µ̂N)(rt − µ̂N)
′(5)

be the sample estimates of µN and ΣN , and we require T > N so that Σ̂N is almost surely

invertible. Given a sample portfolio ŵ estimated with µ̂N and Σ̂N , we measure its performance

with the expected out-of-sample utility (EU) pioneered by Kan and Zhou (2007),

(6) EU(ŵ) = E[U(ŵ)] = E
[
ŵ′µN − γ

2
ŵ′ΣNŵ

]
.

7We remove four portfolios for which there is missing data. We collect this dataset from Kenneth French’s

website.
8Figure 1 shows that U(w⋆) is a non-monotonic function of ρ. In Section OA.2 of the Online Appendix, we

demonstrate that U(w⋆) is a convex function of ρ, extending results in Gandy and Veraart (2013).
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We then define N⋆ as the optimal portfolio size N maximizing the EU of ŵ.

Kan and Zhou (2007) and follow-up papers like Tu and Zhou (2011), Kan et al. (2021),

Lassance et al. (2024b); Lassance, Martı́n-Utrera, and Simaan (2024a), and Yuan and Zhou

(2024), evaluate (6) under the i.i.d. multivariate normal distributional assumption. Instead, we

follow Kan and Lassance (2025) who study the EU of various sample portfolios under the i.i.d.

multivariate elliptical distribution. Like them, we use the stochastic representation of the elliptical

distribution in El Karoui (2010, 2013).

Assumption 2 Asset returns rt are independent and identically distributed over time and follow

a multivariate elliptical distribution. That is, rt1 ⊥ rt2 for t1 ̸= t2 and rt
d
= µM + (τΣM)

1
2zM ,

where zM ∼ N (0M , IM), τ is a positive random variable satisfying E[τ ] = 1, and zM ⊥ τ . In

particular, µM and ΣM are constant over time.

We recover the normal distribution when τ = 1, and the t-distribution when

τ ∼ (ν − 2)/χ2
ν , where χ2

ν is a chi-square distribution with ν > 2 degrees of freedom. We focus

on the elliptical distribution because it is consistent with MV portfolios (Chamberlain, 1983;

Schuhmacher, Kohrs, and Auer, 2021). Specifically, since the multivariate elliptical distribution is

closed under linear transformations, all portfolios have the same higher moments and only differ

in their mean return and variance. Therefore, for all increasing and concave utility functions, the

optimal portfolio under expected utility is MV efficient. We also opt for the elliptical distribution

because Kan and Lassance (2025) show that accounting for fat tails is crucial in determining

optimal portfolio combination rules.
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B Optimal Portfolio Size for Sample Portfolios

The first strategy we consider is the sample counterpart of the MV portfolio in (2), i.e.,

ŵ⋆ =
1

γ
Σ̂−1
N µ̂N .(7)

The sample MV (SMV) portfolio is not robust to parameter uncertainty because it is only optimal

in sample. Therefore, we also consider the two-fund rule of Kan and Zhou (2007) that scales

down the SMV portfolio to maximize its EU. This two-fund rule is of the form

ŵ(α) = αŵ⋆ =
α

γ
Σ̂−1
N µ̂N ,(8)

where α ∈ R is the combination coefficient. The SMV in (7) corresponds to ŵ⋆ = ŵ(1).

In the next proposition, we derive the EU of the two-fund rule, and thus also the SMV

portfolio, the optimal combination coefficient α⋆, and which EU it delivers, when asset returns are

elliptically distributed. These results then allow us to determine the optimal portfolio size N . This

Proposition follows, with minor adjustments, from Kan and Lassance (2025, Propositions 7

and 8). In Section A.I. of the Appendix, we follow the same approach for three-fund rules that

extend the two-fund rule by incorporating a third fully invested fund, which is either the GMV or

the EW portfolio. We refer to these as the GMV-three-fund rule and the EW-three-fund rule,

respectively.

Proposition 2 Let T > N + 4, M = IT − 1T1
′
T/T , ZN be a T ×N matrix of independent

standard normal variables, Λ be a diagonal matrix of T independent copies of τ 1/2, and
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Λ ⊥ ZN . Then, under Assumption 2, the EU of the two-fund rule ŵ(α) in (8) is

EU(ŵ(α)) =
T

2γ(T −N − 2)

[(
2ακN,1 −

cNα
2κN,2T

T −N − 2

)
θ2N − cNα

2κN,3N

T −N − 2

]
,(9)

where θ2N is the maximum squared Sharpe ratio given in (4), cN = (T−2)(T−N−2)
(T−N−1)(T−N−4)

, and κN,1,

κN,2, and κN,3, which we assume exist, are functions of only N , T , and the distribution of τ :

κN,1 =
T −N − 2

N
E
[
tr
(
(Z ′

NΛMΛZN)
−1
)]
,(10)

κN,2 =
(T −N − 2)2

cNN
E
[
tr
(
(Z ′

NΛMΛZN)
−2
)]
,(11)

κN,3 =
(T −N − 2)2

cNNT
E
[
1′
TΛZN(Z

′
NΛMΛZN)

−2Z ′
NΛ1T

]
.(12)

Moreover, the optimal combination coefficient α⋆ maximizing (9), and the resulting EU, are

α⋆ =
T −N − 2

cNT

(
κN,1θ

2
N

κN,2θ2N + κN,3
N
T

)
and EU(ŵ(α⋆)) =

1

2γcN

(
κ2N,1θ

4
N

κN,2θ2N + κN,3
N
T

)
.(13)

Three comments are in order. First, Proposition 2 is valid for any ΣN , not only those of

the form ΣN(ρ). Second, κN,1, κN,2, and κN,3 do not have a closed-form expression, but can be

evaluated via Monte Carlo simulations given the distribution of τ . We explain how we estimate

them in Section A.II. of the Appendix. Kan and Lassance (2025) show that they increase with

estimation risk N/T and tail heaviness. Third, under parameter uncertainty in µN and ΣN , a

larger N may not always be favorable. Instead, the N maximizing (9) trades off between

improving the population performance (i.e., increasing θ2N ) and limiting estimation risk (i.e.,

decreasing N/T ).
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Next, we proceed as in Section II. and relate the EU with N more explicitly by assuming

that the covariance matrix ΣN complies with Assumption 1, i.e., ΣN = ΣN(ρ). We obtain this

novel result by plugging the expression for θ2N under equicorrelation in (4) into Equations (9) and

(13).

Corollary 1 Under Assumptions 1 and 2, the EU of the SMV portfolio ŵ⋆ and the optimal

two-fund rule ŵ(α⋆) are given by

EU(ŵ⋆) =
NT

2γ(T −N − 2)

[
δN(θ̄N)

1− ρ

(
2κN,1 −

cNκN,2T

T −N − 2

)
− cNκN,3
T −N − 2

]
(14)

=: EUsmv(N, T, ρ, τ, θ̄N), and(15)

EU(ŵ(α⋆)) =
N

2γcN(1− ρ)
× κ2N,1δN(θ̄N)

2

κN,2δN(θ̄N) + κN,3
1−ρ
T

=: EU2f (N, T, ρ, τ, θ̄N).(16)

EUsmv and EU2f depend on several parameters.9 First, the sample size T , directly but

also via cN and (κN,1, κN,2, κN,3). Second, the portfolio size N , directly but also via cN , the

function δN , and (κN,1, κN,2, κN,3). Third, which N assets are selected via θ̄N = (θ̄N,1, θ̄N,2).

Now, to maximize EUsmv(N, T, ρ, τ, θ̄N) or EU2f (N, T, ρ, τ, θ̄N) with respect to N , one

would also need to optimize the selection of assets because θ̄N depends on N via the chosen

subset of assets. This is a difficult optimization problem because the number of possible subsets

of N assets with N going from one to M grows very quickly with M .10 Moreover, this would

introduce potentially severe estimation risk and time instability in the selection of assets, which is

undesirable. This is why, to disentangle the determination of the optimal N from the asset

9The EU of the SMV portfolio and the two-fund rule is proportional to 1/γ, and thus, the N optimizing the EU

does not depend on γ. Therefore, we do not highlight the dependence on γ in EUsmv and EU2f .
10The number of possible subsets of N assets out of M = 100 ones is equal to

∑M
N=1

(
M
N

)
≈ 1.26× 1030.
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selection, we replace θ̄N by its counterpart for the whole investment universe, i.e., θ̄M . This

approximation may not be accurate when N is small relative to M .11 In this case, however, the

estimated θ̄N will be particularly noisy, and thus estimating it from θ̄M can help too. All in all,

the way we determine the optimal portfolio size N for the SMV portfolio and the optimal

two-fund rule becomes12

N⋆
smv = argmax

N∈{1,...,min(M,T−5)}
EUsmv(N, T, ρ, τ, θ̄M), and(17)

N⋆
2f = argmax

N∈{1,...,min(M,T−5)}
EU2f (N, T, ρ, τ, θ̄M).(18)

We now illustrate N⋆
smv and N⋆

2f . Using the full sample of the 96S-BM dataset introduced

in Section II., we obtain µ̂96 and Σ̂96 using (5). Then, we set the population mean µM = µ̂96 and

the population covariance matrix ΣM = Σ̂96(ρ) = D̂96P96(ρ)D̂96 with D̂96 = diag(Σ̂96)
1/2,

which yields θ̄96 = (0.125, 0.0169), and we take ρ ∈ {0.2, 0.5, 0.8}. We consider either the

normal distribution, i.e., τ = 1 and κN,1 = κN,2 = κN,3 = 1, or the t-distribution, i.e.,

τ ∼ (ν − 2)/χ2
ν , with ν = 6. Figure 2 depicts N⋆

smv and N⋆
2f as a function of T . We make several

observations. First, N⋆
smv and N⋆

2f increase with T because, as T increases, the estimated

11In Section OA.3 of the Online Appendix, we show that θ̄N quickly converges to θ̄M in practice.
12We search N up to min(M,T − 5) because we assume T > N + 4 in Proposition 2. In Section OA.3 of the

Online Appendix, we compare, for the optimal two-fund rule, the dependence on N of the EU obtained with θ̄M and

θ̄N , i.e., EU2f (N,T, ρ, τ, θ̄M ) and EU2f (N,T, ρ, τ, θ̄N ) in (16). EU2f (N,T, ρ, τ, θ̄N ) depends on N via the

sequence of assets considered, and thus, we generate a large number of random asset sequences, evaluate

EU2f (N,T, ρ, τ, θ̄N ) for each sequence, and compare it to EU2f (N,T, ρ, τ, θ̄M ). We find that

EU2f (N,T, ρ, τ, θ̄M ) provides a good approximation and that the dispersion of EU2f (N,T, ρ, τ, θ̄N ) across

different asset sequences is reasonable.
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portfolios become better estimates of the true MV portfolio for which the optimal N =M .

[Insert Figure 2 approximately here]

Second, N⋆
smv is very small compared to T and M . For instance, with T = 240 and

ρ = 0.5, N⋆
smv = 3 both for the normal and t-distributions. For a larger ρ = 0.8, N⋆

smv gets larger

but is still small. For example, when ρ = 0.8 and T = 120, 180 and 240, we have N⋆
smv = 1, 3,

and 10 for the normal distribution, and N⋆
smv = 1, 2, and 7 for the t-distribution, respectively.

Third, N⋆
smv and N⋆

2f tend to increase with ρ. This is because, as we show in Section OA.2

of the Online Appendix, the maximum utility without parameter uncertainty, U(w⋆), is a convex

function of ρ, and thus, is increasing in ρ for ρ large enough. Therefore, given that U(w⋆) is an

increasing function of N , a larger ρ tends to increase the optimal N .

Fourth, N⋆
2f is higher than N⋆

smv, below T/2, equal to M if T/2 is enough above M , and

gets closer to T/2 as ρ increases. These results can be explained based on (16) and (18).

Specifically, we can show that in the normal case, i.e., κN,1 = κN,2 = κN,3 = 1, N⋆
2f is below T/2

(and equal to M if M is sufficiently below T/2), and close to T/2 when ρ is close to zero or one.

To see this, consider the N maximizing the first term of EU2f , i.e., N/cN . We have

N

cN
=
N(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)
≈ N(T −N − 4)

(T − 2)
,(19)

and the latter is maximized by

argmax
N∈{1,...,min(M,T−5)}

N(T −N − 4)

(T − 2)
= min([T/2− 2],M).(20)

Moreover, when κN,1 = κN,2 = κN,3 = 1, the second term of EU2f in (16) decreases with N and
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is maximized by N = 1, which moves N⋆
2f below (20). However, the sensitivity of this second

term to N depends on how sensitive Nρ/(1− ρ+Nρ) is to N , and it is less so as ρ approaches

zero or one. In equity data where ρ is typically large, we thus expect N⋆
2f to stay close to (20).

Finally, in the elliptical case, κN,1, κN,2, and κN,3 also depend on N , but Figure 2 and later

simulations suggest that N⋆
2f still remains close to that under normality.

Finally, fat tails positively impact N⋆
2f , while we observe the opposite for N⋆

smv. This can

be explained because the two-fund rule optimally scales down the SMV portfolio according to tail

heaviness via κN,1, κN,2, and κN,3. Therefore, as shown by Kan and Lassance (2025,

Proposition 5), the two-fund rule often performs better when asset returns are elliptically instead

of normally distributed, and thus we find a larger N⋆
2f under elliptical returns.

IV. Simulation Analysis

In Section IV.A, we study the estimated optimal N for the SMV portfolio and two-fund

and three-fund rules. In Section IV.B, we test whether the EU is close to optimal under the

estimated optimal N and when Assumption 1, i.e., equicorrelation, is not satisfied. In

Section IV.C, we analyze the effect of N on the EU delivered by alternative benchmark portfolio

strategies.

To run this analysis, we draw monthly excess returns from a t-distribution, i.e.,

τ ∼ (ν − 2)/χ2
ν , with ν ∈ {6,∞}. As in Section III.B, we calibrate the mean and covariance

matrix to the full sample of 96S-BM dataset introduced in Section II.. Specifically, we set

µM = µ̂96 and consider ΣM ∈ {Σ̂96, Σ̂96(ρ̄)}, where ρ̄ = 0.74 is the average of the correlations

in Σ̂96. We also consider varying ρ. Setting ΣM = Σ̂96(ρ̄) allows us to compare the estimated
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optimal values of N with the oracle optimal one that, for the SMV portfolio and the two-fund and

three-fund rules, is known theoretically under Assumption 1, i.e., when ΣM is of the form ΣM(ρ).

Throughout this simulation analysis, the EU gains from reducing portfolio size originate

from the benefits of a reduction in parameter dimensionality on out-of-sample performance.

In-sample, with µM and ΣM being known, it is optimal to have N =M .

A Estimated Optimal Portfolio Size

We now analyze the estimated optimal portfolio size for the SMV portfolio (N̂⋆
smv), the

two-fund rule (N̂⋆
2f ), the GMV-three-fund rule (N̂⋆

3f,g), and the EW-three-fund rule (N̂⋆
3f,ew).

These are the estimated counterparts of N⋆
smv in (17), N⋆

2f in (18), N⋆
3f,g in (A.10), and N⋆

3f,ew

in (A.19) following the estimation methodology in Section A.II. of the Appendix.

We simulate K = 10,000 times T = 120 returns and estimate the optimal N in each

simulation. Figure 3 depicts boxplots of N̂⋆ for the different strategies and choices of (ν,ΣM ).

We make several observations. First, when ΣM = Σ̂96(ρ̄), N̂⋆ is close to the oracle N⋆,

highlighting the quality of our estimation procedure. Second, N̂⋆ is similar under Σ̂96 and

Σ̂96(ρ̄), meaning that drawing returns from a distribution violating Assumption 1 does not

materially affect the estimation of N . Third, N̂⋆
smv is very small, in line with Figure 2. Fourth, N̂⋆

is similar across the two-fund and three-fund rules and is typically slightly below T/2, which is

because ρ̄ is rather large; see Section III.B. Finally, the lower the ν the higher the N̂⋆ in the

two-fund and three-fund rules, in line with Figure 2.

[Insert Figure 3 approximately here]

Next, in Figure 4, we let ΣM = Σ̂96(ρ) and depict the oracle N⋆ and boxplots of N̂⋆ for ρ
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varying between 0.1 and 0.9. We set ν = 6; the results are similar for ν = ∞. We observe the

following. First, the oracle N⋆ is slightly below T/2 when ρ is close enough to one, in line with

Figure 2 where ρ = ρ̄ = 0.74. In this case of high correlation, typical for equity data, N̂⋆ is

remarkably robust to parameter variability as the boxplots are thin. Second, for the SMV, 2F, and

3FGMV portfolios, the oracle N⋆ first decreases with ρ and then reincreases, attaining its

maximum as ρ approaches one. This is because we want to invest in more assets when the

maximum Sharpe ratio, θN in (4), is larger, which also first decreases then reincreases with ρ; see

Section OA.2 of the Online Appendix. For ρ away from zero and one, the boxplots widen as N̂⋆

becomes more sensitive to the parameters. Third, ρ has a different effect for the 3FEW portfolio:

N⋆ decreases with ρ. This can be explained because 3FEW combines SMV with EW, which is

not subject to estimation risk. Thus, when ρ decreases and θN decreases too, 3FEW mostly

invests in the EW portfolio and it is optimal to have a large N even under estimation risk. Finally,

N̂⋆ is overall close to N⋆ on average.

[Insert Figure 4 approximately here]

B Performance of Size-Optimized Portfolios

We now evaluate the performance of the size-optimized SMV, two-fund, and three-fund

rules using N = N̂⋆. For each choice of (ν, ΣM), where ν ∈ {6,∞} and ΣM ∈ {Σ̂96, Σ̂96(ρ̄)},

we draw K = 10,000 times L = 300 t-distributed returns, which we use in a rolling-window

exercise. Specifically, in each simulation k, given the sample size T = 120 and a chosen N , we

randomly select in each rolling window a subset of N assets,13 estimate the portfolio on these N
13In the empirical analysis of Section V., we use different selection rules to improve upon a random selection. In

the current simulation exercise we are interested in general conclusions, independent of one specific asset selection
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assets (see our estimation methodology in Section A.II. of the Appendix), and evaluate the

out-of-sample portfolio return rt,k on the next month. We also implement the EW portfolio,

wew = 1N/N , on the same N assets for comparison. We then roll the window by one month and

proceed similarly until we reach the end of the sample of L returns. This gives us, for any N , a

time series of out-of-sample portfolio returns rt,k, t = 1, . . . , L− T and k = 1, . . . , K, and we

compute the EU as

EU =
1

K

K∑
k=1

(
µ̂k −

γ

2
σ̂2
k

)
with µ̂k =

1

L− T

L−T∑
t=1

rt,k, σ̂
2
k =

1

L− T

L−T∑
t=1

(rt,k − µ̂k)
2.(21)

In Figure 5, we vary N from five to M = 96 and depict the results for ν = 6 and ΣM = Σ̂96,

which is the most relevant case. In Section OA.6.1 of the Online Appendix, we set ν = ∞ and

ΣM = Σ̂96 and, in Section OA.6.2, ν ∈ {6,∞} and ΣM = Σ̂96(ρ̄). The four panels in Figure 5

consider the SMV, 2F, 3FGMV, and 3FEW portfolios. Each panel depicts the EU as a function of

N with a solid line using γ = 1, and also of the EW portfolio with a dash-dotted red line. In

addition, we depict with an horizontal dashed line the EU obtained by using the estimated optimal

portfolio size, N = N̂⋆
t,k, which varies across rolling windows and simulations.14

[Insert Figure 5 approximately here]

We make several observations. First, N̂⋆ delivers an EU close to the maximum, even

though equicorrelation does not hold, there is estimation error in N̂⋆, and the asset selection is

rule, averaged over a large number of random selections.
14In Section OA.6.3 of the Online Appendix, we implement a similar exercise where the correlation matrix has a

block structure. Even in this setup that violates Assumption 1, there are significant gains from reducing the portfolio

size from M to N̂⋆ for the SMV, 2F, 3FGMV, and 3FEW portfolio rules.
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random.15 Second, for 2F, 3FGMV, and 3FEW, the EU is maximized for N slightly below T/2, in

line with Section III.B and the average correlation being large (ρ̄ = 0.74). In contrast, the

optimal N is very small for SMV, as in Figure 2. Third, for 2F, 3FGMV, and 3FEW, N̂⋆ delivers

an EU substantially larger than that when N is too small or too close to M , highlighting the value

of choosing the right portfolio size and the cost of blindly investing in all assets. This EU

obtained with N̂⋆ substantially outperforms the naive EW portfolio, which is a challenging

benchmark for M close to T .

C Comparison to Benchmarks

We now consider benchmark portfolio strategies that we also consider in the empirical

analysis of Section V.. First, we consider two natural ways of reducing portfolio size, which are

soft and hard-thresholding versions of the SMV portfolio, called SMV-ST and SMV-HT.

SMV-ST solves the mean-variance portfolio problem subject to an L1-norm constraint:

ŵSMV−ST = argmax
w∈RM

w′µ̂M − γ

2
w′Σ̂Mw subject to ||w||1 =

M∑
i=1

|wi| ≤ δ.(22)

The L1-norm constraint performs asset selection and limits short-selling, which helps improve

out-of-sample performance (DeMiguel et al., 2009a). We calibrate the threshold δ using

cross-validation with out-of-sample utility as a decision criterion. Specifically, we search the

optimal δ in an interval of 1,000 equally spaced values ranging from zero to δmax, defined as the

norm of the unconstrained solution to (22), i.e., δmax = || 1
γ
Σ̂−1
M µ̂M ||1.

15In Section OA.6.2 of the Online Appendix, we show that this result is robust under equicorrelation to

considering different values of ρ and, in particular, low values for which N̂⋆ has a large variance as shown in Figure 4.
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SMV-HT selects the portfolio size by keeping only the assets whose absolute SMV

portfolio weight is above a threshold w̄. In that case, the value of N is determined by w̄ as

N̂SMV−HT =
M∑
i=1

1{|ŵ⋆
i |≥w̄} where ŵ⋆ =

1

γ
Σ̂−1
M µ̂M .(23)

Once the N̂SMV−HT assets are selected, we recompute the SMV portfolio on these assets, which

delivers better performance than keeping the original weights. We select the threshold w̄ via

cross-validation with out-of-sample utility as a decision criterion. Specifically, we search w̄ in an

interval of 10 equally spaced values ranging from zero (all assets selected) to w̄max (no asset

selected), where w̄max = max| 1
γ
Σ̂−1
M µ̂M | is the largest absolute weight of the full SMV

portfolio.16

In Figure 6, we depict the EU of SMV-ST and SMV-HT as a function of the number of

assets on which they are estimated using the same setup as in Figure 5, with ν = ∞.17 We also

depict boxplots of the estimated optimal N under SMV-ST and SMV-HT. We make several

observations. First, SMV-ST and SMV-HT substantially improve upon the plain SMV portfolio in

Figure 5. Second, SMV-ST and SMV-HT deliver an EU that is consistently negative. Therefore,

they are less effective approaches to reducing portfolio size than our size-optimized two-fund and

three-fund rules in Figure 5. Third, SMV-ST and SMV-HT set a small optimal N , in line with the

small EU-optimal portfolio size for the SMV portfolio that we obtain theoretically; see Figure 2.

[Insert Figure 6 approximately here]

16Given the large estimation risk of the SMV portfolio, using more than 10 values yields similar results because

cross-validation typically yields w̄ close to w̄max such that we keep only a few assets.
17In Section OA.6.1 of the Online Appendix, we obtain similar conclusions with ν = ∞ and ΣM = Σ̂96.
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The final benchmark imposes a small-dimensional factor model in the estimation.

Specifically, as detailed in Section OA.4 of the Online Appendix, we construct a factor-plus-alpha

(F+A) strategy, where the factor part is estimated via PCA, the alpha part via the arbitrage

portfolio methodology of Da et al. (2024), and the factor and alpha portfolios are combined to

maximize expected utility. This is a relevant benchmark for two reasons. First, although it does

not reduce the portfolio size, it still reduces the number of parameters to estimate due to the factor

model. Second, Da et al. (2024, Theorem 4) demonstrate that in the limit as N and T get large,

and under specific assumptions, their arbitrage portfolio attains the maximum achievable Sharpe

ratio over all portfolios having zero factor exposure. Therefore, the F+A strategy might work well

also for a large N .

In Figure 7, we consider the same setup as in Figures 5 and 6 and depict the EU delivered

by the F+A strategy as a function of N . In the left panel, the sample size T = 120. In the right

panel, T = 60 + 2N increases with N to capture the asymptotics in Da et al. (2024). For

comparison, we also depict the EU of the two-fund rule; we find a similar conclusion for

three-fund rules. We observe that when T is fixed, the EU of F+A decreases with N and

substantially underperforms the 2F and EW portfolios. However, when T increases with N , the

EU of F+A tends to improve with N and is maximized at N =M , where it slightly outperforms

the EW portfolio. Nonetheless, the EU of the 2F strategy also improves with N in that case, and

outperforms F+A for all N . Overall, these results suggest that, in our simulation setting, the 2F

strategy delivers a better out-of-sample performance under estimation risk than the F+A strategy

constructed from Da et al. (2024).

[Insert Figure 7 approximately here]
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V. Empirical Analysis

In Section V.A and V.B, we present the datasets and portfolio strategies, respectively. In

Section V.C, we propose different rules to select in which assets to invest. In Section V.D, we

detail the out-of-sample methodology and performance measures. Finally, we discuss the results

in Section V.E. In this empirical analysis, the out-of-sample performance gains from reducing

portfolio size originate from parameter uncertainty, but also from the inclusion of transaction

costs.

A Datasets

Our empirical analysis is based on six datasets of characteristic and industry portfolios

and one dataset of 100 individual stocks, which we list in Table 1 with the time period considered

for each. Given that our objective is to reduce the portfolio size, the full investment universe must

not be too small in the first place, and thus, we consider datasets with M around 100.

The first dataset already introduced in Section II., 96S-BM, is composed of decile

portfolios sorted on size and book-to-market. The second dataset, 108CHA, is composed of the

long and short legs of the 54 characteristics considered in Lassance and Martı́n-Utrera (2023),

collected from the authors. The third dataset, 100S-OP, is composed of decile portfolios sorted on

size and operating profitability. The fourth dataset, 94IN-NV, is composed of 48 industry

portfolios and the long and short legs obtained from the 23 characteristics in Novy-Marx and

Velikov (2015), available on Robert Novy-Marx’s website. The fifth dataset, 107IN-CHA, is

composed of 47 industry portfolios,18 quintile portfolios sorted on size and book-to-market and

18We consider 47 portfolios instead of 48 because of missing data in the healthcare portfolio before July 1969.
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on operating profitability and investment, and decile portfolios sorted on momentum. The sixth

dataset, 98IN-CHA-NV, is composed of 47 industry portfolios, quintile portfolios sorted on size

and book-to-market, decile portfolios sorted on momentum, and the long and short legs obtained

from the eight low-turnover characteristics in Novy-Marx and Velikov (2015). For the seventh

and final dataset, 100STO, we follow Lassance et al. (2024b) and collect adjusted returns from

CRSP for the 235 stocks traded on the three major U.S. stock exchanges that traded between 1998

and 2022. We consider 100 datasets of size M = 100, randomly drawn from the total pool of 235

stocks, and report the portfolio performance after merging the out-of-sample portfolio returns

across the 100 datasets.

[Insert Table 1 approximately here]

In Section OA.7.1 of the Online Appendix, we look at how Assumption 1 (equicorrelated

returns) and Assumption 2 (elliptical returns) transpire in the seven datasets. First, the

equicorrelation assumption is reasonable for the 96S-BM, 100S-OP, and 108CHA datasets, with a

root mean squared error (RMSE) between the observed and equicorrelation matrices of around

5-10%, but less so for the four other datasets, with an RMSE around 10-20%. Thus, we can assess

the performance of our optimal portfolio size across different correlation structures. Second, the

parameters (κM,1, κM,2, κM,3) defined in (10)–(12), which control the impact of the elliptical fat

tails of returns on the EU, substantially depart from one, i.e., from normality. Thus, it is crucial to

account for fat tails when implementing combination rules given their impact on combination

coefficients.
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B Portfolio Strategies

We evaluate the performance of the 11 portfolio strategies listed in Table 2. The first three

are the optimal combination rules in Section III.B and Section A.I. of the Appendix: the two-fund

rule (2F), GMV-three-fund rule (3FGMV), and EW-three-fund-rule (3FEW). We apply these

strategies to all M assets or a subset of N assets, with N chosen optimally as N̂⋆
2f in (18) for 2F,

N̂⋆
3f,g in (A.10) for 3FGMV, and N̂⋆

3f,ew in (A.19) for 3FEW, estimated following Section A.II. of

the Appendix.

[Insert Table 2 approximately here]

The next two portfolio strategies are individual portfolios: the EW portfolio and the

SGMV portfolio in (A.1). We then consider two portfolio strategies that combine EW and SGMV

with the risk-free asset to maximize the EU, EWRF and GMVRF, which might be preferred to 2F,

3FGMV, and 3FEW because they disregard the SMV portfolio that faces high estimation risk. We

explain how we estimate the EWRF portfolio in Section OA.5 of the Online Appendix. Regarding

the GMVRF portfolio, we follow Kan and Lassance (2025, Section VI.C.2.) and estimate it as

ŵgmvrf =
κM,1

κM,2

× T −M − 2

TcM
× µ̂g,MΣ̂−11

γ
,(24)

where µ̂g,M is defined in (A.27) and the estimation of κM,1 and κM,2 is described in

Section A.II.A.A. of the Appendix.

The next portfolio strategy we consider is the SMV portfolio, which we implement in

three different ways. In the first case, we compute the SMV portfolio on all M assets using

Equation (7). In the second and third case, we reduce the portfolio size with soft and
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hard-thresholding using the SMV-ST and SMV-HT portfolios introduced in Section IV.C.19

The last portfolio strategy we implement is the factor-plus-alpha (F+A) strategy

introduced in Section IV.C. We refer to Section OA.4 of the Online Appendix for more details.

Finally, we consider three different estimates of the covariance matrix. First, the sample

estimator in (5) for consistency with our theory. Second, the linear shrinkage estimator of Ledoit

and Wolf (2004). Third, the nonlinear shrinkage estimator of Ledoit and Wolf (2020), for which

we report the results in Section OA.7.2 of the Online Appendix for conciseness.20

Note that whereas we implement the EWRF, SGMV, GMVRF, SMV, SMV-ST, SMV-HT,

and F+A benchmark portfolios on all M assets, we study the impact of the portfolio size N on

their empirical performance in Section OA.7.8 of the Online Appendix.

C Asset Selection Rules

Given a portfolio size N ≤M , we consider several selection rules to decide which N

assets to select. Our purpose is not to find an optimal asset selection rule. Instead, our main

objective is to illustrate the added value of optimally reducing the portfolio size, and that even

19In Section OA.7.3 of the Online Appendix, we also report the performance of the size-optimized SMV portfolio

with N determined using our theory in Section III.B, i.e., using N̂⋆
smv . We find that the size-optimized SMV portfolio

outperforms the full SMV on all M assets. We don’t report these results in the main text because, even with a

reduced N , the SMV portfolio largely underperforms 2F, 3FGMV, and 3FEW.
20Analytical expressions for the EU of portfolio strategies implemented with shrinkage estimators of ΣN are not

available. Therefore, we cannot obtain the optimal combination coefficients and optimal N in those cases. As an

alternative, we follow Kan et al. (2021) and implement the portfolios by relying on the obtainable combination

coefficients and optimal N found under the sample estimator of the covariance matrix ΣN , but use shrinkage

estimators of ΣN to compute the portfolio weights.
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simple but sensible selection rules can deliver substantial gains over choosing all M assets.

For comparison purposes, we apply the proposed selection rules not just to 2F, 3FGMV,

and 3FEW but also to the EW portfolio, so as to evaluate their intrinsic value without being

affected by estimation errors in optimized portfolio weights. In that case, we take N = T/2,

where T = 120 months as explained in Section V.D, because the optimal N is close to T/2 for

typical levels of equity correlations as explained in our theory and simulations.

We propose 11 asset selection rules, listed in Table 3, satisfying two criteria: they are

simple to understand and implement and, apart from the random rule, they are sensible, i.e., they

have an economic intuition. The first selection rule consists in choosing all assets and setting

N =M . The 10 remaining selection rules select a subset of N ≤M assets. Among those, the

first one is a random selection, the next six are based solely on marginal information about the

assets, and the last three rules also consider information about their dependence. Moreover, the

first nine rules select the assets before computing the portfolio weights, whereas the last rule

selects the subset of assets after optimizing the weights on all assets. We now describe these 10

asset selection rules.21

[Insert Table 3 approximately here]

Random selection (Rand). We randomly select the N assets among all M assets and

report the performance across 100 repetitions of the out-of-sample analysis after merging all

portfolio returns. This random rule serves as a benchmark to which other more sensible selection

rules can be compared, and it is consistent with the simulation analysis of Section IV..
21Our three-stage approach, as described in Section I., is flexible and allows any asset selection rule. We propose a

specific set of simple rules as an illustration. One may for instance consider more sophisticated rules based on asset

clustering, time-series models, or machine learning, which may further improve performance.
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Maximum Sharpe ratio (MaxSR). We select the N assets with the maximum in-sample

Sharpe ratios in the estimation window, because the EU of the SMV portfolio in (14) and the

two-fund rule in (16) both depend on the assets’ Sharpe ratios. This selection rule is expected to

work particularly well when there is momentum in the assets.22 We can anticipate several issues

with this rule. First, it ranks the assets according to average returns that are notoriously noisy

(Merton, 1980). Second, the selected assets have the best Sharpe ratios, and thus, we might short

good assets. Third, we do not include assets with the worst Sharpe ratios although shorting them

might deliver gains.

Minimum Sharpe ratio (MinSR). We select the N assets with the minimum in-sample

Sharpe ratios. This rule will work well under mean-reversion in the assets, or from using short

positions. We expect MinSR to face the same issues as MaxSR, i.e., not having access to the

assets with the best Sharpe ratios to form long positions, and ending up with long positions on

bad assets.

Best-worst Sharpe ratio (BWSR). We blend the MaxSR and MinSR rules by selecting the

⌈N/2⌉ assets with the best in-sample Sharpe ratios and the ⌊N/2⌋ assets with the worst in-sample

Sharpe ratios, which can be combined with long and short positions. This is in line with the

standard way of constructing anomaly portfolios as long-short portfolios of stocks in the top and

bottom quantiles of a given firm characteristic. However, BWSR may lead to more extreme

portfolio weights that do not generalize well out of sample.

The MaxSR, MinSR, and BWSR selection rules rank assets based on their in-sample

22Six of our datasets are composed of characteristic and industry-sorted portfolios, which exhibit more

momentum (i.e., positive return autocorrelation) than individual stocks (Campbell, Lo, and Mackinlay, 1997, p.74).
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Sharpe ratios.23 Given that average returns are notoriously noisy, these rankings are bound to be

unstable.24 As a result, the set of selected assets is likely to change substantially from one period

to another, increasing portfolio turnover and transaction costs. To address this point, the next

three asset selection rules in Table 3 are the following.

Maximum, minimum, and best-worst variance (MaxVar, MinVar, BWVar). These

selection rules rank assets based on the in-sample variance instead of Sharpe ratio. The resulting

rankings of assets are expected to be more stable because the variance is quite persistent over

time. The MaxVar rule selects assets with the maximum variances, which are bound to also have

larger expected returns if a positive risk-return tradeoff stands. However, the low-risk anomaly

implies that assets and portfolios with lower variances often have larger expected returns (Ang,

Hodrick, Xing, and Zhang, 2006; Moreira and Muir, 2017), which the MinVar rule can exploit.

Minimum correlation with the first principal component (MinPC). We select the assets

whose returns have minimum correlations with the first principal component (PC), which are least

explained by the remaining assets, and thus, offer higher diversification potential.

Best portfolio Sharpe ratio (Bestθ2N ). This selection rule follows Ao et al. (2019) and

selects the assets that deliver a high maximum squared Sharpe ratio, θ2N in (2). It works in three

steps. First, we form 1,000 random selections of N assets. Second, for each selection, we

estimate θ2N as detailed in Section A.II. of the Appendix. Third, we pick the selection that

corresponds to the 95% quantile of all estimated values of θ2N , to avoid outliers.

23In unreported results, we implement selection rules that rank assets according to their in-sample utilities. We

find that these rules deliver an out-of-sample performance close to the rules based on Sharpe ratios.
24In unreported results, we implement selection rules that rank assets according to average returns. We find that

they typically underperform selection rules based on the Sharpe ratio and variance.
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Maximum absolute weights (MaxW). The above selection rules are independent of the

portfolio strategy. However, the in-sample portfolio weights on all M assets are a valuable

information. Therefore, MaxW selects the assets based on the portfolio strategy that will be

applied to the selected assets. It works in three steps. First, compute ŵ ∈ RM , the portfolio

weights on all M assets for a given strategy (2F, 3FGMV, or 3FEW). Second, select the N assets

with the maximum absolute weights |ŵi|. Third, recompute the strategy on the N assets to obtain

ŵ ∈ RN .25 MaxW selects the assets whose weights are large, and thus, identified as relevant.

Note that MaxW does not apply to the EW portfolio whose weights are equal. One issue we

anticipate is that MaxW inherits large estimation errors as it is based on portfolio weights

optimized under a large M/T .

In Section OA.7.7 of the Online Appendix, we introduce a measure that determines how

much more or less overlap there is between two asset selection rules relative to a pair of

independent random selection rules. For essentially all pairs of selection rules we consider, we

find that there is either around the same or less overlap than under a random selection. That is, our

selection rules select dissimilar assets, which allows us to test our portfolio strategies on different

investment universes.

D Out-of-Sample Methodology

We evaluate the out-of-sample portfolio performance with a standard monthly

rebalancing. Specifically, at the end of month t, we estimate portfolio k over the T previous

months, and we compute its out-of-sample return in month t+ 1. We consider a fixed sample size

25We find that dropping this third step and keeping the portfolio weights computed on the M assets performs

poorly because these weights are computed under high estimation risk, i.e., a large M/T .
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of T = 120 months.26 We repeat this process iteratively, resulting in Ttot − T out-of-sample gross

returns rgross,k,t, where Ttot is the total number of months in the dataset. We then compute the net

out-of-sample returns, rnet,k,t = rgross,k,t if t = T + 1 and

(25) rnet,k,t = (1 + rgross,k,t) (1− κ× turnoverk,t−1)− 1 if t = T + 2, . . . , Ttot,

where κ is the proportional transaction cost parameter and

(26) turnoverk,t =
N∑
i=1

|wi,k,t − wi,k,(t−1)+ |, t = T + 1, . . . , Ttot,

with wi,k,t the weight of asset i in month t and wi,k,(t−1)+ the prior-month weight before

rebalancing in month t. We set κ = 10 basis points in line with the average bid-ask spreads

reported by Engle, Ferstenberg, and Russell (2012) and Frazzini, Israel, and Moskowitz (2018).

Finally, we compare the portfolio strategies in terms of annualized out-of-sample utility net of

transaction costs,

(27) Uk = 12×
(
µ̂k −

γ

2
σ̂2
k

)
,

26Given that our theoretical results require T > M + 4, and that the largest M = 108, we need T > 112. If we

choose a sample size that is too large, such as T = 240, then the optimal N for the 2F, 3FGMV, and 3FEW

portfolios, which is close to T/2 as shown in Section IV.A, will often be larger than the total size of the investment

universe, M . In that case, we cannot assess the effect of reducing the portfolio size.
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where µ̂k and σ̂2
k are the sample mean and variance of rnet,k,t. We set a risk-aversion coefficient of

γ = 1.27 As explained in Section V.C, we repeat this out-of-sample analysis 100 times under the

random asset selection rule and compute Uk after merging all portfolio returns.28 In Section

OA.7.4 of the Online Appendix, we also report the out-of-sample Sharpe ratio.

For 2F, 3FGMV, and 3FEW, the assets change as we re-estimate the optimal N and apply

an asset selection rule. Because our methodology disentangles the determination of the optimal N

from the choice of the N assets, we can also disentangle the rebalancing of portfolio weights from

the asset selection. Therefore, to make our method less costly and more practical, we rebalance

the portfolio weights every month but change the optimal N and selected assets every year.29

Finally, we compute two-sided p-values for the statistical test of the difference between

the net utility of the 2F, 3FGMV, and 3FEW portfolios computed on all assets versus under each

of the 10 other selection rules in Table 3. For SMV-HT and SMV-ST, we report p-values relative

to SMV. To compute the p-values, we generate 10,000 bootstrap samples using the stationary

block bootstrap approach of Politis and Romano (1994) with an average block size of five, and

then use the methodology of Ledoit and Wolf (2008, Remark 3.2) to produce the p-values. We use

the symbols #, H#, and  to indicate that the p-value is less than 10%, 5%, and 1%, respectively.

27The out-of-sample utility net of costs of the 2F, 3FGMV, 3FEW, GMVRF, EWRF, SMV, and F+A portfolios is

proportional to 1/γ, and thus, their ranking is not affected by the chosen γ. However, the ranking of the SGMV and

EW portfolios, which are fully invested in risky assets, is affected by the chosen γ.
28We obtain similar utility values when computing one utility per repetition and averaging them.
29In Section OA.7.5 of the Online Appendix, we also consider changing the selected assets every 1, 6, and 24

months. We find that setting a lower frequency than monthly substantially reduces turnover and improves the net

performance. Moreover, frequencies of 6, 12, or 24 months yield similar results.
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E Discussion of Results

In Table 4, we report the annualized net out-of-sample utility, in percentage points, of

the 11 portfolio strategies listed in Table 2. For the 2F, 3FGMV, 3FEW, and EW portfolio

strategies, we report the performance across the 11 asset selection rules in Table 3.

[Insert Table 4 approximately here]

The results in Table 4 show that portfolio strategies estimated with the shrinkage

covariance matrix generally outperform those estimated with the sample one. Therefore, albeit

our theory considers the sample covariance matrix for tractability, it is beneficial to shrink it. The

ranking of portfolio strategies and asset selection rules is overall similar in both cases, and thus,

unless stated otherwise, the discussion below essentially applies to either estimator.

First, we address our main objective, which is to assess the value of optimally reducing

the portfolio size. For either of 2F, 3FGMV, and 3FEW, reducing the portfolio size delivers

substantial performance gains. Specifically, the asset selection rule ‘All’, which sets N =M , is

almost always outperformed by the remaining selection rules.30 The differences are often

statistically significant, particularly under the shrinkage covariance matrix. Moreover, for the six

datasets of characteristic and industry portfolios, the differences are systematically positive for

the Rand, MinSR, BWSR, MaxVar, BWVar, and MinPC asset selection rules, and are often

substantial. For instance, under the shrinkage covariance matrix, on average across these six

30Out of the 210 configurations (10 selection rules × 7 datasets × 3 portfolio strategies), the size-optimized

portfolios outperform the ‘All’ selection rule in 172, 183, and 187 cases under the sample, linear shrinkage, and

nonlinear shrinkage covariance matrix, respectively. If we restrict to cases where the p-value for the performance

gain is below 10%, these numbers reduce to 115, 168, and 173, respectively.
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datasets, the 2F strategy on all M assets delivers an annualized net utility of 11.30 percentage

points, versus 58.17 with the BWSR selection rule. Turning to the 100STO dataset, asset

selection rules based on average returns (MaxSR, MinSR, BWSR) do not work as well because

there is less predictability in average returns among individual stocks. However, the MinVar and

BWVar rules based on the variance, as well as the Rand rule, consistently outperform selecting all

M assets. We depict these findings in Figure 8 which shows, for the shrinkage covariance matrix,

the difference between the annualized net out-of-sample utility of 2F, 3FGMV, and 3FEW

implemented on a subset of N̂⋆ assets versus all M assets. Having addressed our main objective,

we now discuss other findings from Table 4.

[Insert Figure 8 approximately here]

Second, we turn to the EW portfolio. Under the random asset selection rule, reducing N

from M to T/2 is detrimental. This is because the EW portfolio faces no estimation risk, and

thus, benefits from the diversification gains coming from a larger N . However, when the selection

of the N assets is done using a sensible rule, such as MaxSR or MinVar, reducing N often

improve the EU of the EW portfolio by removing undesirable assets. We also observe that when

N =M , it is difficult for the 2F, 3FGMV, and 3FEW portfolios to outperform the EW portfolio.

In particular, EW outperforms in five out of seven datasets. However, when reducing the portfolio

size to N = N̂⋆ with our theory, there are a number of asset selection rules for which 2F, 3FGMV,

and 3FEW systematically outperform EW, particularly when we shrink the covariance matrix, no

matter if EW is implemented on all M assets or on T/2 assets with the same asset selection rule.

This key observation highlights the practical importance of our theoretically guided optimal

portfolio size.
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Third, for the six datasets of characteristic and industry portfolios, applying the MinSR

and MaxVar asset selection rules to the 2F, 3FGMV, and 3FEW strategies delivers consistently

positive utilities almost systematically larger than those of the seven other benchmarks. Focusing

on the shrinkage covariance matrix, the BWSR, BWVar, MinPC, and Best θ2N selection rules also

consistently deliver positive utilities generally above the benchmarks. Turning to the 100STO

dataset, under the shrinkage covariance matrix, the MaxSR, MinVar, and BWVar selection rules

yield consistently positive net utilities generally above the benchmarks. This is particularly true

when applying these selection rules to 3FGMV and 3FEW because, for individual stocks, adding

an exposure to SGMV or EW is valuable given the lower predictability in expected returns. These

results are remarkable because the EW portfolio, in particular, is difficult to outperform with

mean-variance portfolios when M/T is large, which is the case in our datasets where M/T

ranges from 0.78 to 0.9. These results are due to our optimal portfolio size because, under the

‘All’ selection rule, the 2F, 3FGMV, and 3FEW portfolios underperform the EW portfolio in five

out of seven datasets.

Fourth, we turn to the Sharpe ratio selection rules (MaxSR, MinSR, BWSR). Consider

first the six datasets of characteristic and industry portfolios. For the EW portfolio, MaxSR

consistently outperforms selecting all M assets. In contrast, MinSR and BWSR underperform.

Specifically, on average across these six datasets, the EW portfolio of all assets delivers an

annualized net out-of-sample utility of 5.94 percentage points, versus 6.93, 5.08, and 5.60 under

MaxSR, MinSR, and BWSR, respectively. These results indicate momentum in characteristic and

industry portfolios as an EW portfolio of assets with maximum in-sample Sharpe ratios

outperforms the full EW portfolio. In contrast, for the 100STO dataset, it is the MinSR and

BWSR selection rules that deliver a better EW portfolio than that applied to all assets, indicating
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reversal in individual stocks.

Although MaxSR works well among characteristic and industry portfolios for

constructing an EW portfolio, we find the opposite for the 2F, 3FGMV, and 3FEW portfolios.

Specifically, MinSR consistently outperforms MaxSR and selecting all M assets, and MaxSR is

one the worst selection rules. These results mean that when we use optimized weights, the

performance gains do not originate from selecting assets with the best marginal performance, but

assets that can be best exploited by the portfolio, e.g., with short positions for the MinSR rule.

Finally, BWSR, which capitalizes on long and short positions by selecting both good and bad

assets, achieves its objective as it consistently outperforms MaxSR and MinSR under the

shrinkage covariance matrix.31

Fifth, we turn to the variance asset selection rules (MaxVar, MinVar, BWVar). Consider

first the six datasets of characteristic and industry portfolios. For the EW portfolio, MinVar

consistently outperforms selecting all M assets. Specifically, on average across the six datasets,

the EW portfolio of all assets delivers an annualized net out-of-sample utility of 5.94 percentage

points, versus 5.47, 6.44, and 5.65 under MaxVar, MinVar, and BWVar, respectively. This finding

indicates a low-risk anomaly in these six datasets. However, as noted above, this does not

necessarily mean that MinVar is also best for the 2F, 3FGMV, and 3FEW strategies. Indeed,

Figure 8 shows that for these portfolios, MinVar delivers a worse performance overall than

MaxVar and BWVar. This can be explained because assets with maximum variances selected by

MaxVar and BWVar often have low average returns as the low-risk anomaly predicts, which the

31However, BWSR often underperforms MinSR under the sample covariance matrix because, in that case, the

long-short positions are too extreme, which increases turnover, and thus, hurts the net performance.
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2F, 3FGMV, and 3FEW portfolios can leverage using small or short positions.32 The insights

drawn from the 100STO dataset are similar, with the asset selection rules favored when

considering the EW portfolio, i.e., MaxVar and BWVar, underperforming the MinVar rule when

turning to 2F, 3FGMV, and 3FEW.

Sixth, the MinPC asset selection rule, which accounts for asset dependence by selecting

those least correlated with the first PC, performs consistently well. In particular, under the

shrinkage covariance matrix, the resulting 2F, 3FGMV, and 3FEW portfolios have positive net

out-of-sample utilities larger than those under the ‘All’ selection rule in all cases but one.

Seventh, the Bestθ2N selection rule, which maximizes the portfolio Sharpe ratio,

outperforms investing in all assets for the 2F, 3FGMV, and 3FEW portfolios under the shrinkage

covariance matrix, in all cases but one.

Eighth, the MaxW selection rule outperforms on average all other rules under the

shrinkage covariance matrix. For instance, considering the 3FGMV portfolio, MaxW delivers an

annualized net utility of 72.15 percentage points on average across datasets, versus 55.09 for the

second-best selection rule, BWSR. However, MaxW underperforms all other selection rules under

the sample covariance matrix. This can be explained because, in that case, 2F, 3FGMV, and

3FEW are more subject to estimation risk, and thus, selecting assets with large absolute weights is

less desirable.

Finally, we consider the SMV, SMV-ST, SMV-HT, and F+A benchmarks. First, as

32It seems that the low-risk anomaly is strong enough in the 94IN-NV and 98IN-CHA-NV datasets for the

MinVar selection rule to outperform MaxVar and BWVar when applied to the 2F, 3FGMV, and 3FEW portfolios.

This can be explained because Moreira and Muir (2017) show that the low-risk anomaly does not apply to the size

factor, and this factor is used to construct all datasets except 94IN-NV and 98IN-CHA-NV.
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expected, SMV is by far the worst strategy. Second, F+A improves upon SMV but is the

second-worst strategy. This suggests that although the Da et al. (2024) method is optimal under

specific assumptions as N and T get large, it does not work as well as competitors in a

finite-sample setting, in line with Figure 7. Third, SMV-ST, which maximizes the MV utility

subject to an L1-norm constraint, greatly improves upon SMV and SMV-HT. However, in most

cases, it underperforms the size-optimized 2F, 3FGMV, and 3FEW portfolios. Fourth, SMV-HT,

which keeps only the assets whose SMV portfolio weights are above a given threshold,

outperforms the plain SMV but delivers negative net utilities. In Section OA.7.3 of the Online

Appendix, we compare the portfolio size obtained with SMV-ST and SMV-HT to that obtained

with our theory, N̂⋆
smv. We find that the three methods set a small N on average, and that our

N̂⋆
smv has much less variability across windows.

VI. Conclusion

We offer a novel perspective on the optimal portfolio size and challenge the conventional

wisdom that investors should invest in as many assets as possible to eliminate idiosyncratic risk.

Specifically, because of parameter uncertainty, we show that it is optimal to invest in a limited

number N of assets. We consider a class of portfolio strategies that consists of different

combinations of the sample mean-variance (MV), global-minimum-variance (GMV), and equally

weighted (EW) portfolios. Within this class, we derive the optimal N⋆ in a finite-sample setting

that maximizes the expected out-of-sample utility under the assumption of equicorrelated i.i.d.

multivariate elliptical returns. This N⋆ strikes a tradeoff between accessing additional investment

opportunities and limiting the number of parameters and weights to estimate. For typical levels of
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equity return correlations, we find that N⋆ is slightly below half the sample size. Our approach is

flexible because it disentangles the computation of the optimal N from the choice of which N

assets to select.

To test our theory empirically, we propose an estimator N̂⋆ of N⋆ and suggest a set of

simple, sensible and intrinsically different selection rules to determine which N̂⋆ assets to select.

We show that our size-optimized portfolios outperform their counterparts that invest in all assets

in nearly all cases, across different portfolio strategies, datasets, and asset selection rules, and

under transaction costs. Our size-optimized portfolios can also outperform EW and GMV

portfolios, which are hard to beat in high dimension, and more sophisticated strategies that build

on asymptotic theories.

Overall, our methodology renders portfolio theory valuable in the challenging but

practically relevant case where the sample size is close to the size of the investment universe.

Appendix

This Appendix contains three sections. In Section A.I., we present the theory we use to

determine the optimal portfolio size for the three-fund rules. In Section A.II., we explain how we

estimate the different parameters on which the combination coefficients and the optimal N

depend. In Section A.III., we provide the proofs of all theoretical results in the main text.
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A.I. Optimal Portfolio Size for Three-Fund Rules

In Section III., we study the optimal N for the SMV portfolio and two-fund rule. We now

study the optimal N for three-fund rules. Specifically, we consider in Section A.I.A.A. a

three-fund rule based on the GMV portfolio, and in Section A.I.A.B. a three-fund rule based on

the EW portfolio.

A.A. Three-Fund Rule with the Global Minimum-Variance Portfolio

We include the GMV portfolio as an additional robust portfolio rule to invest in,

wg =
Σ−1
N 1N

1′
NΣ

−1
N 1N

.(A.1)

We introduce the following parameters:

µg,N =
µ′Σ−1

N 1N

1′
NΣ

−1
N 1N

, σ2
g,N =

1

1′
NΣ

−1
N 1N

, λg,N =
µg,N
σ2
g,N

, θ2g,N =
µ2
g,N

σ2
g,N

, ψ2
g,N = θ2N − θ2g,N ,(A.2)

which stand for the mean return, variance, price of risk, squared Sharpe ratio, and inefficiency of

the GMV portfolio on N assets. Under parameter uncertainty, the three-fund rule that invests in

the SMV portfolio, the sample GMV (SGMV) portfolio, and the risk-free asset is

(A.3) ŵ(α) =
α1

γ
Σ̂−1
N µ̂N +

α2

γ
Σ̂−1
N 1N ,
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where α = (α1, α2) ∈ R2 is the vector of combination coefficients. We call ŵ(α) the

GMV-three-fund rule. In the next proposition, we derive the EU of ŵ(α) when asset returns are

i.i.d. multivariate elliptically distributed, the resulting optimal combination coefficients α⋆, and

which EU they deliver.33 This Proposition follows, with minor adjustments, from Kan and

Lassance (2025, Propositions 7 and 8).

Proposition A.1 Let T > N + 4 and Assumption 2 hold. Then, the expected out-of-sample utility

of the GMV-three-fund rule ŵ(α) in (A.3) is

EU(ŵ(α)) =
1

2γ

T

T −N − 2

[
2κN,1

(
α1θ

2
N + α2λg,N

)
− cNT

T −N − 2

×
(
α2
1

(
κN,2θ

2
N + κN,3

N

T

)
+
α2
2κN,2
σ2
g,N

+ 2α1α2κN,2λg,N

)]
.(A.4)

Moreover, the optimal combination coefficients α⋆ = (α⋆1, α
⋆
2) maximizing (A.4) are

(α⋆1, α
⋆
2) =

T −N − 2

cNT

(
κN,1ψ

2
g,N

κN,2ψ2
g,N + κN,3

N
T

,
κN,3
κN,2

× κN,1
N
T
µg,N

κN,2ψ2
g,N + κN,3

N
T

)
,(A.5)

and the resulting expected out-of-sample utility is

EU(ŵ(α⋆)) =
κ2N,1
2γcN

(
θ2Nψ

2
g,N +

κN,3

κN,2

N
T
θ2g,N

κN,2ψ2
g,N + κN,3

N
T

)
.(A.6)

Proposition A.1 shows that for the optimal GMV-three-fund rule, the optimal N is found

by maximizing the EU in (A.6). We proceed by expressing θ2N and θ2g,N as explicit functions of N

by assuming that the covariance matrix ΣN complies with Assumption 1. This is done in

33The proofs of all results given in the Appendix are available in Section OA.8 of the Online Appendix.

43



Proposition 1 for θ2N , and we now derive the expression for θ2g,N .

Proposition A.2 Under Assumption 1, the squared Sharpe ratio of the GMV portfolio is

θ2g,N =
N

1− ρ
rg,N(θ̄N,1, λ̄N , σ̄N), rg,N(θ̄N,1, λ̄N , σ̄N) =

(
λ̄N − Nρ

1−ρ+Nρ θ̄N,1σ̄N,−1

)2
σ̄N,−2 − Nρ

1−ρ+Nρ σ̄
2
N,−1

,(A.7)

where θ̄N,1 is defined in Proposition 1, σ̄N = (σ̄N,−1, σ̄N,−2), λ̄N = 1
N

∑N
i=1 λi, and

σ̄N,k =
1
N

∑N
i=1 σ

k
i , with λi = µi/σ

2
i the price of risk of asset i.

Using Propositions 1 and A.2, the EU of the GMV-three-fund rule in (A.6) becomes

EU(ŵ(α⋆))

=
Nκ2N,1

2γcN(1− ρ)

δN(θ̄N)
(
δN(θ̄N)− rg,N(θ̄N,1, λ̄N , σ̄N)

)
+

κN,3

κN,2

1−ρ
T
rg,N(θ̄N,1, λ̄N , σ̄N)

κN,2
(
δN(θ̄N)− rg,N(θ̄N,1, λ̄N , σ̄N)

)
+ κN,3

1−ρ
T

(A.8)

=: EU3f,g(N, T, ρ, τ, θ̄N,1, λ̄N , σ̄N).(A.9)

Then, as before, we replace (θ̄N,1, λ̄N , σ̄N) by (θ̄M,1, λ̄M , σ̄M) and find the optimal N as

N⋆
3f,g = argmax

N∈{1,...,min(M,T−5)}
EU3f,g(N, T, ρ, τ, θ̄M,1, λ̄M , σ̄M).(A.10)

Note that, similar to the two-fund rule, the objective function EU3f,g is proportional to

N/cN , which as shown in (19)–(20) is maximized by N slightly below T/2.34 The simulations in

34That the EU of both the optimal two-fund rule and the GMV-three-fund rule is proportional to N/cN can be

explained as follows: the proportionality to 1/cN is because both the SMV portfolio and the SGMV portfolio are

proportional to Σ̂−1
N , and the proportionality to N is because both the squared Sharpe ratio of the MV portfolio (θ2N )

and the GMV portfolio (θ2g,N ) are proportional to N under Assumption 1.
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Section IV. show that N⋆
3f,g is similar to N⋆

2f and is slightly below T/2 when ρ is not too small.

A.B. Three-Fund Rule with the Equally Weighted Portfolio

We now consider the EW portfolio as an additional portfolio rule to invest in,

wew = 1N/N . We introduce the following parameters similar to the case with the

GMV-three-fund rule:

µew,N = w′
ewµN , σ

2
ew,N = w′

ewΣNwew, λew,N =
µew,N
σ2
ew,N

, θ2ew,N =
µ2
ew,N

σ2
ew,N

, ψ2
ew,N = θ2N − θ2ew,N .

(A.11)

Under parameter uncertainty, the three-fund rule that invests in the SMV portfolio, the

EW portfolio, and the risk-free asset is

(A.12) ŵ(β) =
β1
γ
Σ̂−1
N µ̂N +

β2
γ
wew,

where β = (β1, β2) ∈ R2 is the vector of combination coefficients. We call ŵ(β) the

EW-three-fund rule. In the next proposition, we derive the EU of the EW-three-fund rule (A.3)

when asset returns are i.i.d. multivariate elliptically distributed, the resulting optimal combination

coefficients α⋆, and which EU they deliver. This is a novel result relative to Kan and Lassance

(2025) who do not consider the combination of the SMV and EW portfolios.

Proposition A.3 Let T > N + 4 and Assumption 2 hold. Then, the expected out-of-sample utility
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of the EW-three-fund rule ŵ(β) in (A.12) is

EU(ŵ(β)) =
1

2γ
×
[
2β1κN,1θ

2
NT

T −N − 2
+ 2β2µew,N

− β2
1cNT

2

(T −N − 2)2

(
κN,2θ

2
N + κN,3

N

T

)
− β2

2σ
2
ew,N − 2β1β2κN,1µew,NT

T −N − 2

]
.(A.13)

Moreover, the optimal combination coefficients β⋆ = (β⋆1 , β
⋆
2) maximizing (A.13) are

(β⋆1 , β
⋆
2) =

(
T −N − 2

T

κN,1ψ
2
ew,N

κ2N,1ψ
2
ew,N + dN

,
dNλew,N

κ2N,1ψ
2
ew,N + dN

)
,(A.14)

where dN = cNκN,3
N
T
+ (cNκN,2 − κ2N,1)θ

2
N , and the resulting expected out-of-sample utility is

EU(ŵ(β⋆)) =
1

2γ

(
κ2N,1θ

2
Nψ

2
ew,N + dNθ

2
ew,N

κ2N,1ψ
2
ew,N + dN

)
.(A.15)

The EU of the optimal EW-three-fund rule depends on θ2N and θ2ew,N . As usual, we express

θ2N and θ2ew,N as explicit functions of N by assuming that the covariance matrix ΣN complies with

Assumption 1. We derive the expression for θ2ew,N in the next proposition.

Proposition A.4 Under Assumption 1, the squared Sharpe ratio of the EW portfolio is

θ2ew,N =
N

1− ρ
rew,N(µ̄N , σ̄N,1, σ̄N,2), rew,N(µ̄N , σ̄N,1, σ̄N,2) =

(1− ρ)µ̄2
N

(1− ρ)σ̄N,2 + ρNσ̄2
N,1

,(A.16)

where σ̄N,1 and σ̄N,2 are defined in Proposition A.2 and µ̄N = 1
N

∑N
i=1 µi.
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Using Propositions 1 and A.4, the EU of the EW-three-fund rule in (A.15) becomes

EU(ŵ(α⋆)) =
N

2γ(1− ρ)
×

κ2N,1δN (θ̄N )
(
δN (θ̄N )−rew,N (µ̄N ,σ̄N,1,σ̄N,2)

)
+
(

(1−ρ)cNκN,3
T

+(cNκN,2−κ2N,1)δN (θ̄N )
)
rew,N (µ̄N ,σ̄N,1,σ̄N,2)

κ2N,1

(
δN (θ̄N )−rew,N (µ̄N ,σ̄N,1,σ̄N,2)

)
+
(

(1−ρ)cNκN,3
T

+(cNκN,2−κ2N,1)δN (θ̄N )
)(A.17)

=: EU3f,ew(N, T, ρ, τ, µ̄N , σ̄N,1, σ̄N,2).(A.18)

Finally, we replace (µ̄N , σ̄N,1, σ̄N,2) by (µ̄M , σ̄M,1, σ̄M,2) and find the optimal N as

N⋆
3f,ew = argmax

N∈{1,...,min(M,T−5)}
EU3f,ew(N, T, ρ, τ, µ̄M , σ̄M,1, σ̄M,2).(A.19)

Although it does not appear as clearly as for the two-fund rule and the GMV-three-fund

rule via N/cN as a proportionality factor in the objective function, the simulations in Section IV.

also show that N⋆
3f,ew typically hovers around T/2 for ρ not too small.

A.II. Estimation of Parameters

In this section, we explain how we estimate the different parameters that are needed as

inputs in our different portfolio rules to determine the optimal portfolio size (i.e., N⋆
smv, N

⋆
2f ,

N⋆
3f,g, N

⋆
3f,ew) and the optimal combination coefficients (i.e., α⋆, α⋆1, α⋆2, β⋆1 , β⋆2).

A.A. Estimation of Elliptical Fat Tails

The first set of parameters are those that determine the impact of the fat tails of the

elliptical distribution, i.e., κN,1, κN,2, and κN,3 in (10)–(12). To speed up the computation, we use
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the high-dimensional approximation of these parameters. Specifically, from El Karoui (2010,

2013), we have that as N, T → ∞ and N/T → ϕ ∈ (0, 1),

(κN,1, κN,2, κN,3) → (κ̃N,1, κ̃N,2, κ̃N,1), where κ̃N,1 ≥ 1 is the unique positive solution to

E
[
(1− ϕ+ ϕκ̃N,1τ)

−1
]
= 1,(A.20)

and κ̃N,2 ≥ κ̃2N,1 is given by

κ̃N,2 = (1− ϕ)

(
κ̃−2
N,1 − E

[
ϕτ 2

(1− ϕ+ ϕκ̃N,1τ)2

])−1

.(A.21)

Kan and Lassance (2025) show that this high-dimensional approximation is accurate for typical

values of N and T .

Given this result, we need to estimate κ̃N,1 and κ̃N,2. We estimate them in two different

ways as in Kan and Lassance (2025). First, we assume that the asset returns follow a multivariate

t-distribution, i.e., τ ∼ (ν − 2)/χ2
ν , and we estimate the number of degrees of freedom ν by

maximum likelihood from a sample of T historical returns (r1, . . . , rT ), giving us ν̂. Then, we

can use the closed-form expression for κ̃N,1 and κ̃N,2 when asset returns are t-distributed in Kan

and Lassance (2025, Proposition 6), which yields that the estimate of κ̃N,1, denoted κ̃νN,1, is the

unique positive solution to

yeyEν̂/2(y) = ϕN with y =
(ν̂ − 2)ϕN κ̃

ν
N,1

2(1− ϕN)
and ϕN =

N

T
,(A.22)
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where En(x) =
∫∞
1
t−ne−xtdt is the exponential integral, and the estimate of κ̃N,2 is

κ̃νN,2 =
2(κ̃νN,1)

2(1− ϕN)

ν̂ − κ̃νN,1(ν̂ − 2)
.(A.23)

We use this estimation method in Section IV. where we simulate returns from a t-distribution.

The second method we use to estimate κ̃N,1 and κ̃N,2 relies on the following sample

estimate of the distribution of τ proposed by El Karoui (2010, 2013):

τ̂N,t =
(rt − µ̂N)

′(rt − µ̂N)
1
T

∑T
i=1(ri − µ̂N)′(ri − µ̂N)

, t = 1, . . . , T,(A.24)

which is consistent as N → ∞. Using τ̂N,t, we estimate κ̃N,1 and κ̃N,2 with their sample

counterparts, i.e., the estimate of κ̃N,1, denoted κ̃sN,1, is the unique positive solution to

1

T

T∑
t=1

(
1− ϕN + ϕN κ̃

s
N,1τ̂N,t

)−1
= 1,(A.25)

and the estimate of κ̃N,2 is

κ̃sN,2 = (1− ϕN)

(
(κ̃sN,1)

−2 − 1

T

T∑
t=1

ϕN τ̂
2
N,t

(1− ϕN + ϕN κ̃sN,1τ̂N,t)
2

)−1

.(A.26)

We use this second estimation method in Section V. to have more freedom in describing the tails

of empirical data that may not be t-distributed.
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A.B. Estimation of Portfolios’ Performance

The second set of parameters are those that determine the performance of the MV, GMV,

and EW portfolios and on which the optimal combination coefficients depend: θ2N in (2), ψ2
g,N

in (A.2), ψ2
ew,N in (A.11), µg,N in (A.2), and λew,N in (A.11).

For µg,N and λew,N , we rely on the estimates that are unbiased when asset returns are i.i.d.

multivariate normally distributed35, i.e.,

µ̂g,N =
1′
NΣ̂

−1
N µ̂N

1′
NΣ̂

−1
N 1N

,(A.27)

λ̂ew,N =
T − 3

T

w′
ewµ̂N

w′
ewΣ̂Nwew

.(A.28)

For θ2N , ψ2
g,N , and ψ2

ew,N , the sample estimates, obtained by plugging (µ̂N , Σ̂N), are

severely biased. Therefore, we estimate them using the adjusted estimates in Kan and Zhou

(2007) and Kan and Wang (2023) that correct the unbiased estimates to ensure they are positive.

Specifically, let θ̂2N = µ̂′
NΣ̂

−1
N µ̂N , ψ̂2

g,N = θ̂2N − θ̂2g,N , and ψ̂2
ew,N = θ̂2N − θ̂2ew,N be the sample

estimates of θ2N , ψ2
g,N , and ψ2

ew,N , where θ̂2g,N = (1′
NΣ̂

−1
N µ̂N)

2/(1′
NΣ̂

−1
N 1N) and

θ̂2ew,N = (w′
ewµ̂N)

2/(w′
ewΣ̂wew). Then, the adjusted estimates are

θ̂2N,a =
(T −N − 2)θ̂2N −N

T
+

2(θ̂2N)
N
2 (1 + θ̂2N)

2−T
2

T ×Bθ̂2N/(1+θ̂
2
N )

(
N
2
, T−N

2

) ,
(A.29)

35When asset returns are i.i.d. multivariate elliptically distributed as in Assumption 2, µ̂g,N and λ̂ew,N are also

unbiased in the high-dimensional asymptotic regime as N,T → ∞ and N/T → ϕ ∈ (0, 1).
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ψ̂2
g,N,a =

(T −N − 1)ψ̂2
g,N − (N − 1)

T
+

2(ψ̂2
g,N)

N−1
2 (1 + ψ̂2

g,N)
2−T
2

T ×Bψ̂2
g,N/(1+ψ̂

2
g,N )

(
N−1
2
, T−N+1

2

) ,
(A.30)

ψ̂2
ew,N,a =

(T −N − 2)ψ̂2
ew,N − (N − 1)(1 + θ̂2ew,N)

T
+
2(1 + θ̂2ew,N)

T−N
2 (ψ̂2

ew,N)
N−1

2 (1 + θ̂2N)
3−T
2

T ×Bψ̂2
ew,N/(1+θ̂

2
N )

(
N−1
2
, T−N

2

) ,

(A.31)

where Bx(a, b) =
∫ x
0
ta−1(1− t)b−1dt is the incomplete beta function.

A.C. Estimation of Assets’ Correlation and Marginal Performance

The third and last set of parameters are those that control the dependence between the

assets, i.e., ρ under Assumption 1, and the marginal performance of the assets, i.e., the three

functions δN(θ̄M) in (4), rg,N(θ̄M,1, λ̄M , σ̄M) in (A.7), and rew,N(µ̄M , σ̄M,1, σ̄M,2) in (A.16).

Recall that the parameters in these functions are computed on all M assets to find the optimal N .

Following the advice of Adams, Füss, and Glück (2017), we use an estimator ρ̂ given by the

average of all sample correlations ρ̂ij obtained from the sample covariance matrix Σ̂M ,

ρ̂ =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

ρ̂ij.(A.32)

Regarding the functions δN(θ̄M), rg,N(θ̄M,1, λ̄M , σ̄M), and rew,N(µ̄M , σ̄M,1, σ̄M,2), we rely on the

following proposition.

Proposition A.5 Let the covariance matrix ΣM be known and satisfy Assumption 1. Then, the

biases of the estimators of δN(θ̄M), rg,N(θ̄M,1, λ̄M , σ̄M), and rew,N(µ̄M , σ̄M,1, σ̄M,2) obtained by
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plugging the sample mean µ̂M are

E[δ̂N ]− δN =
1− ρ

T
× 1− N

M
ρ+Nρ

1− ρ+Nρ
,(A.33)

E[r̂g,N ]− rg,N =
1− ρ

MT
×
σ̄M,−2 − Nρ

1−ρ+Nρ

(
1 +

(1−ρ)(1−M
N

)

1−ρ+Nρ

)
σ̄2
M,−1

σ̄M,−2 − Nρ
1−ρ+Nρ σ̄

2
M,−1

,(A.34)

E[r̂ew,N ]− rew,N =
1− ρ

MT
×
σ̄M,2 +

ρ
1−ρMσ̄2

M,1

σ̄M,2 +
ρ

1−ρNσ̄
2
M,1

.(A.35)

Building on Proposition A.5, we estimate the function δN(θ̄M), rg,N(θ̄M,1, λ̄M , σ̄M), and

rew,N(µ̄M , σ̄M,1, σ̄M,2) by plugging the sample mean µ̂M and the sample covariance matrix Σ̂M

and by removing the bias, which we estimate from µ̂M and Σ̂M too.

A.III. Proofs of results in the main text

In this section, we provide the proofs for all theoretical results given in the main text.

Proofs for the theoretical results given in this Appendix are available in the Online Appendix.

A.A. Proof of Proposition 1

Denoting DN = diag(σ1, . . . , σN), ΣN = DNPN(ρ)DN and its inverse is given by

Σ−1
N = D−1

N PN(ρ)
−1D−1

N ,(A.36)
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where D−1
N = diag(1/σ1, . . . , 1/σN) and PN(ρ)

−1 exists if and only if ρ ∈
(
− 1

N−1
, 1
)

and is

equal to

PN(ρ)
−1 =

1

1− ρ

(
IN − ρ

1− ρ+Nρ
1N1

′
N

)
.(A.37)

Combining (A.36) and (A.37) yields

Σ−1
N =

1

1− ρ

(
D−2

N − ρ

1− ρ+Nρ
D−1

N 1N1
′
ND

−1
N

)
,(A.38)

and thus the maximum utility becomes

U(w⋆) =
µ′
NΣ

−1
N µN

2γ
=

1

2γ(1− ρ)

[
µ′
ND

−2
N µN − ρ

1− ρ+Nρ
(µ′

ND
−1
N 1N)

2

]
,(A.39)

where µ′
ND

−2
N µN = Nθ̄N,2 and µ′

ND
−1
N 1N = Nθ̄N,1, which yields the desired result in (4).

We then study how U(w⋆) increases with N , which amounts to studying the difference

θ2N+1 − θ2N . We have

(1− ρ)(θ2N+1 − θ2N)

=

N+1∑
i=1

s2i −
ρ

1− ρ+ (N + 1)ρ

(
N+1∑
i=1

si

)2
−

 N∑
i=1

s2i −
ρ

1− ρ+Nρ

(
N∑
i=1

si

)2
 .(A.40)

Decomposing
(∑N+1

i=1 si

)2
as
(∑N

i=1 si

)2
+ s2N+1 + 2sN+1

∑N
i=1 si, (A.40) becomes

(1− ρ)(θ2N+1 − θ2N) =
1− ρ+Nρ

1− ρ+ (N + 1)ρ
s2N+1 +

ρ2
(∑N

i=1 si
)2

(1− ρ+Nρ)(1− ρ+ (N + 1)ρ)
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− 2ρsN+1

∑N
i=1 si

1− ρ+ (N + 1)ρ

=

[
ρNθ̄N,1 − (1− ρ+Nρ)sN+1

]2
(1− ρ+Nρ)(1− ρ+ (N + 1)ρ)

,(A.41)

which is nonnegative, and strictly positive if and only if sN+1 ̸= ρNθ̄N,1/(1− ρ+Nρ). This

concludes the proof.

A.B. Proof of Proposition 2

Equation (9) is a direct extension of Kan and Lassance (2025, Proposition 7) for a

general α instead of α = 1. It is then easy to show that the α maximizing (9) is equal to (13),

which also corresponds to Kan and Lassance (2025, Equation (50)). Finally, after some

developments, plugging (13) into (9) yields the EU in (13), which concludes the proof.

A.C. Proof of Corollary 1

Under Assumption 1, the maximum squared Sharpe ratio θ2N is given by (4). Plugging it

into (9) yields the EU of the SMV portfolio ŵ⋆ in Equation (14), and plugging it into (13) yields

the EU of the optimal two-fund rule ŵ(α⋆) in (16).
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Figure 1: Utility of the mean-variance portfolio as a function of N and ρ

Notes. This figure depicts U(w⋆) in Equation (4) as a function of the portfolio size N under the assumption that asset returns are equicorrelated
with a correlation ρ ∈ {0.2, 0.5, 0.8}. We calibrate the assets’ monthly Sharpe ratios to a dataset of M = 96 portfolios sorted on size and
book-to-market spanning July 1963 to August 2023. Starting with N = 1 asset chosen randomly, we compute U(w⋆). Then, we add a randomly
selected asset not previously selected, and compute U(w⋆) again. We continue this procedure until N = M . We repeat this procedure 10, 000
times and depict the average U(w⋆) over all draws. We consider a risk-aversion coefficient γ = 1.
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Figure 2: Optimal Portfolio Size for the SMV portfolio and the Optimal Two-Fund Rule

Notes. This figure depicts the optimal portfolio size for the SMV portfolio, N⋆
smv in (17) (left panel), and for the optimal two-fund rule, N⋆

2f

in (18) (right panel), as a function of the sample size T . Each line represents a different choice of the correlation, ρ = {0.2, 0.5, 0.8}, and the
degrees of freedom of the t-distribution, ν = {6,∞}. We calibrate θ̄M = (0.125, 0.0169) to a dataset of M = 96 portfolios sorted on size and
book-to-market spanning July 1963 to August 2023.
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Figure 3: Estimated Optimal Portfolio Size in Simulated Data

Notes. This figure depicts boxplots of the estimated optimal portfolio size N for the SMV portfolio (N̂⋆
smv), two-fund rule (N̂⋆

2f ), GMV-three-

fund rule (N̂⋆
3f,g), and EW-three-fund rule (N̂⋆

3f,ew). These are the estimated counterparts of N⋆
smv in (17), N⋆

2f in (18), N⋆
3f,g in (A.10), and

N⋆
3f,ew in (A.19) following the estimation methodology in Section A.II. of the Appendix. The boxplots are obtained by simulating 10,000 times

T = 120 t-distributed returns. Using a dataset ofM = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set
µM = µ̂96 and ΣM ∈ {Σ̂96, Σ̂96(ρ̄)}, where Σ̂96(ρ̄) is an equicorrelation covariance matrix and ρ̄ = 0.74 is the average of all correlations in
Σ̂96. We consider ν ∈ {6,∞} degrees of freedom. Each boxplot corresponds to a different choice of (ν,ΣM ). We depict with crosses the oracle
value of the optimal N that is known under Assumption 1, i.e., when ΣM is of the form ΣM (ρ).
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Figure 4: Impact of Correlation ρ on Optimal Portfolio Size in Simulated Data

Notes. This figure depicts boxplots of the estimated optimal portfolio size N for the SMV portfolio (N̂⋆
smv), two-fund rule (N̂⋆

2f ), GMV-three-

fund rule (N̂⋆
3f,g), and EW-three-fund rule (N̂⋆

3f,ew). These are the estimated counterparts of N⋆
smv in (17), N⋆

2f in (18), N⋆
3f,g in (A.10), and

N⋆
3f,ew in (A.19) following the estimation methodology in Section A.II. of the Appendix. The boxplots are obtained by simulating 10,000 times

T = 120 t-distributed returns. Using a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we
set µM = µ̂96 and ΣM = Σ̂96(ρ), where Σ̂96(ρ̄) is an equicorrelation covariance matrix and ρ varies between 0.1 and 0.9 with a step size of
0.1. We consider ν = 6 degrees of freedom. We depict with dotted lines and crosses the oracle value N⋆ of the optimal N that is known under
Assumption 1, i.e., when ΣM is of the form ΣM (ρ).
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Figure 5: Expected Out-of-Sample Utility in Simulated Data (ν = 6,ΣM = Σ̂96)

Notes. This figure depicts the expected out-of-sample utility (EU) of the sample mean-variance portfolio (SMV, top-left panel), two-fund rule
(2F, top right), GMV-three-fund rule (3FGMV, bottom left), EW-three-fund rule (3FEW, bottom right) as a function of the portfolio size N . We
simulate 10,000 samples of t-distributed returns with ν = 6 degrees of freedom. For eachN , we conduct a rolling window exercise as described in
Section IV.B and, in each rolling window, we randomly select theN assets. Using a dataset ofM = 96 portfolios sorted on size and book-to-market
spanning July 1963 to August 2023, we set µM = µ̂96 and ΣM = Σ̂96. In each panel, the solid blue line depicts the EU in (21), the shaded gray
area depicts the one-sigma interval around the EU across simulations, and the dashed horizontal blue line depicts the EU obtained when using the
estimated optimal N , i.e., N̂⋆

smv for the SMV portfolio, N̂⋆
2f for 2F, N̂⋆

3f,g for 3FGMV, and N̂⋆
3f,ew for 3FEW. The dash-dotted red line depicts

the EU of the equally weighted portfolio. The dotted horizontal gray line depicts the zero EU level. The risk-aversion coefficient is γ = 1.
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Figure 6: Expected Out-of-Sample Utility and Estimated Portfolio Size of Soft and Hard-
Thresholding of the Sample Mean-Variance Portfolio in Simulated Data (ν = 6,ΣM = Σ̂96)

Notes. This figure depicts the expected out-of-sample utility (EU) and the estimated optimal portfolio size of the soft and hard-thresholding versions
of the sample mean-variance portfolio, SMV-ST and SMV-HT, described in Section IV.C. We depict these as a function of the number of assets N
on which SMV-ST and SMV-HT are estimated. We simulate 10,000 samples of t-distributed returns with ν = 6 degrees of freedom. For each N ,
we conduct a rolling window exercise as described in Section IV.B and, in each rolling window, we randomly select the N assets. Using a dataset
of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set µM = µ̂96 and ΣM = Σ̂96. In the left
panels, the solid blue line depicts the EU of SMV-ST or SMV-HT in (21), the shaded gray area depicts the one-sigma interval around the EU across
simulations, the dash-dotted red line depicts the EU of the equally weighted portfolio, and the dotted horizontal gray line depicts the zero EU level.
The risk-aversion coefficient is γ = 1. In the right panels, the blue crosses depict the average estimated optimal portfolio size.
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Figure 7: Expected Out-of-Sample Utility of Factor-plus-Alpha Strategy in Simulated Data
(ν = 6,ΣM = Σ̂96)

Notes. This figure depicts the expected out-of-sample utility (EU) of the factor-plus-alpha (F+A) strategy, described in Section OA.4 of the Online
Appendix, as well as the two-fund rule (2F), as a function of the portfolio size N . We simulate 10,000 samples of t-distributed returns with ν = 6
degrees of freedom. For each N , we conduct a rolling window exercise as described in Section IV.B and, in each rolling window, we randomly
select the N assets out of the M available ones. Using a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to
August 2023, we set µM = µ̂96 and ΣM = Σ̂96. In each panel, the solid blue and green lines depict the EU in (21) of F+A and 2F, respectively,
the shaded gray area depicts the one-sigma interval around the EU of F+A across all simulations, and the dash-dotted red line depicts the EU of the
equally weighted portfolio. The dotted horizontal gray line depicts the zero EU level. In the left panel, the sample size T = 120 is fixed. In the
right panel, the sample size increases with N as T = 60 + 2N . The risk-aversion coefficient is γ = 1.
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Table 1: List of Datasets considered in the Empirical Analysis

Notes. This table lists the datasets of monthly excess returns considered in the empirical analysis of Section V., which we detail in Section V.A. The
columns report, in order, the dataset number, name, description, size M , and time period. The industry portfolios and the portfolios sorted on size,
book-to-market, operating profitability, investment, and momentum are downloaded from Kenneth French’s website. The characteristic portfolios
in Novy-Marx and Velikov (2015) are downloaded from Robert Novy-Marx’s website. In the construction of these datasets, we have removed assets
with missing data over the time period considered. The 108CHA dataset is the same as that used by Lassance and Martı́n-Utrera (2023). In the
construction of the 108CHA dataset, Lassance and Martı́n-Utrera (2023) drop characteristics with more than five percent of missing observations
for more than five percent of firms with CRSP returns available for the entire sample. For the 100STO dataset, we follow Lassance et al. (2024b)
and collect adjusted returns from CRSP for the 235 stocks traded on the three major U.S. stock exchanges that have an history of returns between
1998 and 2022, and we report the portfolio performance across 100 datasets of 100 stocks, randomly drawn from the total pool of 235 stocks, after
merging the out-of-sample portfolio returns across the 100 datasets.

# Name Description M Time period

1 96S-BM 96 portfolios sorted on size and book-to-market 96 07/1963–08/2023

2 108CHA 108 characteristic portfolios built on long and short legs 108 09/1966–12/2020
of 54 characteristics in Lassance and Martı́n-Utrera (2023)

3 100S-OP 100 portfolios sorted on size and operating profitability 100 07/1963–08/2023

4 94IN-NV 48 industry portfolios and 46 characteristic portfolios 94 07/1973–12/2013
built on long and short legs of 23 characteristics in
Novy-Marx and Velikov (2015)

5 107IN-CHA 47 industry portfolios, 25 portfolios sorted on size 107 07/1963–12/2022
and book-to-market, 25 portfolios sorted on operating
profitability and investment, 10 portfolios sorted on
momentum

6 98IN-CHA-NV 47 industry portfolios, 25 portfolios sorted on operating 98 07/1963–12/2013
profitability and investment, 10 portfolios sorted on
momentum, 16 characteristic portfolios built on long
and short legs of eight low-turnover characteristics in
Novy-Marx and Velikov (2015)

7 100STO 100 random datasets of 100 U.S. individual stocks 100 01/1998–03/2022
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Table 2: List of Portfolio Strategies considered in the Empirical Analysis

Notes. This table lists the portfolio strategies that we consider in the empirical analysis, which we detail in Section V.B. We apply the 2F, 3FGMV,
3FEW, and EW portfolio strategies on a subset ofN assets out of theM available ones, and the asset selection rules we implement for that purpose
are described in Section V.C.

Name Description

2F Two-fund rule that combines the SMV portfolio and the risk-free asset. See Equation (8) and
Proposition 2.

3FGMV Three-fund rule that combines the SMV portfolio, the SGMV portfolio, and the risk-free asset.
See Equation (A.3) and Proposition A.1.

3FEW Three-fund rule that combines the SMV portfolio, the EW portfolio, and the risk-free asset. See
Equation (A.12) and Proposition A.3.

EW Equally weighted portfolio
EWRF Combination of EW and the risk-free asset. See Equation (OA15).
SGMV Sample global minimum-variance portfolio. See Equation (A.1).
GMVRF Combination of SGMV and the risk-free asset. See Equation (24).
SMV Sample mean-variance portfolio. See Equation (7).
SMV-ST SMV portfolio with soft-thresholding and the L1-norm-constraint threshold selected via cross-

validation. See Equation (22).
SMV-HT SMV portfolio with hard-thresholding and the weight threshold selected via cross-validation.
F+A Factor-plus-alpha strategy from Da et al. (2024). See Section OA.4 of the Online Appendix.

Table 3: List of Asset Selection Rules considered in the Empirical Analysis

Notes. This table lists the asset selection rules that we consider in the empirical analysis of Section V., which we detail in Section V.C. That is, in an
investment universe of M assets, which N assets we select for a given N ≤M . The notation ⌈N/2⌉ (⌊N/2⌋) means N/2 rounded above (below)
to the nearest integer.

Name Description

All Include all assets: N =M .
Rand Select N assets randomly.
MaxSR Select N assets with the maximum Sharpe ratios.
MinSR Select N assets with the minimum Sharpe ratios.
BWSR Select ⌈N/2⌉ assets with the best Sharpe ratios and ⌊N/2⌋ assets with the worst Sharpe ratios.
MaxVar Select N assets with the maximum variances.
MinVar Select N assets with the minimum variances.
BWVar Select ⌈N/2⌉ assets with the best variances and ⌊N/2⌋ assets with the worst variances.
MinPC Select the N assets with the minimum correlations with the first principal component.
Bestθ2N Select the N assets that deliver the best portfolio Sharpe ratio as in Ao et al. (2019).
MaxW Select the N assets with the maximum absolute weights.
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Table 4: Annualized Net Out-of-Sample Utility in Empirical Data (in percentage points)

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the 11 portfolio strategies in Table 2, the 11 asset
selection rules in Table 3, across the seven datasets in Table 1. The table is constructed following the out-of-sample methodology described in
Section V.D. We estimate the portfolios either with the sample covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004).
The net out-of-sample utility is computed using rolling windows, a sample size T = 120 months, and proportional transaction costs of 10 basis
points. The risk-aversion coefficient is γ = 1. We compute two-sided p-values for the statistical test of the difference between the utility of the 2F,
3FGMV, and 3FEW portfolios under each selection rule relative to the ‘All’ selection rule as a benchmark, using the block bootstrap methodology
described in Section V.D. We also report p-values for SMV-HT and SMV-ST, using SMV as benchmark. The symbols #, H#, and  indicate that
the p-value is less than 10%, 5%, and 1%, respectively.

Sample covariance matrix Linear shrinkage covariance matrix

Port- Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

2F All −0.31 −59.6 −15.3 99.4 −18.8 56.8 −5.47 5.11 1.20 1.09 41.6 1.09 17.7 0.16
2F Rand 12.3 14.2 −7.17 145 1.46 149 −1.77 17.0 52.4 1.60 132 12.8 79.5 3.48 

2F MaxSR 1.38 11.6 −7.48 23.6# −10.5 −27.1H# 7.75 1.93# 23.1 −6.10 23.1 0.69 10.8# 12.2 

2F MinSR 25.4 73.2 7.10 146 24.9 139H# −3.86H# 18.0 53.2 5.21H# 101 16.0 72.1 −2.49 

2F BWSR 7.39 84.4 −4.42 133 11.7# 242 −29.9 19.2 63.8 4.74 143 18.8H# 99.5 −11.8 

2F MaxVar 25.0 124 17.9 114 21.7 83.8 −7.25H# 23.2 70.5 9.99H# 122 21.1 77.7 −3.62 

2F MinVar 2.47 12.5 −13.1 219H# −1.88 225 −0.42 6.08 33.1 −5.25# 140 5.40# 81.4 12.4 

2F BWVar 13.0 89.3 −6.76 182# 0.14 180 −0.53 19.8 63.4 5.39 133 10.6H# 89.9 5.38 

2F MinPC 27.4 112 −6.23 115 17.9H# 94.1 −1.01 24.9 67.7 −2.55 109 22.8 50.5 6.68 

2F Best θ2N −1.22 14.7 −8.77 182# 4.73 137H# −9.71H# 24.4 59.2 −4.03 149 23.0 95.7 3.33H#

2F MaxW −127 −305 −179 −581 −129 −366 −77.2 32.3 79.0 2.19 197 19.8# 129 −13.5 

3FGMV All 0.47 −60.5 −12.5 99.1 −19.7 55.4 −8.35 5.77 1.21 1.79 41.9 1.31 17.9 1.99
3FGMV Rand 16.8 14.5 2.65 145 6.11 148 −3.74 19.8 52.7 9.42 133 16.6 80.0 10.7 

3FGMV MaxSR −4.06 10.8 −1.93# 15.6H# −6.02 −27.4H# 13.5 1.63 23.3 3.04 24.6 5.32 10.8# 23.3 

3FGMV MinSR 36.0 71.6 12.9 150 31.5 141H# −2.49 24.3 53.4 8.94H# 103 21.5 74.8 3.93H#

3FGMV BWSR 10.9 82.4 1.02 143 19.9H# 253 −7.29 24.7 64.0 13.0H# 146 25.2 101 11.7 

3FGMV MaxVar 25.1H# 126 24.9 117 21.7 85.0 −13.4 24.6 70.9 14.3 123 23.1 79.6 −0.62 

3FGMV MinVar 6.13 13.3 −14.9 222H# 0.35# 219 9.13 7.94 33.2 −0.72 141 8.69H# 80.7 22.0 

3FGMV BWVar 27.4H# 89.0 2.74 183# 11.2H# 190 0.08 25.8 63.5 12.9H# 137 15.4 90.8 13.4 

3FGMV MinPC 33.3 113 6.47H# 115 25.9 91.3 −10.1 27.0 68.2 8.74# 112 28.7 52.0 10.1 

3FGMV Best θ2N 12.3 7.39 −0.08 122 1.33# 165 −4.21H# 15.1# 48.2 11.9 144 19.6 71.0 11.0 

3FGMV MaxW −136 −300 −147 −650 −110 −325 −82.9 38.2 79.4 15.7 201 30.4 131 9.34 

3FEW All 1.83 −62.8 −10.8 102 −16.8 60.8 14.1 7.21 −2.56 3.01 40.3 2.38 18.5 19.1
3FEW Rand 13.3 13.6 −0.44 146 2.76 150 15.3 17.1 51.2 6.39 131 13.7 79.3 19.8 

3FEW MaxSR 3.68 12.6 −0.61 23.6H# −12.1 −20.4H# 17.6 4.05 23.4 2.23 22.4H# 1.79 12.0 18.1
3FEW MinSR 24.8 70.8 11.3 145 24.8 146H# 9.96 17.6H# 51.0 7.15 98.2 15.3H# 72.0 12.1 

3FEW BWSR 8.43 84.4 3.41 135 17.9H# 237 12.6 20.6 62.6 9.48# 140 22.0 98.8 19.8
3FEW MaxVar 26.0H# 122 25.3 124 16.0H# 98.9 8.08 22.2 68.7 12.8 121 18.0 77.0 13.0 

3FEW MinVar 4.93 12.3 −5.87 220H# 0.40 230 19.2 8.94 33.5 2.79 140 8.08# 82.2 23.5 

3FEW BWVar 14.2 88.6 −3.30 195# −0.15 187 18.9 19.0 62.4 9.50# 132 9.65# 90.4 21.6 

3FEW MinPC 26.0H# 114 2.26 120 15.9H# 103 19.1 22.1 66.3 5.27 113 21.4 52.8 23.9 

3FEW Best θ2N 12.5 4.58 −4.45 136 −8.83 166 15.9# 12.5 46.2 10.1H# 140 13.2 69.5 20.5 

3FEW MaxW −124 −305 −157 −650 −139 −361 −7.46 24.8 52.9 5.80 202 0.52 131 20.4#

EW All 8.11 2.80 8.00 3.98 7.13 5.61 13.5 8.11 2.80 8.00 3.98 7.13 5.61 13.5
EW Rand 8.04H# 2.73H# 7.90H# 3.89H# 7.04H# 5.54H# 13.4H# 8.04H# 2.73H# 7.90H# 3.89H# 7.04H# 5.54H# 13.4H#

EW MaxSR 8.77# 4.72 8.49 5.97 7.40 6.25H# 11.2 8.77# 4.72 8.49 5.97 7.40 6.25H# 11.2 

EW MinSR 7.39H# 0.83 7.55# 2.75 6.77 5.18 14.8 7.39H# 0.83 7.55# 2.75 6.77 5.18 14.8 

EW BWSR 7.94 2.42 7.72 2.86 7.35 5.28 14.7 7.94 2.42 7.72 2.86 7.35 5.28# 14.7 

EW MaxVar 7.95 1.38 7.97 3.52 6.68 5.31 14.8 7.95 1.38 7.97 3.52 6.68 5.31 14.8 

EW MinVar 8.60 4.23 8.18 4.36 7.44 5.86 11.2 8.60 4.23 8.18 4.36 7.44 5.86 11.2 

EW BWVar 7.60 2.34 7.52H# 3.99 6.88 5.58 14.1 7.60 2.34 7.52H# 3.99 6.88 5.58 14.1 

EW MinPC 7.87 2.48 7.20 5.00H# 6.97 6.22 12.4 7.87 2.48 7.20 5.00H# 6.97 6.22H# 12.4 

EW Best θ2N 7.88# 2.72 7.92 3.82 7.02 6.03H# 13.5 8.27 2.75 7.82 3.95 6.90 5.92# 13.5

EWRF 0.63 −1.55 0.59 −1.84 1.00 0.59 16.4 0.63 −1.55 0.59 −1.84 1.00 0.59 16.4
SGMV 1.76 −49.7 4.25 −0.34 −2.28 −4.67 1.25 10.3 2.33 7.75 4.02 8.48 6.65 6.89

GMVRF 1.81 −26.3 −0.98 −11.4 −12.3 −5.34 −5.70 4.01 −0.00 1.47 0.14 0.66 0.49 2.10
SMV −4E+05 −3E+11 −1E+06 −6E+07 −8E+08 −8E+07 −9E+04 −1443 −107 −1399 −2360 −1457 −1143 −1844

SMV-ST 15.8 −108 11.7 −579 −2.91 0.88 0.77 23.9 67.8 5.13 −195 10.4 16.4 1.43 

SMV-HT −35.3 −302 −16.8 −105 −25.9 −143 −7.62 −29.9 −52.1 −17.8 −376 −33.6 −349 −21.1 

F+A −232 −158 −368 −338 −138 −138 −110 −113 19.7 −227 −214 −113 −37.5 −111
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Figure 8: Difference in Net Out-of-Sample Utility relative to Investing in All Assets

Notes. This figure depicts, for three different portfolio strategies, the difference between the annualized net out-of-sample utility in percentage points
obtained when implementing the portfolios on a subset of N assets, where the optimal N is estimated using our theory, using 10 asset selection
rules relative to the case where the portfolios are implemented on all M assets. The three portfolio strategies are the two-fund rule (2F, blue), the
GMV-three-fund rule (3FGMV, green), and the EW-three-fund rule (3FEW, red). Each panel considers one of the 10 asset selection rules described
in Table 3. The figure is constructed following the methodology described in Section V.D. We consider seven datasets described in Table 1. We
estimate the portfolios with the linear shrinkage covariance matrix of Ledoit and Wolf (2004). The net out-of-sample utility is computed using
rolling windows, a sample size T = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is γ = 1.
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This Online Appendix contains eight sections. In Section OA.1, we study the optimal portfolio

size under a single-factor model assumption. In Section OA.2, we analyze the relation between

the correlation of assets and the maximum utility of the MV portfolio. In Section OA.3, we study

the impact of the sequence of assets on the EU and the optimal portfolio size. In Section OA.4,

we detail how we implement the factor-plus-alpha portfolio strategy. In Section OA.5, we explain

how we estimate the EWRF portfolio strategy. In Sections OA.6 and OA.7, we report and discuss

additional simulation and empirical results. In Section OA.8, we provide the proofs of theoretical

results contained in the Appendix and Online Appendix.

OA.1 Single-factor model assumption

In the main text, we find the optimal portfolio size under Assumption 1, i.e., asset returns are

equicorrelated. In this section, we show that we obtain a very similar portfolio size under another

assumption for the covariance matrix, which is that asset returns follow a single-factor model. This

is a commonly used assumption in asset pricing and portfolio selection to obtain parsimonious rep-

resentations of expected returns and covariance matrices; see, e.g., MacKinlay and Pástor (2000),

Tu and Zhou (2011), and Kan et al. (2021).

Assumption OA.1 The asset returns follow a single-factor model,

r = αN + βNf + ε, (OA1)

where f ∈ R is the factor with zero mean and variance σ2
f , βN ∈ RN is the vector of factor

loadings, E[ε] = 0N , E[εε′] = σ2
εIN , and f is uncorrelated with ε.
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Under Assumption OA.1, the covariance matrix of asset returns is of the form

ΣN = σ2
fβNβ

′
N + σ2

εIN . (OA2)

This parametrization of the covariance matrix involves N + 2 parameters: the N factor loadings

βN , σ2
f , and σ2

ε . This is similar to the covariance matrix under Assumption 1, which involves

N +1 parameters: N asset variances and one correlation coefficient. However, the equicorrelation

and single-factor assumptions restrict the covariance matrix differently. Assumption 1 fixes the

correlation coefficients to a single ρ, while allowing individual variances to vary freely. In contrast,

Assumption OA.1 entangles variances and correlations, the variance of asset i being σ2
fβ

2
i + σ2

ε ,

and the correlation between assets i and j being βiβjσ2
f .

Given these differences, if both assumptions result in similar optimal portfolio sizes, this would

support the robustness of our approach. Therefore, we proceed by comparing the optimal portfolio

sizes under the two assumptions, both the oracle and estimated ones. We focus on the optimal

portfolio size for the two-fund rule for conciseness; similar results can be obtained for the SMV

portfolio and the three-fund rules. To find the optimal N for the two-fund rule, we derive in the

next proposition the maximum squared Sharpe ratio and the EU of the optimal two-fund rule under

the single-factor covariance matrix in (OA2).

Proposition OA.1 Under Assumption OA.1, the maximum squared Sharpe ratio is

θ2N =
N

σ2
ε

∆N(ℓ̄N) with ∆N(ℓ̄N) = ℓ̄µN −
Nσ2

f

σ2
ε +Nσ2

f ℓ̄
β
N

(ℓ̄µ,βN )2, (OA3)

where ℓ̄N = (ℓ̄µN , ℓ̄
β
N , ℓ̄

µ,β
N ), ℓ̄µN = 1

N

∑N
i=1 µ

2
i , ℓ̄βN = 1

N

∑N
i=1 β

2
i , and ℓ̄µ,βN = 1

N

∑N
i=1 µiβi.

Moreover, the EU of the optimal two-fund rule ŵ(α⋆) is given by

EU(ŵ(α⋆)) =
N

2γcNσ2
ε

× κ2N,1∆N(ℓ̄N)
2

κN,2∆N(ℓ̄N) + κN,3σ2
ε/T

=: EU sf
2f (N, T, σ

2
f , σ

2
ε , τ, ℓ̄N). (OA4)
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Figure OA.1: Optimal portfolio size for the two-fund rule under the single-factor model and
equicorrelation assumptions
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Notes. This figure depicts the optimal portfolio size for the optimal two-fund rule as a function of the sample size T under two different assumptions.
First, in blue, the equicorrelation assumption, i.e., Assumption 1, which yields N⋆

2f in (18). Second, in red, the single-factor model assumption,

i.e., Assumption OA.1, which yields N⋆,sf
2f in (OA5). We assume that asset returns are i.i.d. multivariate t-distributed with ν = ∞ (solid lines)

and ν = 6 (dashed lines) degrees of freedom. We calibrate the parameters on which N⋆
2f and N⋆,sf

2f depend to a dataset of M = 96 portfolios
sorted on size and book-to-market spanning July 1963 to August 2023, which yields ℓ̄M = (6.07 × 10−5, 1.229, 0.0082), σ2

ε = 0.0014,
θ̄M = (0.125, 0.0169), ρ = 0.74. The single factor is the Fama-French market excess return, which has a variance σ2

f = 0.0020. The risk-
aversion coefficient is γ = 1.

As in the main text, we use the result in Proposition OA.1 to find the optimalN for the two-fund

rule as

N⋆,sf
2f = argmax

N∈{1,...,min(M,T−5)}
EU sf

2f (N, T, σ
2
f , σ

2
ε , τ, ℓ̄M). (OA5)

To determine N⋆,sf
2f , we must compute ℓ̄M , σ2

f , and σ2
ε . To do so, we use the Fama-French market

excess return as the factor f and we regress the M asset returns on f via OLS to obtain the βi’s.

For each asset, we obtain a residual variance σ2
εi

, and we set σ2
ε =

1
M

∑M
i=1 σ

2
εi

.

We now compare the oracle N⋆,sf
2f under the single factor model to N⋆

2f under equicorrelation.

We use the same setup as in Figure 2, which yields ℓ̄M = (6.07 × 10−5, 1.229, 0.0082), σ2
ε =

0.0014, θ̄M = (0.125, 0.0169), and ρ = 0.74. Moreover, the variance of the market factor over

the period July 1963 to August 2023 is σ2
f = 0.0020. Figure OA.1 depicts N⋆,sf

2f and N⋆
2f as a
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function of the sample size T ∈ [60, 300] for degrees of freedom ν = 6 or ∞. We find that the

equicorrelation and single-factor assumptions yield an essentially equivalent optimal N . This is

because, under both assumptions, the maximum squared Sharpe ratio θ2N is equal to N multiplied

by a factor that has little sensitivity to N .OA1

Finally, we compare the estimated optimal N under the two assumptions in empirical data. In

each rolling window of size T = 120 months, we compute the estimate of N⋆,sf
2f in (OA5), N̂⋆,sf

2f ,

obtained by estimating (σ2
f , σ2

ε , ℓ̄M) as explained above and the parameters (κN,1, κN,2, κN,3) as

explained in Section A.2, and compare it to N̂⋆
2f in the main text.

We depict boxplots of the estimated optimal portfolio sizes under the single-factor model and

equicorrelation assumptions in Figure OA.2. As in Figure OA.1, we find that the two assumptions

deliver similar results, which confirms the robustness of the optimalN found under equicorrelation.

Also, we observe that the single-factor estimator, N̂⋆,sf
2f , has a lower variance than N̂⋆

2f , because

the parameters (σ2
f , σ2

ε , ℓ̄M ) have less variability than (ρ, θ̄M ).OA2

OA.2 Equicorrelation and the maximum utility

In the next proposition, we demonstrate that, under the Assumption 1, i.e., equicorrelation, U(w⋆)

is a convex function of ρ, and we derive the minimizer.

Proposition OA.2 Under Assumption 1, the maximum utility U(w⋆) = θ2N/(2γ), with θ2N given

OA1Engle and Kelly (2012, p. 213) also note that equicorrelation and single-factor covariance matrices are consistent:
“In a one-factor world, [...] if the cross-sectional dispersion of βj is small and idiosyncrasies have similar variance
over each period, then the system is well described by Dynamic Equicorrelation.”

OA2In unreported results, we find that the net out-of-sample utility delivered by the size-optimized two-fund rule is
similar using either N̂⋆,sf

2f or N̂⋆
2f for all selection rules in Table 3.
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Figure OA.2: Estimated optimal portfolio size in empirical data
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Notes. This figure depicts boxplots of the estimated optimal portfolio size for the two-fund rule under two different assumptions: the equicorrelation

assumption (N̂⋆
2f ) and the single factor assumption (N̂⋆,sf

2f ). These are the estimated counterparts ofN⋆
2f in (18) andN⋆,sf

2f in (OA5), respectively.
The boxplots are obtained by implementing the estimation methodology in Section A.2 of the Appendix for each dataset listed in Table 1. We use a
sample size T = 120 and set γ = 1.

by (4), is a convex function of ρ ∈
(
− 1
N−1

, 1
)

and is minimized byOA3

ρmin =

N√
N−1

√
θ̄2N,1(θ̄N,2 − θ̄2N,1)− θ̄N,2

N(θ̄N,2 − θ̄2N,1)− θ̄N,2
. (OA6)

Figure OA.3 illustrates Proposition OA.2. We calibrate (θ̄N,1, θ̄N,2) to the 96S-BM dataset,

which yields (θ̄N,1, θ̄N,2) = (0.125, 0.0169), and we depict U(w⋆) as a function of ρ for N ∈

{2, 10, 25, 50} and γ = 1. The figure shows thatU(w⋆) decreases with ρ for ρ < ρmin and increases

with ρ for ρ > ρmin. This result extends Gandy and Veraart (2013, p.536), who also find that the

maximum utility “[...] is initially decreasing in ρ and increasing afterwards.”, and which we extend

to the case where asset returns are non-homogeneous.

OA.3 Impact of the sequence of assets on expected utility

In this section, we study the impact of the sequence in which the assets are picked on θ̄N , which is

defined in Proposition 1, and on the EU of the two-fund rule, EU2f (N, T, ρ, τ, θ̄N) in (16). Specif-

OA3It holds that limN→θ̄N,2/(θ̄N,2−θ̄2
N,1)

ρmin = 1− θ̄N,2/(2θ̄
2
N,1), see the proof of Proposition OA.2.
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Figure OA.3: Impact of correlation on maximum utility
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Notes. This figure depicts the maximum utility U(w⋆) in Proposition 1 under the assumption that all assets have equal correlations ρ. We calibrate

(θ̄N,1, θ̄N,2) to a dataset of 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023 to the 96S-BM dataset, which
yields (θ̄N,1, θ̄N,2) = (0.125, 0.0169). We depict U(w⋆) as a function of ρ for N ∈ {2, 10, 25, 50} and a risk-aversion coefficient γ = 1. The
minimizer of U(w⋆) is ρmin given by (OA6).

ically, we study how close θ̄N is to θ̄M and how close our EU approximation EU2f (N, T, ρ, τ, θ̄M)

in (18) is to EU2f (N, T, ρ, τ, θ̄N) as a function of N .

To do so, we consider the following experiment where θ̄N is calibrated to the 96S-BM dataset.

First, we randomly selectN = 1 asset out of theM available ones and evaluate θ̄N andEU2f (N, T, ρ, τ, θ̄N)

assuming i.i.d. multivariate t-distributed returns, i.e., τ ∼ (ν − 2)/χ2
ν . Then, we randomly select

a new asset on top of the first one and compute θ̄N and the EU on the N = 2 assets. We pro-

ceed until N = M , which allows us to depict θ̄N and the EU as a function of N for a specific

sequence of assets. We repeat this exercise 10, 000 times. To compute the EU, we take T = 120,

ρ ∈ {0.2, 0.5, 0.8} and ν ∈ {6,∞}.

We depict the results from this experiment in two figures. First, in Figure OA.4, we depict
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Figure OA.4: Impact of the sequence of assets on θ̄N = (θ̄N,1, θ̄N,2)
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Notes. This figure depicts θ̄N,1 (left panel) and θ̄N,2 (right panel), defined in Proposition 1, as a function of the portfolio size N . The solid blue

line depicts θ̄M,1 and θ̄M,2, and the shaded gray area depicts the one-sigma interval of the values of θ̄N,1 and θ̄N,2 obtained under 10,000 random
sequences of assets. We calibrate this experiment to a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to
August 2023.

θ̄M in solid blue and a one-sigma interval of the 10,000 values of θ̄N in shaded gray, as a func-

tion of N . We observe that the interval quickly shrinks with N . Second, in Figure OA.5, we depict

EU2f (N, T, ρ, τ, θ̄M) in solid blue and a one-sigma interval of the 10,000 values ofEU2f (N, T, ρ, τ, θ̄N)

in shaded gray, as a function of N . We can observe that the gray area closely follows our curve for

determining the optimal N⋆
2f , EU2f (N, T, ρ, τ, θ̄M).

OA.4 Implementation of factor-plus-alpha strategy

In this section, we explain how we implement the factor-plus-alpha (F+A) strategy considered in

the simulation and empirical analysis. We construct the F+A strategy using PCA and the empirical

Bayes method of Da et al. (2024). Below, we try to stay close to the notation in Da et al. (2024)

while ensuring consistency with our own notation.

Assume the vector of N asset excess returns r, with mean µN and covariance matrix ΣN ,
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Figure OA.5: Impact of the sequence of assets on the EU of the optimal two-fund rule
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Notes. This figure depicts our approximation of the EU of the optimal two-fund rule, EU2f (N,T, ρ, τ, θ̄M ) in (18), as a function of the portfolio

size N (solid blue line). We also depict in shaded gray the one-sigma interval of the 10,000 values of EU2f (N,T, ρ, τ, θ̄N ) obtained with
random sequences of assets. We calibrate (κN,1, κN,2, κN,3) to the multivariate t-distribution with ν ∈ {6,∞} degrees of freedom, and consider
ρ ∈ {0.2, 0.5, 0.8}. Each panel corresponds to a choice of (ρ, ν). The risk-aversion coefficient is γ = 1. We calibrate this experiment to a dataset
of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023.

follows a K-factor model of the form

r = β(π + v)︸ ︷︷ ︸
factor

+α+ u︸ ︷︷ ︸
alpha

, (OA7)

where u and v have zero mean and covariance matrices Σu (of size N × N ) and Σv (of size

K×K), respectively, with Σu being diagonal. The factor-optimal and alpha-optimal portfolios are

wβ =
1

γ
(βΣvβ

′)−1βπ and wα =
1

γ
Σ−1
u α. (OA8)

The F+A strategy then combines wβ and wα to maximize the expected utility, which gives

wβ+α = ϕβwβ + ϕαwα with ϕx =
1

γ

w′
xµN

w′
xΣNwx

, (OA9)

where we assume that u and v are uncorrelated, which is the case under PCA below. Note that

if we do not restrict Σu to be diagonal, we have wβ+α = w⋆ = 1
γ
Σ−1
N µN . Thus, the diagonal
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constraint on Σu, as well as the Bayes estimation procedure for estimating wα explained below,

help alleviate estimation risk in w⋆.

For the choice of factors v, we make the standard choice of v being the first K principal

components (PCs), with K ∈ [1, N − 1]. Let V be the N ×K matrix whose columns are the first

K eigenvectors of ΣN and let Λ be the K ×K diagonal matrix of the corresponding eigenvalues

in decreasing order. Let also V̄ and Λ̄ be the corresponding matrices for the remaining PCs from

K + 1 to N . Then, the correspondence with the above notation is β = V , v = V ′(r − µN),

π = V ′µN , Σv = Λ, α = V̄ V̄ ′µN , and Σu = diag
(
V̄ Λ̄V̄ ′). Therefore, the factor-optimal

portfolio is wβ = 1
γ
V Λ−1π and the alpha-optimal portfolio is wα = 1

γ
diag(V̄ Λ̄V̄ ′)−1α, which

combined give the F+A strategy wα+β = ϕβwβ + ϕαwα.

Regarding estimation, we first need to estimate the number of factors K. We follow the widely

used method by Bai and Ng (2002), which is consistent as N and T go to infinity together. Specif-

ically, we estimate K as

K̂ = argmin
K∈[1,N−1]

ln

(
1

NT

N∑
i=1

T∑
t=1

ϵ2it

)
+K

(
N + T

NT

)
ln

(
NT

N + T

)
,

where ϵit = (V̄ V̄ ′R′)it with R the T × N matrix of return samples and V̄ obtained from the

sample covariance matrix Σ̂N . Then, we estimate wβ , ϕβ , and ϕα using the sample estimators

µ̂N and Σ̂N because these are low-dimensional quantities; wβ is low-dimensional because K̂ is

typically small. However, wα requires substantial shrinkage because it is high-dimensional. To

estimate wα, we use the empirical Bayes method in Algorithm 1 of Da et al. (2024):

(a) Let ŝi = α̂i/(Σ̂u)
1/2
ii , where α̂i and Σ̂u are obtained from µ̂N and Σ̂N .

(b) Estimate the marginal density of the ŝi’s using a Gaussian kernel ϕ1/T (x) and a bandwidth
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kN ∝ 1/ ln(N), i.e.,

p̂(x) =
1

NkN

N∑
i=1

ϕ1/T

(
ŝi − x

kN

)
, ϕ1/T

(
ŝi − x

kN

)
=

√
T

2π
exp

(
− T

2k2N
(ŝi − x)2

)
.

(OA10)

(c) Define ψ̆(x) = x+
1+k2N
T

d ln p̂(x)
dx

, where

d ln p̂(x)

dx
=

T

Nk3N p̂(x)

N∑
i=1

(ŝi − x)ϕ1/T

(
ŝi − x

kN

)
. (OA11)

LetMβ̂ = IN−β̂(β̂′β̂)−1β̂ = IN−V̂ V̂ ′, where V̂ is the matrix of the firstK eigenvectors

of Σ̂N . Then, wα is estimated as ŵα = 1
γ
Mβ̂Σ̂

−1/2
u ψ̂, where Σ̂

−1/2
u is the sample estimate

of Σ−1/2
u = diag(V̄ Λ̄−1/2V̄ ′) and ψ̂ is obtained using an isotonic regression of ψ̆(ŝ):

ψ̂ = argmin
x∈RN

∣∣∣∣x− ψ̆(ŝ)
∣∣∣∣
2

subject to xi ≤ xj if ŝi ≤ ŝj ∀i, j. (OA12)

Like Da et al. (2024), we consider values of the bandwidth kN ∈ {0.25, 0.5, . . . , 4}/ ln(N), we

split the sample into a training set composed of the first 80% of the data and a validation set com-

posed of the remaining 20%, and we choose kN for which ŵβ+α achieves the maximum utility on

the validation set. In the empirical analysis, we also implement the F+A strategy using the shrink-

age covariance matrix of Ledoit and Wolf (2004) instead of the sample covariance matrix Σ̂N .

OA.5 Estimation of EWRF portfolio

In this section, we explain how we estimate the EWRF portfolio, a benchmark we consider in

the empirical analysis that combines the EW portfolio with the risk-free asset. It is given by

wewrf = (λew,N/γ)wew, where λew,N is defined in (A11). Its sample estimator, obtained by plug-

ging λ̂ew,N in (A28), is ŵewrf = (λ̂ew,N/γ)wew. Because of estimation errors in λ̂ew,N , it is possi-

ble to improve upon the EU of ŵewrf . In particular, it is useful to combine the EWRF portfolio with
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the risk-free asset a second time to account for estimation errors in λ̂ew,N . Such a “double shrink-

age” approach has been considered in the literature; see, e.g., Kan and Wang (2023) who shrink

the sample mean-variance portfolio toward different portfolios and, after estimating the shrinkage

intensities, shrink the combination portfolio a second time toward the risk-free asset to account for

estimation errors in the shrinkage intensities. In the next proposition, we derive the EU-optimal

combination of ŵewrf with the risk-free asset.

Proposition OA.3 Let T > 5 and the asset returns be i.i.d. multivariate normally distributed. Then,

the EU-optimal combination of ŵewrf = (λ̂ew,N/γ)wew with the risk-free asset is η⋆ŵewrf with

η⋆ =
T − 5

T − 3

(
θ2ew,N

θ2ew,N + 1
T

)
∈ [0, 1]. (OA13)

To obtain the final estimator of the EWRF portfolio, we estimate η⋆ by estimating θ2ew,N

in (A11) with a newly derived adjusted estimator given byOA4

θ̂2ew,N,a =
(T − 3)θ̂2ew,N − 1

T
+

2(θ̂2ew,N)
1
2 (1 + θ̂2ew,N)

2−T
2

T ×Bθ̂2ew,N/(1+θ̂
2
ew,N )

(
1
2
, T−1

2

) , (OA14)

where Bx(a, b) is the incomplete beta function defined in Section A.2.2 and θ̂2ew,N is the sample

estimator of θ2ew,N obtained with µ̂N and Σ̂N in (5). Therefore, the final EWRF portfolio is

η̂⋆
λ̂ew,N
γ

wew with η̂⋆ =
T − 5

T − 3

(
θ̂2ew,N,a

θ̂2ew,N,a +
1
T

)
. (OA15)

OA.6 Additional simulation results

We now report simulation results that complement those in Section 4. Section OA.6.1 considers the

true correlation matrix with ν = ∞, Section OA.6.2 the equicorrelation matrix, and Section OA.6.3

the block-correlation matrix, respectively.
OA4The adjusted estimator θ̂2ew,N,a in (OA14) is obtained by noting that θ̂2ew,N ∼ χ2

1(Tθ
2
ew,N )/χ2

T−1 and applying
Kan and Zhou (2007, Equation (A.9)).
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Figure OA.6: Expected out-of-sample utility in simulated data (ν = ∞,ΣM = Σ̂96)
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Notes. This figure depicts the expected out-of-sample utility (EU) of the sample mean-variance portfolio (SMV, top left panel), two-fund rule (2F,
top right panel), GMV-three-fund rule (3FGMV, bottom left), and EW-three-fund rule (3FEW, bottom right) as a function of the portfolio size
N . We simulate 10,000 samples of t-distributed returns with ν = ∞ degrees of freedom. For each N , we conduct a rolling window exercise as
described in Section 4.2 and, in each rolling window, we randomly select the N assets out of the M available ones. Using a dataset of M = 96
portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set µM = µ̂96 and ΣM = Σ̂96. In each panel, the solid
blue line depicts the EU in (21), the shaded gray area depicts the one-sigma interval around the EU across all simulations, and the dashed horizontal
blue line depicts the EU obtained when using the estimated optimal N for each strategy, i.e., N̂⋆

smv for the SMV portfolio, N̂⋆
2f for 2F, N̂⋆

3f,g for

3FGMV, and N̂⋆
3f,ew for 3FEW. The dash-dotted red line depicts the EU of the equally weighted portfolio. The dotted horizontal gray line depicts

the zero EU level. The risk-aversion coefficient is γ = 1.

OA.6.1 True correlation matrix with ν = ∞

In Figure OA.6, we replicate Figure 5 in the main text for a number of degrees of freedom ν = ∞

(i.e., normality) instead of ν = 6. We find that the two figures are very similar, and thus, our

estimated optimal N delivers an EU close to the maximum for different ν.

In Figure OA.7, we replicate Figure 6 in the main text for ν = ∞. Again, we find that the two

figures are very similar, and thus, the conclusions are robust to the choice of ν.
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Figure OA.7: Expected out-of-sample utility and estimated portfolio size of soft and hard-
thresholding of the sample mean-variance portfolio in simulated data (ν = ∞,ΣM = Σ̂96)
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Notes. This figure depicts the expected out-of-sample utility (EU) and the estimated optimal portfolio size of the soft and hard-thresholding versions
of the sample mean-variance portfolio, SMV-ST and SMV-HT, which are described in Section 4.3. We depict these as a function of the number of
assets N on which SMV-ST and SMV-HT are estimated. We simulate 10,000 samples of t-distributed returns with ν = 6 degrees of freedom. For
each N , we conduct a rolling window exercise as described in Section 4.2 and, in each rolling window, we randomly select the N assets out of the
M available ones. Using a dataset ofM = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set µM = µ̂96

and ΣM = Σ̂96. In the left panels, the solid green line depicts the EU of SMV-ST or SMV-HT in (21), the shaded gray area depicts the one-sigma
interval around the EU across all simulations, the dash-dotted red line depicts the EU of the equally weighted portfolio, and the dotted horizontal
gray line depicts the zero EU level. The risk-aversion coefficient is γ = 1. In the right panels, the green crosses depict the average estimated optimal
portfolio size.

OA.6.2 Equicorrelation matrix

In Figure OA.8, we replicate Figure 5 in the main text using a population covariance matrix sat-

isfying equicorrelation, i.e., ΣM = Σ̂96(ρ̄). Given that Assumption 1 is satisfied, we know from

Sections 3 and A.1 the oracle optimal N for the SMV, 2F, 3FGMV, and 3FEW portfolios obtained

under the true parameters (µ̂96, Σ̂96(ρ̄), ν). Therefore, in Figure OA.8, we depict N⋆ with a ver-

tical dotted line and its EU with an horizontal dotted line; it is not visible for SMV because we

start at N = 5 and N⋆
smv is smaller than five. Panels A and B of Figure OA.8 consider degrees of

freedom ν = 6 and ν = ∞, respectively. Our main observation from Figure OA.8 is that, unlike
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in Figures 5 and OA.6 where we run the same analysis with ΣM = Σ̂96 violating Assumption 1,

there is essentially no gap between the EU delivered by our estimated optimal N and that under

the oracle optimal N .

Next, in Figure OA.9, we depict the EU of the two-fund rule under equicorrelation as a function

of ρ. We set degrees of freedom ν = 6 and a risk-aversion coefficient γ = 1. We depict the EU

considering three different portfolio sizes: the oracleN⋆
2f , the estimated N̂⋆

2f , andN =M . Figure 4

in the main text depicts N⋆
2f and N̂⋆

2f as a function of ρ. We observe that both N⋆
2f and N̂⋆

2f deliver

a larger EU than N = M , as expected. Moreover, remarkably, N̂⋆
2f delivers almost the same EU

as N⋆
2f for all ρ even though Figure 4 shows that N̂⋆

2f has a substantial variance when ρ moves

away from one. Finally, the EU of the two-fund rule is a convex function of ρ, consistent with the

maximum Sharpe ratio, θN in (2), being also a convex function of ρ as shown in Section OA.2 of

this Online Appendix.

OA.6.3 Block-correlation matrix

In Figure OA.10, we run the same experiment as in Sections 4.2, OA.6.1, and OA.6.2, except that

we set the population covariance matrix as ΣM = Σ̂b
96(ρ̄) = D̂96P

b
96(ρ̄)D̂96, where P b

96(ρ̄) is a

block-correlation matrix. We consider two blocks for which the return correlation within the blocks

is ρ̄ = 0.74 and that between the blocks is zero. The two blocks correspond to the first and last 48

assets in the 96S-BM dataset. We observe from Figure OA.10 that even in this setup that violates

our theoretical equicorrelation assumption, our estimated optimal N still delivers an EU close to

the maximum, in particular for three-fund strategies.
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Figure OA.8: Expected out-of-sample utility in simulated data with equicorrelation matrix
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B) ν = ∞
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Notes. Each panel depicts the expected out-of-sample utility (EU) of the sample mean-variance portfolio (SMV, top left panel), two-fund rule (2F,
top right panel), GMV-three-fund rule (3FGMV, bottom left), the EW-three-fund rule (3FEW, bottom right) as a function of the portfolio sizeN . We
simulate 10,000 samples of t-distributed returns with ν = 6 (Panel A) and ν = ∞ (Panel B) degrees of freedom. For eachN , we conduct a rolling
window exercise as described in Section 4.2 and, in each rolling window, we randomly select the N assets out of the M available ones. Using a
dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set µM = µ̂96 and ΣM = Σ̂96(ρ̄),
where Σ̂96(ρ̄) is an equicorrelation covariance matrix and ρ̄ = 0.74 is the average of all correlations in Σ̂96. In each panel, the solid line depicts
the EU in (21), the shaded gray area depicts the one-sigma interval around the EU across all simulations, and the dashed horizontal line depicts the
EU obtained when using the estimated optimalN for each strategy, i.e., N̂⋆

smv for the SMV portfolio, N̂⋆
2f for 2F, N̂⋆

3f,g for 3FGMV, and N̂⋆
3f,ew

for 3FEW. The vertical and horizontal dotted lines depict the oracle N and its EU, respectively, with the crosses showing the intersection. The
dash-dotted red line depicts the EU of the equally weighted portfolio. The dotted horizontal gray line depicts the zero EU level. The risk-aversion
coefficient is γ = 1.
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Figure OA.9: Impact of correlation ρ on expected out-of-sample utility of the two-fund rule in
simulated data
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Notes. This figure depicts the expected out-of-sample utility (EU) of the two-fund rule as a function of the equicorrelation ρ for three different

portfolio sizes: the oracleN = N⋆
2f , the estimatedN = N̂⋆

2f , andN =M . N̂⋆
2f is obtained following the estimation methodology in Section A.2

of the Appendix. We simulate 10,000 samples of t-distributed returns with ν = 6 degrees of freedom. Using a dataset ofM = 96 portfolios sorted
on size and book-to-market spanning July 1963 to August 2023, we set µM = µ̂96 and ΣM = Σ̂96(ρ), where Σ̂96(ρ̄) is an equicorrelation
covariance matrix and ρ varies between 0.1 and 0.9 with a step size of 0.1. For each ρ, we conduct a rolling window exercise as described in
Section 4.2 and, in each rolling window, we randomly select the N assets out of the M available ones. The risk-aversion coefficient is γ = 1. The
dotted horizontal gray line depicts the zero EU level.

OA.7 Additional empirical results

We now report empirical results that complement those in Section 5. Section OA.7.1 looks at the

equicorrelation and elliptical assumptions, Section OA.7.2 considers a nonlinear shrinkage estima-

tor of the covariance matrix, Section OA.7.3 applies our different asset selection rules to the SMV

portfolio, Section OA.7.4 reports the out-of-sample Sharpe ratio of the considered portfolios, Sec-

tion OA.7.5 evaluates the portfolio turnover and how much of it is driven by changes to the selected

assets over time, Section OA.7.6 further analyzes the performance delivered by the random asset

selection rule, Section OA.7.7 investigates the overlap between the selection rules implemented

in the main text, and Section OA.7.8 studies the effect of the portfolio size on the out-of-sample

performance of the benchmark strategies.
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Figure OA.10: Expected out-of-sample utility in simulated data with block-correlation matrix
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B) ν = ∞
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Notes. Each panel depicts the expected out-of-sample utility (EU) of the sample mean-variance portfolio (SMV, top left panel), two-fund rule (2F,
top right panel), GMV-three-fund rule (3FGMV, bottom left), and EW-three-fund rule (3FEW, bottom right) as a function of the portfolio size N .
We simulate 10,000 samples of t-distributed returns with ν = 6 (Panel A) and ν = ∞ (Panel B) degrees of freedom. For each N , we conduct a
rolling window exercise as described in Section 4.2 and, in each rolling window, we randomly select theN assets out of theM available ones. Using
a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set µM = µ̂96 and ΣM = Σ̂b

96(ρ̄),
where ρ̄ = 0.74 is the average of all correlations in Σ̂96 and the block-correlation matrix Σ̂b

96(ρ̄) is described in Section OA.6.3. In each panel, the
solid line depicts the EU in (21), the shaded gray area depicts the one-sigma interval around the EU across all simulations, and the dashed horizontal
line depicts the EU obtained when using the estimated optimal N for each strategy, i.e., N̂⋆

smv for the SMV portfolio, N̂⋆
2f for 2F, N̂⋆

3f,g for

3FGMV, and N̂⋆
3f,ew for 3FEW. The dash-dotted red line depicts the EU of the equally weighted portfolio. The dotted horizontal gray line depicts

the zero EU level. The risk-aversion coefficient is γ = 1.
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OA.7.1 Equicorrelation and elliptical assumptions

We rely on two assumptions in our methodology to derive optimal portfolio combinations and port-

folio sizes: Assumption 1 states that asset returns are equicorrelated and Assumption 2 states that

asset returns are i.i.d. multivariate elliptically distributed. We now look at these two assumptions

in the seven datasets we use in the empirical analysis of Section 5.

Regarding Assumption 1, we define a measure of distance between the correlation matrix ob-

served in the data and the equicorrelation matrix. Specifically, we estimate ρ as the average of

sample correlations obtained from the sample covariance matrix Σ̂M as in (A32),

ρ̄ =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

ρ̂ij, (OA16)

where ρ̂ij is the sample correlation between assets i and j, and we define ∆(ρ̄) as the root mean

squared error between the sample correlation matrix and the equicorrelation matrix obtained by

setting ρ = ρ̄, i.e.,

∆(ρ̄) =

√√√√ 2

M(M − 1)

M∑
i=1

M∑
j=i+1

(ρ̂ij − ρ̄)2. (OA17)

In the left panel of Figure OA.11, we depict, for each of the seven datasets, boxplots of ∆(ρ̄)

across all estimation windows of size T = 120 months. For three out of the seven datasets (96S-

BM, 100S-OP, 108CHA), ∆(ρ̄) is quite low and hovers around 5-10%. However, for the remaining

datasets (107IN-CHA, 94IN-NV, 98IN-CHA-NV, STO100), ∆(ρ̄) is larger and around 10-20%.

Thus, there are varying degrees to which the equicorrelation assumption is representative of the

true correlation structure in the data, which makes the consistent outperformance delivered by our

method to determine the optimal N particularly appreciable.

Regarding Assumption 2, we look at the three parameters (κM,1, κM,2, κM,3) defined in (10)–
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Figure OA.11: Assumptions of equicorrelation and elliptical distribution in empirical data
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Notes. This figure depicts boxplots of the estimated values of ∆(ρ̄) in (OA17), which measures the distance between the sample correlation matrix
and the equicorrelation matrix, and κ̃sM,1 and κ̃sM,2 in (A25)–(A26), which measure the impact of elliptical fat tails on the expected out-of-sample
utility, for each dataset listed in Table 1 across all rolling estimation windows of size T = 120 months.

(12) that control the impact of elliptical fat tails on the EU and that appear in the formulas for

the optimal combination coefficients in the two-fund and three-fund rules. As explained in Sec-

tion A.2.1, in the empirical analysis we estimate them following El Karoui (2010, 2013), i.e., we

estimate κM,1 and κM,3 with κ̃sM,1 in (A25) and κM,2 with κ̃sM,2 in (A26). The middle and right

panels of Figure OA.11 depict boxplots of κ̃sM,1 and κ̃sM,2 across estimation windows. The closer

they are to one, the closer is the data to being normally distributed. We observe that κ̃sM,1 and κ̃sM,2

substantially depart from one, particularly for the 108CHA dataset, but for the other datasets too.

These results indicate that it is crucial to account for the fat tails of returns in determining optimal

combination rules.

OA.7.2 Nonlinear shrinkage covariance matrix

In Table OA.1, we replicate the results in Table 4 using the nonlinear shrinkage estimator of the co-

variance matrix of Ledoit and Wolf (2020). We observe similar results to those obtained under the

linear shrinkage covariance matrix in Table 4, except for the 108CHA dataset where the nonlinear
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shrinkage estimator does not behave well.

OA.7.3 Performance of size-optimized SMV portfolio

In Table OA.2, we report the annualized net out-of-sample utility of the size-optimized SMV port-

folio for which N is determined using our theory in Section 3, i.e., using N̂⋆
smv, and the assets are

selected using the different selection rules in Section 5.3. We find for all asset selection rules that

reducing N substantially improves the performance of the SMV portfolio. For instance, for the

96S-BM dataset and the linear shrinkage covariance matrix, the SMV portfolio implemented on

all assets delivers a net utility of −1443, whereas BWSR, which is the worst selection rule for that

dataset, delivers a net utility of −33.3. However, because the SMV portfolio is too exposed to es-

timation risk, we still obtain negative utilities in most cases even with a reduced N . It is preferable

instead to apply our method for determining the optimal N to a better reference portfolio like the

two-fund and three-fund rules.

Next, we compare the portfolio size under the three different ways of optimizing the SMV

portfolio size we consider in Table OA.2, across different months t. First, our estimated portfo-

lio size N̂⋆
smv,t following the methodology in Section A.2 of the Appendix. Second, the portfolio

size obtained under soft-thresholding as detailed in Section 4.3. Specifically, in each month t, we

solve (22) under a cross-validated δ, which yields the vector of weights ŵst,t, from which we can

compute the portfolio size as

N̂st,t =
M∑
i=1

1{|ŵst,i,t|>0}. (OA18)

Third, the portfolio size obtained under hard-thresholding as detailed in Section 4.3. Specifically,

in each month t, we obtain N̂ht,t in (23) under a cross-validated w̄. We depict boxplots of portfolio
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Table OA.1: Net out-of-sample utility with a nonlinear shrinkage covariance matrix

Sample covariance matrix nonlinear shrinkage covariance matrix

Port- Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

2F All −0.31 −59.6 −15.3 99.4 −18.8 56.8 −5.47 4.64 −3E+31 1.05 44.4 2.19 16.4 0.10
2F Rand 12.3 14.2 −7.17 145 1.46 149 −1.77 18.6 −5E+05 2.83 140 24.1 79.0 3.19 

2F MaxSR 1.38 11.6 −7.48 23.6# −10.5 −27.1H# 7.75 1.86# −3E+04 −5.41 28.7H# 14.2 10.5 12.5 

2F MinSR 25.4 73.2 7.10 146 24.9 139H# −3.86H# 19.1 −2E+05 5.54H# 104 32.7 68.5 −2.49 

2F BWSR 7.39 84.4 −4.42 133 11.7# 242 −29.9 23.7 −6E+05 7.02 150 39.1 102 −13.3 

2F MaxVar 25.0 124 17.9 114 21.7 83.8 −7.25H# 24.9 −2E+05 9.04H# 126 41.6 72.1 −3.85 

2F MinVar 2.47 12.5 −13.1 219H# −1.88 225 −0.42 4.93 −3E+04 −3.89 150 21.2 80.9 13.0 

2F BWVar 13.0 89.3 −6.76 182# 0.14 180 −0.53 22.6 −5E+05 5.16 141 30.1 93.3 5.09 

2F MinPC 27.4 112 −6.23 115 17.9H# 94.1 −1.01 26.3 −5E+05 −2.38 118 40.5 50.3 7.05 

2F Best θ2N −1.22 14.7 −8.77 182# 4.73 137H# −9.71H# 19.1 −5E+05 −0.27 143 30.5 80.6 3.28H#

2F MaxW −127 −305 −179 −581 −129 −366 −77.2 33.4 −2E+05 9.79 205 42.3 132 −13.5 

3FGMV All 0.47 −60.5 −12.5 99.1 −19.7 55.4 −8.35 5.45 −2E+31 1.64 44.7 3.13 16.5 1.98
3FGMV Rand 16.8 14.5 2.65 145 6.11 148 −3.74 22.0 −6E+05 10.6 141 16.3 79.8 11.5 

3FGMV MaxSR −4.06 10.8 −1.93# 15.6H# −6.02 −27.4H# 13.5 2.99 −3E+04 3.98 30.0H# 24.3 11.3 23.3 

3FGMV MinSR 36.0 71.6 12.9 150 31.5 141H# −2.49 25.7 −2E+05 8.83H# 106 37.9 71.0 4.49 

3FGMV BWSR 10.9 82.4 1.02 143 19.9H# 253 −7.29 30.3 −6E+05 16.5 152 39.5 104 11.7 

3FGMV MaxVar 25.1H# 126 24.9 117 21.7 85.0 −13.4 27.3 −2E+05 12.9H# 128 34.2 74.2 −0.30H#

3FGMV MinVar 6.13 13.3 −14.9 222H# 0.35# 219 9.13 7.25 −4E+04 1.63 150 25.2 80.4 21.4 

3FGMV BWVar 27.4H# 89.0 2.74 183# 11.2H# 190 0.08 28.4 −5E+05 13.1H# 145 31.9 94.6 13.7 

3FGMV MinPC 33.3 113 6.47H# 115 25.9 91.3 −10.1 28.8 −6E+05 9.59H# 120 36.4 52.7 11.4 

3FGMV Best θ2N 12.3 7.39 −0.08 122 1.33# 165 −4.21H# 22.9 −6E+05 10.2H# 147 27.7 81.0 11.9 

3FGMV MaxW −136 −300 −147 −650 −110 −325 −82.9 38.3 −2E+05 20.0 210 43.7 132 12.6 

3FEW All 1.83 −62.8 −10.8 102 −16.8 60.8 14.1 6.82 −3E+31 2.95 43.2 3.06 17.2 19.1
3FEW Rand 13.3 13.6 −0.44 146 2.76 150 15.3 18.7 −5E+05 7.61 139 17.2 78.9 19.7 

3FEW MaxSR 3.68 12.6 −0.61 23.6H# −12.1 −20.4H# 17.6 3.60 −3E+04 2.85 28.1H# 6.34 11.6 17.9
3FEW MinSR 24.8 70.8 11.3 145 24.8 146H# 9.96 18.6 −2E+05 7.41 102 25.9 68.0 12.1 

3FEW BWSR 8.43 84.4 3.41 135 17.9H# 237 12.6 24.8 −5E+05 11.4H# 147 34.8 101 19.6
3FEW MaxVar 26.0H# 122 25.3 124 16.0H# 98.9 8.08 23.5 −2E+05 12.2 126 31.1 71.4 13.0 

3FEW MinVar 4.93 12.3 −5.87 220H# 0.40 230 19.2 7.97 −3E+04 4.06 150 15.6 82.2 23.2 

3FEW BWVar 14.2 88.6 −3.30 195# −0.15 187 18.9 21.9 −5E+05 9.71H# 141 21.3 93.6 21.2 

3FEW MinPC 26.0H# 114 2.26 120 15.9H# 103 19.1 23.9 −5E+05 6.26 120 31.4 52.8 24.0 

3FEW Best θ2N 12.5 4.58 −4.45 136 −8.83 166 15.9# 19.1 −6E+05 6.75 148 21.8 78.8 20.4 

3FEW MaxW −124 −305 −157 −650 −139 −361 −7.46 23.5 −2E+05 8.38# 211 12.2# 131 19.2

EW All 8.11 2.80 8.00 3.98 7.13 5.61 13.5 8.11 2.80 8.00 3.98 7.13 5.61 13.5
EW Rand 8.04H# 2.73H# 7.90H# 3.89H# 7.04H# 5.54H# 13.4H# 8.04H# 2.73H# 7.90H# 3.89H# 7.04H# 5.54H# 13.4H#

EW MaxSR 8.77# 4.72 8.49 5.97 7.40 6.25H# 11.2 8.77# 4.72 8.49 5.97 7.40 6.25H# 11.2 

EW MinSR 7.39H# 0.83 7.55# 2.75 6.77 5.18 14.8 7.39H# 0.83 7.55# 2.75 6.77 5.18 14.8 

EW BWSR 7.94 2.42 7.72 2.86 7.35 5.28 14.7 7.94 2.42 7.72 2.86 7.35 5.28 14.7 

EW MaxVar 7.95 1.38 7.97 3.52 6.68 5.31 14.8 7.95 1.38 7.97 3.52 6.68 5.31 14.8 

EW MinVar 8.60 4.23 8.18 4.36 7.44 5.86 11.2 8.60 4.23 8.18 4.36 7.44 5.86 11.2 

EW BWVar 7.60 2.34 7.52H# 3.99 6.88 5.58 14.1 7.60 2.34 7.52H# 3.99 6.88 5.58 14.1 

EW MinPC 7.87 2.48 7.20 5.00H# 6.97 6.22 12.4 7.87 2.48 7.20 5.00H# 6.97 6.22H# 12.4 

EW Best θ2N 7.88# 2.72 7.92 3.82 7.02 6.03H# 13.5 8.08 2.79 8.16 3.89 6.79H# 5.55 13.5

EWRF 0.63 −1.55 0.59 −1.84 1.00 0.59 16.4 0.63 −1.55 0.59 −1.84 1.00 0.59 16.4
SGMV 1.76 −49.7 4.25 −0.34 −2.28 −4.67 1.25 10.1 2.38 6.52 3.88 7.66 6.04 6.78

GMVRF 1.81 −26.3 −0.98 −11.4 −12.3 −5.34 −5.70 3.81 −3E+34 1.25 0.19 2.72 0.82 2.13
SMV −4E+05 −3E+11 −1E+06 −6E+07 −8E+08 −8E+07 −9E+04 −994 −1E+44 −974 −2115 −2744 −747 −1486

SMV-ST 15.8 −108 11.7 −579 −2.91 0.88 0.77 21.6 −349 7.03 −243 −32.2 9.12 1.17 

SMV-HT −35.3 −302 −16.8 −105 −25.9 −143 −7.62 −28.0 −4E+32 −29.6 −421 −288 −84.8 −22.1 

F+A −232 −158 −368 −338 −138 −138 −110 −253 −5E+09 −394 −344 −2668 −61.0 −171
Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the 11 portfolio strategies in Table 2, the 11 asset selection rules in Table 3, across the seven datasets in

Table 1. The table is constructed following the out-of-sample methodology described in Section 5.4. We estimate the portfolios either with the sample covariance matrix or the nonlinear shrinkage
estimator of Ledoit and Wolf (2020). The net out-of-sample utility is computed using rolling windows, a sample size T = 120 months, and proportional transaction costs of 10 basis points. The
risk-aversion coefficient is γ = 1. We compute two-sided p-values for the statistical test of the difference between the utility of the 2F, 3FGMV, and 3FEW portfolios under each selection rule
relative to the ‘All’ selection rule as a benchmark, using the block bootstrap methodology described in Section 5.4. We also report p-values for SMV-HT and SMV-ST, using SMV as benchmark.
The symbols#,H#, and indicate that the p-value is less than 10%, 5%, and 1%, respectively.
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Table OA.2: Annualized net out-of-sample utility of the size-optimized SMV portfolio

Sample covariance matrix nonlinear shrinkage covariance matrix

Port- Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

SMV All −4E+05 −3E+11 −1E+06 −6E+07 −8E+08 −8E+07 −9E+04 −1443 −107 −1399 −2360 −1457 −1143 −1844
SMV Rand −5.75 −35.1 −1998 −151 −8.59 −105 −2.23 −1.26 27.9 −21.3 10.0 −4.79 −11.8 2.00 

SMV MaxSR −17.3 −25.3 −2011 −38.5 −27.2 −21.5 −60.9 −15.8 0.93 −34.6 −37.6 −25.7 −19.8 −42.8 

SMV MinSR −16.0 −2.04 −2007 −43.4 −12.8 −17.9 −36.2 −14.5 18.2 −31.7 −13.2 −13.1 −17.8 −38.2 

SMV BWSR −50.9 18.5 −2050 −62.2 −54.0 −54.6 −145 −33.3 95.1# −63.4 −8.63 −44.0 −34.3 −105 

SMV MaxVar −5.94 −57.3 −1977 −26.4 −8.54 −18.4 −7.05 −3.90 47.1 −9.97 −23.6 −9.36 −18.6 −7.02 

SMV MinVar −22.1 −35.1 −1998 −52.4 0.22 14.7 −6.33 −16.8 4.38 −13.0 30.3 7.30 25.7 5.50 

SMV BWVar 0.73 −83.2 −1986 −50.3 −14.3 −7.33 −1.63 2.36 −1.50 −8.42 −13.2 −8.47 −0.28 3.36 

SMV MinPC −19.3 −49.7 −2004 −12.7 −10.9 −2.23 −15.2 −16.2 −11.9 −30.8 −11.1 −10.4 −2.07 2.85 

SMV Best θ2N −0.98 34.2 −1996 22.1 −44.8 11.4 −17.9 9.97 34.7 −30.6 39.9 −16.1 3.14 −5.26 

SMV MaxW −15.3 −82.5 −2021 −76.2 −16.3 −78.4 −6.24 −17.5 50.9 −45.4 22.5 −0.62 −14.5 −43.4 

SMV-ST 15.8 −108 11.7 −579 −2.91 0.88 0.77 23.9 67.8 5.13 −195 10.4 16.4 1.43 

SMV-HT −35.3 −302 −16.8 −105 −25.9 −143 −7.62 −29.9 −52.1 −17.8 −376 −33.6 −349 −21.1 

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the sample mean-variance portfolio across the seven datasets in Table 1 and the 11 asset selection rules

in Table 3, as well as the soft and hard-thresholding versions of the SMV portfolio, SMV-ST and SMV-HT, described in Section 5.2. The table is constructed following the empirical methodology
described in Section 4.3. We estimate the portfolios either with the sample covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004). The net out-of-sample utility is computed
using rolling windows, a sample size T = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is γ = 1.

sizes in Figure OA.12, averaged across the first six datasets in Table 1; we do not include the

100STO dataset because it consists of 100 datasets of 100 stocks, and thus, would be overweighted

in the average. We observe that the portfolio sizes for the SMV portfolio are small on average

compared to M , and that N̂st,t is much more variable than N̂⋆
smv,t and N̂ht,t.

OA.7.4 Out-of-sample Sharpe ratio

In Table OA.3, we report the annualized out-of-sample Sharpe ratio net of proportional transaction

costs of the portfolio strategies considered in Table 4,

SRk =
√
12× µ̂k

σ̂k
, (OA19)

where µ̂k and σ̂k are the sample mean and standard deviation of the out-of-sample net portfolio

returns, rnet,k,t in (25). The main conclusions drawn from the out-of-sample utility are robust to

using the out-of-sample Sharpe ratio. In particular, it is in most cases preferable to reduce the

portfolio size in the 2F, 3FGMV, and 3FEW portfolio combination rules.
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Table OA.3: Annualized net out-of-sample Sharpe ratio (in percentage points)

Sample covariance matrix nonlinear shrinkage covariance matrix

Port- Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

2F All 24.7 −150 −26.8 149 −6.46 113 −7.55 89.4 214 40.1 244 72.6 209 8.12
2F Rand 54.0 74.5 16.7 180 45.5 175 22.2 69.6H# 203H# 19.7H# 210H# 58.6H# 180H# 28.2 

2F MaxSR 19.4 59.5 −1.83 97.7H# −0.85 44.7 50.3 19.8 162 −2.01H# 81.5 12.5 55.4 52.0 

2F MinSR 72.3 121 38.3 171 70.6 168H# −20.5 86.0 215 44.4 195 77.5 180# −23.0 

2F BWSR 52.5H# 130 33.4 177 65.9 220 17.9 69.6# 215 32.1 223H# 67.1 200 21.8 

2F MaxVar 71.4 163 60.7 157 72.7 135 −22.1 83.8 238 50.7 197 74.1 159 −17.6 

2F MinVar 32.0 65.4 −13.6 211 23.7# 212 36.7 38.1 179 −2.61H# 225# 39.1H# 206 49.9 

2F BWVar 56.3H# 134 26.7 200H# 37.2H# 198 24.7 75.8 217 33.0 214H# 52.7 190 32.8 

2F MinPC 74.2 150 12.3H# 167 71.9 140 25.8 89.9 228# 1.89H# 176 79.4 137 36.6 

2F Best θ2N 39.7 75.4 13.6H# 193# 66.3H# 169H# 25.8 81.7 208 9.13 228 79.3 198H# 33.6 

2F MaxW 51.5 3.14 0.47H# 171 29.4 177 12.2 87.5 233 28.7 238 63.2 210 30.6 

3FGMV All 26.9 −151 −14.2 149 −3.63 112 4.79 88.5 215 57.0 246 80.5 208 39.4
3FGMV Rand 60.8 75.0 35.4 180 52.5 175 33.9 72.9H# 204H# 48.6H# 211H# 66.3H# 177H# 46.3 

3FGMV MaxSR 9.59 59.1 8.19 94.7 15.6 46.8 59.1 18.2 161 27.7# 83.3 35.7 53.0 70.0 

3FGMV MinSR 89.9 120 50.8 173 79.3 169H# 20.0 104 215 55.8 200 91.4 183 28.2 

3FGMV BWSR 59.8 128 39.1 181# 74.5 225 37.6 77.9 215 57.3 226# 80.1 198 49.5 

3FGMV MaxVar 71.1 164 70.7 159 74.0 136 4.75 89.8 238 62.2 197 76.8 156 15.9 

3FGMV MinVar 41.4 66.2 −18.3 213 32.6H# 209 54.4 42.5 179 5.01 225# 48.6H# 202 68.4 

3FGMV BWVar 74.8 133 37.9 201H# 53.3 202 38.2 87.8 216 59.0 218H# 65.2 186# 52.1 

3FGMV MinPC 81.6 151 40.5 167 80.9 139 29.6 88.2 229 45.7 177 88.3 136 45.9 

3FGMV Best θ2N 53.7# 71.0 29.6 172 42.7 182 34.3 61.1H# 196H# 59.5 227# 73.7 162 47.0 

3FGMV MaxW 47.3H# 3.59 13.5H# 165 35.7 182 26.1 93.8 233 56.7 242 80.8 208 50.2 

3FEW All 38.9 −117 12.1 151 15.9 116 58.6 40.2 5.52 32.7 135 31.8 66.6 63.9
3FEW Rand 59.6 74.6 35.9 180 52.7 176 59.8 58.6 168 38.8 203 52.5 161 64.3 

3FEW MaxSR 41.8 62.3 33.9 98.6H# 27.0 51.2 71.2 40.2 85.9 36.9 67.3 38.3# 49.6# 70.6 

3FEW MinSR 70.5 119 49.2 170 70.9 171H# 47.1 61.4 175 38.4 187H# 57.3H# 167 50.2 

3FEW BWSR 58.4# 130 45.7 178 73.7 218 57.4 64.4 190 44.5# 214 66.8 181 64.5
3FEW MaxVar 73.3 161 71.6 162 69.8 144 45.8 69.1 212 50.7 191 60.5 148 52.4 

3FEW MinVar 45.6 66.5 23.1 211 44.2H# 215 72.5 45.7 118 34.7 217 44.9 172 75.0 

3FEW BWVar 60.8# 133 37.3H# 204H# 43.2# 201 63.8 62.0 191 44.6# 210 44.8# 175 66.4 

3FEW MinPC 75.3 152 38.2H# 170 72.4 146 68.2 66.8 198 36.6 176# 65.7 120 72.2 

3FEW Best θ2N 56.9# 69.4 29.6# 178 37.5# 182 60.8# 50.8H# 157 45.5H# 218 51.7 143 65.3H#

3FEW MaxW 50.6 2.91 10.4 168 24.9 175 48.9 70.7 154 39.8 237 34.1 205 69.6 

EW All 53.0 24.1 52.7 31.9 50.4 41.5 81.4 53.0 24.1 52.7 31.9 50.4 41.5 81.4
EW Rand 52.6H# 23.7H# 52.1H# 31.4H# 49.8H# 41.1H# 80.3H# 52.6H# 23.7H# 52.1H# 31.4H# 49.8H# 41.1H# 80.3H#

EW MaxSR 57.6H# 35.0 55.6# 44.6 52.9 45.6H# 76.8 57.6H# 35.0 55.6# 44.6 52.9 45.6H# 76.8 

EW MinSR 48.1 14.4 49.7H# 24.5 47.2# 38.5# 79.5 48.1 14.4 49.7H# 24.5 47.2# 38.5# 79.5 

EW BWSR 52.0 22.2 50.9# 25.1 51.4 39.4# 85.8 52.0 22.2 50.9# 25.1 51.4 39.4# 85.8 

EW MaxVar 49.5H# 17.2 49.9# 28.3H# 45.0 38.1H# 76.2 49.5H# 17.2 49.9# 28.3H# 45.0 38.1H# 76.2 

EW MinVar 58.9H# 32.9 56.7H# 35.4# 55.6H# 45.0# 80.3 58.9 32.9 56.7H# 35.4# 55.6H# 45.0# 80.3
EW BWVar 50.0 21.8 49.7 32.1 49.0 41.4 83.4 50.0 21.8 49.7H# 32.1 49.0 41.4 83.4 

EW MinPC 52.4 22.5 48.9H# 38.9 50.0 45.5 82.3# 52.4 22.5 48.9H# 38.9 50.0 45.5 82.3#

EW Best θ2N 51.4H# 23.7 52.2 31.1 49.7 44.1H# 80.9 53.9 23.8 51.6 31.7 49.2 43.5H# 80.9

EWRF 23.4 1.77 23.1 1.81 24.4 17.1 58.1 23.4 1.77 23.1 1.81 24.4 17.1 58.1
SGMV 19.3 −193 29.6 7.82 6.33 −6.63 17.1 82.0 31.1 68.0 42.4 77.5 59.6 61.0

GMVRF 23.8 −177 9.52 −27.6 −10.4 0.81 8.19 65.6 −1.26 53.0 5.35 50.9 14.0 41.6
SMV −50.2 −29.7 −14.7 −91.5 −16.5 −76.9 −25.8 91.2 240 40.0 243 72.1 206 10.9

SMV-ST 77.5 167 64.0 163 78.9 177 20.7 77.0 175 43.8 157 65.5 147 19.6 

SMV-HT 36.0 −97.3 29.6H# 24.7 20.7 46.4 25.6 21.2 103 18.8 128 15.6 108 24.4 

F+A 98.9 189 43.9 157 70.5 164 63.8 99.6 189 44.6 147 71.9 151 64.2
Notes. This table reports the annualized net out-of-sample Sharpe ratio, in percentage points, for the 11 portfolio strategies in Table 2, the 11 asset selection rules in Table 3, across the seven

datasets in Table 1. The table is constructed following the out-of-sample methodology described in Section 5.4. We estimate the portfolios either with the sample covariance matrix or the linear
shrinkage estimator of Ledoit and Wolf (2004). The net out-of-sample utility is computed using rolling windows, a sample size T = 120 months, and proportional transaction costs of 10 basis
points. The risk-aversion coefficient is γ = 1. We compute two-sided p-values for the statistical test of the difference between the utility of the 2F, 3FGMV, and 3FEW portfolios under each
selection rule relative to the ‘All’ selection rule as a benchmark, using the block bootstrap methodology described in Section 5.4. We also report p-values for SMV-HT and SMV-ST, using SMV
as benchmark. The symbols#,H#, and indicate that the p-value is less than 10%, 5%, and 1%, respectively.
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Figure OA.12: Estimated portfolio sizes for the SMV portfolio
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Notes. This figure depicts boxplots of the portfolio sizes obtained in empirical data, across different months t, for the SMV portfolio with three

different strategies as detailed in Section OA.7.3. First, our estimated portfolio size for the SMV portfolio, N̂⋆
smv,t. Second, the portfolio size

obtained under soft-thresholding, N̂st,t in (OA18). Third, the portfolio size obtained under hard-thresholding, N̂ht,t. We consider the sample
covariance matrix (5) in blue and the linear and nonlinear shrinkage estimators of Ledoit and Wolf (2004, 2017) in red and green, respectively. The
boxplots are obtained by averaging across the first six datasets listed in Table 1.

OA.7.5 Portfolio turnover with asset selection rules

In the empirical analysis of Section 5, we consider different asset selection rules to select in which

N assets to invest when reducing the portfolio size from M to N . The portfolio turnover is im-

pacted by the changes to the investment universe over time implied by these selection rules. The

larger the number of changes in selected assets in a given period, the lower the stability of the

selection rule, and the higher the portfolio turnover.

The impact of a selection rule on portfolio turnover also depends the selection frequency, which

is the frequency at which we decide to change the optimal N and the selected assets. In the empir-

ical analysis of Section 5, we choose to rebalance the portfolio weights every month but to change

the optimal N and the selected assets once a year. The rationale is to avoid excessive changes

to the investment universe and make our method less costly and more practically implementable.

However, we could choose a different selection frequency, and it is important to test the robustness

of our results to this choice.
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Therefore, we have two objectives in this section. First, we investigate the stability of the dif-

ferent asset selection rules we consider and how they impact the portfolio turnover. Second, we

evaluate the robustness of our results to using a selection frequency of once every month, six

months, and 24 months instead of 12 months.

We begin by defining a measure of selection rule stability. To do so, note that except for Rand

and Best θ2N , each selection rule listed in Table 3, which is applied to the 2F, 3FGMV, 3FEW,

and EW portfolio strategies, is implemented in a similar way following three steps. First, for each

selection rule k, we compute at time t the M × 1 vector of parameters on which the selection

rule is based, which we denote as δk,t = (δ1,k,t, δ2,k,t, . . . , δM,k,t). For instance, if we consider a

selection rule based on the in-sample Sharpe ratio (MaxSR, MinSR, or BWSR), then δk,t = θ̂t

where θ̂t = (θ̂1,t, θ̂2,t, . . . , θ̂M,t) is the M × 1 vector of in-sample Sharpe ratios.

Second, we rank assets from 1 to M depending on their parameter values δk,t, where 1 rep-

resents the highest value and M the lowest. Specifically, we define the M × 1 vector of ranks

ϕk,t = (ϕ1,k,t, ϕ2,k,t, . . . , ϕM,k,t), where ϕi,k,t denotes the rank of asset i based on δk,t,

ϕi,k,t =
M∑
j=1

1{δi,k,t≤δj,k,t}. (OA20)

Third, we select assets depending on their rank ϕi,k,t and the type of selection rule. For that

purpose, we denote yi,k,t the binary variable indicating whether, for selection rule k, asset i is

selected at time t: yi,k,t = 1 if asset i is selected, and 0 otherwise. We consider four types of asset

selection rules in Table 3. For the Rand rule, yi,k,t = 0 or 1 at random, subject to
∑M

i=1 yi,k,t = N .

For the MaxSR, MaxVar, and MaxW rules that select the N assets with the highest δi,k,t values,

we have yi,k,t = 1{ϕi,k,t≤N}. For the MinSR, MinVar and MinPC rules that select the N assets with

the lowest δi,k,t values, we have yi,k,t = 1{ϕi,k,t>M−N}. Finally, for the BWSR and BWVar rules
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that select the ⌈N/2⌉ assets with the highest δi,k,t values and the ⌊N/2⌋ assets with the lowest δi,k,t

values, we have yi,k,t = 1{ϕi,k,t≤⌈N/2⌉ or ϕi,k,t>M−⌊N/2⌋}.OA5

Given this three-step process with which the asset selection rules are implemented, we want to

evaluate the impact on portfolio turnover of changes in the set of selected assets. We first introduce

selection turnover, which measures, for a portfolio k, the number of changes in selected assets

from month t− 1 to t:

selectionturnoverk,t =
M∑
i=1

|yi,k,t − yi,k,t−1|, t = T + 1, . . . , Ttot. (OA21)

The less stable the asset selection rule and the higher the selection frequency, the higher the selec-

tion turnover, and the more we expect an increase in portfolio turnover due to changes in selected

assets. To precisely measure the impact of selection turnover on the overall portfolio turnover, we

define turnoverselection
k,t as the turnover of portfolio k coming from those assets that were selected at

time t but not at time t− 1, and vice-versa:

turnoverselection
k,t =

∑
i: yi,k,t ̸=yi,k,t−1

|wi,k,t − wi,k,(t−1)+|, t = T + 1, . . . , Ttot, (OA22)

where wi,k,t is the weight of asset i at month t and wi,k,(t−1)+ is the prior-time weight before

rebalancing at month t. By construction, turnoverselection
k,t ≤ turnoverk,t, where turnoverk,t in (26) is

the total turnover computed on all assets. Finally, we also define the proportion of the total turnover

that originates from changes in the selected assets:OA6

turnoverselection/all
k,t =

turnoverselection
k,t

turnoverk,t
≤ 1, (OA23)

which we expect to increase with selectionturnoverk,t.
OA5The Best θ2N selection rule is an exception as it is not based on a ranking of assets ϕk,t. Instead, in that case,
yi,k,t = 1 if at time t, asset i is included in the randomly drawn selection of size N which corresponds to the 95%
quantile of estimated values of θ2N , as detailed in Section 5.3. Otherwise, yi,k,t = 0.

OA6The measures selectionturnoverk,t and turnoverselection
k,t are non-zero only when the investment universe changes

from t− 1 to t, which happens according to the chosen selection frequency (1, 6, 12, or 24 months).
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Figure OA.13: Portfolio turnover with asset selection rules and different selection frequencies
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Notes. This figure depicts different turnover metrics for the two-fund portfolio rule across the ten asset selection rules in Table 3 (we exclude the
‘All’ selection rule). The top panel depicts the average of the monthly portfolio turnover, defined in (26). The middle panel depicts the average of the
monthly selection turnover, defined in (OA21), i.e., the average of the number of changes in selected assets each month. The bottom panel depicts
the average of the proportion of the total turnover coming from changes in selected assets, defined in (OA22). These metrics are averaged across
the first six datasets in Table 1. We report them for four different selection frequencies: every 1, 6, 12, and 24 months. The selection frequency is
the frequency with which we change the optimal portfolio size N and the selected assets. We estimate the two-fund rule with the linear shrinkage
covariance matrix of Ledoit and Wolf (2004) and a risk-aversion coefficient of γ = 1. The figure is constructed following the out-of-sample
methodology described in Section 5.4. The middle panel includes an axis break for better visibility.
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In Figure OA.13, we depict the portfolio turnover in (26), the selection turnover in (OA21),

and the proportion of portfolio turnover explained by changes in the selected assets in (OA23). We

average these measures across all months t and across the first six datasets described in Table 1.

We do not include the 100STO dataset because it consists of 100 datasets of 100 stocks, and thus,

would be overweighted in the average. We report results for each of the four considered selection

frequencies, i.e., every 1, 6, 12, and 24 months. We only consider the 2F portfolio combination rule

for conciseness; the results for the 3FGMV and 3FEW portfolios are similar. Moreover, we only

report the results for the case where we use the linear shrinkage covariance matrix of Ledoit and

Wolf (2004) because, as discussed in Section 5.5, it leads to a better out-of-sample performance,

and also a lower portfolio turnover.

We make several observations from Figure OA.13. First, we look at the stability of the different

asset selection rules. The middle panel of Figure OA.13 shows that the Rand and Bestθ2N selec-

tion rules have the largest selection turnover, especially for a monthly selection frequency. This is

expected as these two rules are based on random selections. Then, the selection rule MaxW has

the second largest selection turnover because it ranks assets according to portfolio weights and

these weights can vary substantially from one period to another. Then, selection rules that rank

assets based on the marginal Sharpe ratio are also quite unstable because they depend on estimates

of expected returns that are notoriously noisy.OA7 In contrast, selection rules built on the variance

and PCA are remarkably stable, with the set of selected assets changing by only one or two assets

on average each month when we use a monthly selection frequency. Finally, we also observe that

OA7The number of changes in selected assets can be substantial. For instance, on average across the first six datasets,
the selection turnover of BWSR in Figure OA.13 is equal to 5.2 when using a monthly selection frequency. This means
that, on average, 5.2 assets enter or exit the set of selected assets from one month to another. Given that the number
of selected assets N dictated by our theory is close to T/2 = 60, this represents a 8.67% change of the investment
universe each month on average.
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the best-worst asset selection rules, BWSR and BWVar, are more unstable because they select the

assets with the most extreme rankings, which are also subject to more estimation errors.

Second, the bottom panel of Figure OA.13 shows that a higher selection turnover is indeed

linked with a higher proportion of portfolio turnover originating from assets that are selected in the

portfolio at time t but not at time t− 1, and vice-versa.

Third, the bottom panel of Figure OA.13 shows that, except for Rand and Bestθ2N , the propor-

tion of the total portfolio turnover explained by assets that enter and exit the set of selected assets

each month is around 10% to 30% on average when we use a monthly selection frequency but, as

expected, decreases substantially as we decrease the selection frequency. This proportion of 10%

to 30% with a monthly selection frequency is not negligible, particularly given that the selection

turnover in the middle panel of Figure OA.13 is generally well below 10% of the total number

of selected assets. Still, it means that the majority of the portfolio turnover comes from changes

in weights allocated to assets that remain selected from one period to another, particularly as we

decrease the selection frequency.

We now turn to our second objective, which is to evaluate the robustness of our out-of-sample

performance results to the choice of the selection frequency. Figure OA.13 confirms that decreas-

ing the selection frequency, and thus changing the investment universe less frequently, significantly

reduces selection turnover and thus the overall portfolio turnover. However, this does not automat-

ically mean that decreasing the selection frequency improves the net out-of-sample performance

because the monthly frequency could deliver better gross performance. To test the impact of the

selection frequency on the net out-of-sample portfolio performance, we report in Table OA.4 the

annualized net out-of-sample utility of the 2F portfolio implemented with the 10 asset selection

rules in Table 3 and a selection frequency of 1, 6, 12, and 24 months. The unreported results for
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the 3FGMV and 3FEW portfolio combination rules are similar. We make three main observations

from Table OA.4.

First, in the vast majority of cases, using a lower selection frequency than monthly is beneficial,

and the performance gain can be substantial. For instance, consider the MinSR rule for the 96S-BM

dataset and the sample covariance matrix. In this case, a monthly selection frequency delivers an

annualized net utility of 19.3 whereas the 6, 12, and 24-month frequencies deliver a net utility of

25.5, 25.4 and 25.4, respectively. A similar observation holds for the linear shrinkage covariance

matrix, but with lower differences in performance. This is because portfolios implemented with the

linear shrinkage covariance matrix yield a lower turnover than those under the sample covariance

matrix, and thus, benefit relatively less from an extra reduction in turnover.

Second, the 6, 12, and 24-month selection frequencies deliver a similar net out-of-sample per-

formance overall, which means that the results under a 12-month frequency in the main text are

robust to other possible choices.

Third, asset selection rules that outperform investing in all assets do so under all considered

selection frequencies, including monthly. This shows that our optimal diversification method is

valuable regardless of the frequency at which the selection rules are implemented.

OA.7.6 Random asset selection rule with different frequencies

One of the asset selection rules we consider in the empirical analysis, as well as in the simulations,

is the random asset selection rule. In this section, we further analyze the performance delivered

by this selection rule when applied to our two-fund and three-fund rules. Specifically, in Figure

OA.14, we report boxplots of the annualized gross and net out-of-sample utility delivered by the
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Table OA.4: Net out-of-sample utility in empirical data with different selection frequencies

Sample covariance matrix nonlinear shrinkage covariance matrix

Port- Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

All n.a. −0.31 −59.6 −15.3 99.4 −18.8 56.8 −5.47 5.11 1.20 1.09 41.6 1.09 17.7 0.16

Rand 1 month −44.5H# −533H# −48.8H# −74.2H#−82.6H# −97.8H# −6.71H# 1.33H# 27.5 −8.39H# 87.1 −5.02H# 40.9 2.43 

Rand 6 months 7.00 −48.8 −8.19 122 −8.27 119 −1.71 15.0 50.1 2.54 128 11.0 75.6 4.48 

Rand 12 months 12.3 14.2 −7.17 145 1.46 149 −1.77 17.0 52.4 1.60 132 12.8 79.5 3.48 

Rand 24 months 16.2 48.3 −0.71 156 5.96 158 −3.39 18.4 53.1 4.07 133 13.1 80.9 1.28 

MaxSR 1 month −5.80 −30.0# −7.72 2.25H# −21.7 −35.2 8.51 −1.98 19.8 −1.94 21.4 0.66 7.66H# 13.1 

MaxSR 6 months 0.77 3.62 −5.15 31.7 −9.86 −31.1 8.67 0.66 22.3 −2.71 26.5H# 3.72 10.3# 13.0 

MaxSR 12 months 1.38 11.6 −7.48 23.6# −10.5 −27.1H# 7.75 1.93# 23.1 −6.10 23.1 0.69 10.8# 12.2 

MaxSR 24 months 2.02 16.2 −4.14 34.8# −13.3 −18.8H# 2.97 2.56# 22.8 −1.54 22.4 −0.05 8.59H# 6.79 

MinSR 1 month 19.3H# 25.9 6.84 123 19.2 112# −1.56 16.0 50.7 5.21# 97.9 12.0 67.3 −0.61 

MinSR 6 months 25.5 70.1 8.49 145 26.8 130H# −1.22 17.4 53.4 6.54 98.3 14.8 70.3 −0.53 

MinSR 12 months 25.4 73.2 7.10 146 24.9 139H# −3.86H# 18.0 53.2 5.21H# 101 16.0 72.1 −2.49 

MinSR 24 months 25.4 85.3 9.09 167 19.3 150 −4.58 19.6 53.9 6.28H# 107 15.2 74.7 −2.77 

BWSR 1 month −2.88 14.3 −14.5 161 −8.83 168 −28.7 16.5# 61.8 3.02 140 18.8 88.8 −8.27 

BWSR 6 months 0.55 66.1 −2.22 154 −4.83 232 −28.2 18.1H# 63.1 8.21 143 20.1 95.8 −8.21 

BWSR 12 months 7.39 84.4 −4.42 133 11.7# 242 −29.9 19.2 63.8 4.74 143 18.8H# 99.5 −11.8 

BWSR 24 months 16.0 80.7 −0.23 96.1 10.8# 219 −20.1 21.7 64.0 8.18 133 13.0 103 −9.57 

MaxVar 1 month 27.7 112 10.0 112 20.9 76.9 −5.45 26.4 69.1 9.46H# 127 20.5 77.6 −1.16 

MaxVar 6 months 26.5H# 127 17.0 118 21.9 73.3 −5.30 24.1 70.0 10.6H# 125 22.6 78.0 −1.91 

MaxVar 12 months 25.0 124 17.9 114 21.7 83.8 −7.25H# 23.2 70.5 9.99H# 122 21.1 77.7 −3.62 

MaxVar 24 months 29.8 129 18.6 113 19.5 91.9 −5.73 25.1 69.8 12.0 120 18.0 78.5 −3.73 

MinVar 1 month 1.97 −18.5H# −14.5 215H# −0.88# 199 3.57 5.17 32.6 −2.38 136 7.27H# 80.1 14.6 

MinVar 6 months 5.32 7.83 −10.5 213H# 0.57# 222 4.60 6.30 32.7 −1.07 141 6.66H# 78.8 15.7 

MinVar 12 months 2.47 12.5 −13.1 219H# −1.88 225 −0.42 6.08 33.1 −5.25# 140 5.40# 81.4 12.4 

MinVar 24 months 2.04 20.0 −12.6 227 −3.33 226 −0.11 5.68 33.8 −4.89# 140 4.11 81.8 10.0 

BWVar 1 month 19.4H# 75.0 −0.95# 189H# −4.76 151H# −0.55 21.2 62.9 9.34# 127 11.1 85.7 6.24 

BWVar 6 months 17.5# 90.4 3.84H# 206H# −0.03 168 3.00 21.2 63.6 7.90 132 12.3 88.9 7.59 

BWVar 12 months 13.0 89.3 −6.76 182# 0.14 180 −0.53 19.8 63.4 5.39 133 10.6H# 89.9 5.38 

BWVar 24 months 20.8H# 101 1.00# 190# −0.89 190 −1.83 21.7 62.8 7.48 133 9.12# 89.0 2.74 

MinPC 1 month 25.7 92.8 −8.43 86.8 17.0 88.9 −3.18 24.2 66.2 −1.14 108 22.1 49.2 6.10 

MinPC 6 months 30.9 105 −7.68 89.2 27.8 98.3 −1.16 25.4 67.8 −2.59 105 22.9 52.6 6.73 

MinPC 12 months 27.4 112 −6.23 115 17.9H# 94.1 −1.01 24.9 67.7 −2.55 109 22.8 50.5 6.68 

MinPC 24 months 20.8# 106 −4.26 101 22.3 106# 0.42 22.8 67.9 2.32 107 24.4 50.7 5.63 

Best θ2N 1 month −43.1 −525 −44.7 −138 −81.0 −88.0 −17.3 4.20 28.2 −7.66 83.8 −2.72 40.7H# 3.70 

Best θ2N 6 months 4.06 −47.3 −3.26 159 −1.21 102 −12.9 19.6 52.5 5.82 120 16.6 72.9 4.04 

Best θ2N 12 months −1.22 14.7 −8.77 182# 4.73 137H# −9.71H# 24.4 59.2 −4.03 149 23.0 95.7 3.33H#

Best θ2N 24 months 14.6 50.1 −2.44 206H# −2.04 143H# −7.61 21.7 56.0 4.13 134 20.7 87.4 2.04

MaxW 1 month −307 −798 −350 −740 −300 −543 −173 30.3 79.2 9.19 199 17.9# 130 −12.9 

MaxW 6 months −171 −421 −234 −749 −151 −456 −111 29.2 79.4 3.28 203 19.4# 131 −10.7 

MaxW 12 months −127 −305 −179 −581 −129 −366 −77.2 32.3 79.0 2.19 197 19.8# 129 −13.5 

MaxW 24 months −97.6 −74.8 −115 −416 −56.3# −244 −39.6 32.2 77.4 3.59 195 16.0 126 −13.3 

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the 2F portfolio implemented with the 10 asset selection
rules in Table 3 (we exclude the ‘All’ selection rule), across the seven datasets in Table 1. For each selection rule, we report results for four different selection frequencies: every 1, 6, 12, and
24 months. The selection frequency is the frequency with which we change the optimal portfolio size N and the selected assets. The table is constructed following the empirical methodology
described in Section 5.4. We estimate the portfolios either with the sample covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004). We rebalance the portfolio weights every
month. The net out-of-sample utility is computed using rolling windows, a sample size T = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is
γ = 1. We compute two-sided p-values for the statistical test of the difference between the utility of the 2F portfolio under the ‘All’ selection rule versus the 10 other selection rules, for all
selection frequencies, using the block bootstrap methodology described in Section 5.4. The symbols#,H#, and indicate that the p-value is less than 10%, 5%, and 1%, respectively.
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Figure OA.14: Performance of the random asset selection rule for the 96S-BM dataset
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Notes. This figure depicts boxplots of the annualized gross (top panel) and net (bottom panel) out-of-sample utility delivered by the two-fund and
three-fund rules considered in the empirical analysis, implemented with the random asset selection rule on the 96S-BM dataset. Specifically, we
depict boxplots of utilities for the 2F (blue), 3FGMV (red), and 3FEW (green) portfolio strategies, obtained across 100 repetitions of the out-of-
sample analysis. We depict the utilities for different asset selection frequencies as in Section OA.7.5 of this Online Appendix, i.e., we change the
selected assets in our rolling window method every 1, 6, 12, or 24 months. The horizontal dotted lines depict the utility of each portfolio strategy
implemented on all M assets. We use a risk-aversion coefficient γ = 1 and estimate the portfolios using the linear shrinkage covariance matrix.

2F, 3FGMV, and 3FEW portfolio strategies under the estimated optimal portfolio size N , where

the N assets are selected randomly. The boxplots are obtained across 100 repetitions of the out-

of-sample analysis. We focus on the 96S-BM dataset and we consider different asset selection

frequencies as in Section OA.7.5 of this Online Appendix, i.e., we change the selected assets in

our rolling window method every 1, 6, 12, or 24 months.

We make three main observations from Figure OA.14. First, consistent with the simulation

results in Section 4, selecting the N assets randomly, with N determined using our theory, sys-

tematically outperforms selecting all M assets in terms of gross utility. This is because this figure

focuses on portfolio strategies subject to estimation risk. Second, the random asset selection rule

also delivers a larger utility than choosing all assets when accounting for transaction costs when

using an asset selection frequency of 6, 12 or 24 months. In contrast, changing the set of selected
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assets every month increases turnover and transaction costs too significantly and underperforms

investing in all M assets. Third, although the random asset selection rule outperforms selecting all

assets, its performance is highly variable across different random selections and, as discussed in

Section 5.5, it underperforms the majority of the more sensible selection rules in Table 3.

OA.7.7 Overlap between selection rules

We show in Section 5 of the main text that reducing the portfolio size is beneficial in most cases

for the different selection rules listed in Table 3. These selection rules are different by construction

to test whether our results hold for different types of selection rule. Thus, we raise the following

question: do these rules indeed select dissimilar assets in practice?

To answer this question, we must measure the overlap between two selection rules, i.e., the

number of assets jointly selected by both selection rules. Following Section OA.7.5, we denote by

yk,t = (y1,k,t, y2,k,t, . . . , yM,k,t) the (M × 1) selection vector for any selection rule k: yi,k,t = 1 if

asset i is selected in rule k at time t, and 0 otherwise. The overlap between rules k and l is then

given by y′
k,tyl,t =

∑M
i=1 yi,k,tyi,l,t.

We then compare the overlap between the selection rules listed in Table 3 to the overlap be-

tween two independent random selection rules. If the average overlap between our selection rules

is close to or lower than that of a pair of two independent random selections, then it means that the

selected assets are indeed dissimilar.

Consider two selection rules k and l that randomly select Nt assets out of M at time t. In the

next proposition, we derive the expected overlap if k and l are independent.

Proposition OA.4 Consider two independent selection rules that randomly select Nt assets out of
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M available ones. Then, the expected overlap between the two rules is

N̄t,M =M

(
M−1
Nt−1

)2(
M
Nt

)2 . (OA24)

For instance, if two independent selection rules randomly select Nt = 50 assets out of M = 100

available ones, we expect them to jointly select N̄t,M = 25 assets.

Now, to identify how a pair of selection rules (k, l) selects assets relative to two independent

random selection rules, we use the expected overlap in (OA24) to build a measure of the excess

overlap of any (k, l) pair relative to that of a pair of independent random selection rules. We denote

this measure eok,l,t and define it as

eok,l,t = (y′
k,tyl,t − N̄t,M)×

(
1{y′

k,tyl,t−N̄t,M≥0}

Nt − N̄t,M

−
1{y′

k,tyl,t−N̄t,M<0}

max(0, 2Nt −M)− N̄t,M

)
. (OA25)

Several comments are in order. First, if y′
k,tyl,t = N̄t,M , then eok,l,t = 0. This means that there

is no excess overlap if the overlap between k and l is equal to the expected overlap between two

independent random selection rules. Second, the excess overlap is positive (resp. negative) if there

is more (resp. less) overlap between k and l compared to independent random rules, i.e., eok,l,t > 0

if y′
k,tyl,t > N̄t,M and vice-versa. Third, the measure of excess overlap is bounded between −1

and 1. A value of 1 indicates the maximum overlap and is obtained if and only if k and l are

identical, i.e., yk,t = yl,t such that y′
k,tyl,t = Nt. A value of −1 indicates the minimum overlap,

i.e., y′
k,tyl,t = max(0, 2Nt −M).OA8

In Figure OA.15, we depict a heatmap of the excess overlap in (OA25) for all pairs of selection

rules in Table 3. We average it across all months t and the first six datasets listed in Table 1; we do

not include the 100STO dataset because it consists of 100 datasets of 100 stocks, and thus, would
OA8If M ≥ 2Nt, then it is possible for two rules to have zero overlap as each rule can select Nt different assets.

However, if M < 2Nt, then the minimum possible overlap will be strictly positive and equal to 2Nt −M assets. For
instance, if M = 90 and Nt = 50, two rules must have an overlap of at least 2Nt −M = 10 assets.
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Figure OA.15: Average excess overlap between selection rules
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Notes. This figure depicts the average excess overlap, defined in (OA25), for each pair of selection rule listed in Table 3 (we exclude the ‘All’ rule).
The excess overlap is averaged over the first six datasets in Table 1 and all estimation windows. We report the results for the optimal portfolio size
of the two-fund rule and the sample covariance matrix.

be overweighted in the average. We only consider the optimal portfolio size of the two-fund rule

for conciseness. Moreover, selection rules are based on sample estimates, and we report results

under the sample covariance matrix.

Two main observations can be made from Figure OA.15. First, the results match our expec-

tations. As expected, opposite rules (MaxSR and MinSR, MaxVar and MinVar) have an excess

overlap of −1. Also, the sign of the excess overlap is coherent. For instance, the average excess

overlap is positive between MaxVar and MinSR (0.16) because both rules tend to select assets with

high marginal variance, while it is negative between MaxVar and MaxSR (−0.36) because they

tend to select different assets. The excess overlap between the Rand rule and the other rules is also

close to zero. Second, we observe that for essentially all pairs of selection rules we consider, there

is either around the same or less overlap than in the random selection case. This answers our initial

question, as it shows that the selection rules in Table 3 do select dissimilar assets.
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OA.7.8 Effect of portfolio size on benchmark portfolio strategies

In this section, we report the empirical performance of the seven benchmark portfolio strategies

considered in the bottom panel of Table 4 in the paper, i.e., EWRF, SGMV, GMVRF, SMV, SMV-

ST, SMV-HT, and F+A, for different N . In particular, we consider N = 20, 40, 60, 80, and M .

To select the N assets when N < M , we consider three asset selection rules: Rand, MaxSR, and

MinVar. The results for the EWRF, SGMV, and GMVRF benchmark portfolios are available in

Table OA.5, for SMV, SMV-ST, and SMV-HT in Table OA.6, and for F+A in Table OA.7.

We first discuss the effect of the portfolio size N on the EWRF, SGMV, and GMRF portfolios

in Table OA.5. For the EWRF portfolio, which does not depend on the covariance matrix estimator,

its performance slightly improves on average with N under the Rand asset selection rule, which is

because EWRF is not much affected by estimation risk and thus can profit from more investment

opportunities. However, when choosing the best assets first with the MinVar selection rule, the

best performance is achieved with a small N = 20 or 40 among the values of N considered. This

finding does not apply to the MaxSR selection rule, which does not generalize as well out of sample

because it selects assets based on their noisy in-sample Sharpe ratio. Turning to the SGMV and

GMVRF portfolios, we find that when they are implemented with the sample covariance matrix,

reducing portfolio size is highly valuable and they overall reach their best performance forN = 20

or N = 40 under each of the Rand, MaxSR, and MinVar selection rules. However, when the

SGMV and GMVRF portfolios are implemented with the shrinkage covariance matrix, they can

profit from a larger N . For example, compared to choosing N < M with the Rand or MaxSR

selection rule, the SGMV portfolio performs best under N = M in three out of seven datasets.

However, when choosing the assets with minimum in-sample variances with the MinVar selection

Page 36 of the Online Appendix



Table OA.5: Effect of portfolio size on the annualized net out-of-sample utility of the EWRF,
SGMV, and GMVRF benchmark portfolios (in percentage points)

Sample covariance matrix Linear shrinkage covariance matrix

Asset Dataset Dataset
select. N 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

Panel (a): EWRF

All M 0.63 −1.55 0.59 −1.84 1.00 0.59 16.4 0.63 −1.55 0.59 −1.84 1.00 0.59 16.4

Rand 20 0.47 −1.63 0.32 −1.84 0.79 0.66 15.1 0.47 −1.63 0.32 −1.84 0.79 0.66 15.1
Rand 40 0.44 −1.66 0.35 −1.94 0.82 0.48 15.7 0.44 −1.66 0.35 −1.94 0.82 0.48 15.7
Rand 60 0.48 −1.59 0.44 −1.89 0.86 0.49 15.9 0.48 −1.59 0.44 −1.89 0.86 0.49 15.9
Rand 80 0.60 −1.56 0.50 −1.84 0.95 0.49 16.1 0.60 −1.56 0.50 −1.84 0.95 0.49 16.1

MaxSR 20 −2.36 −0.62 −5.59 −4.86 −6.40 −3.36 16.4 −2.36 −0.62 −5.59 −4.86 −6.40 −3.36 16.4
MaxSR 40 0.16 −1.33 −0.68 −0.97 −2.49 −0.35 20.2 0.16 −1.33 −0.68 −0.97 −2.49 −0.35 20.2
MaxSR 60 1.30 −1.90 0.98 −0.86 −0.41 0.54 22.2 1.30 −1.90 0.98 −0.86 −0.41 0.54 22.2
MaxSR 80 1.61 −1.83 1.61 −1.35 −0.15 0.81 21.8 1.61 −1.83 1.61 −1.35 −0.15 0.81 21.8

MinVar 20 4.16 −0.26 1.49 −0.10 4.97 4.88 28.9 4.16 −0.26 1.49 −0.10 4.97 4.88 28.9
MinVar 40 3.53 −0.59 2.71 0.19 4.10 4.36 31.1 3.53 −0.59 2.71 0.19 4.10 4.36 31.1
MinVar 60 3.46 −1.12 3.22 −0.81 4.18 2.98 26.4 3.46 −1.12 3.22 −0.81 4.18 2.98 26.4
MinVar 80 2.09 −1.25 2.59 −1.61 3.06 1.90 20.9 2.09 −1.25 2.59 −1.61 3.06 1.90 20.9

Panel (b): SGMV

All M 1.76 −49.7 4.25 −0.34 −2.28 −4.67 1.25 10.3 2.33 7.75 4.02 8.48 6.65 6.89

Rand 20 8.69 1.75 6.22 3.11 7.01 6.13 8.33 8.61 5.31 6.55 4.74 7.24 6.60 9.19
Rand 40 9.52 −1.20 6.18 1.48 7.88 5.60 7.10 9.41 4.28 6.67 4.38 7.89 6.79 8.27
Rand 60 9.20 −5.05 6.42 0.05 8.01 4.97 6.01 9.73 3.41 7.00 3.94 7.98 6.79 7.70
Rand 80 7.18 −11.5 6.55 −0.08 7.80 2.91 4.50 10.1 2.87 7.34 4.02 8.19 6.61 7.24

MaxSR 20 6.17 −2.16 7.82 5.86 3.99 5.13 10.2 7.20 1.23 8.21 6.12 4.71 5.15 10.5
MaxSR 40 5.39 −3.52 3.66 6.44 5.24 4.54 9.01 6.42 1.64 5.73 6.26 6.10 5.62 9.92
MaxSR 60 3.66 −6.33 2.50 4.48 4.79 5.10 7.59 5.48 2.38 5.32 5.85 6.61 5.57 9.54
MaxSR 80 3.22 −13.2 4.04 1.62 4.14 4.53 5.53 7.43 2.55 6.15 4.89 6.91 5.57 8.47

MinVar 20 7.49 −0.36 7.29 5.53 7.74 9.42 7.87 7.42 3.94 7.19 6.22 7.68 7.76 8.84
MinVar 40 8.49 −3.01 4.91 1.84 7.90 7.79 7.42 8.28 2.43 5.89 5.27 7.56 7.59 9.17
MinVar 60 6.82 −7.40 1.45 −1.81 6.31 3.25 6.43 7.26 1.64 4.43 2.58 6.86 5.94 8.71
MinVar 80 2.89 −12.2 2.29 0.71 3.43 1.75 5.10 6.72 2.25 5.86 2.52 6.14 5.99 8.17

Panel (c): GMVRF

All M 1.81 −26.3 −0.98 −11.4 −12.3 −5.34 −5.70 4.01 −0.00 1.47 0.14 0.66 0.49 2.10

Rand 20 14.8 1.73 6.57 0.50 9.04 7.92 16.0 13.8 6.43 8.13 0.53 10.5 7.80 20.7
Rand 40 20.0 −5.51 9.75 −1.69 13.0 9.01 8.50 17.3 2.29 10.5 −1.07 12.4 8.50 18.6
Rand 60 18.6 −11.0 10.2 −3.34 12.8 8.05 1.19 14.5 0.74 9.11 −0.60 9.67 6.80 14.0
Rand 80 11.6 −16.5 8.49 −7.44 9.47 2.63 −3.86 9.01 0.25 5.79 0.17 5.94 3.12 7.80

MaxSR 20 −0.14 −1.42 8.07 9.59 −4.53 0.16 28.2 4.01 2.59 9.47 10.1 −0.29 1.36 36.7
MaxSR 40 −2.18 −5.51 −0.93 3.36 0.80 2.21 21.5 1.48 0.73 3.20 3.93 4.29 3.99 33.5
MaxSR 60 −4.08 −12.1 0.79 −2.54 2.81 −1.65 12.0 1.58 0.29 3.54 2.20 4.66 1.74 22.4
MaxSR 80 −4.59 −17.9 1.72 −0.93 −0.17 −2.73 2.67 3.25 0.26 3.02 4.62 2.97 1.43 10.1

MinVar 20 9.02 −9.29 5.14 2.37 16.8 33.4 24.6 7.46 2.21 6.26 −1.36 16.1 21.3 34.1
MinVar 40 7.43 −4.46 1.44 −5.95 12.4 24.7 19.5 7.27 1.16 4.57 −8.24 9.07 13.7 32.0
MinVar 60 7.41 −11.5 −6.92 −8.73 4.05 0.77 7.89 6.91 0.20 1.98 −0.21 4.61 2.39 19.8
MinVar 80 3.41 −17.4 −5.07 −15.2 0.85 1.31 0.98 3.86 0.07 2.53 −2.06 2.06 2.06 9.58

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the EWRF, SGMV, and GMVRF benchmark
strategies, which are described in Table 2 of the paper. We consider as asset selection rules All, Rand, MaxSR, and MinVar, described in Table 3 of the paper, and portfolio sizes
ranging from N = 20 to N = M , the latter being the All selection rule. We report results across the seven datasets in Table 1 and estimate the portfolios either with the sample
covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004). The table is constructed following the methodology described in Section 5.4. The net out-of-sample
utility is computed using rolling windows, a sample size T = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is γ = 1.
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Table OA.6: Effect of portfolio size on the annualized net out-of-sample utility of the SMV, SMV-
ST, and SMV-HT benchmark portfolios (in percentage points)

Sample covariance matrix Linear shrinkage covariance matrix

Asset Dataset Dataset
select. N 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

Panel (a): SMV

All M −4E+05 −3E+11 −1E+06 −6E+07 −8E+08 −8E+07 −9E+04 −1443 −107 −1399 −2360 −1457 −1143 −1844

Rand 20 −240 −719 −253 −575 −272 −325 −234 −86.8 82.8 −111 −38.2 −100 −23.7 −121
Rand 40 −1131 −4753 −1043 −3709 −1233 −2442 −993 −266 84.3 −295 −343 −270 −128 −366
Rand 60 −3980 −6E+04 −3419 −1E+04 −4213 −1E+04 −3304 −565 62.6 −594 −916 −523 −355 −722
Rand 80 −1E+04 −3E+06 −9166 −3E+05 −2E+04 −3E+05 −1E+04 −990 11.9 −948 −1709 −859 −714 −1207

MaxSR 20 −95.7 −286 −98.1 −256 −230 −217 −183 −33.9 40.2 −45.9 −87.2 −81.6 −95.5 −70.4
MaxSR 40 −573 −2158 −458 −1616 −822 −884 −733 −170 99.3 −157 −198 −166 −165 −178
MaxSR 60 −2006 −4E+04 −1862 −6927 −2678 −4486 −2389 −357 136 −319 −433 −342 −396 −344
MaxSR 80 −7543 −2E+06 −6950 −5E+05 −9556 −7E+04 −8904 −759 95.8 −610 −813 −622 −657 −656

MinVar 20 −216 −405 −225 −882 −269 −707 −222 −83.3 54.0 −105 −2.57 −82.7 105 −44.0
MinVar 40 −916 −2132 −733 −4335 −986 −2750 −955 −232 121 −234 −276 −162 41.9 −206
MinVar 60 −3205 −7E+04 −2440 −3E+04 −3086 −1E+04 −3200 −492 138 −444 −781 −387 −82.5 −489
MinVar 80 −7688 −2E+06 −6551 −7E+05 −1E+04 −3E+05 −1E+04 −833 117 −660 −1484 −660 −471 −952

Panel (b): SMV-ST

All M 15.8 −108 11.7 −579 −2.91 0.88 0.77 23.9 67.8 5.13 −195 10.4 16.4 1.43

Rand 20 −7.40 −39.5 −3.95 −87.9 −8.19 −31.5 10.7 −5.02 8.34 −2.74 −52.8 −4.74 −12.4 10.4
Rand 40 −7.19 −29.9 −9.75 −124 −16.0 −52.4 10.0 −0.64 30.4 −6.19 −72.2 −8.79 −19.2 10.0
Rand 60 −1.96 1.31 −7.17 −148 −21.1 −33.2 9.45 6.27 64.6 −3.32 −61.4 −9.08 10.1 9.43
Rand 80 5.28 −5.48 −0.41 −228 −13.4 7.76 6.81 13.6 88.0 3.26 −103 −3.43 52.6 9.24

MaxSR 20 9.61 −7.96 7.30 5.49 −1.13 −2.83 13.9 9.97 5.17 6.45 5.04 −0.40 −3.54 −129
MaxSR 40 8.72 −15.5 4.81 −32.1 5.01 −17.0 12.6 11.7 15.8 2.49 −12.7 9.84 4.35 −155
MaxSR 60 3.14 74.3 −11.1 −71.9 −5.22 −7.79 10.9 12.3 60.0 0.57 −79.3 7.65 0.18 −184
MaxSR 80 −3.62 33.1 1.86 −94.4 −12.1 −31.1 5.93 5.82 118 −0.25 −89.5 −3.89 −45.5 −210

MinVar 20 0.56 8.66 5.95 9.03 −8.59 92.3 13.3 2.36 22.3 5.50 34.1 −3.14 103 −55.4
MinVar 40 −4.36 39.5 2.52 −120 −16.6 43.7 14.3 −1.21 50.9 4.42 −0.08 −3.53 68.5 −52.0
MinVar 60 −19.2 26.7 −4.91 −159 −16.1 81.3 10.8 −5.85 95.6 −0.33 52.4 −12.1 114 −73.9
MinVar 80 −18.9 30.0 −4.49 −345 17.4 82.5 6.46 −14.2 112 −5.07 −55.2 8.89 148 −88.8

Panel (c): SMV-HT

All M −35.3 −302 −16.8 −105 −25.9 −143 −7.62 −29.9 −52.1 −17.8 −376 −33.6 −349 −21.1

Rand 20 −41.0 −439 −29.3 −168 −45.1 −106 −9.61 −24.0 −20.2 −17.7 −60.1 −26.9 −35.2 −5.80
Rand 40 −47.8 −630 −41.0 −167 −49.6 −131 −10.8 −26.2 −23.4 −22.7 −72.8 −33.8 −70.8 −10.5
Rand 60 −48.8 −680 −35.2 −130 −50.4 −132 −11.2 −27.8 −24.3 −19.5 −123 −36.7 −116 −14.1
Rand 80 −41.6 −574 −31.3 −135 −55.2 −163 −10.1 −28.2 −21.2 −19.5 −193 −38.5 −177 −17.8

MaxSR 20 −16.1 −45.3 −15.9 −17.3 −15.3 −15.0 −16.8 −14.7 −5.57 −21.0 −26.7 −19.9 −6.57 −15.8
MaxSR 40 −17.1 −128 −11.2 −30.1 −10.9 −7.93 −14.8 −26.1 −13.7 −13.7 −58.1 −28.5 −7.68 −15.9
MaxSR 60 −2.09 −110 −13.7 −51.3 −28.6 −32.9 −12.7 −14.0 2.54 −9.84 −159 −19.1 −42.1 −15.4
MaxSR 80 −19.5 −161 −2.96 −194 −14.1 −35.7 −10.9 −19.1 −10.6 −5.14 −300 −16.0 −86.9 −22.9

MinVar 20 −33.6 −138 −11.4 −125 −20.8 −113 −19.0 −19.4 −9.65 −15.9 −8.69 −4.99 32.3 −16.2
MinVar 40 −36.1 −212 −15.9 −146 −14.8 −35.7 −14.4 −22.8 1.76 −22.6 −79.7 −28.9 −28.7 −18.9
MinVar 60 −21.8 −575 −10.4 −79.0 −15.6 −55.4 −14.1 −9.68 −8.84 −10.7 −100 −46.8 5.40 −15.9
MinVar 80 −14.7 −272 −7.82 −49.4 −20.0 −100 −10.3 −16.3 −5.00 −16.7 −248 −36.9 −156 −18.0

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the SMV, SMV-ST, and SMV-HT benchmark strategies,
which are described in Table 2 of the paper. We consider as asset selection rules All, Rand, MaxSR, and MinVar, described in Table 3 of the paper, and portfolio sizes ranging from N = 20 to
N = M , the latter being the All selection rule. We report results across the seven datasets in Table 1 and estimate the portfolios either with the sample covariance matrix or the linear shrinkage
estimator of Ledoit and Wolf (2004). The table is constructed following the methodology described in Section 5.4. The net out-of-sample utility is computed using rolling windows, a sample size
T = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is γ = 1.
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Table OA.7: Effect of portfolio size on the annualized net out-of-sample utility of the F+A bench-
mark portfolio (in percentage points)

Sample covariance matrix Linear shrinkage covariance matrix

Asset Dataset Dataset
select. N 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

All M −232 −158 −368 −338 −138 −138 −110 −113 19.7 −227 −214 −113 −37.5 −111

Rand 20 −143 −283 −162 −170 −135 −123 −50.7 −97.4 −75.2 −109 −102 −101 −70.6 −41.6
Rand 40 −192 −368 −242 −203 −171 −146 −71.5 −134 −88.8 −167 −136 −133 −82.8 −67.6
Rand 60 −212 −337 −293 −212 −187 −139 −83.8 −142 −62.7 −200 −151 −146 −73.3 −83.6
Rand 80 −222 −303 −328 −228 −184 −117 −95.9 −138 −29.1 −216 −161 −141 −47.0 −97.3

MaxSR 20 −49.8 −62.3 −46.9 −107 −87.2 −76.1 −35.2 −36.7 −12.0 −25.4 −66.9 −59.7 −64.1 −38.8
MaxSR 40 −129 −69.4 −127 −155 −118 −112 −45.2 −74.7 −19.2 −68.2 −103 −71.4 −64.5 −44.7
MaxSR 60 −164 −57.0 −154 −235 −123 −169 −35.9 −98.0 −10.9 −92.4 −168 −81.4 −80.6 −35.8
MaxSR 80 −228 −84.6 −224 −175 −159 −233 −56.0 −161 −15.1 −137 −62.6 −101 −121 −52.7

MinVar 20 −120 −98.0 −119 −121 −111 −27.2 −73.7 −80.1 8.60 −83.0 −44.6 −71.5 92.4 −58.5
MinVar 40 −199 −99.1 −173 −108 −161 −13.4 −143 −158 5.02 −127 −12.1 −129 69.6 −127
MinVar 60 −263 −164 −250 −312 −141 −104 −196 −172 −9.45 −176 −159 −104 50.7 −182
MinVar 80 −214 −120 −310 −436 −181 −201 −210 −139 9.13 −210 −270 −126 −9.56 −200

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the F+A benchmark strategy, which is described in Table 2 of the paper. We consider as asset

selection rules All, Rand, MaxSR, and MinVar, described in Table 3 of the paper, and portfolio sizes ranging from N = 20 to N = M , the latter being the All selection rule. We report
results across the seven datasets in Table 1 and estimate the portfolio either with the sample covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004). The table is
constructed following the methodology described in Section 5.4. The net out-of-sample utility is computed using rolling windows, a sample size T = 120 months, and proportional
transaction costs of 10 basis points. The risk-aversion coefficient is γ = 1.

rule, both the SGMV and GMVRF portfolios perform overall best for N = 20.

Next, we discuss the effect of the portfolio size N on the SMV, SMV-ST, SMV-HT, and F+A

portfolios in Tables OA.6 and OA.7. For the SMV portfolio, increasing N has a large negative

impact on the EU. This result is consistent with our theory that sets a very small optimal N for

SMV; see Figure 2 in the main text. The insight is similar for the F+A strategy, consistent with the

left plot of Figure 7 in our simulations. SMV-ST and SMV-HT alleviate this negative impact of N

by setting a limited number of non-zero weights using an L1-norm constraint and a hard threshold

on the weights, respectively. Looking at SMV-HT, although it improves upon SMV, increasing N

still has a negative impact on its EU in general. We can explain this finding because the assets in

which SMV-HT invests are determined from the weights of SMV, which face high estimation risk.

However, looking at SMV-ST, increasing N is no longer systematically unfavorable. In particular,

under the shrinkage covariance matrix and the Rand asset selection rule, the best N among the
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values considered is often N = 80 or M . For the MinVar and MaxSR asset selection rules, where

we pick the best assets first, the best N under the shrinkage covariance matrix is often either quite

small (20 or 40) or it is N =M . Setting N small is favorable because we select the best assets and

we have less estimation risk. Setting N =M is favorable too for SMV-ST because we still end up

with a limited number of non-zero weights due to the L1-norm constraint, so that estimation risk

is not excessive even for N =M . Moreover, by setting N =M , we do not change the investment

universe over time, so that the asset selection done by the L1 norm is more stable and SMV-ST

incurs less transaction costs.

OA.8 Proofs of theoretical results in Appendix

In this section, we provide the proofs for all theoretical results given in the Appendix and the

Online Appendix.

OA.8.1 Proof of Proposition A.1

Let µ̃1 = E[µ̂′
NΣ̂

−1
N µN ], µ̃2 = E[µ′Σ̂−11N ], σ̃2

1 = E[µ̂′
NΣ̂

−1
N ΣNΣ̂

−1
N µ̂N ], σ̃

2
2 = E[1′

NΣ̂
−1
N ΣNΣ̂

−1
N 1N ],

and σ̃12 = E[µ̂′
NΣ̂

−1
N ΣNΣ̂

−1
N 1N ]. Then, the EU of the GMV-three-fund rule ŵ(α) in (A3) is

EU(ŵ(α)) =
1

2γ

(
2α1µ̃1 + 2α2µ̃2 − α2

1σ̃
2
1 − α2

2σ̃
2
2 − 2α1α2σ̃12

)
. (OA26)

Kan and Lassance (2025, Equations (IA80)–(IA84)) show that

µ̃1 =
κN,1θ

2
NT

T −N − 2
, (OA27)

µ̃2 =
κN,1λg,NT

T −N − 2
, (OA28)

σ̃2
1 =

cNT
2

(T −N − 2)2

(
κN,2θ

2
N + κN,3

N

T

)
, (OA29)
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σ̃2
2 =

cNκN,2T
2

σ2
g,N(T −N − 2)2

, (OA30)

σ̃12 =
cNκN,2λg,NT

2

(T −N − 2)2
, (OA31)

and plugging them into (OA26) yields the desired result in Equation (A4). It is then easy to show

that the α = (α1, α2) maximizing (A4) is equal to (A5), which also corresponds to Kan and

Lassance (2025, Equations (51)–(52)). Finally, after some developments, plugging (A5) into (A4)

yields Equation (A6), which concludes the proof.

OA.8.2 Proof of Proposition A.2

The squared Sharpe ratio of the GMV portfolio depends on µN and ΣN as

θ2g,N =
(1′

NΣ
−1
N µN)

2

1′
NΣ

−1
N 1N

. (OA32)

Now, under Assumption 1, Σ−1
N is given by (A38), and thus,

1′
NΣ

−1
N µN =

N

1− ρ

(
λ̄N − Nρ

1− ρ+Nρ
θ̄N,1σ̄N,−1

)
, (OA33)

1′
NΣ

−1
N 1N =

N

1− ρ

(
σ̄N,−2 −

Nρ

1− ρ+Nρ
σ̄2
N,−1

)
. (OA34)

Plugging (OA33)–(OA34) into (OA32) yields the desired result in Equation (A7), which concludes

the proof.

OA.8.3 Proof of Proposition A.3

The EU of the EW-three-fund rule ŵ(β) in (A12) is

EU(ŵ(β)) =
1

2γ

(
2β1µ̃1 + 2β2µew,N − β2

1 σ̃
2
1 − β2

2σ
2
ew,N − 2E[µ̂′Σ̂−1Σwew]

)
, (OA35)
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where µ̃1 is given by (OA27), σ̃2
1 by (OA29), and E[µ̂′Σ̂−1Σwew] =

κN,1µew,NT

T−N−2
, which yields

the desired result in Equation (A13). It is then easy to show that the β = (β1, β2) maximiz-

ing (A13) is equal to (A14). Finally, after some developments, plugging (A14) into (A13) yields

Equation (A15), which concludes the proof.

OA.8.4 Proof of Proposition A.4

We have that θ2ew,N = µ2
ew,N/σ

2
ew,N , where µew,N = µ̄N and, under Assumption 1,

σ2
ew,N =

1

N2
1′
NΣ1N =

1

N

(
σ̄N,2 +

ρ

N

N∑
i=1

N∑
j ̸=i

σiσj

)
. (OA36)

This yields the desired result in Equation (A16) after noticing that

ρ

N

N∑
i=1

N∑
j ̸=i

σiσj = ρNσ̄2
N,1 − ρσ̄N,2, (OA37)

which concludes the proof.

OA.8.5 Proof of Proposition A.5

Throughout the proof, we denote

f(N, ρ) :=
Nρ

1− ρ+Nρ
. (OA38)

Bias of δ̂N . The expectation of δ̂N is

E[δ̂N ] =
1

M

M∑
i=1

E[ŝ2i ]−
f(N, ρ)

M2
E

( M∑
i=1

ŝi

)2
 . (OA39)

Given that E[ŝ2i ] = s2i +
1
T

, we have

1

M

M∑
i=1

E[ŝ2i ] = θ̄M,2 +
1

T
. (OA40)
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Moreover,

1

M2
E

( M∑
i=1

ŝi

)2
 = θ̄2M,1 +

1

M2
Var

[
M∑
i=1

ŝi

]
, (OA41)

where

1

M2
Var

[
M∑
i=1

ŝi

]
=

1

M2

M∑
i=1

M∑
j=1

Cov[ŝi, ŝj] =
1

T

(
1

M
+
M − 1

M
ρ

)
. (OA42)

Plugging (OA40)–(OA42) into (OA39) yields

E[δ̂N ] = δN +
1

T

(
1− f(N, ρ)(1− ρ+Mρ)

M

)
, (OA43)

which corresponds to (A33), as desired.

Bias of r̂g,N . The expectation of r̂g,N is

E[r̂g,N ] =
E
[(

1
M

∑M
i=1 λ̂i − f(N,ρ)

M
σ̄M,−1

∑M
i=1 ŝi

)2]
σ̄M,−2 − f(N, ρ)σ̄2

M,−1

. (OA44)

Given that E[λ̂i] = λi and E[ŝi] = si, we have

E[r̂g,N ] = rg,N +
1

M2
×

Var
[∑M

i=1 λ̂i

]
+ f(N, ρ)2σ̄2

M,−1Var
[∑M

i=1 ŝi

]
− 2f(N, ρ)σ̄M,−1Cov

[∑M
i=1 λ̂i,

∑M
i=1 ŝi

]
σ̄M,−2 − f(N, ρ)σ̄2

M,−1

,

(OA45)

where 1
M2Var

[∑M
i=1 ŝi

]
is given by (OA42) and

1

M2
Var

[
M∑
i=1

λ̂i

]
=

1

M2

M∑
i=1

M∑
j=1

Cov[λ̂i, λ̂j] =
1

T

(
1− ρ

M
σ̄M,−2 + ρσ̄2

M,−1

)
, (OA46)

1

M2
Cov

[
M∑
i=1

λ̂i,

M∑
i=1

ŝi

]
=

1

M2

M∑
i=1

M∑
j=1

Cov[λ̂i, ŝj] =
1− ρ+Mρ

MT
σ̄M,−1. (OA47)
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Plugging (OA42) and (OA46)–(OA47) into (OA45) yields

E[r̂g,N ] = rg,N +
1

T

1−ρ
M
σ̄M,−2 +

(
ρ+ f(N,ρ)2(1−ρ+Mρ)

M
− 2f(N,ρ)(1−ρ+Mρ)

M

)
σ̄2
M,−1

σ̄M,−2 − f(N, ρ)σ̄2
M,−1

, (OA48)

which corresponds to (A34), as desired.

Bias of r̂ew,N . The expectation of r̂ew,N is

E[r̂ew,N ] =
(1− ρ)

(1− ρ)σ̄M,2 + ρNσ̄2
M,1

1

M2
E

( M∑
i=1

µ̂i

)2
 . (OA49)

Given that E[µ̂i] = µi, we have

1

M2
E

( M∑
i=1

µ̂i

)2
 = µ̄2

M +
1

M2
Var

[
M∑
i=1

µ̂i

]
. (OA50)

Moreover,

1

M2
Var

[
M∑
i=1

µ̂i

]
=

1

M2

M∑
i=1

M∑
j=1

Cov[µ̂i, µ̂j] =
(1− ρ)σ̄M,2 + ρMσ̄2

M,1

MT
. (OA51)

Plugging (OA50)–(OA51) into (OA49) yields

E[r̂ew,N ] = rew,N +
1− ρ

MT
× (1− ρ)σ̄M,2 + ρMσ̄2

M,1

(1− ρ)σ̄M,2 + ρNσ̄2
M,1

, (OA52)

which corresponds to (A35) and concludes the proof.

OA.8.6 Proof of Proposition OA.1

Under Assumption OA.1, the covariance matrix of r is

ΣN = σ2
fβNβ

′
N + σ2

εIN , (OA53)

and its inverse is

Σ−1
N =

1

σ2
ε

[
IN −

σ2
f

σ2
ε + σ2

fβ
′
NβN

βNβ
′
N

]
. (OA54)

Page 44 of the Online Appendix



We have that θ2N becomes

θ2N = µ′Σ−1µ =
N

σ2
ε

[
ℓ̄µN −

Nσ2
f

σ2
ε +Nσ2

f ℓ̄
β
N

(ℓ̄µ,βN )2

]
, (OA55)

which corresponds to (OA3). Plugging (OA55) in (9) and (13) yields the desired result and thus

completes the proof.

OA.8.7 Proof of Proposition OA.2

We begin by proving that U(w⋆) in Proposition 1 is a convex function by showing that its second

derivative with respect to ρ is positive for all ρ ∈
(
− 1

N−1
, 1
)
. The first derivative is

∂

∂ρ
U(w⋆) =

N

2γ

[
θ̄N,2(1− ρ+Nρ)2 −Nθ̄2N,1(1− ρ2 +Nρ2)

(1− ρ)2(1− ρ+Nρ)2

]
, (OA56)

and the second derivative is

∂2

∂ρ2
U(w⋆) =

N

γ(1− ρ)3

[
(θ̄N,2 − θ̄2N,1) +

(N − 1)2(1− ρ)3

(1− ρ+Nρ)3
θ̄2N,1

]
, (OA57)

which is positive because θ̄N,2 − θ̄2N,1 ≥ 0 and (1− ρ+Nρ)3 ≥ 0 for all ρ ∈
(
− 1

N−1
, 1
)
.

Next, we prove that the value of ρ ∈
(
− 1

N−1
, 1
)

minimizing U(w⋆) is given by ρmin in (OA6).

There are two roots to the first derivative in (OA56) given by

ρ± =
−θ̄N,2 ± N√

N−1
|θ̄N,1|

√
δ

Nδ − θ̄N,2
, (OA58)

where we define δ = θ̄N,2 − θ̄2N,1 ≥ 0. We proceed by showing that ρ− ̸∈
(
− 1

N−1
, 1
)

whereas

ρ+ = ρmin ∈
(
− 1

N−1
, 1
)
, and thus, is a minimizer of U(w⋆) that is convex in that interval.

We first treat the case ρ− ̸∈
(
− 1

N−1
, 1
)
. We have limN→θ̄N,2/δ ρ

− = ∞ and thus we can leave

out the case N = θ̄N,2/δ. Let us consider the case N > θ̄N,2/δ. Then, ρ− is negative and we need

to show that ρ− < − 1
N−1

. This is equivalent to

Nθ̄N,2
N − 1

+
N
√
δ

N − 1

(√
N − 1|θ̄N,1| −

√
δ
)
> 0, (OA59)
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which holds because, given N > θ̄N,2/δ, we have

Nθ̄N,2
N − 1

+
N
√
δ

N − 1

(√
N − 1|θ̄N,1| −

√
δ
)

>
Nθ̄N,2
N − 1

+
N
√
δ

N − 1

(√
θ̄N,2
δ

− 1|θ̄N,1| −
√
δ

)

=
Nθ̄N,2
N − 1

+
N(2θ̄2N,1 − θ̄N,2)

N − 1
> 0. (OA60)

Then, we consider the case N < θ̄N,2/δ. In this case, ρ− is positive and we need to show that

ρ− > 1. This is equivalent to

Nδ +
N |θ̄N,1|

√
δ√

N − 1
> 0, (OA61)

which holds true.

We treat next the case ρ+ ∈
(
− 1

N−1
, 1
)
. When N = θ̄N,2/δ, ρ+ = 0/0 is indeterminate and

we can show using L’Hospital rule that

lim
N→θ̄N,2/δ

= 1− θ̄N,2
2θ̄2N,1

, (OA62)

which is strictly smaller than one and, moreover, 1− θ̄N,2/(2θ̄
2
N,1) > 1− θ̄N,2/θ̄

2
N,1 = −1/(N − 1)

when N = θ̄N,2/δ. We then consider the case N > θ̄N,2/δ. In this case, ρ+ < 1 is equivalent to

N
√
δ√

N − 1

(√
(N − 1)δ − |θ̄N,1|

)
> 0, (OA63)

which holds if δ > θ̄2N,1/(N − 1) and this holds true because, given N > θ̄N,2/δ,

θ̄2N,1
N − 1

<
θ̄2N,1

θ̄N,2/δ − 1
= δ. (OA64)

Next, still in the case N > θ̄N,2/δ, ρ+ > − 1
N−1

is equivalent to

N

N − 1

(
δ + |θ̄N−1|

√
(N − 1)δ − θ̄N,2

)
> 0, (OA65)
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which holds true because

δ + |θ̄N−1|
√

(N − 1)δ − θ̄N,2 > δ + |θ̄N−1|
√(

θ̄N,2
δ

− 1

)
δ − θ̄N,2 = 0. (OA66)

We turn then to the case where N < θ̄N,2/δ. In this case, ρ+ < 1 is equivalent to

N
√
δ√

N − 1

(
|θ̄N,1| −

√
(N − 1)δ

)
> 0, (OA67)

which holds if δ < θ̄2N,1/(N−1) and this holds true because, givenN < θ̄N,2/δ, inequality (OA64)

is reversed. Finally, still in the case N < θ̄N,2/δ, ρ+ > − 1
N−1

is equivalent to

N

N − 1

(
δ + |θ̄N−1|

√
(N − 1)δ − θ̄N,2

)
< 0, (OA68)

which holds true because, given N < θ̄N,2/δ, (OA66) is reversed. This concludes the proof.

OA.8.8 Proof of Proposition OA.3

The EU of the portfolio ηŵewrf is

EU(ηŵewrf ) = ηE[ŵ′
ewrfµ]−

γ

2
η2E[ŵ′

ewrfΣŵewrf ]. (OA69)

Therefore, the optimal η is η⋆ = (1/γ)E[ŵ′
ewrfµ]

/
E[ŵ′

ewrfΣŵewrf ]. Now, using the fact that,

under i.i.d. multivariate normality, µ̂ew,N ∼ N (µew,N , σ
2
ew,N/T ), T σ̂

2
ew,N ∼ σ2

ew,Nχ
2
T−1, and they

are independent of each other, the first two moments of λ̂ew,N = T−3
T
µ̂ew,N/σ̂

2
ew,N are

E[λ̂ew,N ] = λew,N and E[λ̂2ew,N ] =
T − 3

T − 5

(
λ2ew,N +

1

Tσ2
ew,N

)
, (OA70)

and thus,

E[ŵ′
ewrfµ] =

θ2ew,N
γ

and E[ŵ′
ewrfΣŵewrf ] =

T − 3

γ2(T − 5)

(
θ2ew,N +

1

T

)
. (OA71)

Therefore, the optimal η⋆ is equal to (OA13), which concludes the proof.
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OA.8.9 Proof of Proposition OA.4

Consider a pair of selection rules (k, l) that both select Nt assets out of M available ones. They

randomly select assets from a Bernoulli distribution without replacement and are mutually inde-

pendent. The selections are stored in the (M × 1) selection vectors yk,t and yl,t.

The number of assets selected in rule yk,t is
∑M

i=1 yi,k,t = y′
k,t1M and the overlap between

rules k and l is y′
k,tyl,t =

∑M
i=1 yi,k,tyi,l,t. We are interested in the expected overlap between these

two rules, denoted N̄t,M . Using the independence properties of the two rules and that yi,k,t ∈

{0, 1} ∀i, k, t, we can write N̄t,M as

N̄t,M = E

[
M∑
i=1

yi,k,tyi,l,t

∣∣∣∣∣
M∑
i=1

yi,k,t =
M∑
i=1

yi,l,t = Nt

]

=
M∑
i=1

P
[
yi,k,t = 1

∣∣y′
k,t1M = Nt

]
× P[yi,l,t = 1|y′

l,t1M = Nt]. (OA72)

Consider the probability of getting yk,t = ỹ where ỹ is a binary vector such that
∑M

i=1 ỹi = n.

Given that the sum of i.i.d. Bernoulli random variables follows a binomial distribution, we can

write, using Bayes theorem,

P
[
yk,t = ỹ

∣∣y′
k,t1M = Nt

]
=

P
[
y′
k,t1M = Nt

∣∣yk,t = ỹ]× P [yk,t = ỹ]

P
[
y′
k,t1M = Nt

]
=
1{n=Nt} × pn(1− p)M−n(

M
Nt

)
pNt(1− p)M−Nt

=
1{n=Nt}(

M
Nt

) . (OA73)

Marginalizing this joint distribution over the entries j ̸= i yields the marginal distribution of yi,k,t

conditional upon
∑M

i=1 yi,k,t = Nt,

P
[
yi,k,t = 1

∣∣y′
k,t1M = Nt

]
= P

[
yi,k,t = 1

∣∣∣∣∣∑
j ̸=i

yj,k,t = Nt − 1

]
=
∑
h̸=i

1{
∑

j ̸=h bj=Nt−1}(
M
Nt

) =

(
M−1
Nt−1

)(
M
Nt

) .

(OA74)

Plugging (OA74) into (OA72) yields the desired result and concludes the proof.
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