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Abstract
We introduce a method to determine the investor’s optimal portfolio size that maximizes the
expected out-of-sample utility under parameter uncertainty. This portfolio size trades off
between accessing investment opportunities and limiting the number of estimated parameters.
Unlike sparse methods such as lasso that exclude assets during the optimization step, our
approach fixes the optimal number of assets before optimizing the portfolio weights, which
improves robustness and provides greater flexibility in practical implementations.
Empirically, our size-optimized portfolios outperform their counterparts applied to all
available assets. Our methodology renders portfolio theory valuable even when the dataset

dimension and sample size are comparable.
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I. Introduction

Given a chosen universe of M assets, conventional wisdom argues that an unconstrained
rational investor should invest in all M assets so as to diversify idiosyncratic risk and improve the
efficient frontier. However, this is at odds with the concentrated portfolios typically observed in
practice among individual investors (Campbell, 2006; Calvet, Campbell, and Sodini, 2007;
Goetzmann and Kumar, 2008) and institutions (Koijen and Yogo, 2019).! As reviewed by Boyle,
Garlappi, Uppal, and Wang (2012), various papers aim to rationalize the concentrated portfolios
of investors or to explain them with behavioral biases. Existing explanations consider, e.g.,
transaction costs, short-sale constraints, prospect theory, overconfidence, cost of information,
geographical closeness and familiarity, private incentives, or preferences for higher-order
moments.

Besides behavioral and financial arguments, another motivation for reducing portfolio size
1S parameter uncertainty, i.e., the parameters governing the asset return distribution are unknown
and must be estimated. In theory, the optimal portfolio can only benefit from increased investment
opportunities associated to a higher portfolio size. In practice, however, more parameters and
portfolio weights must be estimated, which increases estimation risk and hurts out-of-sample
performance (DeMiguel, Garlappi, and Uppal, 2009b; Barroso and Saxena, 2021).

Sparse portfolio selection aims at alleviating parameter uncertainty precisely by reducing
the portfolio size. This is typically achieved by imposing lasso-type constraints also known as

soft-thresholding (DeMiguel, Garlappi, Nogales, and Uppal, 2009a; Fan, Zhang, and Yu, 2012;

'Institutional investors are typically more diversified than individual investors, but still, Koijen and Yogo (2019)

find in their dataset of US stocks that the median institution held 67 stocks in the period 2015-2017.



Yen, 2016; Ao, Li, and Zheng, 2019) or cardinality constraints (Gao and Li, 2013; Du, Guo, and
Wang, 2023). However, these methods suffer from five main drawbacks. First, the optimization
programs must be solved in dimension M, hence, face large estimation risk, even if the output
portfolio is ultimately of lower dimension. Second, they can be computationally intensive in high
dimension. For instance, cardinality constraints render the portfolio problem NP-hard. Third, they
entangle the selection of the assets with the optimization of portfolio weights in one single step.
Therefore, sparse methods do not allow for different rebalancing frequencies for portfolio weights
and the asset selection, or for flexibility in the asset selection. Fourth, they generally feature
hyperparameters that are often estimated by cross-validation, which is time consuming and adds
an extra layer of estimation risk. Lastly, the resulting portfolio size NV is implicit from the
portfolio weights and does not have a clear meaning.

To address these drawbacks of sparse portfolio selection, we propose a sequential
three-stage process. First, select a portfolio strategy. In this paper, we consider a class of portfolio
strategies that consists of different combinations of sample mean-variance (MV),
global-minimum-variance (GMV), and equally weighted (EW) portfolios. Although more
sophisticated strategies exist, this class has the benefit of being simple, theoretically important,
commonly considered in the literature, and allows analytical tractability in finite samples.

Second, compute an optimal portfolio size N < M. Third, select which N assets to invest in
among the M available ones and optimize the weights on the NV assets with the strategy in step
one. Interestingly, Ao et al. (2019) propose a similar sequential process for reasons of
computational efficiency, selecting a chosen number of N assets to maximize the Sharpe ratio and
then implementing their MAXSER strategy on this subset. Specifically, among the S&P500

stocks, they arbitrarily select 50 of them. In contrast, we show how to select an optimal N for
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several portfolio rules based on estimation-risk considerations.

Two key questions remain in our three-stage process: How do we find the optimal
portfolio size N? How do we then select the [V assets? We focus on the first question.
Specifically, we introduce a methodology for finding the optimal N and leave flexibility to the
investor as to the choice of the /V assets. In our empirical analysis, we evaluate the performance
of our optimal NV on 10 simple and sensible asset selection rules as an illustration.

To find the optimal N, we consider a classical setting where investors are expected utility
maximizers with MV preferences, there are no investment constraints, and returns are i.i.d.
multivariate elliptically distributed. In this setting, parameter uncertainty stems from the unknown
mean, covariance matrix, and fat tails of returns, which we assume are constant over time. For
different portfolio rules within the class of MV portfolio combination strategies we consider, we
find the optimal portfolio size /V, using a finite-sample setting, that trades off between two
opposite goals: increasing investment opportunities and reducing estimation risk. This /V is
optimal as it maximizes the expected out-of-sample utility (EU), the standard portfolio
performance measure under parameter uncertainty (Kan and Zhou, 2007; Tu and Zhou, 2011;
Kan, Wang, and Zhou, 2021), and it varies across portfolio rules depending on their estimation
risk. We observe empirically that determining the optimal /V using our theory and then selecting
the N assets using different selection rules significantly outperforms investing in all M assets in
almost 90% of considered configurations.

Our approach has five main benefits compared to the aforementioned sparse methods.
First, because we derive the portfolio size before optimizing the portfolio weights, these weights
depend on a more limited number of parameters, and thus, face less estimation risk. Second, our

approach is computationally less expensive because our optimal /V can be found very efficiently
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and the portfolio weights are then optimized on a universe of smaller dimension. Third, our
optimal NV depends on the data, the portfolio strategy, and the objective function, but is agnostic
as to the selection rule determining which /V assets to invest in, i.e., the investor has flexibility
regarding asset selection. This allows different rebalancing frequencies for portfolio weights and
asset selection, which is valuable in practice.? Fourth, our approach does not require the
calibration of any hyperparameter such as a constraint threshold. Lastly, the optimal /V has an
intuitive meaning from trading off between investment opportunities and estimation risk when
maximizing expected utility.

Our theoretical analysis starts with the sample MV (SMV) portfolio, which is optimal in
sample, but not out of sample. Assuming that asset returns are equicorrelated as advocated by
Engle and Kelly (2012) and Clements, Scott, and Silvennoinen (2015),> we express the EU of this
portfolio as a function of the portfolio size, the sample size, the correlation, the assets’ Sharpe

ratios, and three parameters that measure the impact of fat tails.* We show that because SMV is

’In our empirical analysis, we rebalance the weights every month but the selected assets every year, which
reduces asset turnover and outperforms selecting assets every month. Nonetheless, we show in Section OA.7.5 of the
Online Appendix that our optimal N outperforms investing in all M assets also when the selected assets change
every month. This disentanglement is not feasible under lasso or cardinality constraints because asset selection and

weights optimization is simultaneous.

3Equicorrelation yields a satisfying tradeoff between specification and estimation error (Engle and Kelly, 2012)
and allows us to express the EU of our different MV portfolio rules as an explicit function of N. We use this
assumption only for finding the optimal NV, not the portfolio weights. In Section OA.1 of the Online Appendix, we
show that the optimal N found under equicorrelation is similar to that under a single-factor model. Moreover, we find

that our method performs well also when returns are not equicorrelated.

4Most of the literature on portfolio choice with estimation risk assumes i.i.d. multivariate normally distributed

returns. Our incorporation of elliptical fat tails builds on the recent work by Kan and Lassance (2025).



highly sensitive to estimation errors, its optimal /V is typically very small. As a remedy for this
large estimation risk, Kan and Zhou (2007) introduce a two-fund rule that scales down the SMV
portfolio by combining it with the risk-free asset to maximize the EU, which Kan and Lassance
(2025) extend to the case with 1.i.d. multivariate elliptical returns. Building on this, we derive the
optimal N for the two-fund rule. Remarkably, for typical levels of rather high correlations in
equity data, this optimal N is slightly below half the sample size. Given commonly used sample
sizes (e.g., 120 months), this result means that, under the two-fund rule, a finite-sample setting,
and our model assumptions, it is optimal to limit the portfolio size so as to optimize the
out-of-sample performance.

In addition to the two-fund rule, we derive the optimal NV for three-fund rules combining
the SMV portfolio, the sample GMV (SGMYV) portfolio, and the risk-free asset as in Kan and
Zhou (2007), DeMiguel, Martin-Utrera, and Nogales (2015), and Yuan and Zhou (2024), or
combining the SMV portfolio, the equally weighted (EW) portfolio, and the risk-free asset as in
Tu and Zhou (2011), Kan and Wang (2023), and Lassance, Vanderveken, and Vrins (2024b).
Similar to the two-fund rule, the optimal N for these rules is slightly below half the sample size
for typical equity-return correlations. These results extend the literature on portfolio choice with
estimation risk by showing that it is beneficial to substantially reduce the portfolio size even after
optimally combining the SMV portfolio with robust strategies.

We test our theory first in simulations where we assess the performance of our optimal NV
when (i) it is subject to estimation errors, (ii) asset returns are not equicorrelated, and (iii) the
selection of the /V assets out of the M available ones is random. The main conclusion is that the
size-optimized two-fund and three-fund rules still deliver an EU close to the maximum and

substantially larger than that when investing in all M assets or in too few assets. This shows that
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our method delivers a satisfying performance even when relaxing the theoretical assumptions,
highlighting its practical relevance. Moreover, the simulation analysis allows us to illustrate that,
for realistic values of the sample size, our size-optimized two-fund and three-fund rules can
outperform more sophisticated benchmark MV portfolios that reduce the portfolio size using soft
or hard-thresholding, as well as a factor-plus-alpha strategy built on PCA and the arbitrage
portfolio of Da, Nagel, and Xiu (2024).

Finally, we turn to empirical data. We consider six datasets of characteristic and
industry-sorted portfolios and one dataset of individual stocks, with M around 100. Using a
rolling window of 120 months, we compare the net out-of-sample utility of 11 portfolio
strategies, including our size-optimized two-fund and three-fund rules. For the latter, we propose
10 simple and sensible selection rules to decide which N assets to select. We find large benefits
from optimizing /N using our theory. In the vast majority of cases, the two-fund and three-fund
rules implemented with the 10 asset selection rules outperform the same rules applied to all M
assets. The improvement is particularly large and statistically significant when we shrink the
covariance matrix. Moreover, for some asset selection rules, our size-optimized portfolio rules
consistently outperform the EW and SGMYV portfolios, a notoriously difficult task when the
dataset dimension M is comparable to the sample size, as well as soft and hard-thresholding MV
portfolios and the factor-plus-alpha strategy.

Our paper complements existing work that studies the effect of the portfolio size N using
asymptotic theories. In particular, Ao et al. (2019) and Da et al. (2024) consider a class of more
sophisticated portfolio strategies that treats estimation risk differently from ours via
soft-thresholding and a factor model, respectively. They find, under specific assumptions, that
they can asymptotically achieve the performance of the population optimal portfolio as both the
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portfolio size and the sample size go to infinity. That is, in their asymptotic theories, it is optimal
to increase V. We complement these results by studying a simpler, but nonetheless important,
class of portfolio strategies for which we can study the out-of-sample performance analytically in
a finite-sample setting. In that case, we find that it is optimal to reduce the portfolio size N. Our
simulation and empirical results signal that asymptotic theories like those of Ao et al. (2019) and
Da et al. (2024), which suggest that increasing /N is beneficial, might not kick in for realistic
sample sizes and typically deliver a performance inferior to that of our size-optimized portfolios.
The paper is structured as follows. In Section II., we study the optimal portfolio size for
the MV portfolio with no parameter uncertainty. In Section III., we show how to derive an
optimal N for the SMV portfolio and the two-fund rule under parameter uncertainty. Sections I'V.
and V. contain our simulation and empirical analysis, respectively. Section VI. concludes. The
Appendix contains results and proofs that are central to the main text. The Online Appendix

provides additional theoretical, simulation, and empirical results.

II. Optimal Portfolio Size without Parameter Uncertainty

In this section, we study the optimal portfolio size for an unconstrained MV investor who
knows the parameters of asset returns without uncertainty. We suppose the investor starts from a
universe of M assets and wishes to find an optimal number N < M of assets.

Given a fixed number N of assets, let ; be the V x 1 vector of asset excess returns at

time ¢, which has a mean py and a positive-definite covariance matrix X . We denote by 1;, 02
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risk-aversion coefficient v > 0 selects the portfolio weights on the risky assets as

(1) w* = argmax U(w) = argmax w'puy — zw'ZN'w,
weRN weRN 2

where U (w) is the MV utility of portfolio w. Solving (1) yields the MV portfolio satisfying

1 03
Q) w* = ;ZJ_VHLN and U(w") = % with 6% = py 33

where 0 is the maximum Sharpe ratio. We have that w* combines two funds: the fully invested
tangency portfolio, w = (1 X3 ) ' X 3 . and the risk-free asset, w = Oy.

Clearly, U(w*) is non-decreasing with N because one can set the weight of an additional
asset to zero and keep the same utility. Thus, without parameter uncertainty, it is optimal to
consider the whole investment universe and set N = M. To relate U (w*) and N explicitly, we

assume the following about 32,,.

Assumption 1 The covariance matrix Xy takes the form Xy (p) = Dy Py(p) Dy with Dy

the diagonal matrix of standard deviations and Py (p) the equicorrelation matrix,

3) Py(p) = (1 — p)In + pLla1y,

where 1, and I, are the unit vector and matrix, and p € ( — ﬁ, 1) so that X3, is invertible.

Under Assumption 1, the dependence structure depends on a single parameter, p. It
follows that for any N < M, 3y has the same form as in Assumption 1. This assumption is

commonly used in portfolio selection to trade off between specification and estimation error.> We

SElton and Gruber (1973) find that assuming equicorrelation improves portfolio performance relative to a wide
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use Assumption 1 only as a way to express the EU of our portfolio rules as an explicit function of
N, which will allow us to find the optimal N. We do not need this assumption for the portfolio
weights. In Section OA.1 of the Online Appendix, we find the optimal /N under another
commonly used approximation, the single-factor model, which we show is essentially equivalent
to that under equicorrelation.

In the next proposition, we provide the analytical expression of U (w*) under

Assumption 1.° This is a novel result to the best of our knowledge.
Proposition 1 Under Assumption 1, the utility of the MV portfolio is U(w*) = 03, /(27) with

N — = 5 Np
2 = T ——
@) On = 7—,0n(On), onlOx) =On2 = — =

1_IO 0_]2\7,1207

where Oy = (On1,0xn2) and Oy ), = % Zi\il sk, Moreover, U(w*) is non-decreasing in N and is
strictly increasing from N to N + 1 whenever sy 1 # pNOy1/(1 — p+ Np).

Proposition 1 shows that the maximum utility is non-decreasing in N. In Figure 1, we

depict U(w*) as a function of N € {1,..., M} for p € {0.2,0.5,0.8} and assets’ monthly Sharpe

range of alternatives. Ledoit and Wolf (2003) shrink the sample covariance matrix toward an equicorrelation model.
Boyle et al. (2012) study an ambiguity-averse portfolio and assume the parameters, including correlations, are
homogeneous. Engle and Kelly (2012) propose a dynamic equicorrelation covariance matrix and find that it “[...]
improves portfolio selection compared to an unrestricted dynamic correlation structure.” Clements et al. (2015) “[...]
find evidence in favour of assuming equicorrelation across various portfolio sizes, particularly during times of crisis.”
Finally, Chung, Lee, Kim, Kim, and Fabozzi (2022) find that errors in correlations dominate those in means and

variances for MV optimization.

The proofs of all results in the main text are available in Section A III. of the Appendix.
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ratios s; calibrated to a dataset of M = 96 decile portfolios’ sorted on size and book-to-market

(96S-BM) spanning July 1963 to August 2023.3

[Insert Figure 1 approximately here]

III. Optimal Portfolio Size under Parameter Uncertainty

In this section, we show that it is no longer optimal for an MV investor to invest in all M

assets when the assets’ parameters are unknown and the investor relies on sample estimates.

A Sample Estimates and Distributional Assumption

Given a sample of asset excess returns of size 7', (71, ..., 7rr), let
1 1
(5) v = = ;rt and Sy = ;(rt — fn) (e — fiv)’

be the sample estimates of p and Y, and we require 7' > N so that 31 is almost surely
invertible. Given a sample portfolio w estimated with fi and 31 v, we measure its performance

with the expected out-of-sample utility (EU) pioneered by Kan and Zhou (2007),

6) EU(W) = E[U(w)] = E | py — %w’zm@ .

"We remove four portfolios for which there is missing data. We collect this dataset from Kenneth French’s

website.

8Figure 1 shows that U (w*) is a non-monotonic function of p. In Section OA.2 of the Online Appendix, we

demonstrate that U (w*) is a convex function of p, extending results in Gandy and Veraart (2013).
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We then define N* as the optimal portfolio size N maximizing the EU of w.

Kan and Zhou (2007) and follow-up papers like Tu and Zhou (2011), Kan et al. (2021),
Lassance et al. (2024b); Lassance, Martin-Utrera, and Simaan (2024a), and Yuan and Zhou
(2024), evaluate (6) under the i.i.d. multivariate normal distributional assumption. Instead, we
follow Kan and Lassance (2025) who study the EU of various sample portfolios under the i.i.d.
multivariate elliptical distribution. Like them, we use the stochastic representation of the elliptical

distribution in El Karoui (2010, 2013).

Assumption 2 Asset returns r, are independent and identically distributed over time and follow
a multivariate elliptical distribution. That is, vy, L 7y, for t; # ts and r; 4 war + (TEM>%ZM,
where zy; ~ N (0, Iny), T is a positive random variable satisfying E[T] = 1, and zy; L 7. In

particular, py; and 3y are constant over time.

We recover the normal distribution when 7 = 1, and the ¢-distribution when
7 ~ (v —2)/x2, where x?2 is a chi-square distribution with v > 2 degrees of freedom. We focus
on the elliptical distribution because it is consistent with MV portfolios (Chamberlain, 1983;
Schuhmacher, Kohrs, and Auer, 2021). Specifically, since the multivariate elliptical distribution is
closed under linear transformations, all portfolios have the same higher moments and only differ
in their mean return and variance. Therefore, for all increasing and concave utility functions, the
optimal portfolio under expected utility is MV efficient. We also opt for the elliptical distribution
because Kan and Lassance (2025) show that accounting for fat tails is crucial in determining

optimal portfolio combination rules.
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B Optimal Portfolio Size for Sample Portfolios

The first strategy we consider is the sample counterpart of the MV portfolio in (2), i.e.,

() W = =3 .

The sample MV (SMV) portfolio is not robust to parameter uncertainty because it is only optimal
in sample. Therefore, we also consider the two-fund rule of Kan and Zhou (2007) that scales
down the SMV portfolio to maximize its EU. This two-fund rule is of the form

(8) w(a) = a* = -3 i,

where a € R is the combination coefficient. The SMV in (7) corresponds to w* = w(1).

In the next proposition, we derive the EU of the two-fund rule, and thus also the SMV
portfolio, the optimal combination coefficient o, and which EU it delivers, when asset returns are
elliptically distributed. These results then allow us to determine the optimal portfolio size N. This
Proposition follows, with minor adjustments, from Kan and Lassance (2025, Propositions 7
and 8). In Section A.I. of the Appendix, we follow the same approach for three-fund rules that
extend the two-fund rule by incorporating a third fully invested fund, which is either the GMV or
the EW portfolio. We refer to these as the GMV-three-fund rule and the EW-three-fund rule,

respectively.

Proposition 2 Let T > N +4, M = Iy — 171, /T, Zx be a T x N matrix of independent

1/2

standard normal variables, A be a diagonal matrix of T' independent copies of T*/*, and
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A 1 Zy. Then, under Assumption 2, the EU of the two-fund rule w(«) in (8) is

T 2o 2 N
®) EU(w(a)) = [(QOMNJ _ INQ RN2Z ) 2 CNWAN3IV

29(T — N — 2) T-N-2)Y T-N-2]|

where 0% is the maximum squared Sharpe ratio given in (4), cy = (T(T;,Q_)g(;]j]f_) g and K 1,

kN2, and Ky 3, which we assume exist, are functions of only N, T, and the distribution of T:

T—-N-2
(10) fing = —— B [r((ZyAMAZy) )],
T — N —2)?
(11) KM2:< )E[U«Z&AAIAZNYQH,
CNN
T — N —2)?
(12) mNgzzL——————lﬂiﬂ}AZNLZ&AAIAZNYQZ&Alﬂ.
’ CNNT

Moreover, the optimal combination coefficient o maximizing (9), and the resulting EU, are

— _ 2 2 94
13) o= 12N 2( 10N N) and EU(th(0")) = — ( VLN )

- N
CNT HN,QGJQV —+ KN,3T 2’YCN /iNyge?\; + HN,?;T

Three comments are in order. First, Proposition 2 is valid for any X, not only those of
the form X (p). Second, Ky 1, £y 2, and Ky 3 do not have a closed-form expression, but can be
evaluated via Monte Carlo simulations given the distribution of 7. We explain how we estimate
them in Section A.Il. of the Appendix. Kan and Lassance (2025) show that they increase with
estimation risk N /7" and tail heaviness. Third, under parameter uncertainty in gy and X, a
larger N may not always be favorable. Instead, the N maximizing (9) trades off between
improving the population performance (i.e., increasing 0%;) and limiting estimation risk (i.e.,

decreasing N/T).
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Next, we proceed as in Section II. and relate the EU with N more explicitly by assuming
that the covariance matrix ¥y complies with Assumption 1, i.e., Xy = X y(p). We obtain this
novel result by plugging the expression for 6% under equicorrelation in (4) into Equations (9) and

(13).

Corollary 1 Under Assumptions 1 and 2, the EU of the SMV portfolio w* and the optimal

two-fund rule w(a*) are given by

N NT 5]\[(91\7) CN/{NQT CNKN.3
14 E ) = 2 _ : _ :
(14 U(w’) 27(T—N—2)[1— <”N1 T-N-2) T-N—2
(15) =: EUpo(N, T, p,7,0y), and
N K108 (On)’

(16) EU(w(a*)) =: EUy¢(N, T, p,7,0x).

= X — ]_7p
2ven(1 = p)  Kn20N(ON) + KinsFE

EUjpy, and EUsp depend on several parameters.® First, the sample size 7', directly but
also via cy and (kn 1, kN2, Kn,3). Second, the portfolio size N, directly but also via cy, the
function 0, and (K1, K2, kn,3). Third, which N assets are selected via Oy = (Oy 1, On2).

Now, to maximize EUq,,,(N, T, p, 7,0y5) or EUy;(N, T, p, 7, 0y) with respect to N, one
would also need to optimize the selection of assets because @y depends on N via the chosen
subset of assets. This is a difficult optimization problem because the number of possible subsets
of N assets with N going from one to M grows very quickly with M.'° Moreover, this would
introduce potentially severe estimation risk and time instability in the selection of assets, which is

undesirable. This is why, to disentangle the determination of the optimal /N from the asset

°The EU of the SMV portfolio and the two-fund rule is proportional to 1/+, and thus, the N optimizing the EU

does not depend on «y. Therefore, we do not highlight the dependence on v in EUy,;,, and EUsjy.

19The number of possible subsets of N assets out of M = 100 ones is equal to > n_, (3) a2 1.26 x 10%°.
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selection, we replace Oy by its counterpart for the whole investment universe, i.e., 6,;. This
approximation may not be accurate when NN is small relative to M.!! In this case, however, the
estimated @ will be particularly noisy, and thus estimating it from 6,; can help too. All in all,
the way we determine the optimal portfolio size N for the SMV portfolio and the optimal

two-fund rule becomes'?

(17) N* == argmax EUmo(N, T, p,7,05), and

T Neflmin(M,T—5)}
(18) 5f = argmax EUys(N, T, p,7,0x).

Ne{1,...,min(M,T-5)}

We now illustrate N7, and N3;. Using the full sample of the 96S-BM dataset introduced

in Section II., we obtain figs and 296 using (5). Then, we set the population mean gy, = figg and
the population covariance matrix 3, = 296(p) = ﬁ96P96(p)ﬁ96 with Dygg = diag(f)%)l/ 2
which yields 8y = (0.125,0.0169), and we take p € {0.2,0.5,0.8}. We consider either the
normal distribution, i.e., 7 = 1 and k1 = Kn2 = Kn,3 = 1, or the ¢t-distribution, i.e.,

7~ (v —2)/x5, with v = 6. Figure 2 depicts N7, and Nj; as a function of T". We make several

smuv

observations. First, N* and N;, increase with 7" because, as 1T’ increases, the estimated
2f

smuv

Tn Section OA.3 of the Online Appendix, we show that 8 quickly converges to 8, in practice.
12We search N up to min(M, T — 5) because we assume 7' > N + 4 in Proposition 2. In Section OA.3 of the

Online Appendix, we compare, for the optimal two-fund rule, the dependence on N of the EU obtained with 8,; and
Oy, ie., EUsp(N,T,p,7,0) and EUsy (N, T, p,7,0y) in (16). EUs¢(N, T, p,7,0x) depends on N via the
sequence of assets considered, and thus, we generate a large number of random asset sequences, evaluate

EUs¢(N, T, p,7,0y) for each sequence, and compare it to EUs (N, T, p, 7,0,). We find that

EUs;(N, T, p,7,0)r) provides a good approximation and that the dispersion of EUs (N, T, p, T,0x) across

different asset sequences is reasonable.
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portfolios become better estimates of the true MV portfolio for which the optimal N = M.
[Insert Figure 2 approximately here]

Second, N*

oo 18 very small compared to 7" and M. For instance, with 7" = 240 and

p = 0.5, N . = 3 both for the normal and ¢-distributions. For a larger p = 0.8, N,

smuv ™m

, gets larger

but is still small. For example, when p = 0.8 and 7" = 120, 180 and 240, we have N}

smuv

=1,3,

and 10 for the normal distribution, and N

=1, 2, and 7 for the ¢-distribution, respectively.

Third, N

smuv

and N2*f tend to increase with p. This is because, as we show in Section OA.2
of the Online Appendix, the maximum utility without parameter uncertainty, U (w*), is a convex
function of p, and thus, is increasing in p for p large enough. Therefore, given that U (w?*) is an
increasing function of N, a larger p tends to increase the optimal V.

Fourth, N;f is higher than V|

smu?

below 7'/2, equal to M if T'/2 is enough above M, and
gets closer to 7'/2 as p increases. These results can be explained based on (16) and (18).
Specifically, we can show that in the normal case, i.e., ky1 = kKy2 = Kng = 1, NQ*f is below 7'/2
(and equal to M if M is sufficiently below 7'/2), and close to 7'/2 when p is close to zero or one.
To see this, consider the N maximizing the first term of EUsy, i.e., N/cn. We have

N NT-N-1)(T-N-4) NT-N-—4)
e (T=2(T-N-2) ~  (T-2)

(19)
and the latter is maximized by

N(T —-N -4
(20) argmax ( )
Ne{l,...,min(M,T-5)} (T - 2)

=min([T/2 — 2], M).

Moreover, when k1 = k2 = K3 = 1, the second term of EUsy in (16) decreases with N and
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is maximized by N = 1, which moves NJ; below (20). However, the sensitivity of this second
term to N depends on how sensitive Np/(1 — p + Np) is to N, and it is less so as p approaches
zero or one. In equity data where p is typically large, we thus expect N3, to stay close to (20).
Finally, in the elliptical case, kn,1, k2, and k3 also depend on [V, but Figure 2 and later
simulations suggest that /N3, still remains close to that under normality.

Finally, fat tails positively impact N3,, while we observe the opposite for V. This can

be explained because the two-fund rule optimally scales down the SMV portfolio according to tail
heaviness via k1, Ky 2, and k3. Therefore, as shown by Kan and Lassance (2025,

Proposition 5), the two-fund rule often performs better when asset returns are elliptically instead

of normally distributed, and thus we find a larger N, under elliptical returns.

IV. Simulation Analysis

In Section IV.A, we study the estimated optimal /V for the SMV portfolio and two-fund
and three-fund rules. In Section IV.B, we test whether the EU is close to optimal under the
estimated optimal N and when Assumption 1, i.e., equicorrelation, is not satisfied. In
Section IV.C, we analyze the effect of NV on the EU delivered by alternative benchmark portfolio
strategies.

To run this analysis, we draw monthly excess returns from a ¢-distribution, i.e.,

T~ (v —2)/x2, with v € {6,00}. As in Section IIL.B, we calibrate the mean and covariance
matrix to the full sample of 96S-BM dataset introduced in Section II.. Specifically, we set
W = flog and consider Xy, € {5396, 296(@}, where p = (.74 is the average of the correlations

in 396. We also consider varying p. Setting 3, = 5396(/3) allows us to compare the estimated
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optimal values of /N with the oracle optimal one that, for the SMV portfolio and the two-fund and
three-fund rules, is known theoretically under Assumption 1, i.e., when X, is of the form X,,(p).

Throughout this simulation analysis, the EU gains from reducing portfolio size originate
from the benefits of a reduction in parameter dimensionality on out-of-sample performance.

In-sample, with p, and 32, being known, it is optimal to have N = M.

A Estimated Optimal Portfolio Size

We now analyze the estimated optimal portfolio size for the SMV portfolio (N7, ), the
two-fund rule (Ng*f), the GMV-three-fund rule (]\73*]0’ 4)» and the EW-three-fund rule (Ngﬁew).
These are the estimated counterparts of N . in (17), Ngf in (18), Ngﬁg in (A.10), and Ngf,ew
in (A.19) following the estimation methodology in Section A.Il. of the Appendix.

We simulate /£ = 10,000 times 7" = 120 returns and estimate the optimal /V in each
simulation. Figure 3 depicts boxplots of N* for the different strategies and choices of (v,3,/).
We make several observations. First, when X, = 296@), N* is close to the oracle N *
highlighting the quality of our estimation procedure. Second, N* is similar under 3¢ and
igg(ﬁ), meaning that drawing returns from a distribution violating Assumption 1 does not
materially affect the estimation of N. Third, N + e 18 very small, in line with Figure 2. Fourth, N*
is similar across the two-fund and three-fund rules and is typically slightly below 7'/2, which is

because p is rather large; see Section III.B. Finally, the lower the v the higher the N* in the

two-fund and three-fund rules, in line with Figure 2.
[Insert Figure 3 approximately here]

Next, in Figure 4, we let 3, = 296(p> and depict the oracle N* and boxplots of N* for P

19



varying between 0.1 and 0.9. We set v = 6; the results are similar for v = co. We observe the
following. First, the oracle N* is slightly below 7'/2 when p is close enough to one, in line with
Figure 2 where p = p = 0.74. In this case of high correlation, typical for equity data, N* is
remarkably robust to parameter variability as the boxplots are thin. Second, for the SMV, 2F, and
3FGMYV portfolios, the oracle N* first decreases with p and then reincreases, attaining its
maximum as p approaches one. This is because we want to invest in more assets when the
maximum Sharpe ratio, 6 in (4), is larger, which also first decreases then reincreases with p; see
Section OA.2 of the Online Appendix. For p away from zero and one, the boxplots widen as N*
becomes more sensitive to the parameters. Third, p has a different effect for the 3FEW portfolio:
N* decreases with p. This can be explained because 3FEW combines SMV with EW, which is
not subject to estimation risk. Thus, when p decreases and 0y decreases too, 3FEW mostly
invests in the EW portfolio and it is optimal to have a large N even under estimation risk. Finally,

N* is overall close to N* on average.

[Insert Figure 4 approximately here]

B Performance of Size-Optimized Portfolios

We now evaluate the performance of the size-optimized SMV, two-fund, and three-fund
rules using N = N*. For each choice of (v, 3;), where v € {6, 00} and X, € {Z96, Z06(p) },
we draw K = 10,000 times L = 300 ¢-distributed returns, which we use in a rolling-window
exercise. Specifically, in each simulation k, given the sample size 7' = 120 and a chosen N, we

randomly select in each rolling window a subset of N assets,!® estimate the portfolio on these N

31n the empirical analysis of Section V., we use different selection rules to improve upon a random selection. In

the current simulation exercise we are interested in general conclusions, independent of one specific asset selection
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assets (see our estimation methodology in Section A.Il. of the Appendix), and evaluate the
out-of-sample portfolio return 7, ; on the next month. We also implement the EW portfolio,

We,, = 15 /N, on the same N assets for comparison. We then roll the window by one month and
proceed similarly until we reach the end of the sample of L returns. This gives us, for any N, a
time series of out-of-sample portfolio returns r, t =1,..., L =T and k =1,..., K, and we

compute the EU as

K | LT | LT
2) BU =3 (fu—26%) with = ——— L 0= — ju)*.
(21) z_: [k Uk with - fiy, = 7—= 2 ks Ok = T ;(Tt,k fix)

In Figure 5, we vary N from five to M = 96 and depict the results for v = 6 and X, = So6,
which is the most relevant case. In Section OA.6.1 of the Online Appendix, we set v = oo and
¥, = o6 and, in Section OA.6.2, v € {6,00} and 3); = 3¢6(5). The four panels in Figure 5
consider the SMV, 2F, 3FGMY, and 3FEW portfolios. Each panel depicts the EU as a function of
N with a solid line using v = 1, and also of the EW portfolio with a dash-dotted red line. In
addition, we depict with an horizontal dashed line the EU obtained by using the estimated optimal

portfolio size, N = Ntf ;-» Which varies across rolling windows and simulations.'#
[Insert Figure 5 approximately here]

‘We make several observations. First, N* delivers an EU close to the maximum, even

though equicorrelation does not hold, there is estimation error in N *, and the asset selection is

rule, averaged over a large number of random selections.

14In Section OA.6.3 of the Online Appendix, we implement a similar exercise where the correlation matrix has a
block structure. Even in this setup that violates Assumption 1, there are significant gains from reducing the portfolio

size from M to N* for the SMYV, 2F, 3FGMYV, and 3FEW portfolio rules.
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random."® Second, for 2F, 3FGMYV, and 3FEW, the EU is maximized for N slightly below 7/2, in
line with Section III.B and the average correlation being large (p = 0.74). In contrast, the

optimal N is very small for SMV, as in Figure 2. Third, for 2F, 3FGMYV, and 3FEW, N* delivers
an EU substantially larger than that when NN is too small or too close to M, highlighting the value
of choosing the right portfolio size and the cost of blindly investing in all assets. This EU
obtained with N* substantially outperforms the naive EW portfolio, which is a challenging

benchmark for M close to T'.

C Comparison to Benchmarks

We now consider benchmark portfolio strategies that we also consider in the empirical
analysis of Section V.. First, we consider two natural ways of reducing portfolio size, which are
soft and hard-thresholding versions of the SMV portfolio, called SMV-ST and SMV-HT.

SMV-ST solves the mean-variance portfolio problem subject to an L;-norm constraint:

M
(22) Wory_gr = argmax w' iy — %w’f]Mw subjectto  ||wl|; = Z lw;| < 6.
weRM i=1

The L;-norm constraint performs asset selection and limits short-selling, which helps improve
out-of-sample performance (DeMiguel et al., 2009a). We calibrate the threshold ¢ using
cross-validation with out-of-sample utility as a decision criterion. Specifically, we search the
optimal 0 in an interval of 1,000 equally spaced values ranging from zero to d,,.x, defined as the

norm of the unconstrained solution to (22), i.e., Omax = H%ZA)]T; ol

31n Section OA.6.2 of the Online Appendix, we show that this result is robust under equicorrelation to

considering different values of p and, in particular, low values for which N* has a large variance as shown in Figure 4.
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SMV-HT selects the portfolio size by keeping only the assets whose absolute SMV

portfolio weight is above a threshold w. In that case, the value of N is determined by w as

M

(23) NSMVfHT = Z 1{|@:|2@} where w* =

ey
i=1 v

Once the N symv— g assets are selected, we recompute the SMV portfolio on these assets, which
delivers better performance than keeping the original weights. We select the threshold w via
cross-validation with out-of-sample utility as a decision criterion. Specifically, we search w in an
interval of 10 equally spaced values ranging from zero (all assets selected) to Wy, (no asset
selected), where w,,,,x = max| %f];jﬂ | is the largest absolute weight of the full SMV
portfolio.'®

In Figure 6, we depict the EU of SMV-ST and SMV-HT as a function of the number of
assets on which they are estimated using the same setup as in Figure 5, with v = 0o.!” We also
depict boxplots of the estimated optimal /N under SMV-ST and SMV-HT. We make several
observations. First, SMV-ST and SMV-HT substantially improve upon the plain SMV portfolio in
Figure 5. Second, SMV-ST and SMV-HT deliver an EU that is consistently negative. Therefore,
they are less effective approaches to reducing portfolio size than our size-optimized two-fund and
three-fund rules in Figure 5. Third, SMV-ST and SMV-HT set a small optimal /V, in line with the

small EU-optimal portfolio size for the SMV portfolio that we obtain theoretically; see Figure 2.

[Insert Figure 6 approximately here]

16Given the large estimation risk of the SMV portfolio, using more than 10 values yields similar results because

cross-validation typically yields w close to wy,.x such that we keep only a few assets.

Tn Section OA.6.1 of the Online Appendix, we obtain similar conclusions with v = co and X3, = 296.
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The final benchmark imposes a small-dimensional factor model in the estimation.
Specifically, as detailed in Section OA.4 of the Online Appendix, we construct a factor-plus-alpha
(F+A) strategy, where the factor part is estimated via PCA, the alpha part via the arbitrage
portfolio methodology of Da et al. (2024), and the factor and alpha portfolios are combined to
maximize expected utility. This is a relevant benchmark for two reasons. First, although it does
not reduce the portfolio size, it still reduces the number of parameters to estimate due to the factor
model. Second, Da et al. (2024, Theorem 4) demonstrate that in the limit as /V and 7' get large,
and under specific assumptions, their arbitrage portfolio attains the maximum achievable Sharpe
ratio over all portfolios having zero factor exposure. Therefore, the F+A strategy might work well
also for a large V.

In Figure 7, we consider the same setup as in Figures 5 and 6 and depict the EU delivered
by the F+A strategy as a function of N. In the left panel, the sample size 7" = 120. In the right
panel, 7' = 60 4+ 2N increases with [V to capture the asymptotics in Da et al. (2024). For
comparison, we also depict the EU of the two-fund rule; we find a similar conclusion for
three-fund rules. We observe that when 7' is fixed, the EU of F+A decreases with /NV and
substantially underperforms the 2F and EW portfolios. However, when 7" increases with NV, the
EU of F+A tends to improve with NV and is maximized at N = M, where it slightly outperforms
the EW portfolio. Nonetheless, the EU of the 2F strategy also improves with NV in that case, and
outperforms F+A for all N. Overall, these results suggest that, in our simulation setting, the 2F
strategy delivers a better out-of-sample performance under estimation risk than the F+A strategy

constructed from Da et al. (2024).

[Insert Figure 7 approximately here]
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V. Empirical Analysis

In Section V.A and V.B, we present the datasets and portfolio strategies, respectively. In
Section V.C, we propose different rules to select in which assets to invest. In Section V.D, we
detail the out-of-sample methodology and performance measures. Finally, we discuss the results
in Section V.E. In this empirical analysis, the out-of-sample performance gains from reducing
portfolio size originate from parameter uncertainty, but also from the inclusion of transaction

COsts.

A Datasets

Our empirical analysis is based on six datasets of characteristic and industry portfolios
and one dataset of 100 individual stocks, which we list in Table 1 with the time period considered
for each. Given that our objective is to reduce the portfolio size, the full investment universe must
not be too small in the first place, and thus, we consider datasets with M around 100.

The first dataset already introduced in Section II., 96S-BM, is composed of decile
portfolios sorted on size and book-to-market. The second dataset, 1I08CHA, is composed of the
long and short legs of the 54 characteristics considered in Lassance and Martin-Utrera (2023),
collected from the authors. The third dataset, 100S-OP, is composed of decile portfolios sorted on
size and operating profitability. The fourth dataset, 94IN-NV, is composed of 48 industry
portfolios and the long and short legs obtained from the 23 characteristics in Novy-Marx and
Velikov (2015), available on Robert Novy-Marx’s website. The fifth dataset, 107IN-CHA, is

composed of 47 industry portfolios,'® quintile portfolios sorted on size and book-to-market and

8We consider 47 portfolios instead of 48 because of missing data in the healthcare portfolio before July 1969.
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on operating profitability and investment, and decile portfolios sorted on momentum. The sixth
dataset, 98IN-CHA-NYV, is composed of 47 industry portfolios, quintile portfolios sorted on size
and book-to-market, decile portfolios sorted on momentum, and the long and short legs obtained
from the eight low-turnover characteristics in Novy-Marx and Velikov (2015). For the seventh
and final dataset, 100STO, we follow Lassance et al. (2024b) and collect adjusted returns from
CRSP for the 235 stocks traded on the three major U.S. stock exchanges that traded between 1998
and 2022. We consider 100 datasets of size M = 100, randomly drawn from the total pool of 235
stocks, and report the portfolio performance after merging the out-of-sample portfolio returns

across the 100 datasets.

[Insert Table 1 approximately here]

In Section OA.7.1 of the Online Appendix, we look at how Assumption 1 (equicorrelated
returns) and Assumption 2 (elliptical returns) transpire in the seven datasets. First, the
equicorrelation assumption is reasonable for the 96S-BM, 100S-OP, and 108CHA datasets, with a
root mean squared error (RMSE) between the observed and equicorrelation matrices of around
5-10%, but less so for the four other datasets, with an RMSE around 10-20%. Thus, we can assess
the performance of our optimal portfolio size across different correlation structures. Second, the
parameters (K1, K2, Kar,3) defined in (10)—(12), which control the impact of the elliptical fat
tails of returns on the EU, substantially depart from one, i.e., from normality. Thus, it is crucial to
account for fat tails when implementing combination rules given their impact on combination

coefficients.
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B Portfolio Strategies

We evaluate the performance of the 11 portfolio strategies listed in Table 2. The first three
are the optimal combination rules in Section III.B and Section A.I. of the Appendix: the two-fund
rule (2F), GM V-three-fund rule (3FGMV), and EW-three-fund-rule (3FEW). We apply these
strategies to all M assets or a subset of NV assets, with N chosen optimally as Ngf in (18) for 2F,
N:;ﬁ , 1n (A.10) for 3FGMYV, and Ngﬁew in (A.19) for 3FEW, estimated following Section A.Il. of

the Appendix.
[Insert Table 2 approximately here]

The next two portfolio strategies are individual portfolios: the EW portfolio and the
SGMYV portfolio in (A.1). We then consider two portfolio strategies that combine EW and SGMV
with the risk-free asset to maximize the EU, EWRF and GMVREF, which might be preferred to 2F,
3FGMYV, and 3FEW because they disregard the SMV portfolio that faces high estimation risk. We
explain how we estimate the EWRF portfolio in Section OA.5 of the Online Appendix. Regarding

the GMVREF portfolio, we follow Kan and Lassance (2025, Section VI.C.2.) and estimate it as

T—M-2 j,u211
FdM,lx ><,LLg,M

24) B, =
gmer KM.2 Tey vy

Y

where /i 4 1/ is defined in (A.27) and the estimation of x,/,; and xy 2 is described in
Section A.II.A.A. of the Appendix.

The next portfolio strategy we consider is the SMV portfolio, which we implement in
three different ways. In the first case, we compute the SMV portfolio on all M assets using
Equation (7). In the second and third case, we reduce the portfolio size with soft and
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hard-thresholding using the SMV-ST and SMV-HT portfolios introduced in Section IV.C."

The last portfolio strategy we implement is the factor-plus-alpha (F+A) strategy
introduced in Section IV.C. We refer to Section OA.4 of the Online Appendix for more details.

Finally, we consider three different estimates of the covariance matrix. First, the sample
estimator in (5) for consistency with our theory. Second, the linear shrinkage estimator of Ledoit
and Wolf (2004). Third, the nonlinear shrinkage estimator of Ledoit and Wolf (2020), for which
we report the results in Section OA.7.2 of the Online Appendix for conciseness.?

Note that whereas we implement the EWRF, SGMV, GMVRE, SMV, SMV-ST, SMV-HT,
and F+A benchmark portfolios on all M assets, we study the impact of the portfolio size N on

their empirical performance in Section OA.7.8 of the Online Appendix.

C Asset Selection Rules

Given a portfolio size N < M, we consider several selection rules to decide which N
assets to select. Our purpose is not to find an optimal asset selection rule. Instead, our main

objective is to illustrate the added value of optimally reducing the portfolio size, and that even

19In Section OA.7.3 of the Online Appendix, we also report the performance of the size-optimized SMV portfolio

with IV determined using our theory in Section IIL.B, i.e., using N¥

smuv*

We find that the size-optimized SMV portfolio
outperforms the full SMV on all M assets. We don’t report these results in the main text because, even with a

reduced NN, the SMV portfolio largely underperforms 2F, 3FGMYV, and 3FEW.

20 Analytical expressions for the EU of portfolio strategies implemented with shrinkage estimators of 3 are not
available. Therefore, we cannot obtain the optimal combination coefficients and optimal NV in those cases. As an
alternative, we follow Kan et al. (2021) and implement the portfolios by relying on the obtainable combination
coefficients and optimal N found under the sample estimator of the covariance matrix 3y, but use shrinkage

estimators of 3 5 to compute the portfolio weights.
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simple but sensible selection rules can deliver substantial gains over choosing all M assets.

For comparison purposes, we apply the proposed selection rules not just to 2F, 3FGMYV,
and 3FEW but also to the EW portfolio, so as to evaluate their intrinsic value without being
affected by estimation errors in optimized portfolio weights. In that case, we take N = T'/2,
where 7' = 120 months as explained in Section V.D, because the optimal N is close to 7'/2 for
typical levels of equity correlations as explained in our theory and simulations.

We propose 11 asset selection rules, listed in Table 3, satisfying two criteria: they are
simple to understand and implement and, apart from the random rule, they are sensible, i.e., they
have an economic intuition. The first selection rule consists in choosing all assets and setting
N = M. The 10 remaining selection rules select a subset of N < M assets. Among those, the
first one is a random selection, the next six are based solely on marginal information about the
assets, and the last three rules also consider information about their dependence. Moreover, the
first nine rules select the assets before computing the portfolio weights, whereas the last rule
selects the subset of assets after optimizing the weights on all assets. We now describe these 10

asset selection rules.?!

[Insert Table 3 approximately here]

Random selection (Rand). We randomly select the /V assets among all M assets and
report the performance across 100 repetitions of the out-of-sample analysis after merging all
portfolio returns. This random rule serves as a benchmark to which other more sensible selection

rules can be compared, and it is consistent with the simulation analysis of Section IV..

210ur three-stage approach, as described in Section 1., is flexible and allows any asset selection rule. We propose a
specific set of simple rules as an illustration. One may for instance consider more sophisticated rules based on asset

clustering, time-series models, or machine learning, which may further improve performance.
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Maximum Sharpe ratio (MaxSR). We select the /V assets with the maximum in-sample
Sharpe ratios in the estimation window, because the EU of the SMV portfolio in (14) and the
two-fund rule in (16) both depend on the assets’ Sharpe ratios. This selection rule is expected to
work particularly well when there is momentum in the assets.??> We can anticipate several issues
with this rule. First, it ranks the assets according to average returns that are notoriously noisy
(Merton, 1980). Second, the selected assets have the best Sharpe ratios, and thus, we might short
good assets. Third, we do not include assets with the worst Sharpe ratios although shorting them
might deliver gains.

Minimum Sharpe ratio (MinSR). We select the N assets with the minimum in-sample
Sharpe ratios. This rule will work well under mean-reversion in the assets, or from using short
positions. We expect MinSR to face the same issues as MaxSR, i.e., not having access to the
assets with the best Sharpe ratios to form long positions, and ending up with long positions on
bad assets.

Best-worst Sharpe ratio (BWSR). We blend the MaxSR and MinSR rules by selecting the
[ N/2] assets with the best in-sample Sharpe ratios and the | V/2| assets with the worst in-sample
Sharpe ratios, which can be combined with long and short positions. This is in line with the
standard way of constructing anomaly portfolios as long-short portfolios of stocks in the top and
bottom quantiles of a given firm characteristic. However, BWSR may lead to more extreme
portfolio weights that do not generalize well out of sample.

The MaxSR, MinSR, and BWSR selection rules rank assets based on their in-sample

22Six of our datasets are composed of characteristic and industry-sorted portfolios, which exhibit more

momentum (i.e., positive return autocorrelation) than individual stocks (Campbell, Lo, and Mackinlay, 1997, p.74).
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Sharpe ratios.®> Given that average returns are notoriously noisy, these rankings are bound to be
unstable.?* As a result, the set of selected assets is likely to change substantially from one period
to another, increasing portfolio turnover and transaction costs. To address this point, the next
three asset selection rules in Table 3 are the following.

Maximum, minimum, and best-worst variance (MaxVar, MinVar, BW Var). These
selection rules rank assets based on the in-sample variance instead of Sharpe ratio. The resulting
rankings of assets are expected to be more stable because the variance is quite persistent over
time. The Max Var rule selects assets with the maximum variances, which are bound to also have
larger expected returns if a positive risk-return tradeoff stands. However, the low-risk anomaly
implies that assets and portfolios with lower variances often have larger expected returns (Ang,
Hodrick, Xing, and Zhang, 2006; Moreira and Muir, 2017), which the MinVar rule can exploit.

Minimum correlation with the first principal component (MinPC). We select the assets
whose returns have minimum correlations with the first principal component (PC), which are least
explained by the remaining assets, and thus, offer higher diversification potential.

Best portfolio Sharpe ratio (Best63). This selection rule follows Ao et al. (2019) and
selects the assets that deliver a high maximum squared Sharpe ratio, 63 in (2). It works in three
steps. First, we form 1,000 random selections of N assets. Second, for each selection, we
estimate 6% as detailed in Section A.IL. of the Appendix. Third, we pick the selection that

corresponds to the 95% quantile of all estimated values of 6%, to avoid outliers.

23In unreported results, we implement selection rules that rank assets according to their in-sample utilities. We

find that these rules deliver an out-of-sample performance close to the rules based on Sharpe ratios.

24In unreported results, we implement selection rules that rank assets according to average returns. We find that

they typically underperform selection rules based on the Sharpe ratio and variance.
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Maximum absolute weights (MaxW). The above selection rules are independent of the
portfolio strategy. However, the in-sample portfolio weights on all M assets are a valuable
information. Therefore, MaxW selects the assets based on the portfolio strategy that will be
applied to the selected assets. It works in three steps. First, compute @ € R, the portfolio
weights on all M assets for a given strategy (2F, 3FGMYV, or 3FEW). Second, select the N assets
with the maximum absolute weights |w;|. Third, recompute the strategy on the N assets to obtain
w € RY .25 MaxW selects the assets whose weights are large, and thus, identified as relevant.
Note that MaxW does not apply to the EW portfolio whose weights are equal. One issue we
anticipate is that MaxW inherits large estimation errors as it is based on portfolio weights
optimized under a large M /T.

In Section OA.7.7 of the Online Appendix, we introduce a measure that determines how
much more or less overlap there is between two asset selection rules relative to a pair of
independent random selection rules. For essentially all pairs of selection rules we consider, we
find that there is either around the same or less overlap than under a random selection. That is, our
selection rules select dissimilar assets, which allows us to test our portfolio strategies on different

investment universes.

D Out-of-Sample Methodology

We evaluate the out-of-sample portfolio performance with a standard monthly
rebalancing. Specifically, at the end of month ¢, we estimate portfolio £ over the 1" previous

months, and we compute its out-of-sample return in month ¢ + 1. We consider a fixed sample size

23We find that dropping this third step and keeping the portfolio weights computed on the M assets performs

poorly because these weights are computed under high estimation risk, i.e., a large M /T.
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of T' = 120 months.?® We repeat this process iteratively, resulting in T},; — 7" out-of-sample gross
returns 7'g,oss k,t» Where Ti, 1s the total number of months in the dataset. We then compute the net

out-of-sample returns, 7pes k.t = Tgross,kt If £ =1 + 1 and
(25) Pretht = (14 Tgrosskt) (1 — K X turnoverg ;1) — 1 if t =T +2,..., Ty,

where « is the proportional transaction cost parameter and

N
(26) turnovery ; = Z Wikt — Wig-1y+], t=T+1,...,Tin,
i=1

with w; i ; the weight of asset ¢ in month ¢ and w; j, (;—1)+ the prior-month weight before
rebalancing in month ¢. We set x = 10 basis points in line with the average bid-ask spreads
reported by Engle, Ferstenberg, and Russell (2012) and Frazzini, Israel, and Moskowitz (2018).
Finally, we compare the portfolio strategies in terms of annualized out-of-sample utility net of

transaction costs,

27) U =12 x (ju - 507,

%5Given that our theoretical results require 7" > M + 4, and that the largest M = 108, we need T' > 112. If we
choose a sample size that is too large, such as 7' = 240, then the optimal N for the 2F, 3FGMYV, and 3FEW
portfolios, which is close to T'/2 as shown in Section IV.A, will often be larger than the total size of the investment

universe, M. In that case, we cannot assess the effect of reducing the portfolio size.
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where /i, and &,3 are the sample mean and variance of 7, ;. We set a risk-aversion coefficient of
v = 1.27 As explained in Section V.C, we repeat this out-of-sample analysis 100 times under the
random asset selection rule and compute U}, after merging all portfolio returns.?® In Section
OA.7.4 of the Online Appendix, we also report the out-of-sample Sharpe ratio.

For 2F, 3FGMY, and 3FEW, the assets change as we re-estimate the optimal /V and apply
an asset selection rule. Because our methodology disentangles the determination of the optimal N
from the choice of the /V assets, we can also disentangle the rebalancing of portfolio weights from
the asset selection. Therefore, to make our method less costly and more practical, we rebalance
the portfolio weights every month but change the optimal N and selected assets every year.?

Finally, we compute two-sided p-values for the statistical test of the difference between
the net utility of the 2F, 3FGMYV, and 3FEW portfolios computed on all assets versus under each
of the 10 other selection rules in Table 3. For SMV-HT and SMV-ST, we report p-values relative
to SMV. To compute the p-values, we generate 10,000 bootstrap samples using the stationary
block bootstrap approach of Politis and Romano (1994) with an average block size of five, and

then use the methodology of Ledoit and Wolf (2008, Remark 3.2) to produce the p-values. We use

the symbols O, @, and @ to indicate that the p-value is less than 10%, 5%, and 1%, respectively.

2IThe out-of-sample utility net of costs of the 2F, 3FGMYV, 3FEW, GMVRF, EWRF, SMV, and F+A portfolios is
proportional to 1/+, and thus, their ranking is not affected by the chosen . However, the ranking of the SGMV and

EW portfolios, which are fully invested in risky assets, is affected by the chosen .
28We obtain similar utility values when computing one utility per repetition and averaging them.

2In Section OA.7.5 of the Online Appendix, we also consider changing the selected assets every 1, 6, and 24
months. We find that setting a lower frequency than monthly substantially reduces turnover and improves the net

performance. Moreover, frequencies of 6, 12, or 24 months yield similar results.
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E Discussion of Results

In Table 4, we report the annualized net out-of-sample utility, in percentage points, of
the 11 portfolio strategies listed in Table 2. For the 2F, 3FGMYV, 3FEW, and EW portfolio

strategies, we report the performance across the 11 asset selection rules in Table 3.

[Insert Table 4 approximately here]

The results in Table 4 show that portfolio strategies estimated with the shrinkage
covariance matrix generally outperform those estimated with the sample one. Therefore, albeit
our theory considers the sample covariance matrix for tractability, it is beneficial to shrink it. The
ranking of portfolio strategies and asset selection rules is overall similar in both cases, and thus,
unless stated otherwise, the discussion below essentially applies to either estimator.

First, we address our main objective, which is to assess the value of optimally reducing
the portfolio size. For either of 2F, 3FGMYV, and 3FEW, reducing the portfolio size delivers
substantial performance gains. Specifically, the asset selection rule ‘All’, which sets N = M, is
almost always outperformed by the remaining selection rules.’® The differences are often
statistically significant, particularly under the shrinkage covariance matrix. Moreover, for the six
datasets of characteristic and industry portfolios, the differences are systematically positive for
the Rand, MinSR, BWSR, MaxVar, BW Var, and MinPC asset selection rules, and are often

substantial. For instance, under the shrinkage covariance matrix, on average across these six

300ut of the 210 configurations (10 selection rules x 7 datasets x 3 portfolio strategies), the size-optimized
portfolios outperform the ‘All’ selection rule in 172, 183, and 187 cases under the sample, linear shrinkage, and
nonlinear shrinkage covariance matrix, respectively. If we restrict to cases where the p-value for the performance

gain is below 10%, these numbers reduce to 115, 168, and 173, respectively.

35



datasets, the 2F strategy on all M assets delivers an annualized net utility of 11.30 percentage
points, versus 58.17 with the BWSR selection rule. Turning to the 100STO dataset, asset
selection rules based on average returns (MaxSR, MinSR, BWSR) do not work as well because
there is less predictability in average returns among individual stocks. However, the MinVar and
BW Var rules based on the variance, as well as the Rand rule, consistently outperform selecting all
M assets. We depict these findings in Figure 8 which shows, for the shrinkage covariance matrix,
the difference between the annualized net out-of-sample utility of 2F, 3FGMYV, and 3FEW
implemented on a subset of N* assets versus all M assets. Having addressed our main objective,

we now discuss other findings from Table 4.
[Insert Figure 8 approximately here]

Second, we turn to the EW portfolio. Under the random asset selection rule, reducing NV
from M to T'/2 is detrimental. This is because the EW portfolio faces no estimation risk, and
thus, benefits from the diversification gains coming from a larger N. However, when the selection
of the IV assets is done using a sensible rule, such as MaxSR or MinVar, reducing N often
improve the EU of the EW portfolio by removing undesirable assets. We also observe that when
N = M, it is difficult for the 2F, 3FGMYV, and 3FEW portfolios to outperform the EW portfolio.
In particular, EW outperforms in five out of seven datasets. However, when reducing the portfolio
size to N = N* with our theory, there are a number of asset selection rules for which 2F, 3FGMYV,
and 3FEW systematically outperform EW, particularly when we shrink the covariance matrix, no
matter if EW is implemented on all M assets or on 7'/2 assets with the same asset selection rule.
This key observation highlights the practical importance of our theoretically guided optimal

portfolio size.
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Third, for the six datasets of characteristic and industry portfolios, applying the MinSR
and MaxVar asset selection rules to the 2F, 3FGMYV, and 3FEW strategies delivers consistently
positive utilities almost systematically larger than those of the seven other benchmarks. Focusing
on the shrinkage covariance matrix, the BWSR, BW Var, MinPC, and Best Q?V selection rules also
consistently deliver positive utilities generally above the benchmarks. Turning to the 100STO
dataset, under the shrinkage covariance matrix, the MaxSR, MinVar, and BW Var selection rules
yield consistently positive net utilities generally above the benchmarks. This is particularly true
when applying these selection rules to 3FGMYV and 3FEW because, for individual stocks, adding
an exposure to SGMV or EW is valuable given the lower predictability in expected returns. These
results are remarkable because the EW portfolio, in particular, is difficult to outperform with
mean-variance portfolios when M /T is large, which is the case in our datasets where M /T
ranges from 0.78 to 0.9. These results are due to our optimal portfolio size because, under the
‘All’ selection rule, the 2F, 3FGMYV, and 3FEW portfolios underperform the EW portfolio in five
out of seven datasets.

Fourth, we turn to the Sharpe ratio selection rules (MaxSR, MinSR, BWSR). Consider
first the six datasets of characteristic and industry portfolios. For the EW portfolio, MaxSR
consistently outperforms selecting all M assets. In contrast, MinSR and BWSR underperform.
Specifically, on average across these six datasets, the EW portfolio of all assets delivers an
annualized net out-of-sample utility of 5.94 percentage points, versus 6.93, 5.08, and 5.60 under
MaxSR, MinSR, and BWSR, respectively. These results indicate momentum in characteristic and
industry portfolios as an EW portfolio of assets with maximum in-sample Sharpe ratios
outperforms the full EW portfolio. In contrast, for the 100STO dataset, it is the MinSR and

BWSR selection rules that deliver a better EW portfolio than that applied to all assets, indicating

37



reversal in individual stocks.

Although MaxSR works well among characteristic and industry portfolios for
constructing an EW portfolio, we find the opposite for the 2F, 3FGMYV, and 3FEW portfolios.
Specifically, MinSR consistently outperforms MaxSR and selecting all M assets, and MaxSR 1is
one the worst selection rules. These results mean that when we use optimized weights, the
performance gains do not originate from selecting assets with the best marginal performance, but
assets that can be best exploited by the portfolio, e.g., with short positions for the MinSR rule.
Finally, BWSR, which capitalizes on long and short positions by selecting both good and bad
assets, achieves its objective as it consistently outperforms MaxSR and MinSR under the
shrinkage covariance matrix.>!

Fifth, we turn to the variance asset selection rules (MaxVar, MinVar, BW Var). Consider
first the six datasets of characteristic and industry portfolios. For the EW portfolio, MinVar
consistently outperforms selecting all M assets. Specifically, on average across the six datasets,
the EW portfolio of all assets delivers an annualized net out-of-sample utility of 5.94 percentage
points, versus 5.47, 6.44, and 5.65 under MaxVar, MinVar, and BW Var, respectively. This finding
indicates a low-risk anomaly in these six datasets. However, as noted above, this does not
necessarily mean that MinVar is also best for the 2F, 3FGMYV, and 3FEW strategies. Indeed,
Figure 8 shows that for these portfolios, MinVar delivers a worse performance overall than
MaxVar and BW Var. This can be explained because assets with maximum variances selected by

MaxVar and BW Var often have low average returns as the low-risk anomaly predicts, which the

3'However, BWSR often underperforms MinSR under the sample covariance matrix because, in that case, the

long-short positions are too extreme, which increases turnover, and thus, hurts the net performance.
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2F, 3FGMYV, and 3FEW portfolios can leverage using small or short positions.*?> The insights
drawn from the 100STO dataset are similar, with the asset selection rules favored when
considering the EW portfolio, i.e., MaxVar and BW Var, underperforming the MinVar rule when
turning to 2F, 3FGMYV, and 3FEW.

Sixth, the MinPC asset selection rule, which accounts for asset dependence by selecting
those least correlated with the first PC, performs consistently well. In particular, under the
shrinkage covariance matrix, the resulting 2F, 3FGMYV, and 3FEW portfolios have positive net
out-of-sample utilities larger than those under the ‘All’ selection rule in all cases but one.

Seventh, the Best63; selection rule, which maximizes the portfolio Sharpe ratio,
outperforms investing in all assets for the 2F, 3FGMYV, and 3FEW portfolios under the shrinkage
covariance matrix, in all cases but one.

Eighth, the MaxW selection rule outperforms on average all other rules under the
shrinkage covariance matrix. For instance, considering the 3FGMV portfolio, MaxW delivers an
annualized net utility of 72.15 percentage points on average across datasets, versus 55.09 for the
second-best selection rule, BWSR. However, MaxW underperforms all other selection rules under
the sample covariance matrix. This can be explained because, in that case, 2F, 3FGMYV, and
3FEW are more subject to estimation risk, and thus, selecting assets with large absolute weights is
less desirable.

Finally, we consider the SMV, SMV-ST, SMV-HT, and F+A benchmarks. First, as

32t seems that the low-risk anomaly is strong enough in the 94IN-NV and 98IN-CHA-NV datasets for the
MinVar selection rule to outperform MaxVar and BW Var when applied to the 2F, 3FGMYV, and 3FEW portfolios.
This can be explained because Moreira and Muir (2017) show that the low-risk anomaly does not apply to the size

factor, and this factor is used to construct all datasets except 94IN-NV and 98IN-CHA-NV.
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expected, SMV is by far the worst strategy. Second, F+A improves upon SMV but is the
second-worst strategy. This suggests that although the Da et al. (2024) method is optimal under
specific assumptions as N and 7" get large, it does not work as well as competitors in a
finite-sample setting, in line with Figure 7. Third, SMV-ST, which maximizes the MV utility
subject to an L;-norm constraint, greatly improves upon SMV and SMV-HT. However, in most
cases, it underperforms the size-optimized 2F, 3FGMYV, and 3FEW portfolios. Fourth, SMV-HT,
which keeps only the assets whose SMV portfolio weights are above a given threshold,
outperforms the plain SMV but delivers negative net utilities. In Section OA.7.3 of the Online
Appendix, we compare the portfolio size obtained with SMV-ST and SMV-HT to that obtained

with our theory, N*

smuv*

We find that the three methods set a small N on average, and that our

N7 . has much less variability across windows.

V1. Conclusion

We offer a novel perspective on the optimal portfolio size and challenge the conventional
wisdom that investors should invest in as many assets as possible to eliminate idiosyncratic risk.
Specifically, because of parameter uncertainty, we show that it is optimal to invest in a limited
number N of assets. We consider a class of portfolio strategies that consists of different
combinations of the sample mean-variance (MV), global-minimum-variance (GMV), and equally
weighted (EW) portfolios. Within this class, we derive the optimal N* in a finite-sample setting
that maximizes the expected out-of-sample utility under the assumption of equicorrelated i.i.d.
multivariate elliptical returns. This N* strikes a tradeoff between accessing additional investment

opportunities and limiting the number of parameters and weights to estimate. For typical levels of

40



equity return correlations, we find that N* is slightly below half the sample size. Our approach is
flexible because it disentangles the computation of the optimal N from the choice of which N
assets to select.

To test our theory empirically, we propose an estimator N* of N* and suggest a set of
simple, sensible and intrinsically different selection rules to determine which N* assets to select.
We show that our size-optimized portfolios outperform their counterparts that invest in all assets
in nearly all cases, across different portfolio strategies, datasets, and asset selection rules, and
under transaction costs. Our size-optimized portfolios can also outperform EW and GMV
portfolios, which are hard to beat in high dimension, and more sophisticated strategies that build
on asymptotic theories.

Overall, our methodology renders portfolio theory valuable in the challenging but

practically relevant case where the sample size is close to the size of the investment universe.

Appendix

This Appendix contains three sections. In Section A.I., we present the theory we use to
determine the optimal portfolio size for the three-fund rules. In Section A.Il., we explain how we
estimate the different parameters on which the combination coefficients and the optimal N

depend. In Section A.IIl., we provide the proofs of all theoretical results in the main text.
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A.LI. Optimal Portfolio Size for Three-Fund Rules

In Section III., we study the optimal N for the SMV portfolio and two-fund rule. We now
study the optimal NV for three-fund rules. Specifically, we consider in Section A.ILA.A. a
three-fund rule based on the GMV portfolio, and in Section A.I.A.B. a three-fund rule based on

the EW portfolio.

A.A. Three-Fund Rule with the Global Minimum-Variance Portfolio

We include the GMV portfolio as an additional robust portfolio rule to invest in,

Syly

Al w, = —N %
(A1) K U Ype B

We introduce the following parameters:

_ 2
wEN Ny, 1 Hg.N 2 HgN o 2 2
(A2) pg N = _1/1\72]_\]11N’ OgN = 1/1\721_\711N’ 9N = o2 Ogn = o2 YN = On =05 v
g7 g’

which stand for the mean return, variance, price of risk, squared Sharpe ratio, and inefficiency of
the GMV portfolio on /V assets. Under parameter uncertainty, the three-fund rule that invests in

the SMV portfolio, the sample GMV (SGMYV) portfolio, and the risk-free asset is

(A.3) w(a) = =3 oy + —33 1y,
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where a = (g, p) € R? is the vector of combination coefficients. We call @ () the
GMV-three-fund rule. In the next proposition, we derive the EU of @ (a) when asset returns are
i.i.d. multivariate elliptically distributed, the resulting optimal combination coefficients a*, and
which EU they deliver.?* This Proposition follows, with minor adjustments, from Kan and

Lassance (2025, Propositions 7 and 8).

Proposition A.1 Let T' > N + 4 and Assumption 2 hold. Then, the expected out-of-sample utility

of the GMV-three-fund rule w(c) in (A.3) is

~ 1 T CNT
EU(w(a)) = %m |:2"€N,1 (0419]2\[ + C\fg)\%N) — m
N a2k
(A.4) X (Oz% (K}N,erzv + /’iN73—> + 22N’2 + 2a1042"€N,2)\g,N>:| .
T OyN

Moreover, the optimal combination coefficients o* = (o, o) maximizing (A.4) are

2 N
(A 5) (Oé* Oé*> _ T B N B 2 K/N’ld).%N K’N,g X K/N,ITMQ,N
. 1, Q) = N N |
enT HN,2¢§,N +KEN3T KN2 /{N,2¢§,N +KEN3T

and the resulting expected out-of-sample utility is

(A.6) EU(w(a*))

2 2,2 EN,3 N n2
l{N,l (Qng:N + KN,2 Teg,N

- 2 N
2yen HN,2¢9,N + KEN3T

Proposition A.1 shows that for the optimal GMV-three-fund rule, the optimal N is found
by maximizing the EU in (A.6). We proceed by expressing 0% and 49; ~ as explicit functions of N

by assuming that the covariance matrix X complies with Assumption 1. This is done in

33The proofs of all results given in the Appendix are available in Section OA.8 of the Online Appendix.
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Proposition 1 for 0%, and we now derive the expression for 03 N

Proposition A.2 Under Assumption 1, the squared Sharpe ratio of the GMV portfolio is

N _ _ = ()\N - WHN,NN,—Q
(AT) 62\ = To.N(On1, AN, ON), Ton(ON1, AN, ON) = —— e ;
1—p ON s — —2 572

= . . .. _ _ _ N
where 0y 1 is defined in Proposition 1, & = (On,—1,0N,—2), AN = % Y imi i, and

Nk =% SN ok, with \; = 1;/0? the price of risk of asset i.
Using Propositions 1 and A.2, the EU of the GM V-three-fund rule in (A.6) becomes

EU(w(a"))

N’%?V,l 5N(5N) (5N(9_N) — Ty, N(éN 175‘N7&N)) KNYZ ITP Ty N (Qle)\N, O'N)

2ven (1 —p) KN,2 (5N(9N) —ron(Ona, /\N,UN)) +K —p

(A8) =

(A9) = EUgth(N,T,p,T,éN,l,S\N,&N).

Then, as before, we replace (Ox.1, Ay, &n) by (Oar.1, \ar, &ar) and find the optimal N as

(A.10) 3fg = argmax EUss (N, T, p, 7, 0011, A\as, Far)-
' Ne{l,...min(M,T—5)}

Note that, similar to the two-fund rule, the objective function £Usy , is proportional to

N/cy, which as shown in (19)—(20) is maximized by N slightly below 7'/2.3* The simulations in

34That the EU of both the optimal two-fund rule and the GM V-three-fund rule is proportional to N/cy can be
explained as follows: the proportionality to 1/cy is because both the SMV portfolio and the SGMYV portfolio are
proportional to e N , and the proportionality to NV is because both the squared Sharpe ratio of the MV portfolio (0%)

and the GMV portfolio (937 ) are proportional to N under Assumption 1.
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Section IV. show that N3,  is similar to N3, and is slightly below 7'/2 when p is not too small.

A.B. Three-Fund Rule with the Equally Weighted Portfolio

We now consider the EW portfolio as an additional portfolio rule to invest in,
Wy = 1y /N. We introduce the following parameters similar to the case with the

GM V-three-fund rule:

(A.11)
Hew,N p?
o / 2 _ / _ HMew, 2 _ Pew,N 2 2 2
Mew,N = Wy, N, Oew,N = wewENwewa >‘ew,N - "9 ) eew,N - "2 ) wew,N - QN - eew,N'
aew,N aew,N

Under parameter uncertainty, the three-fund rule that invests in the SMV portfolio, the

EW portfolio, and the risk-free asset is

(A.12) #(8) = 285 iy + L,

g g
where 3 = (31, 32) € R? is the vector of combination coefficients. We call w(/3) the
EW-three-fund rule. In the next proposition, we derive the EU of the EW-three-fund rule (A.3)
when asset returns are i.i.d. multivariate elliptically distributed, the resulting optimal combination
coefficients a*, and which EU they deliver. This is a novel result relative to Kan and Lassance

(2025) who do not consider the combination of the SMV and EW portfolios.

Proposition A.3 Let T' > N + 4 and Assumption 2 hold. Then, the expected out-of-sample utility
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of the EW-three-fund rule w(3) in (A.12) is

. 1 20168105 T
EU == R 202w
(@(8)) = 5 % [N+ 2o
BQCNT2 N 251ﬁ2/$N,1Mew,NT
(A13) — —(T—lN—2)2 KJN729]2V+/€N,3T - %Ozva— T_N_29 .

Moreover; the optimal combination coefficients 3* = (57, 55) maximizing (A.13) are

* * T_N_2 KN7 wzw d >\ew
(A.14) <61,52)=< e N Cewl )

2 2 ’ 2 2
T HN,lwew,N + dN '%N,lwew,N + dN

where dy = cyk Mg% + (enkn2 — /ﬁ?\,,l)Q?V, and the resulting expected out-of-sample utility is

(A.15) EU(w(8"))

1 (KRR T dN02, N
B 27 "Q?\T,lwgw,N + dN '

The EU of the optimal EW-three-fund rule depends on 6% and sz, ~- As usual, we express
0% and 67, v as explicit functions of NV by assuming that the covariance matrix 3y complies with

Assumption 1. We derive the expression for 93,[”7 ~ 1n the next proposition.

Proposition A.4 Under Assumption 1, the squared Sharpe ratio of the EW portfolio is

(1 - p)iiy
1—p)ong + pNai,’

(A.16) Gﬁw,N = prew,N(ﬂNﬁN,l,&N,z), TewN (AN, ON1,ON2) = (

1—

where o 1 and 0 o are defined in Proposition A.2 and jin = % Zfil i
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Using Propositions 1 and A.4, the EU of the EW-three-fund rule in (A.15) becomes

N N
(1-p)enrN,3

K3 10N (ON) <5N(§N)_Tcw,N(,aN75'N,175'N,2)) + (#“F(CNHN,Q_H?VJ)(;N (G_N)) Tew,N(AN,ON,1,0N,2)

— _ _ _ (I—-p)eNKEN .- —
KA (6N(9N)_7"ew,N(MNaUN,hUN,Q)) + (M"’(CNKN,Q_H?VJ)(SN(BN))

(A.17)

(AIS) = EU3f,ew(N7T7 P, T, ﬁN75N,175-N,2)-

Finally, we replace (fin,0n1,0n2) bY (finr, Oar1, 0as2) and find the optimal N as

(A.19) N3t ew = argmax EUsfew(N,T,p, T, firg, Ori1, Oni2)-
' Ne{L,...,min(M,T—5)}

Although it does not appear as clearly as for the two-fund rule and the GM V-three-fund
rule via N/cy as a proportionality factor in the objective function, the simulations in Section IV.

also show that N3 ., typically hovers around 7' /2 for p not too small.

A.Il. Estimation of Parameters

In this section, we explain how we estimate the different parameters that are needed as

N*

inputs in our different portfolio rules to determine the optimal portfolio size (i.e., N} 5fs

smu?

Ngf, - Ngf’ew) and the optimal combination coefficients (i.e., o*, af, a3, 87, 53).

A.A. Estimation of Elliptical Fat Tails

The first set of parameters are those that determine the impact of the fat tails of the

elliptical distribution, i.e., Ky 1, Kn,2, and k3 in (10)—(12). To speed up the computation, we use
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the high-dimensional approximation of these parameters. Specifically, from El Karoui (2010,
2013), we have thatas N, T — oo and N/T — ¢ € (0,1),

(kn1,EN2, KN 3) = (RN, Rna, Rna), where By > 1 s the unique positive solution to

(A.20) E[(1-¢+¢rni7)'] =1,

and Ry o > K3, is given by

- ~_ o7 -
(A.21) Fnz = (1—0¢) (HN?l —E [(1 — 6+ ¢,~€N’17)2}) :

Kan and Lassance (2025) show that this high-dimensional approximation is accurate for typical
values of N and T'.

Given this result, we need to estimate <y ; and Ky 2. We estimate them in two different
ways as in Kan and Lassance (2025). First, we assume that the asset returns follow a multivariate
t-distribution, i.e., 7 ~ (v — 2)/x?, and we estimate the number of degrees of freedom v by
maximum likelihood from a sample of 7" historical returns (71, ..., ), giving us 0. Then, we
can use the closed-form expression for ky; and Ky 2 when asset returns are ¢-distributed in Kan
and Lassance (2025, Proposition 6), which yields that the estimate of <y 1, denoted /?;7\,71, is the

unique positive solution to

(0 = 2)onFR

2(1 —¢n)

(A.22) yelEypo(y) = oy with  y = and oy = —,

=
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where E,,(z) = [ loo t~™e~*'dt is the exponential integral, and the estimate of Ry o is

2(R%1)°(1 = ow)

)2
A.23 - ! .
R e )

We use this estimation method in Section IV. where we simulate returns from a ¢-distribution.
The second method we use to estimate k1 and Ay 2 relies on the following sample

estimate of the distribution of 7 proposed by El Karoui (2010, 2013):

(re — i)' (re — fay)
LS (= ) (7 — )

(A.24) Fag = t=1,....T,

which is consistent as N — oo. Using Ty, we estimate Ay ; and Ky o with their sample

counterparts, i.e., the estimate of <y 1, denoted ’%ﬁv,l, is the unique positive solution to

T
1 s A y—1
(A.25) T ; (1 — N + ¢N5N,17'N,t) =1,
and the estimate of Ky o 18
1 d ¢N7A'J%/t B
(A.26) fao=(1— [ [ SR .

We use this second estimation method in Section V. to have more freedom in describing the tails

of empirical data that may not be ¢-distributed.
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A.B. Estimation of Portfolios’ Performance

The second set of parameters are those that determine the performance of the MV, GMYV,
and EW portfolios and on which the optimal combination coefficients depend: 63 in (2), 1/13, N
in (A.2), §w7N in (A.11), pg v in (A.2), and Mg, v in (A.11).

For iy v and A, v, we rely on the estimates that are unbiased when asset returns are i.i.d.

multivariate normally distributed®, i.e.,

1,3 /i
(A27) g = NNHEN
131y
i T-3 w,
(A.28) Aewy = WewttN

For 63;, 12 x» and ¥2, v, the sample estimates, obtained by plugging (fix, 3iy), are
severely biased. Therefore, we estimate them using the adjusted estimates in Kan and Zhou

(2007) and Kan and Wang (2023) that correct the unbiased estimates to ensure they are positive.

A~

Specifically, let 03, = S5 fuy, V2 y = 0% — 02, and V2, y = 0% — 62,  be the sample
estimates of 6%, 12 v, and 92, v, where 03]\, = (1S an)? /(1S5 1Y) and

~

02, n = (W, fin)?/ (W, Zwe,). Then, the adjusted estimates are

(A.29)
A N2\ N h2 N\ 2=T
g (T-N-2R N 2AR)¥(1+3)
N,a — — )
T T x Béfv/(ué%v)(%’ =)

35When asset returns are i.i.d. multivariate elliptically distributed as in Assumption 2, fi, y and ;\ew’ ~ are also

unbiased in the high-dimensional asymptotic regime as N, T — oo and N/T — ¢ € (0,1).
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(A.30)

0 0 N-1 0 2-T
1&2 B (T'— N — 1)¢§,N — (N —-1) n 2( §7N) 7 (1 +¢§,N) 2
Na ™ N-1 T-N )
! T T x Bz/AJg,N/(1+1Z)§’N)(Tl’ )
(A.31)
—-N , » N—1 A -7
'1/32 (T N_2) ew,N (N )(1+06wN)+ (l—l—eewN) 2 (¢§w7N) 2 ( +€J2\7)
ew,Na - N T-N
T T x Bd;gww/(ué?\,)(T )

where B, (a,b) = [ t*"'(1 — ¢)*~!dt is the incomplete beta function.

A.C. Estimation of Assets’ Correlation and Marginal Performance

The third and last set of parameters are those that control the dependence between the
assets, i.e., p under Assumption 1, and the marginal performance of the assets, i.e., the three
functions dx(0y) in (4), 7y N (Oar1, Aar, T ar) in (A7), and 7, v (finr, Tar1, Tar2) in (A.16).
Recall that the parameters in these functions are computed on all M assets to find the optimal N.
Following the advice of Adams, Fiiss, and Gliick (2017), we use an estimator p given by the

average of all sample correlations p;; obtained from the sample covariance matrix S

(A.32)

>
I

9 M M
1) 2 2 P

Regarding the functions dx(0y), 74 (Onr.1, Ay G ar)> and 7 v (finr, Tar.1, ar.2), We tely on the

following proposition.

Proposition A.5 Let the covariance matrix 3y, be known and satisfy Assumption 1. Then, the

biases of the estimators of 5 (1), 7“97N(9_M’1, Mty @), and Tew n(fiar, Tar1, Garo) obtained by

51



plugging the sample mean fi); are

x 1— 1-¥p+ N
(A33) E[fn] — 0n = — P x 2P TP

T 1-— p+ Np !
A Np (1-p)(1=3D) =

1 — OM,~2 — 72 (1 + — Th_1

(A.34) E[fgn] — Fon = Py 1—p+Np 1-p+Np |
’ 7 MT OM,—2 — —Np__52
’ 1—p+Np9M,—1

1— oura + 2= Ma3

(A.35) E[fewn] — Tewn = P T, 0Mm1

X — > —5 -
MT O-M72+1TPN0-M,1

Building on Proposition A.5, we estimate the function 6, (0,;), T97N<9_M71, Aar, @), and
Tew N (fiar, Oar1, 0ar2) by plugging the sample mean iy, and the sample covariance matrix S

and by removing the bias, which we estimate from fi,; and 32,/ too.

A.IIl. Proofs of results in the main text

In this section, we provide the proofs for all theoretical results given in the main text.

Proofs for the theoretical results given in this Appendix are available in the Online Appendix.

A.A. Proof of Proposition 1

Denoting Dy = diag(oy,...,0n), Xy = Dy Py(p)Dy and its inverse is given by

(A.36) ¥y =Dy Py(p) "' Dy,
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where D! = diag(1/o1,...,1/oy) and Py(p)~" exists if and only if p € ( — +*, 1) and is

N-1°
equal to
(A.37) Pep) = — Iy - — P 1.1

. N 1=, N 1_p+NpNN-
Combining (A.36) and (A.37) yields
(A.38) wi- 1 (p2__ P pajpd

: N 1—p N 1_p+NpNNNN )
and thus the maximum utility becomes

* /J“INEEINN 1 / —2 P / -1 2

A.39 U = = D e ——— D1

where p/y Dy = NOy o and p/y D' 1y = Ny 1, which yields the desired result in (4).
We then study how U (w*) increases with N, which amounts to studying the difference

03,1 — 0%. We have

(1= p) (R i1 — O3)

N+1 ) N+1 2 N p N 2
A4 = 2 _ . _ 2 _ P ,
(A.40) D5 1-p+(N+1)p (ZS> ;S 1—p+Np (ZS>

=1 =1 =1

2 2
Decomposing (Zf\gl si> as (Zfil sl-) + 8530 + 25841 S0, si, (A.40) becomes

2
(1—p)(0% ., —0%) = L=p+tNp P ()
MV L —p e (N 1D)p M (1= p+ Np)(1 = p+ (N +1)p)
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. 208N 11 Efil Si
L—p+(N+1)p

[PNéN,l —(L=p+Np)sn+
(L=p+Np)(1—p+(N+1)p)

2

(A41) =

which is nonnegative, and strictly positive if and only if sy 1 # pNOx1/(1 — p+ Np). This

concludes the proof.

A.B. Proof of Proposition 2

Equation (9) is a direct extension of Kan and Lassance (2025, Proposition 7) for a
general « instead of o = 1. It is then easy to show that the o maximizing (9) is equal to (13),
which also corresponds to Kan and Lassance (2025, Equation (50)). Finally, after some

developments, plugging (13) into (9) yields the EU in (13), which concludes the proof.

A.C. Proof of Corollary 1

Under Assumption 1, the maximum squared Sharpe ratio 63 is given by (4). Plugging it
into (9) yields the EU of the SMV portfolio w* in Equation (14), and plugging it into (13) yields

the EU of the optimal two-fund rule @ («*) in (16).
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Figure 1: Utility of the mean-variance portfolio as a function of N and p

Notes. This figure depicts U (w™*) in Equation (4) as a function of the portfolio size N under the assumption that asset returns are equicorrelated
with a correlation p € {0.2,0.5,0.8}. We calibrate the assets’ monthly Sharpe ratios to a dataset of M = 96 portfolios sorted on size and
book-to-market spanning July 1963 to August 2023. Starting with N = 1 asset chosen randomly, we compute U (w*). Then, we add a randomly
selected asset not previously selected, and compute U (w*) again. We continue this procedure until N = M. We repeat this procedure 10,000
times and depict the average U (w*) over all draws. We consider a risk-aversion coefficient v = 1.
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Figure 2: Optimal Portfolio Size for the SMV portfolio and the Optimal Two-Fund Rule

Notes. This figure depicts the optimal portfolio size for the SMV portfolio, NJ,,,,, in (17) (left panel), and for the optimal two-fund rule, NJ I’
in (18) (right panel), as a function of the sample size T'. Each line represents a different choice of the correlation, p = {0.2,0.5,0.8}, and the
degrees of freedom of the ¢-distribution, v = {6, co}. We calibrate 8,; = (0.125,0.0169) to a dataset of M = 96 portfolios sorted on size and
book-to-market spanning July 1963 to August 2023.
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Figure 3: Estimated Optimal Portfolio Size in Simulated Data

Notes. This figure depicts boxplots of the estimated optimal portfolio size /N for the SMV portfolio (N ¥ )s two-fund rule ( ) GMV-three-
fund rule (V5 V N3 4)» and EW-three-fund rule (Ngf ew)- These are the estimated counterparts of Ng,,, in (17), N3 in (18), N3, in (A.10), and

Nj frew in (A 19) following the estimation methodology in Section A.II. of the Appendix. The boxplots are obtamed by 51mulatmg 10,000 times
T = 120 t-distributed returns. Using a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set
oy = figs and 3y € { 96, 296( p)}, where 296( p) is an equicorrelation covariance matrix and p = 0.74 is the average of all correlations in
3396. We consider v € {6, 0o} degrees of freedom. Each boxplot corresponds to a different choice of (v, 3 7). We depict with crosses the oracle
value of the optimal IV that is known under Assumption 1, i.e., when X is of the form X/ (p).
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Figure 4: Impact of Correlation p on Optimal Portfolio Size in Simulated Data

Notes. This figure depicts boxplots of the estimated optimal portfolio size /N for the SMV portfolio (N v, two-fund rule (

f) GM V-three-
fund rule (N* g)» and EW-three-fund rule (N?ff e These are the estimated counterparts of N, in (17), N3¢ in (18), N3 in (A.10), and
NJ

3f.ew in (A. 19) following the estimation methodology in Section A.II. of the Appendix. The boxplots are obtalned by simulating 10,000 times
T = 120 t-distributed returns. Using a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we
set ppsr = flog and Xy = 296(;)), where 296(5) is an equicorrelation covariance matrix and p varies between 0.1 and 0.9 with a step size of
0.1. We consider v = 6 degrees of freedom. We depict with dotted lines and crosses the oracle value N* of the optimal N that is known under
Assumption 1, i.e., when 3/ is of the form 3 57 (p).
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Figure 5: Expected Out-of-Sample Utility in Simulated Data (v = 6, 3, = 3og)

Notes. This figure depicts the expected out-of-sample utility (EU) of the sample mean-variance portfolio (SMV, top-left panel), two-fund rule
(2F, top right), GMV-three-fund rule (3FGMYV, bottom left), EW-three-fund rule (3FEW, bottom right) as a function of the portfolio size N. We
simulate 10,000 samples of ¢-distributed returns with v = 6 degrees of freedom. For each IV, we conduct a rolling window exercise as described in
Section IV.B and, in each rolling window, we randomly select the IV assets. Using a dataset of M = 96 portfolios sorted on size and book-to-market
spanning July 1963 to August 2023, we set ;s = flge and Xy = Sl96. In each panel, the solid blue line depicts the EU in (21), the shaded gray
area depicts the one-sigma interval around the EU across simulations, and the dashed horizontal blue line depicts the EU obtained when using the
estimated optimal N, i.e., NZ,,,, for the SMV portfolio, N3, for 2F, N,  for 3FGMV, and N3, ., for 3FEW. The dash-dotted red line depicts

smuv 3f,ew

the EU of the equally weighted portfolio. The dotted horizontal gray line depicts the zero EU level. The risk-aversion coefficient is v = 1.
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Figure 6: Expected Out-of-Sample Utility and Estimated Portfolio Size of Soft and Hard-
Thresholding of the Sample Mean-Variance Portfolio in Simulated Data (v = 6,3, = Xq5)

Notes. This figure depicts the expected out-of-sample utility (EU) and the estimated optimal portfolio size of the soft and hard-thresholding versions
of the sample mean-variance portfolio, SMV-ST and SMV-HT, described in Section IV.C. We depict these as a function of the number of assets N
on which SMV-ST and SMV-HT are estimated. We simulate 10,000 samples of ¢-distributed returns with v = 6 degrees of freedom. For each N,
we conduct a rolling window exercise as described in Section IV.B and, in each rolling window, we randomly select the NV assets. Using a dataset
of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set ppr = flge and Xy = Sl96. In the left
panels, the solid blue line depicts the EU of SMV-ST or SMV-HT in (21), the shaded gray area depicts the one-sigma interval around the EU across
simulations, the dash-dotted red line depicts the EU of the equally weighted portfolio, and the dotted horizontal gray line depicts the zero EU level.
The risk-aversion coefficient is v = 1. In the right panels, the blue crosses depict the average estimated optimal portfolio size.
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Figure 7: Expected Out-of-Sample Utility of Factor-plus-Alpha Strategy in Simulated Data
(l/ = 6, EM = 296)

Notes. This figure depicts the expected out-of-sample utility (EU) of the factor-plus-alpha (F+A) strategy, described in Section OA.4 of the Online
Appendix, as well as the two-fund rule (2F), as a function of the portfolio size N. We simulate 10,000 samples of ¢-distributed returns with v = 6
degrees of freedom. For each N, we conduct a rolling window exercise as described in Section IV.B and, in each rolling window, we randomly
select the NV assets out of the M available ones. Using a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to
August 2023, we set pps = fige and Xy = Sl06. In each panel, the solid blue and green lines depict the EU in (21) of F+A and 2F, respectively,
the shaded gray area depicts the one-sigma interval around the EU of F+A across all simulations, and the dash-dotted red line depicts the EU of the
equally weighted portfolio. The dotted horizontal gray line depicts the zero EU level. In the left panel, the sample size 7" = 120 is fixed. In the
right panel, the sample size increases with IV as T' = 60 4 2. The risk-aversion coefficient is v = 1.
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Table 1: List of Datasets considered in the Empirical Analysis

Notes. This table lists the datasets of monthly excess returns considered in the empirical analysis of Section V., which we detail in Section V.A. The
columns report, in order, the dataset number, name, description, size M, and time period. The industry portfolios and the portfolios sorted on size,
book-to-market, operating profitability, investment, and momentum are downloaded from Kenneth French’s website. The characteristic portfolios
in Novy-Marx and Velikov (2015) are downloaded from Robert Novy-Marx’s website. In the construction of these datasets, we have removed assets
with missing data over the time period considered. The 108CHA dataset is the same as that used by Lassance and Martin-Utrera (2023). In the
construction of the 108CHA dataset, Lassance and Martin-Utrera (2023) drop characteristics with more than five percent of missing observations
for more than five percent of firms with CRSP returns available for the entire sample. For the 100STO dataset, we follow Lassance et al. (2024b)
and collect adjusted returns from CRSP for the 235 stocks traded on the three major U.S. stock exchanges that have an history of returns between
1998 and 2022, and we report the portfolio performance across 100 datasets of 100 stocks, randomly drawn from the total pool of 235 stocks, after
merging the out-of-sample portfolio returns across the 100 datasets.

# Name Description M  Time period
96S-BM 96 portfolios sorted on size and book-to-market 96  07/1963-08/2023
2 108CHA 108 characteristic portfolios built on long and short legs 108  09/1966-12/2020
of 54 characteristics in Lassance and Martin-Utrera (2023)
3 100S-OP 100 portfolios sorted on size and operating profitability 100 07/1963-08/2023
4 94IN-NV 48 industry portfolios and 46 characteristic portfolios 94 07/1973-12/2013

built on long and short legs of 23 characteristics in
Novy-Marx and Velikov (2015)

5 107IN-CHA 47 industry portfolios, 25 portfolios sorted on size 107 07/1963-12/2022
and book-to-market, 25 portfolios sorted on operating
profitability and investment, 10 portfolios sorted on
momentum

6 98IN-CHA-NV 47 industry portfolios, 25 portfolios sorted on operating 98  07/1963-12/2013
profitability and investment, 10 portfolios sorted on
momentum, 16 characteristic portfolios built on long
and short legs of eight low-turnover characteristics in
Novy-Marx and Velikov (2015)

7 100STO 100 random datasets of 100 U.S. individual stocks 100 01/1998-03/2022
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Table 2: List of Portfolio Strategies considered in the Empirical Analysis

Notes. This table lists the portfolio strategies that we consider in the empirical analysis, which we detail in Section V.B. We apply the 2F, 3FGMYV,

3FEW, and EW portfolio strategies on a subset of IV assets out of the M available ones, and the asset selection rules we implement for that purpose
are described in Section V.C.

Name Description

2F Two-fund rule that combines the SMV portfolio and the risk-free asset. See Equation (8) and
Proposition 2.

3FGMV Three-fund rule that combines the SMV portfolio, the SGMV portfolio, and the risk-free asset.
See Equation (A.3) and Proposition A.1.

3FEW Three-fund rule that combines the SMV portfolio, the EW portfolio, and the risk-free asset. See
Equation (A.12) and Proposition A.3.

EwW Equally weighted portfolio

EWRF Combination of EW and the risk-free asset. See Equation (OA15).

SGMV Sample global minimum-variance portfolio. See Equation (A.1).

GMVRF Combination of SGMV and the risk-free asset. See Equation (24).

SMV Sample mean-variance portfolio. See Equation (7).

SMV-ST SMYV portfolio with soft-thresholding and the L,-norm-constraint threshold selected via cross-
validation. See Equation (22).
SMV-HT SMYV portfolio with hard-thresholding and the weight threshold selected via cross-validation.

F+A Factor-plus-alpha strategy from Da et al. (2024). See Section OA.4 of the Online Appendix.

Table 3: List of Asset Selection Rules considered in the Empirical Analysis

Notes. This table lists the asset selection rules that we consider in the empirical analysis of Section V., which we detail in Section V.C. That is, in an

investment universe of M assets, which N assets we select for a given N < M. The notation [ N/2] (| N/2]) means N/2 rounded above (below)
to the nearest integer.

Name Description

All Include all assets: N = M.

Rand Select NV assets randomly.

MaxSR Select N assets with the maximum Sharpe ratios.

MinSR Select NV assets with the minimum Sharpe ratios.

BWSR Select [ N/2] assets with the best Sharpe ratios and | N/2] assets with the worst Sharpe ratios.
Max Var Select N assets with the maximum variances.

MinVar Select N assets with the minimum variances.

BWVar Select [ V/2] assets with the best variances and | N/2] assets with the worst variances.

MinPC Select the NV assets with the minimum correlations with the first principal component.
Best %, Select the NV assets that deliver the best portfolio Sharpe ratio as in Ao et al. (2019).
MaxW Select the V assets with the maximum absolute weights.
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Table 4: Annualized Net Out-of-Sample Utility in Empirical Data (in percentage points)

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the 11 portfolio strategies in Table 2, the 11 asset
selection rules in Table 3, across the seven datasets in Table 1. The table is constructed following the out-of-sample methodology described in
Section V.D. We estimate the portfolios either with the sample covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004).
The net out-of-sample utility is computed using rolling windows, a sample size 7" = 120 months, and proportional transaction costs of 10 basis
points. The risk-aversion coefficient is v = 1. We compute two-sided p-values for the statistical test of the difference between the utility of the 2F,
3FGMY, and 3FEW portfolios under each selection rule relative to the ‘All” selection rule as a benchmark, using the block bootstrap methodology
described in Section V.D. We also report p-values for SMV-HT and SMV-ST, using SMV as benchmark. The symbols O, @, and @ indicate that
the p-value is less than 10%, 5%, and 1%, respectively.

Sample covariance matrix

Linear shrinkage covariance matrix

Port- Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO
2F All —031 —-59.6 —153 994 —18.8 56.8 —547 5.11 1.20 1.09 416 1.09 177 0.16
2F Rand 12.3®*  14.2® —7.17®* 145® 1.46® 149® —1.77®* | 17.0® 524® 1.60 132® 12.8® 79.5¢ 3.48°®
2F MaxSR | 1.38 11.6® —7.48 23.6° —10.5 —27.1® 7.75® | 1.93° 23.1®* —-6.10 23.1®* 0.69 10.8° 12.2®
2F MinSR | 25.4® 732® 7.10® 146 249® 139% —386° | 18.0°* 53.2® 521° 101® 16.0® 72.1® —2.49°
2F BWSR | 7.39 844® —442 133 11.7° 242® —-299® | 19.2® 63.8° 474 143® 18.8° 99.5® —11.8®
2F MaxVar | 25.0°* 124® 179® 114 21.7®* 83.8 —7.25%| 23.2® 70.5® 9.99° 122¢ 21.1®* 77.7® —3.62°
2F MinVar | 2.47 12.5¢ —13.1 219 —1.88 225® —0.42® | 6.08 33.1®* —525° 140® 5.40° 81.4® 12.4°
2F BWvar | 13.0 89.3®* —-6.76 182° 0.14 180®* —0.53® | 19.8® 634® 539 133® 10.6® 89.9* 5.38®
2F MinPC | 27.4® 112® —-6.23 115 179® 94.1 —1.01® | 249® 67.7* —-2.55 109® 22.8® 50.5* 6.68®
2F Bestd% | —1.22  14.7®* 877 182° 473 137 —-9.71% | 244® 59.2® —4.03 149® 23.0* 95.7® 3.33°
2F MaxW | —127® —305® —179® —581® —129® —366® —77.2® | 32.3® 79.0* 2.19 197® 19.8° 129® —13.5®
3FGMV All 0.47 -60.5 —-12.5 99.1 —19.7 554 -8.35 5.77 1.21 1.79 419 1.31 179 199
3FGMV  Rand 16.8® 14.5® 2.65® 145® 6.11® 148® —3.74® | 19.8® 52.7* 9.42® 133® 16.6* 80.0* 10.7¢®
3FGMV  MaxSR | —4.06 10.8® —1.93° 15.6° —6.02 —27.4% 13.5® 1.63 233® 3.04 246° 532 10.8° 23.3°®
3FGMV  MinSR | 36.0® 71.6®* 129 150 31.5® 141° —2.49® | 243® 534® 894% 103® 21.5®* 74.8® 3.93°
3FGMV ~ BWSR 109 824° 1.02 143 19.9% 253® 729 | 247* 64.0° 13.0° 146® 25.2¢ 101® 11.7®
3FGMV  MaxVar | 25.1% 126® 249® 117 21.7* 850 —13.4® | 24.6® 70.9* 14.3® 123® 23.1® 79.6®* —0.62°®
3FGMV  MinVar | 6.13 13.3®* —14.9 222% (0.35° 219®* 09.13® 7.94 332° —0.72 141® 8.69® 80.7® 22.0®
3FGMV  BWvVar | 27.4® 89.0* 274 183° 11.2® 190® 0.08® | 25.8® 63.5* 129 137® 154® 90.8® 13.4°
3FGMV  MinPC | 33.3®* 113® 647 115 259® 913 —10.1 | 27.0® 68.2® 8.74° 112® 28.7®* 52.0* 10.1®
3FGMV  Best6%, | 123  7.39® —-0.08 122 1.33° 165 —4.21°| 15.1° 48.2¢ 11.9® 144® 19.6* 71.0* 11.0®
3FGMV ~ MaxW |—136® —300® —147® —650® —110® —325® —82.9® | 38.2® 79.4® 157 201® 30.4® 131® 9.34®
3FEW All 1.83 —-62.8 —10.8 102 —16.8 60.8 14.1 721 =256 3.01 403 238 185 19.1
3FEW Rand 13.3* 13.6®* —0.44® 146® 2.76* 150® 15.3® | 17.1®* 51.2®* 6.39* 131® 13.7* 79.3* 19.8®
3FEW  MaxSR | 3.68 12.6®* —-0.61 23.6° —12.1 —20.4° 17.6® 405 234® 223 224° 1.79 120 18.1
3FEW  MinSR | 24.8® 70.8® 11.3® 145 24.8® 146> 996® | 17.6° 51.0* 7.15 98.2® 153° 72.0° 12.1°
3FEW  BWSR 843 84.4® 341 135 17.9% 237¢ 12.6 20.6* 62.6°* 9.48° 140® 22.0* 98.8®* 19.8
3FEW  MaxVar | 26.0° 122® 253® 124 16.0® 989 8.08® | 222® 68.7* 12.8® 121®* 18.0°* 77.0° 13.0®
3FEW  MinVar | 493 12.3® —-5.87 220 040 230®* 19.2¢ 8.94 33.5® 279 140®* 8.08> 82.2® 23.5¢
3FEW  BWVvar | 142 88.6®* —3.30 195° —0.15 187® 18.9® | 19.0°* 624® 9.50° 132® 9.65° 90.4® 21.6®
3FEW  MinPC | 26.0° 114 2.26 120 159® 103 19.1® | 22.1®* 66.3® 527 113® 21.4® 52.8° 23.9°¢
3FEW  Best6% 125 458® —445 136 —8.83 166®* 15.9° 125  46.2* 10.1° 140* 13.2®* 69.5¢ 20.5®
3FEW  MaxW |—124® —305® —157® —650® —139® —361® —7.46® | 24.8® 529® 580 202® 0.52 131®* 204°
EW All 8.11 2.80 800 398 7.13 5.61 13.5 8.11 2.80 800 398 7.13 5.61 13.5
EW Rand 8.04% 273 7.90% 3.89° 7.04> 554 134% | 8.04> 273 790° 3.89% 7.04° 5.54° 134°
EW MaxSR | 8.77° 4.72® 849 597®* 740 6.25° 11.2® | 8.77° 472 849 597* 740 6.25° 11.2¢
EW MinSR | 7.39® 0.83® 7.55° 2.75® 6.77 5.18 14.8® | 7.39® 0.83® 7.55° 2.75® 6.77 5.18 14.8®
EW BWSR | 7.94 242¢ 772 2.86®* 735 528 14.7° 7.94 242¢ 772 2.86° 7.35 5.28° 14.7®
EW MaxVar | 7.95 1.38® 797 352 6.68 531 14.8° 795 138®* 797 352 6.68 531 14.8°
EW MinVar | 8.60 4.23® 8.18 436 744 586 11.2° 8.60 4.23® 818 436 744 586 11.2°
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Figure 8: Difference in Net Out-of-Sample Utility relative to Investing in All Assets

Notes. This figure depicts, for three different portfolio strategies, the difference between the annualized net out-of-sample utility in percentage points
obtained when implementing the portfolios on a subset of N assets, where the optimal NV is estimated using our theory, using 10 asset selection
rules relative to the case where the portfolios are implemented on all M assets. The three portfolio strategies are the two-fund rule (2F, blue), the
GM V-three-fund rule (3FGMY, green), and the EW-three-fund rule (3FEW, red). Each panel considers one of the 10 asset selection rules described
in Table 3. The figure is constructed following the methodology described in Section V.D. We consider seven datasets described in Table 1. We
estimate the portfolios with the linear shrinkage covariance matrix of Ledoit and Wolf (2004). The net out-of-sample utility is computed using
rolling windows, a sample size 7' = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is v = 1.
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This Online Appendix contains eight sections. In Section OA.1, we study the optimal portfolio
size under a single-factor model assumption. In Section OA.2, we analyze the relation between
the correlation of assets and the maximum utility of the MV portfolio. In Section OA.3, we study
the impact of the sequence of assets on the EU and the optimal portfolio size. In Section OA 4,
we detail how we implement the factor-plus-alpha portfolio strategy. In Section OA.5, we explain
how we estimate the EWRF portfolio strategy. In Sections OA.6 and OA.7, we report and discuss
additional simulation and empirical results. In Section OA.8, we provide the proofs of theoretical

results contained in the Appendix and Online Appendix.

OA.1 Single-factor model assumption

In the main text, we find the optimal portfolio size under Assumption 1, i.e., asset returns are
equicorrelated. In this section, we show that we obtain a very similar portfolio size under another
assumption for the covariance matrix, which is that asset returns follow a single-factor model. This
is a commonly used assumption in asset pricing and portfolio selection to obtain parsimonious rep-
resentations of expected returns and covariance matrices; see, e.g., MacKinlay and Pastor (2000),

Tu and Zhou (2011), and Kan et al. (2021).
Assumption OA.1 The asset returns follow a single-factor model,
r=ay+0nf+E, (OAT)

where f € R is the factor with zero mean and variance U]%, By € RY is the vector of factor

loadings, Ele] = Oy, Ele€'] = 021y, and f is uncorrelated with €.
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Under Assumption OA.1, the covariance matrix of asset returns is of the form
Sy = 02BnBy + 0?1y, (0A2)

This parametrization of the covariance matrix involves N + 2 parameters: the /N factor loadings
BN, 0]20, and 052. This is similar to the covariance matrix under Assumption 1, which involves
N + 1 parameters: [V asset variances and one correlation coefficient. However, the equicorrelation
and single-factor assumptions restrict the covariance matrix differently. Assumption 1 fixes the
correlation coefficients to a single p, while allowing individual variances to vary freely. In contrast,
Assumption OA.1 entangles variances and correlations, the variance of asset ¢ being 0?@2 + o2,
and the correlation between assets ¢ and j being [3; ﬁja]%.

Given these differences, if both assumptions result in similar optimal portfolio sizes, this would
support the robustness of our approach. Therefore, we proceed by comparing the optimal portfolio
sizes under the two assumptions, both the oracle and estimated ones. We focus on the optimal
portfolio size for the two-fund rule for conciseness; similar results can be obtained for the SMV
portfolio and the three-fund rules. To find the optimal /V for the two-fund rule, we derive in the
next proposition the maximum squared Sharpe ratio and the EU of the optimal two-fund rule under

the single-factor covariance matrix in (OA2).

Proposition OA.1 Under Assumption OA. 1, the maximum squared Sharpe ratio is

N 3 —_— —
0% = —An(Ey) with An(Ey) =% —

2
O¢

No? _
—— L (), (OA3)
0+ Noply
where ZN = (El&?g}g\/?@]@ﬁ)’ lm]i/ = % Zf\il /%27 g]’if = % Zi\il z’27 and Z!Ji}ﬁ = % Zi\il :ulﬁl
Moreover; the EU of the optimal two-fund rule W (a*) is given by

N v An (Ey)?

— X =
2veno? kn2AN(EN) + Ky 302 /T

EU(w(a")) = EU;{(N,T,0%,02,7,8y).  (OA4)
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Figure OA.1: Optimal portfolio size for the two-fund rule under the single-factor model and
equicorrelation assumptions
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Notes. This figure depicts the optimal portfolio size for the optimal two-fund rule as a function of the sample size T" under two different assumptions.
First, in blue, the equicorrelation assumption, i.e., Assumption 1, which yields Ng I in (18). Second, in red, the single-factor model assumption,
i.e., Assumption OA.1, which yields NQ*}Sf in (OAS5). We assume that asset returns are i.i.d. multivariate ¢-distributed with v = oo (solid lines)

and v = 6 (dashed lines) degrees of freedom. We calibrate the parameters on which NJ ¥ and N;J’,Sf depend to a dataset of M = 96 portfolios

sorted on size and book-to-market spanning July 1963 to August 2023, which yields Ly = (6.07 x 1075,1.229,0.0082), 02 = 0.0014,
06y = (0.125,0.0169), p = 0.74. The single factor is the Fama-French market excess return, which has a variance GJ% = 0.0020. The risk-
aversion coefficient is v = 1.

As in the main text, we use the result in Proposition OA.1 to find the optimal /V for the two-fund

rule as

Nyl = argmax  EUS{(N,T,0%,02,7,8y). (OAS5)
Ne{l,...,min(M,T-5)}

To determine N, J’ff , we must compute £, 0]%, and o2. To do so, we use the Fama-French market
excess return as the factor f and we regress the M asset returns on f via OLS to obtain the 5;’s.
For each asset, we obtain a residual variance o2, and we set o2 = & "M 2.

We now compare the oracle N, j’ff under the single factor model to N3, under equicorrelation.
We use the same setup as in Figure 2, which yields £,; = (6.07 x 107°,1.229,0.0082), 02 =
0.0014, 6, = (0.125,0.0169), and p = 0.74. Moreover, the variance of the market factor over

the period July 1963 to August 2023 is a]% = 0.0020. Figure OA.1 depicts N;}Sf and Nj; as a
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function of the sample size T' € [60, 300] for degrees of freedom v = 6 or co. We find that the
equicorrelation and single-factor assumptions yield an essentially equivalent optimal N. This is
because, under both assumptions, the maximum squared Sharpe ratio 6%; is equal to N multiplied
by a factor that has little sensitivity to N.OA!

Finally, we compare the estimated optimal /N under the two assumptions in empirical data. In
each rolling window of size 7' = 120 months, we compute the estimate of N J’ff in (OAS), NQ* ]’ff ,
obtained by estimating (0]%, 02, £5;) as explained above and the parameters (x N1, KN2, KN,3) as
explained in Section A.2, and compare it to Nz*f in the main text.

We depict boxplots of the estimated optimal portfolio sizes under the single-factor model and
equicorrelation assumptions in Figure OA.2. As in Figure OA.1, we find that the two assumptions
deliver similar results, which confirms the robustness of the optimal /V found under equicorrelation.

A~
*

Also, we observe that the single-factor estimator, NQ* J’ff , has a lower variance than /V; 2 because

the parameters (07, 02, £,) have less variability than (p, 6,,).%*2

OA.2 Equicorrelation and the maximum utility

In the next proposition, we demonstrate that, under the Assumption 1, i.e., equicorrelation, U (w*)

is a convex function of p, and we derive the minimizer.

Proposition OA.2 Under Assumption I, the maximum utility U(w*) = 0% /(2v), with 03 given

OAlEngle and Kelly (2012, p. 213) also note that equicorrelation and single-factor covariance matrices are consistent:
“In a one-factor world, [...] if the cross-sectional dispersion of 3; is small and idiosyncrasies have similar variance
over each period, then the system is well described by Dynamic Equicorrelation.”

OA21n unreported results, we find that the net out-of-sample utility delivered by the size-optimized two-fund rule is
similar using either NQ* J’ff or N}  for all selection rules in Table 3.
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Figure OA.2: Estimated optimal portfolio size in empirical data
100

80 1

B 3T S S T S .
o O oo = e L= T %-%

40 A o
2f
20 1 \T%,8
—_— N2f f
0 T T T T T T T
1 2 3 4 ) 6 7

Dataset #

Notes. This figure depicts boxplots of the estimated optimal portfolio size for the two-fund rule under two different assumptions: the equicorrelation

assumption (]\75 f) and the single factor assumption (N ; sf )- These are the estimated counterparts of N, in (18) and . 2* F in (OAS), respectively.
The boxplots are obtained by implementing the estimation methodology in Section A.2 of the Appendix for each dataset listed in Table 1. We use a
sample size 7' = 120 and set v = 1.

by (4), is a convex function of p € (—ﬁj 1) and is minimized by®A3
T I\/é?v,l(e_fva —0%,1) = Onp 0r6
Pmin = = — — .
N(fnz = 0%,) — On2

Figure OA.3 illustrates Proposition OA.2. We calibrate (§N71, éN,g) to the 96S-BM dataset,
which yields (fy.1,0n2) = (0.125,0.0169), and we depict U(w*) as a function of p for N €
{2,10,25,50} and y = 1. The figure shows that U (w*) decreases with p for p < pp,;, and increases
with p for p > puyin. This result extends Gandy and Veraart (2013, p.536), who also find that the
maximum utility “[...] is initially decreasing in p and increasing afterwards.”, and which we extend

to the case where asset returns are non-homogeneous.

OA.3 Impact of the sequence of assets on expected utility

In this section, we study the impact of the sequence in which the assets are picked on 8, which is

defined in Proposition 1, and on the EU of the two-fund rule, EUx¢(N, T, p, T, 0 ~) in (16). Specif-

OMt holds that limy g, ,/(5y .52, ,) Pmin = 1 — On,2/(20%; ), see the proof of Proposition OA.2.
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Figure OA.3: Impact of correlation on maximum utility
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Notes. This figure depicts the maximum utility U (w™) in Proposition 1 under the assumption that all assets have equal correlations p. We calibrate

@ N1, 9: N,2) to a dataset of 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023 to the 96S-BM dataset, which
yields (On,1,0n,2) = (0.125,0.0169). We depict U (w*) as a function of p for N € {2, 10,25, 50} and a risk-aversion coefficient v = 1. The
minimizer of U(w*) is pmin given by (OA6).

ically, we study how close @y is to ,; and how close our EU approximation EU, #(N,T,p,T, 0.)
in (18) is to EUys(N, T, p, T,0y) as a function of N.
To do so, we consider the following experiment where 8y is calibrated to the 96S-BM dataset.
First, we randomly select N = 1 asset out of the M available ones and evaluate Oy and EU, f(N,T,p, T, 0 N)
assuming i.i.d. multivariate ¢-distributed returns, i.e., 7 ~ (v — 2)/x?2. Then, we randomly select
a new asset on top of the first one and compute @y and the EU on the N = 2 assets. We pro-
ceed until N = M, which allows us to depict 8y and the EU as a function of N for a specific
sequence of assets. We repeat this exercise 10, 000 times. To compute the EU, we take 7" = 120,
p € {0.2,0.5,0.8} and v € {6, 0}

We depict the results from this experiment in two figures. First, in Figure OA.4, we depict
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Figure OA.4: Impact of the sequence of assets on Oy = (.1, 0n.2)
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Notes. This figure depicts 6 ~,1 (left panel) and 7 ~,2 (right panel), defined in Proposition 1, as a function of the portfolio size /N. The solid blue

line depicts 6 M,1 and 0 2, and the shaded gray area depicts the one-sigma interval of the values of 0 ~,1 and 0 ~,2 obtained under 10,000 random
sequences of assets. We calibrate this experiment to a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to
August 2023.

0,, in solid blue and a one-sigma interval of the 10,000 values of O in shaded gray, as a func-
tion of V. We observe that the interval quickly shrinks with N. Second, in Figure OA.5, we depict
EUy;(N, T, p,7,0)) in solid blue and a one-sigma interval of the 10,000 values of EUq;(N, T, p, 7, Ox)
in shaded gray, as a function of N. We can observe that the gray area closely follows our curve for

determining the optimal Ny, EUys(N, T, p, T, 0.).

OA.4 Implementation of factor-plus-alpha strategy

In this section, we explain how we implement the factor-plus-alpha (F+A) strategy considered in
the simulation and empirical analysis. We construct the F+A strategy using PCA and the empirical
Bayes method of Da et al. (2024). Below, we try to stay close to the notation in Da et al. (2024)
while ensuring consistency with our own notation.

Assume the vector of [NV asset excess returns r, with mean g and covariance matrix Xy,
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Figure OA.5: Impact of the sequence of assets on the EU of the optimal two-fund rule
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Notes. This figure depicts our approximation of the EU of the optimal two-fund rule, EUs¢ (N, T, p, T, 0,r) in (18), as a function of the portfolio

size N (solid blue line). We also depict in shaded gray the one-sigma interval of the 10,000 values of EUs¢(N, T, p, T, O ) obtained with
random sequences of assets. We calibrate (kn 1, £N,2, kn,3) to the multivariate ¢-distribution with v € {6, co} degrees of freedom, and consider
p € {0.2,0.5,0.8}. Each panel corresponds to a choice of (p, v). The risk-aversion coefficient is v = 1. We calibrate this experiment to a dataset
of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023.

follows a K -factor model of the form

r=p3(r+v)+a+u, (OAT)
Ipha
factor a

where v and v have zero mean and covariance matrices X, (of size N x N) and 3, (of size

K x K), respectively, with 3J,, being diagonal. The factor-optimal and alpha-optimal portfolios are
1 1

wy = —(B,B) 'Br and w,=-3,'a. (OA8)
Y gl

The F+A strategy then combines wg and w,, to maximize the expected utility, which gives

1 wypy

w = ¢pgwg + P, w, with = -
B+a (bﬂ B8 ¢a a ¢x ngENwI

(OA9)

where we assume that w and v are uncorrelated, which is the case under PCA below. Note that

if we do not restrict X, to be diagonal, we have wg,, = w* = }YEJ_Vl pn. Thus, the diagonal
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constraint on 32, as well as the Bayes estimation procedure for estimating w,, explained below,
help alleviate estimation risk in w*.

For the choice of factors v, we make the standard choice of v being the first /K principal
components (PCs), with K € [1, N — 1]. Let V be the N x K matrix whose columns are the first
K eigenvectors of X and let A be the K x K diagonal matrix of the corresponding eigenvalues
in decreasing order. Let also V and A be the corresponding matrices for the remaining PCs from
K + 1 to N. Then, the correspondence with the above notation is 3 = V, v = V'(r — uy),
T™=Viuy,X =A a=VViuy and X, = diag(‘_/j_&‘_/’ ) Therefore, the factor-optimal
portfolio is wg = %VA”W and the alpha-optimal portfolio is w, = %diag(‘_/j_&‘_/’ )~ lar, which
combined give the F+A strategy w,s = ¢gwg + ¢ W

Regarding estimation, we first need to estimate the number of factors /. We follow the widely
used method by Bai and Ng (2002), which is consistent as /N and 7" go to infinity together. Specif-
ically, we estimate K as

N T
. 1 N+T NT
K= n(==> Y &) +K 1
rgmin (NT 4 6”) - ( NT ) n(N+T>’

=1 t=1

where ¢;;, = (VV'R);, with R the T x N matrix of return samples and V obtained from the
sample covariance matrix by ~. Then, we estimate wg, ¢g, and ¢, using the sample estimators
[y and 35 because these are low-dimensional quantities; wg 1s low-dimensional because K is
typically small. However, w, requires substantial shrinkage because it is high-dimensional. To

estimate w,,, we use the empirical Bayes method in Algorithm 1 of Da et al. (2024):
(a) Lets; = &,/ (f] ); /2 \where a ¢&; and 33, are obtained from fiy and 3 y.

i

(b) Estimate the marginal density of the 3;’s using a Gaussian kernel ¢;,7(x) and a bandwidth
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ky o« 1/In(N), i.e.,

- 4 —x 4 —x T T
. . i~ i _ - SN2
S ZZ_I by ( kx > byt ( e ) V or eXp( o, (5 = @) ) '

(OA10)
(c) Define ¢(z) = = + %dh&—’;@, where
dn p(z) T X 4 —x
i MR B oy (T ) (OAL1)

i=1

Let Mz = Iy —B(B’B)*l,[; = Iy — V'V’ where V is the matrix of the first K eigenvectors
of 3 ~. Then, w, is estimated as w, = %M Bf]; 1 21,5, where 33, /2 is the sample estimate

of ;% = diag(V A~'/2V") and ) is obtained using an isotonic regression of ) (3):

@) = argmin Ha: — 1/3(3)”2 subjectto  x; < x; if 5, < 5, Vi, J. (OA12)

@cRN
Like Da et al. (2024), we consider values of the bandwidth ky € {0.25,0.5,...,4}/In(N), we
split the sample into a training set composed of the first 80% of the data and a validation set com-
posed of the remaining 20%, and we choose kx for which Wz, achieves the maximum utility on
the validation set. In the empirical analysis, we also implement the F+A strategy using the shrink-

age covariance matrix of Ledoit and Wolf (2004) instead of the sample covariance matrix Sy

OA.5 Estimation of EWRF portfolio

In this section, we explain how we estimate the EWRF portfolio, a benchmark we consider in
the empirical analysis that combines the EW portfolio with the risk-free asset. It is given by
Wewrf = (Aew N/7)Wew, Where A, v is defined in (A11). Its sample estimator, obtained by plug-
ging 5\81”7]\[ in (A28), IS Weyrf = (Xew,N/y)wew. Because of estimation errors in Xew,N, it is possi-
ble to improve upon the EU of ., ;. In particular, it is useful to combine the EWRF portfolio with
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the risk-free asset a second time to account for estimation errors in j\ew, ~- Such a “double shrink-
age” approach has been considered in the literature; see, e.g., Kan and Wang (2023) who shrink
the sample mean-variance portfolio toward different portfolios and, after estimating the shrinkage
intensities, shrink the combination portfolio a second time toward the risk-free asset to account for
estimation errors in the shrinkage intensities. In the next proposition, we derive the EU-optimal

combination of .., with the risk-free asset.

Proposition OA.3 LetT" > 5 and the asset returns be i.i.d. multivariate normally distributed. Then,

the EU-optimal combination of Weyr = (5\6w7 N/7Y)Wew With the risk-free asset is n*Wey,r with

T-5 02, N
* = o 1]. Al

To obtain the final estimator of the EWRF portfolio, we estimate n* by estimating sz, N

in (A11) with a newly derived adjusted estimator given by©A*

. T—3)2, v—1 262, y)2(1+6% )7
02 :< ) ew,N + (ew,N)Q( ew,N) 2 (OA14)

ew,N,a A . 1 T-1)’
T TXBegwyN/(Hegw’N)(z’ =)

where B, (a,b) is the incomplete beta function defined in Section A.2.2 and éfw ~ 1s the sample

estimator of sz’ y obtained with fi and 3y in (5). Therefore, the final EWRF portfolio is

Acw _ T-5
0 2N e With 0 (
Y

é2
ew,N,a
=73 5 ) . (OA15)

1
ew,N,a + T

OA.6 Additional simulation results

We now report simulation results that complement those in Section 4. Section OA.6.1 considers the
true correlation matrix with v = oo, Section OA.6.2 the equicorrelation matrix, and Section OA.6.3

the block-correlation matrix, respectively.

OA4The adjusted estimator 62 in (OA14) is obtained by noting that égw, N ~ Xi(T6Z, n)/x7_, and applying

ew,N,a

Kan and Zhou (2007, Equation (A.9)).
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Figure OA.6: Expected out-of-sample utility in simulated data (v = oo, ¥y, = 296)
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Notes. This figure depicts the expected out-of-sample utility (EU) of the sample mean-variance portfolio (SMV, top left panel), two-fund rule (2F,
top right panel), GMV-three-fund rule (3FGMYV, bottom left), and EW-three-fund rule (3FEW, bottom right) as a function of the portfolio size
N. We simulate 10,000 samples of ¢-distributed returns with v = oo degrees of freedom. For each IV, we conduct a rolling window exercise as
described in Section 4.2 and, in each rolling window, we randomly select the IV assets out of the M available ones. Using a dataset of M = 96
portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set pps = fige and Xy = 3l96. In each panel, the solid
blue line depicts the EU in (21), the shaded gray area depicts the one-sigma interval around the EU across all simulations, and the dashed horizontal

blue line depicts the EU obtained when using the estimated optimal N for each strategy, i.e., NJ,,,, for the SMV portfolio, N} ¥ for 2F, N3 .9 for

3FGMV, and N 3 frew for 3FEW. The dash-dotted red line depicts the EU of the equally weighted portfolio. The dotted horizontal gray line depicts
the zero EU level. The risk-aversion coefficient is v = 1.

0OA.6.1 True correlation matrix with v = co

In Figure OA.6, we replicate Figure 5 in the main text for a number of degrees of freedom v = oo
(i.e., normality) instead of ¥ = 6. We find that the two figures are very similar, and thus, our
estimated optimal NV delivers an EU close to the maximum for different v.

In Figure OA.7, we replicate Figure 6 in the main text for v = co. Again, we find that the two

figures are very similar, and thus, the conclusions are robust to the choice of v.
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Figure OA.7: Expected out-of-sample utility and estimated portfolio size of soft and hard-
thresholding of the sample mean-variance portfolio in simulated data (v = oo, X, = Yog)
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Notes. This figure depicts the expected out-of-sample utility (EU) and the estimated optimal portfolio size of the soft and hard-thresholding versions
of the sample mean-variance portfolio, SMV-ST and SMV-HT, which are described in Section 4.3. We depict these as a function of the number of
assets N on which SMV-ST and SMV-HT are estimated. We simulate 10,000 samples of ¢-distributed returns with v = 6 degrees of freedom. For
each N, we conduct a rolling window exercise as described in Section 4.2 and, in each rolling window, we randomly select the [V assets out of the
M available ones. Using a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set piar = floe
and 337 = 6. In the left panels, the solid green line depicts the EU of SMV-ST or SMV-HT in (21), the shaded gray area depicts the one-sigma
interval around the EU across all simulations, the dash-dotted red line depicts the EU of the equally weighted portfolio, and the dotted horizontal
gray line depicts the zero EU level. The risk-aversion coefficient is v = 1. In the right panels, the green crosses depict the average estimated optimal
portfolio size.

0OA.6.2 Equicorrelation matrix

In Figure OA.8, we replicate Figure 5 in the main text using a population covariance matrix sat-
isfying equicorrelation, i.e., 3, = 296(/3). Given that Assumption 1 is satisfied, we know from
Sections 3 and A.1 the oracle optimal N for the SMV, 2F, 3FGMYV, and 3FEW portfolios obtained
under the true parameters (jio, 3o6(7), ). Therefore, in Figure OA.8, we depict N* with a ver-
tical dotted line and its EU with an horizontal dotted line; it is not visible for SMV because we

start at N = 5 and N?

smuv

is smaller than five. Panels A and B of Figure OA.8 consider degrees of

freedom v = 6 and v = oo, respectively. Our main observation from Figure OA.8 is that, unlike
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in Figures 5 and OA.6 where we run the same analysis with 3, = So6 violating Assumption 1,
there is essentially no gap between the EU delivered by our estimated optimal /N and that under
the oracle optimal V.

Next, in Figure OA.9, we depict the EU of the two-fund rule under equicorrelation as a function
of p. We set degrees of freedom v = 6 and a risk-aversion coefficient v = 1. We depict the EU
considering three different portfolio sizes: the oracle N;, the estimated AQ* r,and N = M. Figure 4
in the main text depicts N7, and Nz*f as a function of p. We observe that both N7, and N;f deliver
a larger EU than N = M, as expected. Moreover, remarkably, Nz*f delivers almost the same EU
as N3, for all p even though Figure 4 shows that Agf has a substantial variance when p moves
away from one. Finally, the EU of the two-fund rule is a convex function of p, consistent with the

maximum Sharpe ratio, 6 in (2), being also a convex function of p as shown in Section OA.2 of

this Online Appendix.

0A.6.3 Block-correlation matrix

In Figure OA.10, we run the same experiment as in Sections 4.2, OA.6.1, and OA.6.2, except that
we set the population covariance matrix as X, = 3% (7) = Dos Pl () Dys, where PY(p) is a
block-correlation matrix. We consider two blocks for which the return correlation within the blocks
is p = 0.74 and that between the blocks is zero. The two blocks correspond to the first and last 48
assets in the 96S-BM dataset. We observe from Figure OA.10 that even in this setup that violates
our theoretical equicorrelation assumption, our estimated optimal NV still delivers an EU close to

the maximum, in particular for three-fund strategies.
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Figure OA.8: Expected out-of-sample utility in simulated data with equicorrelation matrix
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Notes. Each panel depicts the expected out-of-sample utility (EU) of the sample mean-variance portfolio (SMYV, top left panel), two-fund rule (2F,
top right panel), GM V-three-fund rule (3FGMYV, bottom left), the EW-three-fund rule (3FEW, bottom right) as a function of the portfolio size N. We
simulate 10,000 samples of ¢-distributed returns with v = 6 (Panel A) and v = oo (Panel B) degrees of freedom. For each NV, we conduct a rolling
window exercise as described in Section 4.2 and, in each rolling window, we randomly select the IV assets out of the M available ones. Using a
dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set ptpr = fioe and Xy = 296( p),
where 39¢ (p) is an equicorrelation covariance matrix and p = 0.74 is the average of all correlations in 3l96. In each panel, the solid line depicts
the EU in (21), the shaded gray area depicts the one-sigma interval around the EU across all simulations, and the dashed horizontal line depicts the
EU obtained when using the estimated optimal N for each strategy, i.e., N, 2o for the SMV portfolio, N 5. for 2F, N * for 3FGMV, and N* 3f.ew
for 3FEW. The vertical and horizontal dotted lines depict the oracle N and its EU, respectively, with t e crosses showmg the intersection. The
dash-dotted red line depicts the EU of the equally weighted portfolio. The dotted horizontal gray line depicts the zero EU level. The risk-aversion
coefficient is v = 1.

Page 15 of the Online Appendix



Figure OA.9: Impact of correlation p on expected out-of-sample utility of the two-fund rule in
simulated data
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Notes. This figure depicts the expected out-of-sample utility (EU) of the two-fund rule as a function of the equicorrelation p for three different

portfolio sizes: the oracle N = V. *f, the estimated N = ]\72* ,and N = M. ]\75 is obtained following the estimation methodology in Section A.2
of the Appendix. We simulate 10,000 samples of ¢-distributed returns with v = 6 degrees of freedom. Using a dataset of M = 96 portfolios sorted
on size and book-to-market spanning July 1963 to August 2023, we set pups = fige and 3y = 295(p), where 5)96(5) is an equicorrelation
covariance matrix and p varies between 0.1 and 0.9 with a step size of 0.1. For each p, we conduct a rolling window exercise as described in
Section 4.2 and, in each rolling window, we randomly select the N assets out of the M available ones. The risk-aversion coefficient is v = 1. The
dotted horizontal gray line depicts the zero EU level.

OA.7 Additional empirical results

We now report empirical results that complement those in Section 5. Section OA.7.1 looks at the
equicorrelation and elliptical assumptions, Section OA.7.2 considers a nonlinear shrinkage estima-
tor of the covariance matrix, Section OA.7.3 applies our different asset selection rules to the SMV
portfolio, Section OA.7.4 reports the out-of-sample Sharpe ratio of the considered portfolios, Sec-
tion OA.7.5 evaluates the portfolio turnover and how much of it is driven by changes to the selected
assets over time, Section OA.7.6 further analyzes the performance delivered by the random asset
selection rule, Section OA.7.7 investigates the overlap between the selection rules implemented
in the main text, and Section OA.7.8 studies the effect of the portfolio size on the out-of-sample

performance of the benchmark strategies.
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Figure OA.10: Expected out-of-sample utility in simulated data with block-correlation matrix
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Notes. Each panel depicts the expected out-of-sample utility (EU) of the sample mean-variance portfolio (SMV, top left panel), two-fund rule (2F,
top right panel), GMV-three-fund rule (3FGMYV, bottom left), and EW-three-fund rule (3FEW, bottom right) as a function of the portfolio size V.
We simulate 10,000 samples of ¢-distributed returns with v = 6 (Panel A) and v = oo (Panel B) degrees of freedom. For each IV, we conduct a
rolling window exercise as described in Section 4.2 and, in each rolling window, we randomly select the IV assets out of the M available ones. Using
a dataset of M = 96 portfolios sorted on size and book-to-market spanning July 1963 to August 2023, we set ptps = froe and Xy = 286(5),
where p = 0.74 is the average of all correlations in 3396 and the block-correlation matrix ﬁ]gﬁ (p) is described in Section OA.6.3. In each panel, the
solid line depicts the EU in (21), the shaded gray area depicts the one-sigma interval around the EU across all simulations, and the dashed horizontal

line depicts the EU obtained when using the estimated optimal N for each strategy, i.e., NJ,,,, for the SMV portfolio, NQ* I for 2F, NJ t19 for
3FGMYV, and N. 3 Few for 3FEW. The dash-dotted red line depicts the EU of the equally weighted portfolio. The dotted horizontal gray line depicts

the zero EU level. The risk-aversion coefficient is v = 1.
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OA.7.1 Equicorrelation and elliptical assumptions

We rely on two assumptions in our methodology to derive optimal portfolio combinations and port-
folio sizes: Assumption 1 states that asset returns are equicorrelated and Assumption 2 states that
asset returns are i.1.d. multivariate elliptically distributed. We now look at these two assumptions
in the seven datasets we use in the empirical analysis of Section 5.

Regarding Assumption 1, we define a measure of distance between the correlation matrix ob-
served in the data and the equicorrelation matrix. Specifically, we estimate p as the average of

sample correlations obtained from the sample covariance matrix 32, as in (A32),

9 M M
WOT1) 2 2, OA19

where p;; is the sample correlation between assets ¢ and j, and we define A(p) as the root mean

eyl
|

squared error between the sample correlation matrix and the equicorrelation matrix obtained by

setting p = p, i.e.,

M:

A(p) = Z

=1 j=1

(pij — P)*. (OA17)

1

+

In the left panel of Figure OA.11, we depict, for each of the seven datasets, boxplots of A(p)
across all estimation windows of size 1" = 120 months. For three out of the seven datasets (96S-
BM, 100S-OP, 108CHA), A(p) is quite low and hovers around 5-10%. However, for the remaining
datasets (107IN-CHA, 94IN-NV, 98IN-CHA-NV, STO100), A(p) is larger and around 10-20%.
Thus, there are varying degrees to which the equicorrelation assumption is representative of the
true correlation structure in the data, which makes the consistent outperformance delivered by our
method to determine the optimal /V particularly appreciable.

Regarding Assumption 2, we look at the three parameters (k/1, ka2, <ar,3) defined in (10)—
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Figure OA.11: Assumptions of equicorrelation and elliptical distribution in empirical data
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Notes. This figure depicts boxplots of the estimated values of A(p) in (OA17), which measures the distance between the sample correlation matrix
and the equicorrelation matrix, and K%, ; and K3, 5 in (A25)-(A26), which measure the impact of elliptical fat tails on the expected out-of-sample
utility, for each dataset listed in Table 1 across all rolling estimation windows of size 7" = 120 months.

(12) that control the impact of elliptical fat tails on the EU and that appear in the formulas for
the optimal combination coefficients in the two-fund and three-fund rules. As explained in Sec-
tion A.2.1, in the empirical analysis we estimate them following El Karoui (2010, 2013), i.e., we
estimate xkyy1 and kpr3 With K3, in (A25) and kyr2 with K3, in (A26). The middle and right
panels of Figure OA.11 depict boxplots of #},; and &}, , across estimation windows. The closer
they are to one, the closer is the data to being normally distributed. We observe that £}, ; and £}, ,
substantially depart from one, particularly for the 108CHA dataset, but for the other datasets too.
These results indicate that it is crucial to account for the fat tails of returns in determining optimal

combination rules.

OA.7.2 Nonlinear shrinkage covariance matrix

In Table OA.1, we replicate the results in Table 4 using the nonlinear shrinkage estimator of the co-
variance matrix of Ledoit and Wolf (2020). We observe similar results to those obtained under the

linear shrinkage covariance matrix in Table 4, except for the I08CHA dataset where the nonlinear
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shrinkage estimator does not behave well.

OA.7.3 Performance of size-optimized SMYV portfolio

In Table OA.2, we report the annualized net out-of-sample utility of the size-optimized SMV port-

folio for which N is determined using our theory in Section 3, i.e., using N?* . and the assets are

selected using the different selection rules in Section 5.3. We find for all asset selection rules that
reducing N substantially improves the performance of the SMV portfolio. For instance, for the
96S-BM dataset and the linear shrinkage covariance matrix, the SMV portfolio implemented on
all assets delivers a net utility of —1443, whereas BWSR, which is the worst selection rule for that
dataset, delivers a net utility of —33.3. However, because the SMV portfolio is too exposed to es-
timation risk, we still obtain negative utilities in most cases even with a reduced N. It is preferable
instead to apply our method for determining the optimal N to a better reference portfolio like the
two-fund and three-fund rules.

Next, we compare the portfolio size under the three different ways of optimizing the SMV
portfolio size we consider in Table OA.2, across different months ¢. First, our estimated portfo-
lio size N*

smu,t

following the methodology in Section A.2 of the Appendix. Second, the portfolio
size obtained under soft-thresholding as detailed in Section 4.3. Specifically, in each month ¢, we
solve (22) under a cross-validated ¢, which yields the vector of weights W ;, from which we can

compute the portfolio size as

M
Nst:t - Z L jiyg,5,0 >0 - (OA18)
i=1

Third, the portfolio size obtained under hard-thresholding as detailed in Section 4.3. Specifically,

in each month ¢, we obtain N, ht+ 1N (23) under a cross-validated w. We depict boxplots of portfolio
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Table OA.1: Net out-of-sample utility with a nonlinear shrinkage covariance matrix

‘ Sample covariance matrix ‘ nonlinear shrinkage covariance matrix
Port-  Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100

strat. rule S-BM CHA S-OP  IN-NV IN-CHA CHA-NV  STO S-BM CHA S-OP  IN-NV IN-CHA CHA-NV STO

2F All —-031 —-59.6 —153 994 —18.8 56.8 —547 | 4.64 3631 1.05 444 219 164 0.10

2F Rand | 12.3® 14.2¢® —7.17® 145 1.46° 149® —1.77® | 18.6° -—se+os® 2.83® 140° 24.1® 79.0* 3.19°
2F MaxSR | 138 11.6®* —7.48 23.6° —10.5 —27.1° 7.75® | 1.86° -3e«4® —541 28.7° 14.2® 10.5 12.5¢
2F MinSR | 25.4® 732® 7.10° 146 24.9® 139 -—3.86° | 19.1® —2Ews® 5.54% 104® 32.7® 68.5® —2.49°¢
2F BWSR | 7.39 84.4® —442 133 11.7° 242® —-299® | 23.7®* —¢e+05® 7.02 150® 39.1® 102® —13.3®
2F MaxVar | 25.0* 124® 17.9® 114 21.7®* 83.8 —7.25% | 24.9® —2k+«s® 9.04> 126° 41.6* 72.1® —3.85®
2F MinVar | 247 12.5¢ —13.1 219® —1.88 225® —0.42® | 493 —3E«4® —3.80 150® 21.2® 80.9® 13.0°
2F BWvar | 13.0 89.3* —6.76 182° 0.14 180®* —0.53® | 22.6®* -se+0s® 5.16 141® 30.1® 93.3® 5.09°
2F MinPC | 27.4® 112¢® —6.23 115 17.9° 941 —-1.01®| 26.3® -se+os® —2.38 118® 40.5® 50.3® 7.05®
2F Best0% | —1.22 14.7* —8.777 182° 473 137° —-9.71% | 19.1® —se«os® —0.27 143® 30.5® 80.6® 3.28°
2F MaxW |—127® —305® —179® —581® —129® —366® —77.2® | 33.4® _—2kws® 9.79 205® 42.3® 132® —13.5°

3FGMV All 047 —-605 —-125 99.1 —19.7 554 —835 545  -2E+31 1.64 447 313 165 198

3FGMV  Rand | 16.8® 14.5® 2.65® 145® 6.11® 148® —-3.74® | 22.0® -ce+0s® 10.6®* 141® 16.3® 79.8® 11.5¢
3FGMV MaxSR | —4.06 10.8® —1.93° 15.6® —6.02 —27.4° 13.5® | 299 —se«ws® 398 30.0° 24.3® 113 23.3°
3FGMV  MinSR | 36.0* 71.6* 12.9® 150 31.5® 141° —2.49® | 25.7® —2k+«0s® 8.83% 106® 37.9° 71.0° 4.49°
3FGMV  BWSR | 109 824¢ 1.02 143 19.9° 253®* —-7.29 | 30.3® -ce+0s® 16.5® 152® 39.5¢ 104® 11.7¢
3FGMV MaxVar | 25.1° 126® 24.9® 117 21.7®* 85.0 —13.4® | 27.3® _p«ws® 12.9° 128® 34.2¢ 742 —0.30°
3FGMV  MinVar | 6.13  13.3® —149 222% 0.35° 219® 9.13® | 725 —4pw4® 1.63 150® 25.2® 80.4® 21.4¢
3FGMV  BWvVar | 27.4% 89.0* 274 183° 11.2° 190® 0.08® | 28.4® _se«s® 13.1° 145® 31.9° 94.6* 13.7¢
3FGMV  MinPC | 33.3® 113® 647 115 259® 913 —10.1 | 28.8® -—ce+«0s® 9.59° 120® 36.4® 52.7° 11.4¢
3FGMV Best6% | 123  7.39® —0.08 122 1.33° 165® —4.21% | 22.9* _ee«0s® 10.2° 147® 27.7®* 81.0* 11.9°®
3FGMV  MaxW |—136® —300® —147® —650® —110® —325® —82.9® | 38.3® _—2k«0s® 20.0® 210® 43.7® 132¢ 12.6®

3FEW All 1.83 —628 —-10.8 102 —16.8 60.8 14.1 6.82  —3E+31 295 432 3.06 172 19.1
3FEW  Rand | 13.3® 13.6®* —0.44® 146® 2.76®* 150® 15.3® | 18.7®* -—se«s® 7.61® 139® 17.2¢ 789 19.7®
3FEW  MaxSR | 3.68 12.6* —-0.61 23.6° —12.1 —204® 17.6®* | 3.60 -3e«4® 285 28.1° 634 11.6 179
3FEW  MinSR | 24.8® 70.8® 11.3® 145 24.8® 146° 9.96°® | 18.6° —2k+«s® 7.41 102® 259® 68.0° 12.1¢
3FEW  BWSR | 843 84.4® 341 135 17.9% 237 12.6 | 24.8® -se+«0s® 11.4° 147® 34.8® 101® 19.6
3FEW  MaxVar | 26.0® 122® 253® 124 16.0° 989 8.08® | 23.5® —2E«s® 12.2® 126°® 31.1®* 71.4® 13.0°
3FEW  MinvVar | 493 123® —-5.87 220° 040 230* 19.2® | 797 -—3E«4® 406 150® 15.6® 82.2¢ 23.2¢
3FEW  BWvar | 142 88.6* —-3.30 195° —0.15 187® 18.9® | 21.9® -—se«s® 9.71° 141® 21.3® 93.6* 21.2¢
3FEW  MinPC | 26.0® 114® 226 120 159° 103 19.1® | 23.9®* _—se«s® 626 120®* 31.4® 52.8° 24.0°
3FEW  Best6% | 12.5 4.58® —445 136 —8.83 166® 159° | 19.1®* —ee+0s® 6.75 148® 21.8® 78.8°® 20.4¢
3FEW  MaxW | —124® -—305® —157® —650® —139® —361® —7.46® | 23.5®* —2E+«s® 8.38° 211® 12.2° 131® 19.2

EW All 8.11 2.80 800 398 7.3 5.61 13.5 8.11 2.80 800 398 7.3 561 135
EW Rand | 8.04® 2.73% 7.90% 3.89° 7.04° 554° 134% | 8.04> 2.73% 7.90° 3.89% 7.04% 554° 134°
EW MaxSR | 8.77° 4.72® 849 597®* 740 6.25% 11.2° | 8.77° 4.72¢ 849 597®* 740 625 11.2¢
EW MinSR | 7.39% 0.83® 7.55° 275 6.77 5.18 14.8® | 7.39° 0.83® 7.55° 275 6.77 5.18 14.8®
EW BWSR | 7.94 242¢ 772 286®* 735 528 14.7® | 794 242 772 286®* 735 528 14.7°
EW  MaxVar | 795 1.38® 797 352 668 531 148® | 795 138 797 352 6.68 531 14.8°®
EW MinVar | 8.60 4.23® 818 436 744 586 11.2° | 860 423®* 818 436 744 586 11.2¢
EW BWvar | 7.60® 2.34® 7.52° 399 6.88 558 14.1® | 7.60* 2.34® 752 399 688 558 14.1°
EW MinPC | 7.87 2.48® 7.20° 5.00° 6.97 6.22* 124® | 7.87 248® 7.20° 5.00° 697 622° 124¢
EW  Best6% | 7.88° 2.72 792 382 7.02 6.03 135 8.08 2.79 816 389 6.79° 555 135

EWRF 0.63 —155 059 —-1.84 1.00 0.59 16.4 063 —155 059 —-184 100 059 164
SGMV 1.76  —49.7 425 —-0.34 —2.28 —4.67 125 10.1 2.38 6.52 388 7.66 6.04 6.78
GMVRF 1.81 —-263 —-098 —114 —12.3 —-5.34 —-5.70 3.81  —3E+34 1.25 019 272 082 213
SMV —4E+05  —3E+l11  —IE+06 —6E+07 —8E+08 —8E+07 —9E+04 | —994  _i1gma —974 2115 —-2744 —747 —1486
SMV-ST 15.8® —108® 11.7®* —579®—-2.91® 0.88® 0.77® | 21.6®* —349® 7.03® —243®-322® 9.12°® 1.17°
SMV-HT —35.3® —302® —16.8® —105® —25.9® —143® —7.62® |—28.0° —sE+2® —29.6® —421® —288® —84.8® —22.1®
F+A —232 —158 —368 —338 —138 —138 —110 | —253 —se+00 —394 —344 —-2668 —61.0 —171

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the 11 portfolio strategies in Table 2, the 11 asset selection rules in Table 3, across the seven datasets in

Table 1. The table is constructed following the out-of-sample methodology described in Section 5.4. We estimate the portfolios either with the sample covariance matrix or the nonlinear shrinkage
estimator of Ledoit and Wolf (2020). The net out-of-sample utility is computed using rolling windows, a sample size 7' = 120 months, and proportional transaction costs of 10 basis points. The
risk-aversion coefficient is v = 1. We compute two-sided p-values for the statistical test of the difference between the utility of the 2F, 3FGMYV, and 3FEW portfolios under each selection rule
relative to the ‘All” selection rule as a benchmark, using the block bootstrap methodology described in Section 5.4. We also report p-values for SMV-HT and SMV-ST, using SMV as benchmark.
The symbols O, @, and @ indicate that the p-value is less than 10%, 5%, and 1%, respectively.
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Table OA.2: Annualized net out-of-sample utility of the size-optimized SMV portfolio

‘ Sample covariance matrix ‘ nonlinear shrinkage covariance matrix
Port-  Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP  IN-NV IN-CHA CHA-NV STO
SMV All —4E+05  —3E+11  —IE+06 —6E+07 —8E+08 —8E+07 —9E+04 |—1443 —107 —1399 —2360 —1457 —1143 —1844

SMV ~ Rand |—5.75® —35.1® —1998® —151® —8.59® —105® —2.23® |—1.26® 27.9® —-21.3® 10.0® —4.79® —11.8® 2.00®
SMV  MaxSR |—17.3® —253® —2011® —38.5® —27.2® —21.5® —60.9® |—15.8® 093 —-34.6® —37.6®—-25.7® —19.8® —42.8¢
SMV  MinSR |—16.0° —2.04® —2007® —43.4® —12.8® —17.9® —36.2® |—145® 182 —31.7® —13.2®—-13.1® —17.8® —38.2®
SMV  BWSR |—50.9® 18.5® —2050® —62.2® —54.0® —54.6® —145® |—-33.3® 95.1° —63.4® —8.63® —44.0° —34.3® —105°®
SMV  MaxVar |—5.94® —57.3® —1977® —26.4® —8.54® —18.4® —7.05® |-3.90®* 47.1 —-9.97® —23.6°-9.36® —18.6® —7.02¢
SMV  MinVar |—22.1® —35.1® —1998® —52.4® 0.22® 14.7®* —6.33® |-16.8® 438 —13.0* 30.3® 7.30® 25.7® 5.50°
SMV  BWvVar | 0.73® —83.2® —1986® —50.3® —14.3® —7.33® —1.63® | 2.36®* —1.50 —8.42® —13.2® —8.47® —0.28® 3.36®
SMV  MinPC |—19.3® —49.7® —2004® —12.7® —10.9® —2.23® —15.2® |—-16.2®* —11.9 —30.8® —11.1®*—10.4® —2.07® 2.85®
SMV  Best#3 |—0.98® 34.2® —1996® 22.1® —44.8® 11.4® —179® | 997°* 347 -30.6* 39.9® —16.1® 3.14® —5.26°
SMV  MaxW |—15.3® —82.5® —2021® —76.2® —16.3® —78.4® —6.24® |—17.5®* 509 —45.4® 22.5° —0.62® —14.5® —43.4¢

SMV-ST 15.8®¢ —108® 11.7®* —579® —291® 0.88® 0.77® | 23.9* 67.8 5.13®* —195® 10.4® 16.4® 1.43°®

SMV-HT  |—35.3® —302® —16.8® —105® —25.9® —143® —7.62® |-29.9¢ —52.1 —17.8® —376® —33.6® —349® -21.1°

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the sample mean-variance portfolio across the seven datasets in Table 1 and the 11 asset selection rules

in Table 3, as well as the soft and hard-thresholding versions of the SMV portfolio, SMV-ST and SMV-HT, described in Section 5.2. The table is constructed following the empirical methodology
described in Section 4.3. We estimate the portfolios either with the sample covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004). The net out-of-sample utility is computed
using rolling windows, a sample size 7" = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is v = 1.

sizes in Figure OA.12, averaged across the first six datasets in Table 1; we do not include the
100STO dataset because it consists of 100 datasets of 100 stocks, and thus, would be overweighted
in the average. We observe that the portfolio sizes for the SMV portfolio are small on average

compared to M, and that Nst’t is much more variable than N* it and N hi t-

Smy

OA.7.4 Out-of-sample Sharpe ratio

In Table OA.3, we report the annualized out-of-sample Sharpe ratio net of proportional transaction

costs of the portfolio strategies considered in Table 4,

SRy, = V12 x B&. (OA19)

Ok

where /i, and &} are the sample mean and standard deviation of the out-of-sample net portfolio
returns, 7per k¢ 10 (25). The main conclusions drawn from the out-of-sample utility are robust to
using the out-of-sample Sharpe ratio. In particular, it is in most cases preferable to reduce the

portfolio size in the 2F, 3FGMYV, and 3FEW portfolio combination rules.
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Table OA.3: Annualized net out-of-sample Sharpe ratio (in percentage points)

Sample covariance matrix

nonlinear shrinkage covariance matrix

Port-  Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV  STO S-BM  CHA S-OP IN-NV IN-CHA CHA-NV STO
2F All 247 —150 -26.8 149 —646 113 —-7.55 | 894 214 40.1 244 72.6 209 8.12
2F Rand | 54.0* 74.5¢ 16.7®* 180® 45.5® 175 22.2¢® | 69.6° 203® 19.7° 210° 58.6° 180® 28.2¢
2F MaxSR | 194 59.5¢ —1.83 97.7° —0.85 44.7®* 50.3® | 19.8® 162® —-2.01° 81.5® 12.5® 554® 52.0°
2F MinSR | 72.3® 121® 383® 171 70.6* 168 —20.5® | 86.0 215 444 195 775 180° —23.0°
2F BWSR | 52.5% 130® 33.4® 177 659® 220°* 17.9® |69.6° 215 32.1  223% 67.1 200 21.8¢
2F MaxVar | 71.4® 163® 60.7¢ 157 72.7®* 135 -—-22.1®* | 83.8 238® 50.7 197®* 74.1 159® —17.6®
2F MinVar | 32.0 65.4® —13.6 211® 23.7° 212® 36.7® | 38.1® 179® —2.61° 225° 39.1®> 206 49.9*
2F BWvar | 56.3% 134® 26.7®* 200° 37.2® 198® 24.7®* | 75.8 217 33.0 214> 527 190 32.8¢
2F MinPC | 74.2® 150® 123® 167 719® 140 25.8® | 899 228 1.89° 176®* 794 137® 36.6®
2F Best63 | 39.7 754¢ 13.6° 193° 66.3° 169° 25.8® | 81.7 208 9.13 228 793 198* 33.6°
2F MaxW | 51.5® 3.14®* 047° 171 294¢ 177®* 12.2¢ | 87.5 233®* 287 238 632 210 30.6°
3FGMV All 269 —151 —-142 149 -3.63 112 4.79 885 215 570 246 805 208 394
3FGMV  Rand | 60.8® 75.0® 35.4® 180® 52.5® 175® 33.9® | 729° 204° 48.6°> 211° 663° 177° 46.3°®
3FGMV  MaxSR | 9.59 59.1®* 8.19 94.7* 15.6 46.8® 59.1® | 182® 161® 27.7° 83.3® 35.7® 53.0°* 70.0°
3FGMV  MinSR | 89.9® 120®* 50.8® 173 793¢ 169® 20.0* | 104 215 55.8 200 914 183 28.2°
3FGMV BWSR | 59.8¢ 128® 39.1® 181° 74.5¢ 225¢ 37.6* | 779 215 573 226° 80.1 198  49.5¢
3FGMV MaxVar | 71.1® 164® 70.7® 159 74.0* 136 4.75 89.8 238® 622 197* 76.8 156®* 15.9°
3FGMV  MinVar | 41.4 66.2® —18.3 213® 32.6° 209® 54.4® |425° 179® 5.01® 225° 48.6° 202 68.4¢
3FGMV  BWvVvar | 74.8® 133® 37.9¢ 201® 53.3® 202® 382¢ | 87.8 216 59.0 218% 652 186° 52.1°
3FGMV  MinPC | 81.6® 151® 40.5®* 167 80.9®* 139 29.6®* | 882 229 457 177®* 883 136®* 4509°¢
3FGMV  Best#%, | 53.7° 71.0® 29.6®* 172 42.7® 182® 34.3® |61.1° 196° 59.5 227° 737 162® 47.0°
3FGMV ~ MaxW | 47.3% 3.59¢ 13.5® 165 35.7®* 182® 26.1® | 93.8 233®* 567 242 80.8 208 50.2¢
3FEW All 389 117 12.1 151 159 116 58.6 40.2  5.52 32.7 135 318 666 639
3FEW Rand | 59.6® 74.6®* 35.9® 180® 52.7® 176® 59.8® | 58.6* 168® 38.8® 203® 52.5¢ 161® o64.3°
3FEW  MaxSR | 41.8 62.3® 339® 98.6° 27.0 51.2® 71.2® | 402 859® 369 67.3® 38.3° 49.6° 70.6°
3FEW  MinSR | 70.5® 119® 49.2¢ 170 70.9® 171° 47.1® | 61.4® 175¢ 384 187 57.3® 167* 50.2¢
3FEW  BWSR | 58.4° 130® 45.7¢ 178 73.7®* 218® 574 | 64.4® 190®* 445° 214®* 66.8® 181® 645
3FEW  MaxVar | 73.3® 161® 71.6®* 162 69.8® 144 45.8® | 69.1®* 212¢ 50.7* 191® 60.5¢ 148® 524°¢
3FEW  MinVar | 45.6 66.5¢ 23.1 211® 442% 215 725® | 457 118® 347 217®* 449* 172* 75.0°
3FEW  BWvar | 60.8° 133® 37.3% 204® 432° 201® 63.8® | 62.0* 191® 44.6° 210® 44.8° 175®* 664¢
3FEW  MinPC | 75.3® 152® 38.2% 170 72.4® 146 68.2® | 66.8® 198® 36.6 176° 65.7® 120® 72.2°
3FEW  Bestf3 | 56.9° 69.4® 29.6° 178 37.5° 182® 60.8° | 50.8® 157® 45.5% 218® 51.7® 143® 65.3°
3FEW  MaxW | 50.6 291® 104 168 249 175® 48.9¢ | 70.7* 154 39.8 237® 341 205® 69.6°
EW All 53.0 24.1 527 319 504 415 81.4 53.0 24.1 5277 319 504 415 814
EW Rand | 52.6° 23.7% 52.1% 31.4% 49.8% 41.1° 80.3® | 52.6° 23.7% 52.1° 31.4% 49.8° 41.1° 80.3°
EW MaxSR | 57.6° 35.0® 55.6° 44.6®* 529 456° 76.8® |57.6° 35.0° 55.6° 44.6° 529 45.6° 76.8°
EW MinSR | 48.1® 14.4® 49.7% 24.5® 47.2° 385° 79.5® |48.1® 14.4® 49.7% 245® 47.2° 385° 79.5¢
EW BWSR | 52.0 22.2® 50.9° 25.1® 514 394° 858® | 52.0 22.2® 50.9° 25.1® 514 394° 85.8¢
EW  MaxVar | 49.5° 17.2® 4999 28.3% 450® 38.1° 76.2® |49.5% 17.2® 499° 28.3% 450® 38.1° 76.2®
EW MinVar | 58.9% 32.9® 56.7° 35.4° 55.6° 45.0° 80.3 |589® 329° 56.7° 354° 55.6° 45.0° 80.3
EW BWvar | 50.0¢ 21.8® 49.7¢ 32.1 490 414 83.4® |50.0* 21.8® 49.7° 321 490 414 834
EW MinPC | 524 22.5® 489% 389® 50.0 45.5® 823° | 524 225 489 389® 50.0 45.5° 82.3°
EW Bestd% | 51.4® 237 522 31.1 497 44.1° 809 | 539 238 516 31.7 492 435 809
EWRF 23.4 1.77 23.1 181 244 17.1 58.1 234 1.77 23.1 181 244 17.1 58.1
SGMV 193 —-193 296 782 633 —-6.63 17.1 82.0 3I.1 68.0 424 775 59.6 61.0
GMVRF 23.8 —177 952 -27.6 —104 0.81 819 | 656 —126 53.0 535 509 140 41.6
SMV -50.2 —-29.7 —147 -915 —16.5 —-769 -258 | 91.2 240 40.0 243 721 206 109
SMV-ST 77.5¢ 167 64.0° 163® 78.9® 177®* 20.7®* | 77.0 175®* 43.8 157®* 655 147* 19.6*®
SMV-HT 36.0° —97.3® 29.6° 24.7® 20.7 46.4® 25.6® |21.2* 103®* 188 128® 15.6* 108® 24.4°¢
F+A 98.9 189 439 157 705 164 63.8 | 99.6 189 446 147 719 151 642
Notes. This table reports the annualized net out-of-sample Sharpe ratio, in percentage points, for the 11 portfolio strategies in Table 2, the 11 asset selection rules in Table 3, across the seven

datasets in Table 1. The table is constructed following the out-of-sample methodology described in Section 5.4. We estimate the portfolios either with the sample covariance matrix or the linear
shrinkage estimator of Ledoit and Wolf (2004). The net out-of-sample utility is computed using rolling windows, a sample size 7" = 120 months, and proportional transaction costs of 10 basis
points. The risk-aversion coefficient is v = 1. We compute two-sided p-values for the statistical test of the difference between the utility of the 2F, 3FGMYV, and 3FEW portfolios under each
selection rule relative to the ‘All’ selection rule as a benchmark, using the block bootstrap methodology described in Section 5.4. We also report p-values for SMV-HT and SMV-ST, using SMV

as benchmark. The symbols O, (D, and @ indicate that the p-value is less than 10%, 5%, and 1%, respectively.
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Figure OA.12: Estimated portfolio sizes for the SMV portfolio
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Notes. This figure depicts boxplots of the portfolio sizes obtained in empirical data, across different months ¢, for the SMV portfolio with three

different strategies as detailed in Section OA.7.3. First, our estimated portfolio size for the SMV portfolio, N7, ,,, ;. Second, the portfolio size

obtained under soft-thresholding, N, st,t in (OA18). Third, the portfolio size obtained under hard-thresholding, N ht,t- We consider the sample
covariance matrix (5) in blue and the linear and nonlinear shrinkage estimators of Ledoit and Wolf (2004, 2017) in red and green, respectively. The
boxplots are obtained by averaging across the first six datasets listed in Table 1.

OA.7.5 Portfolio turnover with asset selection rules

In the empirical analysis of Section 5, we consider different asset selection rules to select in which
N assets to invest when reducing the portfolio size from M to N. The portfolio turnover is im-
pacted by the changes to the investment universe over time implied by these selection rules. The
larger the number of changes in selected assets in a given period, the lower the stability of the
selection rule, and the higher the portfolio turnover.

The impact of a selection rule on portfolio turnover also depends the selection frequency, which
is the frequency at which we decide to change the optimal N and the selected assets. In the empir-
ical analysis of Section 5, we choose to rebalance the portfolio weights every month but to change
the optimal N and the selected assets once a year. The rationale is to avoid excessive changes
to the investment universe and make our method less costly and more practically implementable.
However, we could choose a different selection frequency, and it is important to test the robustness

of our results to this choice.
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Therefore, we have two objectives in this section. First, we investigate the stability of the dif-
ferent asset selection rules we consider and how they impact the portfolio turnover. Second, we
evaluate the robustness of our results to using a selection frequency of once every month, six
months, and 24 months instead of 12 months.

We begin by defining a measure of selection rule stability. To do so, note that except for Rand
and Best 0]2\,, each selection rule listed in Table 3, which is applied to the 2F, 3FGMYV, 3FEW,
and EW portfolio strategies, is implemented in a similar way following three steps. First, for each
selection rule k£, we compute at time ¢ the M x 1 vector of parameters on which the selection
rule is based, which we denote as 6y; = (014,244, - - -, 00 k). For instance, if we consider a
selection rule based on the in-sample Sharpe ratio (MaxSR, MinSR, or BWSR), then 6, = ét
where 0, = (éu, HAM, o éMﬁt) is the M x 1 vector of in-sample Sharpe ratios.

Second, we rank assets from 1 to M depending on their parameter values dy;, where 1 rep-

resents the highest value and M the lowest. Specifically, we define the M x 1 vector of ranks

Gkt = (D1t D2kt - - - Prakt), Where ¢; ., denotes the rank of asset 7 based on dy ¢,
M
Pijet = Z ﬂ{5i,k,t§5j,k,t}‘ (OA20)
j=1

Third, we select assets depending on their rank ¢; ;. ; and the type of selection rule. For that
purpose, we denote y; ;. the binary variable indicating whether, for selection rule k, asset ¢ is
selected at time ¢: y; ., = 1 if asset 7 is selected, and 0 otherwise. We consider four types of asset
selection rules in Table 3. For the Rand rule, y; . = 0 or 1 at random, subject to Zf\il Yikt = N.
For the MaxSR, MaxVar, and MaxW rules that select the N assets with the highest 9, ;. ; values,
we have y; .+ = 14, , ,<n}. For the MinSR, MinVar and MinPC rules that select the [V assets with

the lowest 9, ., values, we have y; ., = ]l{¢i,k,t> v—ny- Finally, for the BWSR and BW Var rules
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that select the [ N/2] assets with the highest J; 5, ; values and the | N/2] assets with the lowest ¢; ;. ;

values, we have i ks = Lo, ,<[N/2] or ¢y o> M~ N/2]}3-O

Given this three-step process with which the asset selection rules are implemented, we want to
evaluate the impact on portfolio turnover of changes in the set of selected assets. We first introduce
selection turnover, which measures, for a portfolio k&, the number of changes in selected assets

from month ¢ — 1 to ¢:

M
selectionturnovery, ; = Z [Yikt — Yikt—1]|, t=T+1,...,Tin. (OA21)
i=1

The less stable the asset selection rule and the higher the selection frequency, the higher the selec-
tion turnover, and the more we expect an increase in portfolio turnover due to changes in selected

assets. To precisely measure the impact of selection turnover on the overall portfolio turnover, we

define turnover?jjlfm"n as the turnover of portfolio £ coming from those assets that were selected at

time ¢ but not at time ¢ — 1, and vice-versa:

wrnover ¥ = Y " |wigy — wige-n+l, =T+ 1., T, (OA22)

0 Ys ko tFYi kb1

where w; ;. ; is the weight of asset 7 at month ¢ and w;, ;—1)+ is the prior-time weight before
rebalancing at month ¢. By construction, turnoveri‘fltwi"“ < turnovery;, where turnovery, ; in (26) is

the total turnover computed on all assets. Finally, we also define the proportion of the total turnover

that originates from changes in the selected assets:°

selection
turnover A

i t
turnover; oM = — = < (OA23)
’ turnovery ;

which we expect to increase with selectionturnovery, ;.

OASThe Best 012\, selection rule is an exception as it is not based on a ranking of assets ¢y, ;. Instead, in that case,
Yi ke = 1 if at time ¢, asset ¢ is included in the randomly drawn selection of size N which corresponds to the 95%
quantile of estimated values of #%,, as detailed in Section 5.3. Otherwise, Yik,t = 0.

OA6The measures selectionturnovery, ; and turnover‘}flf“i"“ are non-zero only when the investment universe changes

from ¢ — 1 to ¢, which happens according to the chosen selection frequency (1, 6, 12, or 24 months).
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Figure OA.13: Portfolio turnover with asset selection rules and different selection frequencies
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Notes. This figure depicts different turnover metrics for the two-fund portfolio rule across the ten asset selection rules in Table 3 (we exclude the
‘All’ selection rule). The top panel depicts the average of the monthly portfolio turnover, defined in (26). The middle panel depicts the average of the
monthly selection turnover, defined in (OA21), i.e., the average of the number of changes in selected assets each month. The bottom panel depicts
the average of the proportion of the total turnover coming from changes in selected assets, defined in (OA22). These metrics are averaged across
the first six datasets in Table 1. We report them for four different selection frequencies: every 1, 6, 12, and 24 months. The selection frequency is
the frequency with which we change the optimal portfolio size N and the selected assets. We estimate the two-fund rule with the linear shrinkage
covariance matrix of Ledoit and Wolf (2004) and a risk-aversion coefficient of v+ = 1. The figure is constructed following the out-of-sample
methodology described in Section 5.4. The middle panel includes an axis break for better visibility.
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In Figure OA.13, we depict the portfolio turnover in (26), the selection turnover in (OA21),
and the proportion of portfolio turnover explained by changes in the selected assets in (OA23). We
average these measures across all months ¢ and across the first six datasets described in Table 1.
We do not include the 100STO dataset because it consists of 100 datasets of 100 stocks, and thus,
would be overweighted in the average. We report results for each of the four considered selection
frequencies, i.e., every 1, 6, 12, and 24 months. We only consider the 2F portfolio combination rule
for conciseness; the results for the 3FGMYV and 3FEW portfolios are similar. Moreover, we only
report the results for the case where we use the linear shrinkage covariance matrix of Ledoit and
Wolf (2004) because, as discussed in Section 5.5, it leads to a better out-of-sample performance,
and also a lower portfolio turnover.

We make several observations from Figure OA.13. First, we look at the stability of the different
asset selection rules. The middle panel of Figure OA.13 shows that the Rand and Best6% selec-
tion rules have the largest selection turnover, especially for a monthly selection frequency. This is
expected as these two rules are based on random selections. Then, the selection rule MaxW has
the second largest selection turnover because it ranks assets according to portfolio weights and
these weights can vary substantially from one period to another. Then, selection rules that rank
assets based on the marginal Sharpe ratio are also quite unstable because they depend on estimates
of expected returns that are notoriously noisy.°*’ In contrast, selection rules built on the variance
and PCA are remarkably stable, with the set of selected assets changing by only one or two assets

on average each month when we use a monthly selection frequency. Finally, we also observe that

OA7The number of changes in selected assets can be substantial. For instance, on average across the first six datasets,
the selection turnover of BWSR in Figure OA.13 is equal to 5.2 when using a monthly selection frequency. This means
that, on average, 5.2 assets enter or exit the set of selected assets from one month to another. Given that the number
of selected assets IV dictated by our theory is close to T'/2 = 60, this represents a 8.67% change of the investment
universe each month on average.
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the best-worst asset selection rules, BWSR and BW Var, are more unstable because they select the
assets with the most extreme rankings, which are also subject to more estimation errors.

Second, the bottom panel of Figure OA.13 shows that a higher selection turnover is indeed
linked with a higher proportion of portfolio turnover originating from assets that are selected in the
portfolio at time ¢ but not at time ¢ — 1, and vice-versa.

Third, the bottom panel of Figure OA.13 shows that, except for Rand and Best 63, the propor-
tion of the total portfolio turnover explained by assets that enter and exit the set of selected assets
each month is around 10% to 30% on average when we use a monthly selection frequency but, as
expected, decreases substantially as we decrease the selection frequency. This proportion of 10%
to 30% with a monthly selection frequency is not negligible, particularly given that the selection
turnover in the middle panel of Figure OA.13 is generally well below 10% of the total number
of selected assets. Still, it means that the majority of the portfolio turnover comes from changes
in weights allocated to assets that remain selected from one period to another, particularly as we
decrease the selection frequency.

We now turn to our second objective, which is to evaluate the robustness of our out-of-sample
performance results to the choice of the selection frequency. Figure OA.13 confirms that decreas-
ing the selection frequency, and thus changing the investment universe less frequently, significantly
reduces selection turnover and thus the overall portfolio turnover. However, this does not automat-
ically mean that decreasing the selection frequency improves the net out-of-sample performance
because the monthly frequency could deliver better gross performance. To test the impact of the
selection frequency on the net out-of-sample portfolio performance, we report in Table OA.4 the
annualized net out-of-sample utility of the 2F portfolio implemented with the 10 asset selection

rules in Table 3 and a selection frequency of 1, 6, 12, and 24 months. The unreported results for
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the 3FGMYV and 3FEW portfolio combination rules are similar. We make three main observations
from Table OA 4.

First, in the vast majority of cases, using a lower selection frequency than monthly is beneficial,
and the performance gain can be substantial. For instance, consider the MinSR rule for the 96S-BM
dataset and the sample covariance matrix. In this case, a monthly selection frequency delivers an
annualized net utility of 19.3 whereas the 6, 12, and 24-month frequencies deliver a net utility of
25.5, 25.4 and 25.4, respectively. A similar observation holds for the linear shrinkage covariance
matrix, but with lower differences in performance. This is because portfolios implemented with the
linear shrinkage covariance matrix yield a lower turnover than those under the sample covariance
matrix, and thus, benefit relatively less from an extra reduction in turnover.

Second, the 6, 12, and 24-month selection frequencies deliver a similar net out-of-sample per-
formance overall, which means that the results under a 12-month frequency in the main text are
robust to other possible choices.

Third, asset selection rules that outperform investing in all assets do so under all considered
selection frequencies, including monthly. This shows that our optimal diversification method is

valuable regardless of the frequency at which the selection rules are implemented.

OA.7.6 Random asset selection rule with different frequencies

One of the asset selection rules we consider in the empirical analysis, as well as in the simulations,
is the random asset selection rule. In this section, we further analyze the performance delivered
by this selection rule when applied to our two-fund and three-fund rules. Specifically, in Figure

OA.14, we report boxplots of the annualized gross and net out-of-sample utility delivered by the
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Table OA.4: Net out-of-sample utility in empirical data with different selection frequencies

Sample covariance matrix

nonlinear shrinkage covariance matrix

Port- Asset Dataset Dataset
folio select. 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
strat. rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO
All n.a. —-0.31 -59.6 —-153 994 —18.8 56.8 —5.47 5.11 1.20 1.09 416 1.09 17.7 0.16
Rand 1 month |—44.5% —533% —48.8° —74.2°—-82.6° —97.8% —6.71% | 1.33® 27.5®* —8.39% 87.1® —5.02° 40.9° 2.43°
Rand 6 months | 7.00® —48.8® —8.19® 122® —827® 119® —1.71® | 15.0® 50.1®* 2.54® 128® 11.0® 75.6® 4.48°®
Rand 12 months | 12.3® 14.2® —7.17® 145® 1.46® 149®* —1.77* | 17.0* 524® 1.60 132® 12.8° 79.5® 3.48°®
Rand 24 months | 16.2® 48.3® —0.71® 156®* 5.96® 158® —3.39® | 184® 53.1®* 4.07®* 133® 13.1®* 80.9* 1.28®
MaxSR 1 month | —5.80 —30.0° —7.72 2.25% —21.7 —35.2® 8.51® |—198® 19.8° —1.94 214® 0.66 7.66° 13.1®
MaxSR 6 months 0.77 3.62* —-5.15 31.7 —-9.86 —31.1®* 8.67® | 0.66®* 223® —-2.71 265° 372 10.3° 13.0®
MaxSR 12 months | 1.38 11.6* —7.48 23.6° —10.5 —27.1> 7.75® | 1.93° 23.1®* —6.10 23.1®* 0.69 10.8° 12.2°
MaxSR 24 months | 2.02 16.2®* —4.14 34.8° —13.3 —18.8% 297® | 2.56° 22.8° —1.54 224® —0.05 8.59% 6.79*
MinSR 1 month 19.32  259® 6.84® 123 19.2* 112° —1.56® | 16.0®* 50.7®* 5.21° 97.9* 12.0* 67.3® —0.61®
MinSR 6 months | 25.5® 70.1®* 8.49® 145 26.8® 130° —1.22® | 17.4® 53.4® 6.54® 98.3® 14.8®* 70.3®* —0.53°
MinSR 12 months | 25.4® 73.2® 7.10® 146 249® 139 —-386% | 18.0* 53.2® 521 101® 16.0* 72.1® —2.49°®
MinSR 24 months | 25.4® 85.3®* 9.09* 167 19.3®* 150® —4.58 | 19.6®* 53.9° 6.28° 107® 15.2® 74.7® -2.77°
BWSR 1 month | —2.88 14.3® —14.5 161 —8.83 168® —28.7®* | 16.5° 61.8® 3.02 140* 18.8® 88.8® —8.27®
BWSR 6 months 0.55 66.1* —2.22 154 —483 232® —282° | 18.1° 63.1®* 821 143®* 20.1®* 95.8° —8.21°®
BWSR 12 months | 7.39 84.4® —442 133 11.7° 242® —-299® | 19.2® 63.8°® 474 143® 18.8° 99.5® —11.8®
BWSR 24 months | 16.0 80.7* —-0.23 96.1 10.8° 219® —-20.1® | 21.7* 64.0* 8.18 133®* 13.0 103® —9.57¢
MaxVar 1 month 27.7% 112¢ 10.0* 112 209® 769 —545 | 264® 69.1* 9.46° 127* 20.5* 77.6°* —1.16®
MaxVar 6 months | 26.5°  127® 17.0® 118 219 733 —530 | 24.1®* 70.0* 10.6® 125® 22.6* 78.0° —1.91°®
MaxVar 12 months | 25.0®  124¢ 179 114 21.7* 83.8 —7.25°| 23.2® 70.5® 9.99° 122¢ 21.1®* 77.7® —3.62°®
MaxVar 24 months | 29.8® 129¢ 18.6®* 113 19.5* 919 -—-573 | 25.1* 69.8® 12.0* 120* 18.0® 78.5¢ —3.73®
MinVar 1 month 1.97 —185% —145 215 —0.88° 199® 3.57® 517 32.6* —-238 136® 7.27° 80.1® 14.6°
MinVar 6 months 532 7.83* —10.5 213® 0.57° 222® 4.60® 6.30 32.7* —1.07 141®* 6.66> 78.8® 15.7®
MinVar 12 months | 2.47 12.5¢ —13.1 219 —1.88 225 —0.42® | 6.08 33.1* —5.25° 140® 5.40° 8l1.4® 124°
MinVar 24 months | 2.04 20.0* —12.6 227®* —-3.33 226°* —0.11® | 5.68 33.8® —4.89° 140* 4.11 81.8®* 10.0®
BWVar 1 month 19.4%  75.0* —0.95° 189® —4.76 151® —0.55® | 21.2® 62.9° 9.34° 127® 11.1®* 85.7® 6.24®
BWVar 6 months | 17.5° 90.4® 3.84% 206®° —0.03 168® 3.00® | 21.2®* 63.6°* 790 132® 12.3®* 88.9® 7.59¢
BWVar 12months | 13.0 89.3®* —-6.76 182° 0.14 180®* —-0.53® | 19.8®* 63.4® 539 133® 10.6> 89.9° 5.38®
BWVar 24 months | 20.8® 101® 1.00°  190° —0.89 190® —1.83® | 21.7®* 62.8® 748 133® 9.12° 89.0* 2.74®
MinPC 1 month 257®* 92.8® —-843 86.8 17.0°* 88.9 —3.18 | 24.2® 66.2* —1.14 108® 22.1®* 49.2° 6.10°
MinPC 6 months | 30.9®* 105® —-7.68 89.2 27.8® 983 —1.16° | 254® 67.8® —2.59 105® 229® 52.6° 6.73°
MinPC 12 months | 27.4® 112¢ —-6.23 115 179® 94.1 —1.01®| 249® 67.7* —2.55 109® 22.8° 50.5® 6.68®
MinPC 24 months | 20.8° 106®* —426 101 22.3®* 106° 0.42® | 22.8° 67.9* 232 107® 24.4* 50.7®* 5.63®
Best63, 1 month |[—43.1® —525® —44.7¢ —138® —81.0® —88.0® —17.3® | 420 28.2® -—7.66° 83.8® —2.72 40.7* 3.70®
Bestd?, 6 months 406 —-473 =326 159 —-121 102 —12.9®| 19.6®* 52.5® 582 120®° 16.6* 72.9° 4.04®
Best6%, 12 months | —1.22 14.7® —8.77 182° 4.73 137 —9.71% | 24.4® 59.2¢ —4.03 149® 23.0* 95.7¢ 3.33°
Bestd?, 24 months | 14.6  50.1®* —-2.44 206° —2.04 143 —-7.61 | 21.7®* 56.0® 4.13 134® 20.7* 87.4* 2.04
MaxW 1 month |—307® —798® —350® —740® —300® —543® —173® | 30.3® 79.2® 9.19 199®* 17.9° 130® —12.9*
MaxW 6 months | —171® —421® —234® —749® —151® —456® —111® | 29.2®¢ 794® 328 203® 194° 131® —10.7®
MaxW 12 months | —127® —305® —179® —581® —129® —366® —77.2® | 32.3®* 79.0* 2.19 197® 19.8° 129® —13.5®
MaxW 24 months |—97.6® —74.8 —115® —416® —56.3° —244® —-39.6® | 32.2® 774® 359 195 160 126° —13.3®

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the 2F portfolio implemented with the 10 asset selection
rules in Table 3 (we exclude the ‘All’ selection rule), across the seven datasets in Table 1. For each selection rule, we report results for four different selection frequencies: every 1, 6, 12, and
24 months. The selection frequency is the frequency with which we change the optimal portfolio size N and the selected assets. The table is constructed following the empirical methodology
described in Section 5.4. We estimate the portfolios either with the sample covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004). We rebalance the portfolio weights every
month. The net out-of-sample utility is computed using rolling windows, a sample size 7' = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is
v = 1. We compute two-sided p-values for the statistical test of the difference between the utility of the 2F portfolio under the ‘All’ selection rule versus the 10 other selection rules, for all
selection frequencies, using the block bootstrap methodology described in Section 5.4. The symbols O, (D, and @ indicate that the p-value is less than 10%, 5%, and 1%, respectively.
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Figure OA.14: Performance of the random asset selection rule for the 96S-BM dataset
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Notes. This figure depicts boxplots of the annualized gross (top panel) and net (bottom panel) out-of-sample utility delivered by the two-fund and
three-fund rules considered in the empirical analysis, implemented with the random asset selection rule on the 96S-BM dataset. Specifically, we
depict boxplots of utilities for the 2F (blue), 3FGMV (red), and 3FEW (green) portfolio strategies, obtained across 100 repetitions of the out-of-
sample analysis. We depict the utilities for different asset selection frequencies as in Section OA.7.5 of this Online Appendix, i.e., we change the
selected assets in our rolling window method every 1, 6, 12, or 24 months. The horizontal dotted lines depict the utility of each portfolio strategy
implemented on all M assets. We use a risk-aversion coefficient v = 1 and estimate the portfolios using the linear shrinkage covariance matrix.

2F, 3FGMYV, and 3FEW portfolio strategies under the estimated optimal portfolio size N, where
the NV assets are selected randomly. The boxplots are obtained across 100 repetitions of the out-
of-sample analysis. We focus on the 96S-BM dataset and we consider different asset selection
frequencies as in Section OA.7.5 of this Online Appendix, i.e., we change the selected assets in
our rolling window method every 1, 6, 12, or 24 months.

We make three main observations from Figure OA.14. First, consistent with the simulation
results in Section 4, selecting the /N assets randomly, with N determined using our theory, sys-
tematically outperforms selecting all M assets in terms of gross utility. This is because this figure
focuses on portfolio strategies subject to estimation risk. Second, the random asset selection rule
also delivers a larger utility than choosing all assets when accounting for transaction costs when

using an asset selection frequency of 6, 12 or 24 months. In contrast, changing the set of selected
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assets every month increases turnover and transaction costs too significantly and underperforms
investing in all M assets. Third, although the random asset selection rule outperforms selecting all
assets, its performance is highly variable across different random selections and, as discussed in

Section 5.5, it underperforms the majority of the more sensible selection rules in Table 3.

0OA.7.7 Overlap between selection rules

We show in Section 5 of the main text that reducing the portfolio size is beneficial in most cases
for the different selection rules listed in Table 3. These selection rules are different by construction
to test whether our results hold for different types of selection rule. Thus, we raise the following
question: do these rules indeed select dissimilar assets in practice?

To answer this question, we must measure the overlap between two selection rules, i.e., the
number of assets jointly selected by both selection rules. Following Section OA.7.5, we denote by
Yit = Ykt Y2kt --->Ymke) the (M x 1) selection vector for any selection rule k: y; ¢ = 1 if
asset ¢ is selected in rule £ at time ¢, and O otherwise. The overlap between rules k£ and [ is then
given by yzlg,t’yl,t = ZZV; YiktYilt:

We then compare the overlap between the selection rules listed in Table 3 to the overlap be-
tween two independent random selection rules. If the average overlap between our selection rules
is close to or lower than that of a pair of two independent random selections, then it means that the
selected assets are indeed dissimilar.

Consider two selection rules k£ and [ that randomly select NV, assets out of M at time ¢. In the

next proposition, we derive the expected overlap if k£ and [ are independent.

Proposition OA.4 Consider two independent selection rules that randomly select N, assets out of
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M available ones. Then, the expected overlap between the two rules is
M-1)2
(N-1)
M\2
()

For instance, if two independent selection rules randomly select /NV; = 50 assets out of M = 100

(OA24)

N =

available ones, we expect them to jointly select N; 5y = 25 assets.

Now, to identify how a pair of selection rules (k,[) selects assets relative to two independent
random selection rules, we use the expected overlap in (OA24) to build a measure of the excess
overlap of any (k, [) pair relative to that of a pair of independent random selection rules. We denote

this measure eoy,;; and define it as

Ly, +—Ny >0 Ly +—N¢,ar <0
{Uk e .M >0} {Yk oy, M <0} ) (OA25)

Ok = (Whete = Niar) X ( Ni— Niy max(0,2N, — M) — Ny

Several comments are in order. First, if ?J/,c,tyl,t = Nt, . then eoy ;, = 0. This means that there
is no excess overlap if the overlap between £ and [ is equal to the expected overlap between two
independent random selection rules. Second, the excess overlap is positive (resp. negative) if there
is more (resp. less) overlap between £ and [ compared to independent random rules, i.e., €0y ;; > 0
if Y, Yre > N; s and vice-versa. Third, the measure of excess overlap is bounded between —1
and 1. A value of 1 indicates the maximum overlap and is obtained if and only if £ and [ are
identical, 1.e., Y+ = Y+ such that y,’wyl,t = N;. A value of —1 indicates the minimum overlap,
ie., Yy = max(0, 2N, — M).07

In Figure OA.15, we depict a heatmap of the excess overlap in (OA25) for all pairs of selection

rules in Table 3. We average it across all months ¢ and the first six datasets listed in Table 1; we do

not include the 100STO dataset because it consists of 100 datasets of 100 stocks, and thus, would

OA8Tf M > 2N, then it is possible for two rules to have zero overlap as each rule can select IV, different assets.
However, if M < 2N, then the minimum possible overlap will be strictly positive and equal to 2N, — M assets. For
instance, if M = 90 and N; = 50, two rules must have an overlap of at least 2N, — M = 10 assets.
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Figure OA.15: Average excess overlap between selection rules
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Notes. This figure depicts the average excess overlap, defined in (OA25), for each pair of selection rule listed in Table 3 (we exclude the ‘All’ rule).

The excess overlap is averaged over the first six datasets in Table 1 and all estimation windows. We report the results for the optimal portfolio size
of the two-fund rule and the sample covariance matrix.

be overweighted in the average. We only consider the optimal portfolio size of the two-fund rule
for conciseness. Moreover, selection rules are based on sample estimates, and we report results
under the sample covariance matrix.

Two main observations can be made from Figure OA.15. First, the results match our expec-
tations. As expected, opposite rules (MaxSR and MinSR, MaxVar and MinVar) have an excess
overlap of —1. Also, the sign of the excess overlap is coherent. For instance, the average excess
overlap is positive between Max Var and MinSR (0.16) because both rules tend to select assets with
high marginal variance, while it is negative between MaxVar and MaxSR (—0.36) because they
tend to select different assets. The excess overlap between the Rand rule and the other rules is also
close to zero. Second, we observe that for essentially all pairs of selection rules we consider, there
is either around the same or less overlap than in the random selection case. This answers our initial

question, as it shows that the selection rules in Table 3 do select dissimilar assets.
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OA.7.8 Effect of portfolio size on benchmark portfolio strategies

In this section, we report the empirical performance of the seven benchmark portfolio strategies
considered in the bottom panel of Table 4 in the paper, i.e., EWRF, SGMV, GMVREFE, SMV, SMV-
ST, SMV-HT, and F+A, for different /V. In particular, we consider N = 20, 40, 60, 80, and M.
To select the N assets when N < M, we consider three asset selection rules: Rand, MaxSR, and
MinVar. The results for the EWRF, SGMV, and GMVRF benchmark portfolios are available in
Table OA.5, for SMV, SMV-ST, and SMV-HT in Table OA.6, and for F+A in Table OA.7.

We first discuss the effect of the portfolio size N on the EWRF, SGMV, and GMREF portfolios
in Table OA.5. For the EWREF portfolio, which does not depend on the covariance matrix estimator,
its performance slightly improves on average with N under the Rand asset selection rule, which is
because EWREF is not much affected by estimation risk and thus can profit from more investment
opportunities. However, when choosing the best assets first with the MinVar selection rule, the
best performance is achieved with a small N = 20 or 40 among the values of N considered. This
finding does not apply to the MaxSR selection rule, which does not generalize as well out of sample
because it selects assets based on their noisy in-sample Sharpe ratio. Turning to the SGMV and
GMVREF portfolios, we find that when they are implemented with the sample covariance matrix,
reducing portfolio size is highly valuable and they overall reach their best performance for N = 20
or N = 40 under each of the Rand, MaxSR, and MinVar selection rules. However, when the
SGMV and GMVREF portfolios are implemented with the shrinkage covariance matrix, they can
profit from a larger N. For example, compared to choosing N < M with the Rand or MaxSR
selection rule, the SGMV portfolio performs best under N = M in three out of seven datasets.

However, when choosing the assets with minimum in-sample variances with the MinVar selection
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Table OA.5: Effect of portfolio size on the annualized net out-of-sample utility of the EWREF,
SGMYV, and GMVRF benchmark portfolios (in percentage points)

\ Sample covariance matrix \ Linear shrinkage covariance matrix
Asset Dataset Dataset
select. N 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
rule S-BM  CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM  CHA S-OP IN-NV IN-CHA CHA-NV STO

Panel (a): EWRF
All M| 063 —1.55 059 —1.84 1.00 059 164 ‘ 0.63 —155 059 —1.84 1.00 0.59 164

Rand 20| 047 -1.63 032 —-1.84 079 066 151 | 047 —1.63 032 —1.84 0.79 0.66 15.1
Rand 40 | 044 —-1.66 035 —194 082 048 157 | 044 —-1.66 035 —194 082 048 157
Rand 60 | 048 —1.59 044 —-1.89 086 049 159 | 048 —1.59 044 —-1.89 086 049 159
Rand 80| 0.60 —1.56 050 —1.84 095 049 16.1 | 060 —1.56 050 —1.84 095 049 16.1

MaxSR 20 |—2.36 —0.62 —5.59 —4.86 —6.40 —-3.36 164 |-2.36 —0.62 —5.59 —4.86 —6.40 —3.36 16.4
MaxSR 40 | 0.16 —1.33 —0.68 —0.97 —2.49 —-0.35 20.2 | 0.16 —1.33 —-0.68 —0.97 —2.49 —-0.35 20.2
MaxSR 60 | 1.30 —1.90 098 —-0.86 —041 054 222 | 1.30 —1.90 098 —0.86 —0.41 0.54 222
MaxSR 80 | 1.61 —-1.83 1.61 —-135 -0.15 081 21.8 | 1.61 —-1.83 1.61 —135 —0.15 0.81 21.8

MinVar 20 | 416 —026 149 —-0.10 497 488 289 | 416 —-0.26 149 —0.10 497 488 289
MinVar 40 | 3.53 —0.59 271 0.19 410 436 31.1 | 353 —-059 271 0.19 410 436 31.1
MinVar 60 | 3.46 —1.12 322 —-0.81 418 298 264 | 346 —1.12 322 —081 4.18 298 264
Minvar 80 | 2.09 —-1.25 259 —-1.61 3.06 190 209 | 2.09 —-125 259 —-1.61 3.06 190 209

Panel (b): SGMV
All M| 1.76 —49.7 425 —034 —2.28 —4.67 1.25 ‘ 103 233 7.75 4.02 848 6.65 6.89

Rand 20| 8.69 175 622 311 7.01 613 833 | 861 531 655 474 724 6.60 9.19
Rand 40| 952 —-120 6.18 148 7.88 560 7.10 | 941 428 6.67 438 789 679 827
Rand 60 | 920 —5.05 6.42 005 801 497 601 | 973 341 7.00 394 798 6.79 7.70
Rand 80| 7.18 —11.5 6.55 —0.08 7.80 291 450 | 10.1 2.87 734 4.02 819 6.61 724

MaxSR 20 | 6.17 —-2.16 7.82 586 399 513 102 | 720 123 821 6.12 471 515 105
MaxSR 40 | 539 —-3.52 3.66 644 524 454 901 | 642 164 573 626 610 562 992
MaxSR 60 | 3.66 —6.33 250 448 479 510 759 | 548 238 532 585 6.61 557 954
MaxSR 80 | 3.22 —132 4.04 162 414 453 553 | 743 255 615 489 691 557 847

MinVar 20 | 749 —-036 729 553 774 942 787 | 742 394 719 622 7.68 7.76 8.84
MinVar 40 | 849 -301 491 184 790 7.79 742 | 828 243 589 527 756 759 9.17
MinVar 60 | 6.82 —7.40 145 —1.81 631 325 643 | 726 164 443 258 686 594 8.71
Minvar 80 | 2.89 —-12.2 229 071 343 175 510 | 672 225 586 252 614 599 8.17

Panel (c): GMVRF
All M| 1.81 —-263 —098 —11.4 —123 —-5.34 75.70‘ 401 —-0.00 147 0.14 0.66 049 2.10

Rand 20| 148 1.73 657 050 9.04 792 160 | 138 643 813 053 105 7.80 20.7
Rand 40| 20.0 =551 975 —-1.69 130 9.01 850 | 173 229 105 —1.07 124 850 18.6
Rand 60 | 18.6 —11.0 102 -3.34 128 8.05 1.19 | 145 074 9.11 —-0.60 9.67 6.80 14.0
Rand 80| 11.6 —16.5 849 —-744 947 263 —-386| 901 025 579 017 594 312 7.80

MaxSR 20 |—0.14 —1.42 8.07 9.59 —453 0.16 282 | 401 259 947 101 -029 136 36.7
MaxSR 40 |—2.18 —5.51 —093 336 080 221 215 | 148 073 320 393 429 399 335
MaxSR 60 |—4.08 —12.1 0.79 —2.54 281 —-1.65 120 | 1.58 029 354 220 4.66 174 224
MaxSR 80 |—4.59 —-179 172 -093 -0.17 -2.73 267 | 325 026 3.02 462 297 143 10.1

Minvar 20 | 9.02 -9.29 5.14 237 168 334 246 | 746 221 626 —136 16.1 213 34.1
MinVar 40 | 7.43 —446 144 —-595 124 247 195 | 727 116 457 —824 9.07 13.7 32.0
MinVar 60 | 741 —-11.5 —6.92 —8.73 4.05 0.77 7.89 | 691 020 198 —0.21 4.61 239 198
MinVar 80 | 3.41 —174 -5.07 —152 085 131 098 | 386 0.07 253 —2.06 2.06 2.06 9.58

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the EWRF, SGMV, and GMVRF benchmark

strategies, which are described in Table 2 of the paper. We consider as asset selection rules All, Rand, MaxSR, and MinVar, described in Table 3 of the paper, and portfolio sizes
ranging from N = 20 to N = M, the latter being the All selection rule. We report results across the seven datasets in Table 1 and estimate the portfolios either with the sample
covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004). The table is constructed following the methodology described in Section 5.4. The net out-of-sample
utility is computed using rolling windows, a sample size 7" = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is v = 1.
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Table OA.6: Effect of portfolio size on the annualized net out-of-sample utility of the SMV, SMV-
ST, and SMV-HT benchmark portfolios (in percentage points)

\ Sample covariance matrix \ Linear shrinkage covariance matrix
Asset Dataset Dataset
select. N 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

Panel (a): SMV
All M | —4E+05 —3E+11  —1E+06 —6E+07 —8E+08 —8E+07 —9E+04 ‘71443 —107 —1399 —2360 —1457 —1143 —1844

Rand 20 | —240 —-719 —-253 -—-575 -272 —-325 -—-234 |-86.8 828 —111 —38.2 —100 —23.7 —121
Rand 40 |—1131 —4753 —1043 —3709 —1233 —2442 —993 | —266 84.3 —295 —343 —270 —128 —366
Rand 60 |—3980 -—ce+04 —3419 —1e+04 —4213 —1+oa —3304 | =565 62.6 —594 -916 —523 —355 -—-722
Rand 80 | —1E+04 —3E+06 —9166 —3E+05 —2E+04 —3E+05 —1E+04 | —990 11.9 —948 —1709 —859 —714 —1207

MaxSR 20 | —95.7 —-286 —98.1 —256 —-230 -217 —183 |-339 402 —-459 872 —81.6 —-955 -704
MaxSR 40 | =573 —2158 —458 —1616 —822 —884 —733 | —-170 993 —-157 —-198 —166 —165 —-178
MaxSR 60 |—2006 -—s4e+04 —1862 —6927 —2678 —4486 —2389 | —357 136 —319 —433 —-342 396 —344
MaxSR 80 |—7543 -2E+06 —6950 -se+0s —9556 -7E+04 —8904 | =759 958 —610 —813 —622 —657 —656

MinVar 20 | —216 —405 —225 —882 —-269 —-707 —222 |—83.3 54.0 —105 —2.57 —82.7 105 —44.0
MinVar 40 | —916 —2132 —733 —4335 —986 —2750 —955 | —232 121 234 -276 —162 41.9 -—-206
MinVar 60 |—3205 —7E+04 —2440 -38+04 —3086 -—1E+04 —3200 | —492 138 —444 —781 —387 —82.5 —489
MinVar 80 |—7688 —2E+06 —6551 —7E+05 —1E+04 —3E+05 —1E+04 | —833 117 —660 —1484 —660 —471 —952

Panel (b): SMV-ST
All M| 158 -—108 11.7 =579 —-291 0.88 0.77 ‘ 239 678 513 —-195 104 164 143

Rand 20 |—7.40 -39.5 -395 -879 -8.19 -31.5 10.7 |-5.02 834 —-274 -52.8 —474 —124 104
Rand 40 |=7.19 =299 -9.75 —124 —16.0 —524 100 |-0.64 304 —6.19 —722 —879 —19.2 10.0
Rand 60 |—196 131 —-7.17 —148 —-21.1 -332 945 | 627 646 -332 —614 —9.08 10.1 943
Rand 80| 528 —548 —-041 -—-228 —134 776 6.81 136 88.0 326 —-103 —343 526 9.24

MaxSR 20| 9.61 —-796 730 549 —-1.13 —-283 139 | 997 517 645 504 —-040 —-3.54 —129
MaxSR 40 | 872 —155 4.81 -321 501 -17.0 12.6 11.7 158 249 —-127 9.84 435 -—155
MaxSR 60 | 3.14 743 -11.1 =719 =522 -7.79 109 123 60.0 057 =793 765 0.18 —184
MaxSR 80 |—3.62 33.1 1.86 —-944 —12.1 -31.1 593 | 582 118 —-0.25 —89.5 —-3.890 —455 -210

Minvar 20 | 0.56 8.66 595 9.03 —-859 923 133 | 236 223 550 341 -3.14 103 -554
MinVar 40 | —4.36 395 252 —120 —16.6 437 143 |-121 509 442 -0.08 —3.53 685 —52.0
MinVar 60 |—19.2 267 —-491 -159 -16.1 813 10.8 |-585 956 —-033 524 —12.1 114 -739
MinVar 80 |—18.9 30.0 —449 -345 174 825 646 |—142 112 -5.07 -552 8.89 148 —88.8

Panel (¢): SMV-HT
All M| —-353 =302 -—-16.8 —105 —259 —143 -7.62 ‘729.9 —-52.1 —-17.8 =376 —33.6 —349 -21.1

Rand 20 | —41.0 —439 -293 —168 —45.1 -—-106 —9.61 |—-24.0 —20.2 —17.7 —60.1 —-269 -—-352 —5.80
Rand 40 | —47.8 —630 —41.0 —167 —49.6 —-131 —-10.8 |-26.2 —-234 -22.7 —72.8 -33.8 —-70.8 —10.5
Rand 60 |—48.8 —680 -352 —-130 -504 -132 —-11.2 |-27.8 —243 —-19.5 —123 -36.7 —-116 —14.1
Rand 80 | —41.6 —-574 —-313 —135 -552 —-163 —10.1 |-282 —-212 —19.5 —193 —-385 —177 —17.8

MaxSR 20 |—16.1 —453 —-159 —-173 —153 —-150 —16.8 |-147 —-557 —-21.0 —-26.7 —199 —-6.57 —15.8
MaxSR 40 |—17.1 -128 -11.2 -30.1 —-109 -7.93 -—-14.8 |-26.1 —13.7 —13.7 —58.1 —28.5 —7.68 —15.9
MaxSR 60 | —2.09 —-110 —13.7 —51.3 —28.6 —329 —12.7 |-14.0 254 -9.84 —159 —19.1 —42.1 —154
MaxSR 80 |—19.5 —-161 —-296 —-194 —-14.1 -357 -109 |—-19.1 —10.6 —5.14 —-300 —16.0 —86.9 —22.9

MinVar 20 |—33.6 —-138 —-114 —125 -20.8 —-113 —-19.0 |—-194 —-9.65 —159 —8.69 —4.99 323 —-16.2
MinVar 40 | =36.1 —-212 —-159 —146 —148 -357 —144 |-228 176 —-22.6 —79.7 —289 —-28.7 —18.9
MinVar 60 |—21.8 —-575 -104 -79.0 —15.6 —-554 —-14.1 |-9.68 —8.84 —10.7 —100 —46.8 540 —-159
MinVar 80 | —14.7 —-272 -7.82 —49.4 -20.0 —-100 —103 |-163 —5.00 —16.7 —248 —-369 —156 —18.0

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the SMV, SMV-ST, and SMV-HT benchmark strategies,

which are described in Table 2 of the paper. We consider as asset selection rules All, Rand, MaxSR, and MinVar, described in Table 3 of the paper, and portfolio sizes ranging from N = 20 to
N = M, the latter being the All selection rule. We report results across the seven datasets in Table 1 and estimate the portfolios either with the sample covariance matrix or the linear shrinkage
estimator of Ledoit and Wolf (2004). The table is constructed following the methodology described in Section 5.4. The net out-of-sample utility is computed using rolling windows, a sample size
T = 120 months, and proportional transaction costs of 10 basis points. The risk-aversion coefficient is v = 1.
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Table OA.7: Effect of portfolio size on the annualized net out-of-sample utility of the F+A bench-
mark portfolio (in percentage points)

‘ Sample covariance matrix ‘ Linear shrinkage covariance matrix
Asset Dataset Dataset
select. N 96 108 100 94 107 98IN- 100 96 108 100 94 107 98IN- 100
rule S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO S-BM CHA S-OP IN-NV IN-CHA CHA-NV STO

All M |—232 —158 —-368 —-338 —138 —138 —-110 |—-113 19.7 -—-227 —-214 —-113 -375 —111

Rand 20 |—143 —-283 —-162 —170 —135 —-123 -50.7 |-974 -752 —-109 —102 —101 —-70.6 —41.6
Rand 40 |—192 —-368 -—-242 -203 —171 —146 —-71.5 |—-134 —88.8 —167 —136 —133 —82.8 —67.6
Rand 60 |—212 —337 —-293 —-212 —187 —-139 —83.8 |—-142 —62.7 —-200 —151 —146 —-73.3 —83.6
Rand 80 |—222 —-303 —-328 -228 —184 —117 —-95.9 |—-138 —-29.1 -216 —161 —141 —47.0 -97.3

MaxSR 20 |—49.8 —62.3 —469 —-107 —87.2 -76.1 —35.2 |-36.7 —12.0 —254 —66.9 —59.7 —64.1 —38.8
MaxSR 40 | —129 —69.4 —127 —155 —118 —112 —452 |-747 —19.2 —68.2 —103 —71.4 —64.5 —44.7
MaxSR 60 |—164 —57.0 —154 -235 —123 —-169 —-359 |-98.0 —10.9 —-924 —-168 —81.4 —80.6 —35.8
MaxSR 80 | —228 —84.6 —224 —175 —159 —-233 -56.0 |—161 —-15.1 —-137 —62.6 —101 —121 —52.7

MinVar 20 |—120 —-98.0 —119 —121 —-111 -27.2 -73.7 |-80.1 8.60 —83.0 —44.6 —71.5 924 —-58.5
MinVar 40 |—199 —-99.1 —-173 —-108 —161 —-134 —-143 |—-158 5.02 —-127 —12.1 —129 69.6 —127
MinVar 60 | —263 —164 —-250 —312 —141 —-104 —-196 |—172 —945 —-176 —159 —104 50.7 —182
MinVar 80 |—214 —-120 -310 —436 —-181 —-201 -210 |—139 9.13 -210 —-270 —126 —-9.56 —200

Notes. This table reports the annualized net out-of-sample utility, in percentage points, for the F+A benchmark strategy, which is described in Table 2 of the paper. We consider as asset

selection rules All, Rand, MaxSR, and MinVar, described in Table 3 of the paper, and portfolio sizes ranging from N = 20 to N = M, the latter being the All selection rule. We report
results across the seven datasets in Table 1 and estimate the portfolio either with the sample covariance matrix or the linear shrinkage estimator of Ledoit and Wolf (2004). The table is
constructed following the methodology described in Section 5.4. The net out-of-sample utility is computed using rolling windows, a sample size 7" = 120 months, and proportional
transaction costs of 10 basis points. The risk-aversion coefficient is v = 1.

rule, both the SGMV and GMVREF portfolios perform overall best for N = 20.

Next, we discuss the effect of the portfolio size N on the SMV, SMV-ST, SMV-HT, and F+A
portfolios in Tables OA.6 and OA.7. For the SMV portfolio, increasing N has a large negative
impact on the EU. This result is consistent with our theory that sets a very small optimal N for
SMYV; see Figure 2 in the main text. The insight is similar for the F+A strategy, consistent with the
left plot of Figure 7 in our simulations. SMV-ST and SMV-HT alleviate this negative impact of N
by setting a limited number of non-zero weights using an L;-norm constraint and a hard threshold
on the weights, respectively. Looking at SMV-HT, although it improves upon SMYV, increasing N
still has a negative impact on its EU in general. We can explain this finding because the assets in
which SMV-HT invests are determined from the weights of SMV, which face high estimation risk.
However, looking at SMV-ST, increasing /N is no longer systematically unfavorable. In particular,

under the shrinkage covariance matrix and the Rand asset selection rule, the best N among the
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values considered is often N = 80 or M. For the MinVar and MaxSR asset selection rules, where
we pick the best assets first, the best /V under the shrinkage covariance matrix is often either quite
small (20 or 40) oritis N = M. Setting N small is favorable because we select the best assets and
we have less estimation risk. Setting N = M is favorable too for SMV-ST because we still end up
with a limited number of non-zero weights due to the L;-norm constraint, so that estimation risk
is not excessive even for N = M. Moreover, by setting N = M, we do not change the investment
universe over time, so that the asset selection done by the L; norm is more stable and SMV-ST

incurs less transaction costs.

OA.8 Proofs of theoretical results in Appendix

In this section, we provide the proofs for all theoretical results given in the Appendix and the

Online Appendix.

OA.8.1 Proof of Proposition A.1

A

Letji = E[@y S pn), fis = B[S 11y], 62 = B[y Sy EnEy o], 62 = E[1 S Sr S 1],

and 615 = E[jily 23 'y 3 1x]. Then, the EU of the GMV-three-fund rule (cx) in (A3) is
2

1
EU(w(a)) = > (200 fi1 + 2a2fis — 0757 — 555 — 200020712) - (OA26)

Kan and Lassance (2025, Equations (IA80)—(IA84)) show that

RN 1912VT

_ AN, A2
M=T_-N-—2 (OA27)
- RN 1)\9 NT

= SN1%gN 0A28
A (OAZ8)
B enT? , N
T T -N-2p (HN’QQN e T> ’ OR)
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9 enkn 2 T?
0'2 pr— y
o2 (T — N —2)2

(OA30)

2
B cNEN2AgNT

— A31
012 (T_N_Q)Qa (OA31)

and plugging them into (OA26) yields the desired result in Equation (A4). It is then easy to show
that the &« = (ay, @) maximizing (A4) is equal to (AS), which also corresponds to Kan and
Lassance (2025, Equations (51)—(52)). Finally, after some developments, plugging (A5) into (A4)

yields Equation (A6), which concludes the proof.

OA.8.2 Proof of Proposition A.2

The squared Sharpe ratio of the GMV portfolio depends on p and Xy as

2 (123 1w )’
N<N +N
Now, under Assumption 1, ZR,I is given by (A38), and thus,
N - Np _
1.2 = — | Ay — ———— 0Oy 10N _ OA33
N&N BN 1—p(N 1_p+NpN,1(7N, 1), ( )
N Np
1S t1ly=—(6y_9— —F——52 . OA34
Ny 1y 1_/)(UN,z 1_p+Np0N,—1) ( )

Plugging (OA33)—(0OA34) into (OA32) yields the desired result in Equation (A7), which concludes

the proof.

OA.8.3 Proof of Proposition A.3

The EU of the EW-three-fund rule w(3) in (A12) is

N 1 . - I
EU@(8) = 5 (251u1 + 2Boptewn — 267 — BRo2,  — 2E['S: lzwew]) . (OA35)
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where fi; is given by (OA27), 62 by (OA29), and E[i’ 53*12wew] = %, which yields

the desired result in Equation (A13). It is then easy to show that the 3 = (f3;, f2) maximiz-
ing (A13) is equal to (A14). Finally, after some developments, plugging (A14) into (A13) yields

Equation (A15), which concludes the proof.

OA.8.4 Proof of Proposition A.4

We have that 62, v = pi2,, n/02, n» Where fic, v = Jin and, under Assumption I,

N N
1 1 P
2 _ o _
O-ewyN - N2 1§V21N - N (O-N72 + N E : z :O-ZO-]> : (OA36)

This yields the desired result in Equation (A16) after noticing that
p N N
N Z Y005 = pNax, — pons, (OA37)
i=1 j#i

which concludes the proof.

OA.8.5 Proof of Proposition A.5

Throughout the proof, we denote

Np

N, OA38
FN,p) = 1= P ( )

Bias of ¢ . The expectation of d is

RS I | (s
A 9 ; .

E[on] = - ;E[si] T E <Z:1 si> . (OA39)

Given that E[5?] = s7 4 7, we have
LS R = Oy + o (0A40)

M < S
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Moreover,

M
> s] : (OA41)

where

M M M
A 1 A 1 1 M—-1
2 ] =3 2 2 Covlsn il =7 (M+ i P)- (0A42)

Plugging (OA40)-(OA42) into (OA39) yields

: 1 J(N,p)(1 —p+ Mp)
- — (1= A43
E[dn] = on + 7 (1 7 : (OA43)
which corresponds to (A33), as desired.
Bias of 7 . The expectation of 7, y is
. 2
B |(# S A - e 3 5)
Elryn| = — — . (OA44)
7. om,—2 — f(V, ,0)‘712\4,71
Given that E[\;] = \; and E[3;] = s;, we have
E[fg,N] =7TgN + WX
Var [Zf\il 5\1} + f(N, p)?a3, _ 1Var[ J\i } p)an.—1Cov [Zf\il A, M5
UM -2 -1 ’
(OA45)
where > Var [Zf\il §1] is given by (OA42) and
M | MM 1 (1—)p
5 VB — P ~2
WVar ZZl/\] = izljzl(fov[)\i, ] = T ( 3 OM-2 + pO’M71> , (OA46)
M M M M
. . 1 L 1—p+Mp_
—(CO ;)\Z,;Si] = W ;;COV[Ai,Sj] = TU[\L,L (OA47)
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Plugging (OA42) and (OA46)—(OA47) into (OA45) yields

1 ™ M M

LGN,z + (p 4 S0 (A=ptMp) 2f(Nyp)(1*P+Mp)) 5%/[7_1

Elfgn| =TgN + = — -
o} =Ty T ou—2 — F(N, )3y 4
which corresponds to (A34), as desired.

Bias of 7., v. The expectation of 7, v is

M 2
A (1-p) 1 .
Elfew N = - ——FE i
[P ew,n] (1= p)oarz +pNU]2\471 M2 ZN

Given that E[[;] = u;, we have

1 Mo\ 1
e (Z@ = Hi + g Var

Moreover,

1
WV&I‘

i=1 i=1 j=1

Plugging (OA50)—(OA51) into (OA49) yields

1—p (L=p)omsz+pMay,,
E Aew = Tew X — 7 —,
[Few v ] = Tewy + MT (1—p)opao+ /)]\70]2\471

which corresponds to (A35) and concludes the proof.

OA.8.6 Proof of Proposition OA.1

Under Assumption OA.1, the covariance matrix of r is
Yy = 01BnBy + 0 1y,

and its inverse is

1 o2
Sy = Iy —f,BNL%V

o2 o2+ o78yBn
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We have that 6%, becomes

N O’J%
o2+ N JJQJ]BV

o

N _
=S = |0 - (] (OASS)

which corresponds to (OA3). Plugging (OASS5) in (9) and (13) yields the desired result and thus

completes the proof.

OA.8.7 Proof of Proposition OA.2

We begin by proving that U (w*) in Proposition 1 is a convex function by showing that its second

derivative with respect to p is positive for all p € ( — ﬁ, 1). The first derivative is

Ono(l—p+ Np)2 — NO% (1 — p?2 + Np?
QU(w*) _ N | On2(1—p+Np) ni(l—p ) | (0AS6)
dp 2y (L=p)*(L=p+ Np)
and the second derivative is
5?2 N _ _ (N —=1)*(1-p)*,
— = — — 62 02 AS57
30 = S | =B+ S | (OAT

which is positive because Oy, — 0%, > 0and (1 —p+ Np)® > 0forall p € (— ,1).
Next, we prove that the value of p € (— 7, 1) minimizing U (w*) is given by p™™ in (OA6).
There are two roots to the first derivative in (OA56) given by

—Ono * V%@v,ﬂﬁ
NS — On. ’

P (OA58)

where we define § = 05 — 03, > 0. We proceed by showing that p~ & ( — 5, 1) whereas
pt = p™™ € (- 55,1), and thus, is a minimizer of U(w*) that is convex in that interval.
We first treat the case p~ & ( — ﬁ, 1). We have limy_,5, ,/5 p~ = 00 and thus we can leave

out the case N = éNQ /9. Let us consider the case N > §N72 /9. Then, p~ is negative and we need

to show that p~ < —ﬁ. This is equivalent to

NOy> = NVo
o (VT - VE) >0, (0A59)
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which holds because, given N > 91\1,2 /9, we have

NéNQ \/_ ( /—|0N1|_\/—>

N -1 N
Ny NVo On .2 =
>N—1+N—1< 5 _1|9N’1|_\/5>

. NéN,Q N(29_12v,1 - éN,Z)

=55t N7 > 0. (OA60)

Then, we consider the case N < §N72 /0. In this case, p~ is positive and we need to show that

p~ > 1. This is equivalent to

N|o J
ng 4 MOl 0, (0A61)
N -1
which holds true.
We treat next the case p* € ( — ,1). When N = Oy/d, p™ = 0/0 is indeterminate and

we can show using L’Hospital rule that

lim =1 N2 (0A62)
N—sly /6 2012\,’1

which is strictly smaller than one and, moreover, 1 — Oy 5/(20% ;) > 1 —0n2/03 ; = —1/(N — 1)

when N = 0y /3. We then consider the case N > 0y /4. In this case, p™ < 1 is equivalent to

NV§

2 (VIN =15~ [fwal) > . (0A63)

which holds if § > 63, /(N — 1) and this holds true because, given N > 0 5/9,

O O 5 (OA64)
) < _ ) — .
N—-1 Oy2/0—1
Next, still in the case N > QN 2/0, pT > — ~—7 18 equivalent to

(5+|9N JVIN =106 — 9N2> (OA65)
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which holds true because

) ) ) 0 )
O+ 10n-1|v/ (N —=1)0 —Ono > 6+ |On_1] (% - 1) d—0On2=0. (OA66)

We turn then to the case where N < @ n2/90. In this case, p™ < 1 is equivalent to

NV§
N —1

<|§N,1| ~JIN = 1)5) >0, (OA67)

which holds if § < 63, /(N —1) and this holds true because, given N' < fly »/3, inequality (OA64)

is reversed. Finally, still in the case N < QN 2/0, p* > — 5~ is equivalent to

(5+|9N JVIN =106 — 9N2> (OA68)

which holds true because, given N < 0 N2 /8, (OA66) is reversed. This concludes the proof.

OA.8.8 Proof of Proposition OA.3
The EU of the portfolio ey ¢ is
EU(T/wﬂW‘f) - UE[ ewrf”’] - %77 E[ ewrfzwewrf] (OA69)

Therefore, the optimal 7 is 7* = (1/7)E[@L,, 1] /E[W.,,, ;ZWeurs]. Now, using the fact that,

under i.i.d. multivariate normality, fiew,n ~ N (ftewn, 0oy x/T), TG2 n ~ 0oy xX7—1- and they

are independent of each other, the first two moments of )\ew N = % cwN/O er v are
° . T-3 1
E[)‘ew,N] = )\ew,N and ]E[)‘zw,N] = T——5 (Asz + To 2wN> ) (OA70)
and thus,
E[w@’,, -] ew and B[, SWeurs] = P=3 (g 1 (OA71)
w = Weyr "o/ E\
ewrfu’ ~ ewrf f 72(T . 5) ew,N T

Therefore, the optimal n* is equal to (OA13), which concludes the proof.
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0OA.8.9 Proof of Proposition OA .4

Consider a pair of selection rules (k, 1) that both select NV, assets out of M available ones. They
randomly select assets from a Bernoulli distribution without replacement and are mutually inde-
pendent. The selections are stored in the (M X 1) selection vectors yj ; and y; ;.

The number of assets selected in rule yy, ¢ is Zf\il Yikt = y;7t1 u and the overlap between
rules k and [ is y;, ,y1s = Zf\il Vi ktYi ¢ We are interested in the expected overlap between these
two rules, denoted Nt, . Using the independence properties of the two rules and that y;,: €

{0,1} Vi, k, t, we can write N; 5/ as

B M M M
Nt =B yinatiiae] Y vine = Y viae = Ny
=1 =1 i=1
M
= P yins =1 |yh,dnr = Ni| x Plyige = 1y, 1ar = M. (OA72)
=1

Consider the probability of getting y,; = y where y is a binary vector such that Zf\il Ui = n.
Given that the sum of i.i.d. Bernoulli random variables follows a binomial distribution, we can
write, using Bayes theorem,

P [y;<;7t1M = Nt| Ykt = Ilﬂ X Plyp: = 9
P [y;mlM = Nt}

_ Loy x (=" Ljneny

(e ()

t

P [yk,t =y |y1/<;,t1M = Nt} =

(OA73)

Marginalizing this joint distribution over the entries j # ¢ yields the marginal distribution of y; 1, ;

. M
conditional upon > .~ y; 5 = Ny,

1 . N, M-—1

P [yi,lc,t =1 |y;~c,t1M = Nt:| =P [yi,k,t =1 Zyjk’t = Nt — 1] — Z {Z];éh]\‘;; N¢—1} _ (N}gwl) ]
j;ﬁz h;ﬁi (Nt) (Nt>
(OA74)

Plugging (OA74) into (OA72) yields the desired result and concludes the proof.
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