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Abstract

This paper offers two novel backtests to evaluate the adequacy of well-known systemic risk

measures such as CoVaR, MES, SES, and SRISK. Both the new backtests are robust to

estimation risk, that is, their null distributions remain invariant in the presence of estimation

risk. While existing backtest is consistent against divergence from the null hypothesis up to a

finite order, the paper shows that the new backtests are fully consistent. The real-world

implications brought by the new backtests are economically significant as they reveal

significantly more cases of inadequate systemic risk modeling among the major financial

institutions.
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I. Introduction

In his recent keynote speech as the chairperson of the European Central Bank’s supervisory

board, Andrea Enria concluded that the recent pandemic and geopolitical events have turned into

macro-level shocks that could alarmingly put the stability of financial system at risk (Enria, 2022). It is

therefore crucial that financial supervisors and regulators have access to reliable measures describing

and anticipating risk with systemic effects, i.e., the systemic risk measures. To examine the reliability

and accuracy of these measures calls for proper validation tools. In today’s fast-paced world, the

financial system and its participants are responding and acting according to the latest news and events.

Thus, methods for testing the reliability of systemic risk measures must adapt accordingly, by placing

more attention to recent observations.

Existing literature on backtesting systemic risk is scarce, with the pioneering work contributed

by Girardi and Ergün (2013), who propose to backtest the conditional value-at-risk (CoVaR) measure of

Adrian and Brunnermeier (2011, 2016) using likelihood ratio method in the vein of Kupiec (1995) and

Christoffersen (1998). A major contribution to backtesting systemic risk measures is given by

Banulescu-Radu, Hurlin, Leymarie, and Scaillet (2021), hereafter also referred to as BHLS, who

provide methods to backtest multiple systemic risk measures considered as important and prominent by

the literature, i.e., the delta CoVaR (∆CoVaR) of Adrian and Brunnermeier (2016), the conditional

capital shortfall measure of systemic risk (SRISK) of Acharya, Engle, and Richardson (2012) and

Brownlees and Engle (2017), the marginal expected shortfall (MES) and the systemic expected shortfall

(SES) of Acharya, Pedersen, Philippon, and Richardson (2017). To this objective, BHLS propose

non-likelihood-based statistic such as the t-statistic (to backtest e.g., CoVaR) and the Box-Pierce

statistic (to backtest e.g., MES), while taking into consideration the impact of estimation risk.
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In this paper, we provide two classes of backtests for checking the adequacy of prominent

systemic risk measures. We begin with backtesting the CoVaR and MES measures. We exploit as with

existing literature the martingale difference sequence (mds) property of risk indicators derived under the

definitions of CoVaR and MES, with a complementary observation. In particular, we show, without

imposing additional conditions to existing works, how we can obtain a general procedure, i.e., one that

can be used to detect inadequate systemic risk estimated using either CoVaR or MES. This puts our

backtesting philosophy in line with the “better-safe-than-sorry” philosophy recently advocated by major

regulatory body such as the European Central Bank (see, e.g., Enria, 2022; Rehn, 2020). This follows

because in practice, the CoVaR and MES of a financial institution are usually forecasted by the same

risk model, and by backtesting CoVaR and MES jointly, we require the risk model to adequately

produce both estimates. Our philosophy imposes a more stringent requirement on institutional risk

modeling which in turn promotes a safer empirical practice.

By construction, the paper’s statistical hypotheses take into account simultaneously both the

unconditional and independence conditions commonly examined by the literature. We formulate the

first backtest by analogy with the kernel generalization of Box and Pierce (1970) test in Hong (1996),

and the additional technicality here lies with treating the impact of estimation risk which stems from

forecasting out-sample systemic risk using in-sample parameter estimates. Because our first backtest

tackles estimation risk using its standardizing factors, we refer to it as the “standardized” backtest. As

the effect of estimation risk can also be asymptotically treated by whitening the test statistic, we obtain

the second class of our backtest — the “whitened” backtest. Under regularity conditions, we show both

the proposed backtests converge in distribution to N(0, 1) under the null hypothesis.

We also explicitly study and establish the consistency of the new backtests. While the

Box-Pierce-type statistic developed in BHLS focuses on divergence from the null hypothesis up to the
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first m lag order, we show that our backtests are fully consistent to capture a wide range of empirical

alternatives. By extension, our backtests also generalize the methodology in Girardi and Ergün (2013)

as it focuses on the first-order effect. Intuitively, such generalization is achieved by making m the

testing scope of our test statistics and then letting m → ∞. This also appealingly makes the asymptotic

distribution of our backtests robust to any finite sample adjustments in m such as those discussed in

Breusch and Pagan (1980).

Additionally, we show how the new backtests can also be applied to examine the adequacy of

other prominent systemic risk measures. In particular, we show how the new backtests also

simultaneously examine the adequacy of the SES and SRISK measures. While existing backtest for

SES and SRISK are based on simulated test statistics, the new backtests need no modification. This

highlights the generality of the new backtests as they can be conveniently used to detect inadequate

systemic risk estimated using either CoVaR, MES, SES, or SRISK. We also discuss how our backtests

can be slightly tweaked from focusing on the distress system condition to examining other system level

of interest such as the median, which allows backtesting ∆CoVaR since it also evaluates CoVaR at the

median system condition.

The Box-Pierce-type statistic, upon allowing its testing scope to grow, can be viewed as a

special case of our backtests under the truncated uniform kernel. Both procedures assign equal weight

to each lag order. We offer downward weighting kernels to better match the new kernel-based backtests

with financial market stylized fact, since market participants are usually more influenced by recent news

than by remote past events. Simulation evidence highlights the optimality of our backtests. First, the

new backtests demonstrate detection power against alternatives that are of dynamic (i.e.,

time-dependent) nature and of time-invariant (i.e., unconditional) nature. A growing m improves power

against time-invariant alternatives but the opposite is observed against time-dependent alternatives. In
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this aspect, our downward weighting backtests stand out over existing equally weighted backtest as they

give better tradeoff between the two types of alternatives. Simulation evidence also highlights the

complementary finite-sample capacities of the new backtests. Our standardized backtest, which

preserves data dynamics more effectively, tends to yield better power against alternatives driven by

dynamic misspecification. Under the time-invariant alternatives whitened backtest gives slightly better

power than its standardized counterpart.

In addition to using simulated data, we also study the performance of the new backtests using

real-world data. We focus on the largest financial institutions as their failures (due to e.g., inadequate

risk evaluation) are often detrimental to the greater financial system. More precisely, as in Brownlees

and Engle (2017) and Banulescu-Radu et al. (2021) we study US institutions with market capitalization

greater than 5 billion dollars as of the end of June 2007. We collect data from early 2000 until late 2022

to study also the more recent pandemic-induced financial market crashes. Our findings confirm the

empirical improvement brought by the new backtests. For instance, compared to existing backtest the

new backtests demonstrate better empirical power as they reveal thousands more cases of inadequate

systemic risk modeling over the sample period. Such improvement is also of considerable economic

significance as it implies that the new backtests would have detected a larger scale of inadequate

systemic risk modeling among the major financial institutions. These additional cases could play an

important role in calling for a system-wide revision of existing risk modeling, which in turn would

improve the stability of the greater financial system. Our empirical evidence also confirms the

complementary features between the new backtests. Thus, we propose, in accordance with the

“better-safe-than-sorry” philosophy, that the new backtests are applied together to detect as many

indications about large-scale systemic risk inadequacies as possible.

In the spirit of Gourieroux and Zakoı̈an (2013) and Lazar and Zhang (2019), BHLS propose a
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system indicator by adjusting the forecasting errors in a forecasted systemic risk series under an

objective function. In particular, the objective function in BHLS aims to adjust each forecast with the

same magnitude. This may not be optimal because the forecasting errors across a forecasted series are

generally nonuniform as, for instance, the next-period forecast is expected to be more accurate with a

smaller margin of error than the forecast multiple periods ahead. By reasonings similar to the

construction of the new backtests, we improve upon existing objective function such that it aims to

adjust with smaller magnitude the immediate forecasts and appropriately with greater magnitude the

forecasts multiple steps ahead. This is expected to give an indicator that reflects more accurately the

state of the financial system. Indeed, compared with existing indicator, the new indicator shows warning

signals that are more noticeable and alarming prior to both the 2008 subprime-induced and the 2020

pandemic-induced stock market crashes.

The remainder of this paper is organized as follows. Section II spells out the framework and

statistical theory of the new backtests. Section III provides Monte Carlo evidence highlighting the

improvement brought by the new backtests over existing backtest. Section IV confirms the

improvement using empirical data. Section V presents an early warning indicator for the financial

system. Section VI concludes.

II. Method and statistical theory

A. Preliminaries and definitions

We begin with some preliminaries, and we consider the following notations. Given two entities

Y = (Y1, Y2)
′, we let Yt ≡ (Y1,t, Y2,t)

′ collect their returns at time t. In the context of backtesting
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systemic risk, Y1,t is the stock return of a financial institution, whereas Y2,t is the system return which is

usually proxied by the return of a market index. We let Ωt−1 collect the information available at time

t− 1, and we denote by FY (·|Ωt−1) the joint distribution function of Yt given Ωt−1, such that we have

for any y = (y1, y2) ∈ R2, FY (y|Ωt−1) = P(Y1,t ≤ y1, Y2,t ≤ y2|Ωt−1). Similarly, we let FY 2(·|Ωt−1)

denote the marginal distribution of Y2,t given Ωt−1, such that we have for any y2 ∈ R,

FY 2(y2|Ωt−1) = P(Y2,t ≤ y2|Ωt−1). For notational simplicity, we drop “almost surely” in all equalities

involving random variables.

We now introduce the definitions of systemic risk measures MES and CoVaR. Formally, for a

given α ∈ [0, 1], the MES of an institution at time t is defined as

MESY 1,t(α) = E(Y1,t|Y2,t ≤ V aRY 2,t(α); Ωt−1),(1)

where V aRY 2,t(α) verifies V aRY 2,t(α) = F−1
Y 2 (α|Ωt−1). Because α is typically specified at a small

value such as 5%, the event Y2,t ≤ V aRY 2,t(α) captures the left tail distressed system condition. Thus,

MESY 1,t(α) quantifies the expected performance of a financial institution given that the system is in

distress. The CoVaR definition shares the similarity that it also emphasizes the distress system

condition. For a given β ∈ [0, 1], the CoVaR of an institution at time t is the quantity CoV aRY 1,t(β, α)

verifying the following equation

P(Y1,t ≤ CoV aRY 1,t(β, α)|Y2,t ≤ V aRY 2,t(α); Ωt−1) = β.(2)

The CoVaR definition (2) differs slightly from that in Adrian and Brunnermeier (2016), where the main

difference is the use of an inequality (instead of an equality) for the conditioning event, that is
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Y2,t ≤ V aRY 2,t(α). Our definition allows for losses beyond V aRY 2,t(α) and is in line with the

backtesting literature (see, e.g., Girardi and Ergün, 2013; Banulescu-Radu et al., 2021). Besides, we

note CoV aRY 1,t(β, α) verifies CoV aRY 1,t(β, α) = F−1
Y1|Y2≤V aRY 2(α)

(β|Ωt−1), where

FY1|Y2≤V aRY 2(α)(·|Ωt−1) is the conditional distribution of Y1,t given Y2,t ≤ V aRY 2,t(α) and Ωt−1. In

other words, CoV aRY 1,t(β, α) measures an institution’s β-quantile return given that the system is in

distress.

In practice, systemic risk measures are typically estimated and forecasted from a parametric

model specified by academics, risk managers, or regulators. For instance, Brownlees and Engle (2017)

and Banulescu-Radu et al. (2021) consider the dynamic conditional correlation (DCC) specification to

model and forecast systemic risk. Therefore we suppose, along with other risk measures of interest,

V aRY 2,t(α) ≡ V aRY 2,t(α,θ0) = F−1
Y 2 (α|Ωt−1,θ0) and

CoV aRY 1,t(β, α) ≡ CoV aRY 1,t(β, α,θ0) = F−1
Y1|Y2≤V aRY 2(α)

(β|Ωt−1,θ0), are computed from a

parametric model with true but unknown p-dimensional parameter vector θ0 ∈ Θ0 ⊆ Θ ⊂ Rp.

To backtest systemic risk measures, BHLS define a violation risk indicator based on the ex-post

risk sequence {CoV aRY 1,t(β, α,θ0), V aRY 2,t(α,θ0)} evaluated at a specified (α, β) level, namely

ht(α, β,θ0) ≡ 1[(Y1,t ≤ CoV aRY 1,t(β, α,θ0)) ∩ (Y2,t ≤ V aRY 2,t(α,θ0))].

Next, by identifying the MES-CoVaR relation, that is,

MESY 1,t(α) = MESY 1,t(α,θ0) =
∫ 1

0
CoV aRY 1,t(β, α,θ0)dβ, we obtain as with BHLS the risk
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indicator for MES

Ht(α,θ0) ≡
∫ 1

0

ht(α, β,θ0)dβ

= 1[FY2(Y2,t|Ωt−1,θ0) ≤ α]× [1− FY1|Y2≤V aRY 2(α,θ0)(Y1,t|Ωt−1,θ0)],

where the second equality follows by probability integral transform. The idea of backtesting risk

measures using their “respective” risk indicators is standard in the literature. For instance, ht(α, β,θ0)

and Ht(α,θ0) are analogous to risk indicators used in backtesting, respectively, the value-at-risk

measure (see, e.g., Berkowitz, Christoffersen, and Pelletier, 2011) and the expected shortfall measure

(see, e.g., Du and Escanciano, 2017). By the same reasoning, BHLS propose to use ht(α, β,θ0) to

backtest CoVaR at a specified (α, β) level, and to use Ht(α,θ0) to backtest MES at a specified α level.

To backtest risk measures the literature generally relies on exploiting the martingale difference

sequence (mds) property of risk indicators. The mds property of ht(α, β,θ0) and Ht(α,θ0) can be noted

as follows. First, by Bayes theorem we have P(ht(α, β,θ0) = 1|Ωt−1) = αβ. It follows from definition

(2) that, ht(α, β,θ0) follows the Bernoulli(αβ) distribution, and that the ex-post centered indicator

{ht(α, β,θ0)− αβ} is a mds at the specified (α, β) level. Secondly, by Fubini’s theorem we note that

the mds property of {ht(α, β,θ0)− αβ} is preserved by integration, and that the mean of Ht(α,θ0) is

given by α/2. Therefore, {Ht(α,θ0)− α/2} is also a mds at the specified α level, that is

E(Ht(α,θ0)− α/2|Ωt−1) = 0.(3)

Notice that by definition of Ht(α,θ0) and Fubini’s theorem we have

E(Ht(α,θ0)|Ωt−1) =
∫ 1

0
E(ht(α, β,θ0)|Ωt−1)dβ. It follows that for equation (3) to hold the CoVaR
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indicator ht(α, β,θ0) must be properly modeled not just at a specified β but instead for all β ∈ [0, 1].

This is a complementary observation to existing literature. It implies that by examining the MES

measure using Ht(α,θ0) at a specified α level, we are simultaneously examining the CoVaR measure

using ht(α, β,θ0), at the same α level but for all β ∈ [0, 1]. Thus, we propose to examine MES and

CoVaR jointly based on the mds property of Ht(α,θ0), which gives a general procedure, i.e., one that

can be conveniently used to detect inadequate systemic risk estimated using either CoVaR or MES. Our

procedure is in line with the “better-safe-than-sorry” philosophy advocated by major regulatory body

such as the European Central Bank.1 This is because in practice, the CoVaR and MES of a financial

institution are usually estimated and forecasted by the same risk model (see, e.g., Banulescu-Radu et al.,

2021). By backtesting MES and CoVaR jointly, we require the risk model to adequately produce both

estimates. This imposes a more stringent requirement on institutional risk modeling which in turn

promotes a safer empirical practice.

B. The main hypotheses

Therefore, to backtest MES and CoVaR we focus on the mds {Ht(α,θ0)− α/2} to obtain as

with the broader backtesting literature the zero mean condition, i.e., E(Ht(α,θ0))− α/2 = 0 and the

zero autocovariance condition, i.e., E[(Ht(α,θ0)−E(Ht(α,θ0)))× (Ht−j(α,θ0)−E(Ht(α,θ0)))] = 0

for all j ≥ 1, which are sometimes referred to as the unconditional hypothesis and the independence

1We note existing literature follows another (less stringent) philosophy which suggests backtesting CoVaR and MES

separately. This will allow for empirical cases where the MES estimate of an institution is inadequate, but the institution’s

CoVaR estimate (at a particular β level) is deemed adequate and can be relied upon, despite both measures are estimated by

the same risk model.
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hypothesis, respectively (see, e.g., Christoffersen, 1998; Du and Escanciano, 2017; Banulescu-Radu

et al., 2021).

To ensure asymptotic full detection power against both hypotheses, we construct a statistical

framework that considers both the unconditional and the independence conditions. This is achieved by

first applying E(Ht(α,θ0)) = α/2, for all t, in the autocovariance γ(j) and autocorrelation ρ(j)

functions

γ(j) ≡ E [(Ht(α,θ0)− α/2)× (Ht−j(α,θ0)− α/2)] , ρ(j) = γ(j)/γ(0).(4)

Then, based on ρ(j) we specify the main hypotheses of the paper

H0 : ρ(j) = 0, for all j ≥ 1, H1 : ρ(j) ̸= 0 for any j ≥ 1.

By construction, our hypotheses take into account jointly both the zero mean condition and the zero

autocovariance condition. A statistical test consistent against divergence from H0, that is, with

asymptotic unit power under H1, would be consistent against both conditions. This is confirmed using

the new backtests in our simulation study.

In practice, we do not observe Ht(α,θ0) and ρ(j) but we can estimate them using the observed

sample {Y1,t, Y2,t}T+n
t=1 . In this aspect, we note that the fundamental notion of backtesting is about

examining the quality of a sequence of forecasts (using e.g., H0). This calls for a forecasting scheme.

For meaningful comparison we use as with BHLS the “fixed forecasting estimation scheme”. That is,

we first use an in-sample return data from t = 1 to t = T (i.e., {Y1,t, Y2,t}Tt=1) to estimate θ0, by e.g.,

θ̂T , where θ̂T is a consistent estimator for θ0, with the asymptotic variance of
√
T (θ̂T − θ0) given by Σ.
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Then, using θ̂T and the out-sample return data observed from t = T + 1 to t = T + n (i.e.,

{Y1,t, Y2,t}T+n
t=T+1), we forecast and compute {Ht(α, θ̂T )}t=T+n

t=T+1 . Therefore, the sample counterpart of

ρ(j) is given by

ρ̂n(j) = γ̂n(j)/γ̂n(0),(5)

where γ̂n(j) is the sample autocovariance

γ̂n(j) =
1

n− j

T+n∑
t=T+1+j

(Ht(α, θ̂T )− α/2)× (Ht−j(α, θ̂T )− α/2).(6)

A backtest can be readily constructed based on the Box-Pierce (Box and Pierce, 1970) test

statistic, namely

S = n
m∑
j=1

ρ̂2n(j).(7)

However, in the presence of estimation risk (i.e., n/T → ω, and 0 < ω < ∞), it has been shown that S

does not follow a standard distribution. Besides, as S checks H0 up to a finite order m, it may not be

consistent against some higher order alternatives.

C. Test statistics and asymptotic theory

In this paper we propose for the context of backtesting systemic risk two classes of consistent

N(0, 1) backtests. The construction of our first backtest is analogous to the kernel generalization of
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Box-Pierce test in Hong (1996), which takes into account all available ρ̂n(j)

n

n−1∑
j=1

k2(j/m)ρ̂2n(j),(8)

where k(·) is a kernel function with kernel parameter m which is a positive integer. Some commonly

used k(·) are the Bartlett (BAR) kernel, the Daniell (DAN) kernel, the Parzen (PAR) kernel, the

Quadratic-Spectral (QS) kernel, and the truncated uniform (TRU) kernel

BAR: k(z) =

0,

1− |z|,

otherwise,

|z| ≤ 1,

DAN: k(z) =
sin(πz)
πz

, −∞ < z < ∞,

PAR: k(z) =

0,

2(1− |z|)3,

1− 6z2 + 6|z|3,

otherwise,

0.5 < |z| ≤ 1,

|z| ≤ 0.5,

QS: k(z) =
25

12π2z2

(
sin(6πz/5)
6πz/5

− cos(6πz/5)
)
, −∞ < z < ∞,

TRU: k(z) =

0,

1,

otherwise.

|z| ≤ 1,

The BAR, PAR, and TRU kernels have compact support, and m can be viewed as the truncation

parameter for these kernels, i.e., k(z) = 0 for |z| > 1.2 All the given kernels satisfy the assumptions on

k(·) in the online appendix. Except for the TRU kernel, all kernels discount the weights of higher order

2Notably, Newey and West (1987) propose to use the BAR kernel in the context of estimating Heteroskedasticity and

Autocorrelation Consistent (HAC) covariance matrix.
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lags. Using downward weighting kernel gives better match to the well-known stylized fact that financial

market is more influenced by recent news than by remote past events, and is thus expected to give better

empirical rejection power. As with S, expression (8) may not follow a standard asymptotic distribution

in the presence of estimation risk. We quantify and account for the impact of estimation risk in our test

statistics accordingly, and our first backtest is the standardized version of expression (8), namely

Q0 =
n
∑n−1

j=1 k
2(j/m)ρ̂2n(j)−M1n(k)

V1n(k)1/2
,

where

M1n(k) =
n−1∑
j=1

k2(j/m)[1 + ωR(j)′ΣR(j)],

V1n(k) = 2
n−1∑
j=1

k4(j/m)[1 + ωR(j)′ΣR(j)]2 + 2
n−1∑
j=1

n−1∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR(i)′ΣR(j)]2,

and R(j) is given by

R(j) =
1

α(1/3− α/4)
E {(Ht−j(α,θ0)− α/2)∇θ[Ht(α,θ0)]} , θ ∈ Θ.

The quantities M1n(k) and V1n(k) are approximately the mean and variance of expression (8). The

additional technicality here with respect to the Hong (1996) test lies with treating the impact of

estimation risk, which stems from estimating out-sample risk measures based on in-sample parameter

estimates. Intuitively, we quantify estimation risk by first measuring the sensitivity of the out-sample

risk indicator with respect to the in-sample parameter in the form of R(j). The sensitivity is then scaled

according to the asymptotic variance of the parameter estimates Σ. Based on the calculated estimation
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risk we then quantify its impact on the asymptotic distribution of our test statistic, and the impact is

subsequently adjusted by M1n(k) and V1n(k). This makes the asymptotic distribution of Q0 robust to

estimation risk. In the absence of estimation risk (i.e., ω = 0), M1n(k) and V1n(k) reduce to

M1n(k) =
∑n−1

j=1 k
2(j/m) and V1n(k) = 2

∑n−1
j=1 k

4(j/m), respectively.

In practice a feasible test statistic Q requires consistent estimators for R(j) and Σ, which we

denote by R̂(j) and Σ̂, respectively. Therefore, the feasible test statistic is given by

Q =
n
∑n−1

j=1 k
2(j/m)ρ̂2n(j)− M̂1n(k)

V̂1n(k)1/2
,

where (M̂1n(k), V̂1n(k)) are defined as (M1n(k), V1n(k)) with (R(j),Σ) replaced by (R̂(j), Σ̂).

We refer to Q as the “standardized” backtest as it tackles estimation risk using its standardizing

factors. Because the effect of estimation risk can also be asymptotically addressed by whitening (i.e.,

decorrelating) the {ρ̂n(j)} sequence, we obtain the second class of our backtest.3 Put {ρ̂n(j)}n−1
j=1 in the

vector ρ̂n, and let ρ̂nr(j) denote the asymptotically whitened version of ρ̂n(j). In particular, ρ̂nr(j) can

be, but not limited to, the j-th element of the vector ∆̂−1/2ρ̂n, where ∆̂ is a consistent estimator of

matrix ∆ whose (i, j)-th element is given by ∆(i, j) = δ(i, j) + ωR(i)′ΣR(j), with δ(i, j) the

Kronecker delta which takes the value of 1 if i = j and 0 if otherwise. Similarly, by putting {ρ(j)}n−1
j=1 in

ρ, we have the j-th element of the vector ∆−1/2ρ, which we denote by ρr(j), being the true counterpart

of ρ̂nr(j). The robust Box-Pierce-type backtest proposed in BHLS is based on the whitened sequence

Sr = n

m∑
j=1

ρ̂2nr(j),

3Notably, the core concept of Generalized Least Squares (GLS) is based on the same whitening technique.
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and it has been shown that Sr
d−→ χ2(m) under regularity conditions.

Our second class of N(0, 1) backtest is also based on {ρ̂nr(j)}, namely

Qr =
n
∑n−1

j=1 k
2(j/m)ρ̂2nr(j)−

∑n−1
j=1 k

2(j/m){
2
∑n−1

j=1 k
4(j/m)

}1/2
.

The standardizing factors in Qr are those in Q when there is no estimation risk (ω = 0). Intuitively,

estimation risk has been adjusted by whitening {ρ̂n(j)}, and thus the standardizing factors of Qr need

no further adjustment. Therefore, we refer to Qr as the “whitened” backtest. When the TRU kernel is

used, we obtain

QrTRU =
n
∑m

j=1 ρ̂
2
nr(j)−m

{2m}1/2
,

which can be viewed as the generalized BHLS statistic that allows m to grow. As with Q we propose

downward weighting kernel for Qr to give a closer match to financial market stylized facts. This is

expected to improve the detection power of our backtests. Indeed, QrTRU and Sr show similar power in

our simulation study, but are generally less optimal than the new backtests with downward weighting

kernels.

To ensure consistency against a wide range of empirical alternatives, we let the kernel parameter

m — which can be viewed as the testing scope parameter of Q and Qr — grow with the size of the

sample under examination at a proper rate, that is, m → ∞ as n → ∞ with m/n → 0. From a

theoretical perspective, passing m → ∞ also makes the asymptotic distribution of a backtest robust to

any finite sample adjustment in m. Indeed, if Ht(α,θ0) exhibits autoregressive behavior, the degree of

freedom in the asymptotic χ2 distribution of Box-Pierce-type test may require adjustment from m to
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m− c, where c < ∞ is the order of the autoregression (see, e.g., Breusch and Pagan, 1980). This

becomes asymptotically irrelevant when a backtest allows m → ∞, as with Q and Qr.

We now give the asymptotic properties of Q and Qr.

Theorem 1. Suppose Assumptions 1–4 in the online appendix hold, and let T → ∞, n → ∞,

n/T → ω < ∞, m → ∞, m/n → 0. Then Q
d−→ N(0, 1) under H0.

Proposition 1. Suppose the conditions of Theorem 1 hold. Then Qr
d−→ N(0, 1) under H0.

Theorem 2. Suppose Assumptions 1–6 in the online appendix hold, and let T → ∞, n → ∞,

n/T → ω < ∞, m → ∞, m/n → 0. Then

m1/2

n
Q

p−→
∞∑
j=1

ρ2(j)

/[
2

∫ ∞

0

k4(z)dz
]1/2

.

Proposition 2. Suppose the conditions of Theorem 2 hold. Then

m1/2

n
Qr

p−→
∞∑
j=1

ρ2r(j)

/[
2

∫ ∞

0

k4(z)dz
]1/2

.

The detailed mathematical proof for the above results is provided in Online Appendix B–E. In

Theorem 1 and Proposition 1 we show under regularity conditions that both our backtests Q and Qr

follow the asymptotic N(0, 1) distribution under H0, even in the presence of estimation risk. In Theorem

2 and Proposition 2 we show that whenever ρ(j) ̸= 0 for any j ≥ 1, which implies ρr(j) ̸= 0 for some

j ≥ 1, we have m1/2/nQ and m1/2/nQr converge to a finite positive quantity. This shows that Q and

Qr diverge to positive infinity at rate n/m1/2 to yield asymptotic full power. That is, for some constants

Kn = o(n/m1/2), we have P(Q > Kn) → 1 and P(Qr > Kn) → 1 under H1. Thus, the new backtests

are consistent, providing a valuable addition to existing literature. Because Q and Qr go to positive
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infinity under H1, they are upper-tailed backtests; and the upper-tailed critical value of N(0, 1) at the 5%

significance level is approximately 1.645. Finally, although the new backtests are asymptotically

consistent, in small sample they may not give similar power since Q is a standardized statistic while Qr

is a whitened statistic. This is studied using simulation experiments.

D. Generalized backtests for other measures

In this subsection, we discuss how (Q,Qr), which backtest CoVaR and MES, can also be

applied to backtest other prominent systemic risk measures, that is, the conditional capital shortfall

measure of systemic risk (SRISK) of Acharya et al. (2012) and Brownlees and Engle (2017), the

systemic expected shortfall (SES) of Acharya et al. (2017), and the ∆CoVaR measure of Adrian and

Brunnermeier (2016). First, we show how backtesting SES or SRISK is equivalent to backtesting

(CoVaR, MES) using the new backtests. Secondly, we discuss how our backtests can be easily modified

to examine systemic risk at other level of system condition such as the median level, which concerns the

∆CoVaR measure.

1. Backtesting SRISK and SES

We begin as usual with the definitions. Following Acharya et al. (2012), the SRISK of institution

Y1 at time t is given by

SRISKY 1,t(α) = gL1,t − (1− g)W1,t[exp(18×MESY 1,t(α))],(9)

where g ∈ [0, 1] is the prudential capital fraction; L1,t is the debt of institution Y1; and W1,t > 0 is the

market value of institution Y1. Besides, in Acharya et al. (2017) the association between SES and MES
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is given by

SESY 1,t(α) = [gLV1,t − 1− ΠMESY 1,t(α) + Λ]W1,t,(10)

where LV1,t ≡ (L1,t +W1,t)/W1,t is the leverage ratio of institution Y1; Λ and Π > 0 are constant terms.

By taking the first derivatives we note that SRISKY 1,t(α) and SESY 1,t(α) are decreasing in

MESY 1,t(α) monotonically. More generally, we denote by Mt(MESY 1,t(α)) any monotonic functions

of MESY 1,t(α), such as SRISKY 1,t(α) and SESY 1,t(α). Recall that to backtest CoVaR and MES we

use the Ht(α) indicator, which we can rewrite as

Ht(α) = 1{(Y2,t ≤ V aRY 2,t(α))}
∫ 1

0

1{[Y1,t ≤ CoV aRY 1,t(β, α)]}dβ,

with 1{[Y1,t ≤ CoV aRY 1,t(β, α)]} being the integrand over β ∈ [0, 1]. The risk indicator associated

with Mt(MESY 1,t(α)) is naturally given by

H̃t(α) ≡ 1{(Y2,t ≤ V aRY 2,t(α))}
∫ 1

0

1{[Mt(Y1,t) ≥ Mt(CoV aRY 1,t(β, α))]}dβ,

with 1{[Mt(Y1,t) ≥ Mt(CoV aRY 1,t(β, α))]} being now the integrand over β ∈ [0, 1]. We could

therefore propose to backtest SES or SRISK using H̃t(α), but notice that Ht(α) and H̃t(α) are actually

identical as their integrands take the value of 1 at the same point in time. Computing any of our

backtests using Ht(α) or H̃t(α) gives the same value and the same conclusion. On this basis, we could

conveniently apply the proposed test statistics (Q,Qr) to backtest SES or SRISK. This gives the new

backtests general capacities as they can be used to detect inadequate systemic risk estimated using

either CoVaR, MES, SES, or SRISK.
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2. Backtesting at other system conditions

We have thus far focused on backtesting at the distress system condition, which is the emphasis

of most systemic risk measures such as CoVaR, MES, SES, and SRISK. This is achieved by evaluating

Ht(α) at the left tail, e.g., by setting α = 5%. To backtest ∆CoVaR, we first note that it is given by the

difference between CoVaR evaluated at the distressed system condition and CoVaR evaluated at the

median system condition. It thus remains to show how our backtesting procedure can be modified to

examine systemic risk measures (such as CoVaR and SES) at various other system conditions such as

the median. This is achieved by generalizing the Ht(α) indicator such that it can consider any level of

system condition specified by the range (αl, αu), that is

Ht(αl, αu)

≡ 1{(V aRY 2,t(αl) ≤ Y2,t ≤ V aRY 2,t(αu))}
∫ 1

0

1{[Y1,t ≤ CoV aRY 1,t(β, αl, αu)]}dβ,

where as with the definition of CoV aRY 1,t(β, α) in equation (2), we have CoV aRY 1,t(β, αl, αu)

verifying P(Y1,t ≤ CoV aRY 1,t(β, αl, αu)|V aRY 2,t(αl) ≤ Y2,t ≤ V aRY 2,t(αu); Ωt−1) = β. The mean of

Ht(αl, αu) is (αu − αl)/2, and we verify {Ht(αl, αu)− (αu − αl)/2} retains the mds property.

Moreover, using {Ht(αl, αu)− (αu − αl)/2} does not affect the asymptotic results of (Q,Qr). When

αl = 0 and αu = α, Ht(αl, αu) is equivalent to Ht(α). The Ht(αl, αu) indicator is useful when we

concern examining systemic risk measures at other levels of system condition. To backtest at the

median condition, we can set e.g., (αl, αu) = (45%, 55%).
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III. Monte Carlo evidence

In this section we study the finite sample performance of the proposed backtests using

simulation experiments. Because a distressed financial system tends to drive broader economic

problems, it is repeatedly emphasized and quantified by the systemic risk literature. This is reflected by

the formulas of prominent systemic risk measures such as ∆CoVaR, MES, SES, and SRISK. Therefore,

we use throughout Ht(αl, αu) with (αl, αu) = (0, 5%), which is equivalent to using Ht(α) with

α = 5%. We work with the DCC-GARCH data generating process (DGP) of Engle (2002) and Aielli

(2013). More precisely, Yt is generated according to the following set of equations



Yi,t = αi0 + αi1Yi,t−1 + ηi,t, i = 1, 2, t = 1, 2, ..., T,

ηt = (η1,t, η2,t)
′ = σ

1/2
t zt, σt = D

1/2
t RtD

1/2
t ,

Dt = [(σ1,t, 1)
′, (1, σ2,t)

′], σi,t = βi0 + βi1η
2
i,t−1 + βi2η

2
i,t−11(ηi,t−1 < 0) + βi3σi,t−1,

Rt = Diag(Qt)
−1/2QtDiag(Qt)

−1/2, Qt ≡ [(q11,t, q21,t)
′, (q12,t, q22,t)

′],

Qt = (1− a− b)S + a(Diag(Qt−1)
1/2εt−1ε

′
t−1Diag(Qt−1)

1/2) + bQt−1,

S = [(1, s)′, (s, 1)′], εt = (ε1,t, ε2,t)
′ = (η1,t/σ

1/2
1,t , η2,t/σ

1/2
2,t )

′,

qii,t = (1− a− b) + aε2i,t−1qii,t−1 + bqii,t−1.

(11)

The selected DGP aims to simulate data that reflects empirical stylized facts. We use first-order dynamic

as it reflects the tendency of market participants to respond and react to the latest news and events. The

data is generated with volatilities σi,t following the GARCH process in Glosten, Jagannathan, and

Runkle (1993), to allow for the well-known asymmetric market reactions. We generate separately for

each time period t the innovation term zt from the standardized Student-t distribution with degree of

freedom ν, i.e., zt ∼ tν(0, I2), where I2 is the identity matrix of order 2. This allows for the heavy tail
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feature of financial data. Moreover, we calibrate the parameters of DGP (11) using observed data

spanning from 3-Jan-2000 to 31-Dec-2021. We use the daily security log-returns (in percentage) of

Bank of America as Y1,t; we proxy Y2,t using the log-returns of the Center for Research in Security

Prices (CRSP) value-weighted market index. Based on the estimated parameters, we set


(α10, α11, β10, β11, β12, β13) = (0.0634, 0.0015, 0.0268, 0.0302, 0.0228, 0.9160)

(α20, α21, β20, β21, β22, β23) = (0.0708, 0.0010, 0.0184, 0.0159, 0.0489, 0.9002)

(a, b, s, ν) = (0.0318, 0.9407, 0.7721, 7)

(12)

The calibrated parameters reflect financial market stylized facts. For instance, the positive signs in the

asymmetry parameters (β12, β22) reflect the stronger market reactions to negative news than the positive

counterparts. The relatively large GARCH parameters (β13, β23) with respect to the ARCH parameters

(β11, β21) highlight the persistent feature in the volatility of financial series. The positive s parameter

captures the expected positive comovement between Bank of America and the financial market. A

relatively small ν parameter reflects the heavy tails feature of financial returns. Also, the set of

parameters (12) satisfies stationary requirements.

We study the impact of different kernel functions by considering all the kernels discussed

previously. To study the capacity of our backtests, we use a range of values for the kernel parameter

m = {5, 10, 20, 30}. We consider several combinations of in-sample size and out-sample size

(T, n) = {(250, 250), (250, 500), (500, 500), (500, 250)}. For each combination we simulate

T + n+ 500 observations, and then we discard the first 500 observations to work with the latest T + n

data points. The objective here is to stabilize the generated data by reducing the effects of the initial
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values in the DGP, which we set as (Y1,0, Y2,0, σ1,0, σ2,0) = [α10, α20, β10/(1− β11 − 0.5β12 − β13),

β20/(1− β21 − 0.5β22 − β23)].

Let ϕ collects the parameters in DGP (11) with true values ϕ0. To estimate ϕ we use the

maximum likelihood method, and therefore we note that the Student-t likelihood function (in logarithm)

of DGP (11) for observation at time t is given by

lt(ϕ) = log
[
Γ
(2η + 1

2η

)]
− log

[
Γ
( 1

2η

)]
− log

(1− 2η

η

)
− log(π)

− 1/2 log(|σt|)−
2η + 1

2η
log

(
1 +

η

1− 2η
ε′tR

−1
t εt

)
,(13)

where Γ(·) is the gamma function and η = ν−1 is the inverse of the degree of freedom parameter, which

is constrained at η < 0.5 to ensure the existence of second moment. Parameter estimation is executed by

maximizing the sum of likelihood
∑

t lt(ϕ), and we denote the estimated parameter vector by ϕ̂T . With

ϕ̂T we compute Ht(α, ϕ̂T ), and we note that the consistency and asymptotic normality of ϕ̂T have been

established for a general class of multivariate GARCH models (see, e.g., Fiorentini, Sentana, and

Calzolari, 2003, p. 535). That is, we have

√
T (ϕ̂T − ϕ0)

d−→ N(0,Σ),

where Σ/T is the asymptotic covariance matrix of ϕ̂T , which we estimate consistently using the

Hessian matrix obtained from the estimation procedure. To compute the test statistics it remains to

evaluate R̂(j) which we give in Online Appendix F. In this aspect, we face as with BHLS the challenge

of differentiability, which we address using the procedures suggested therein to obtain a consistent

estimate.
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Finally, we compute Q and Qr to examine H0. For comparison we also compute the

Box-Pierce-type backtests, i.e., S and Sr, where backtestings are performed based on the χ2(m)

limiting distribution (BHLS, Corollary 2). Although this is generally not accurate for S, we include it to

highlight the effect of estimation risk. Throughout, testing significance level is 5%.

We begin with the size study, that is, backtesting systemic risk forecasts issued by the correctly

specified risk model (11). We refer to this study as experiment NULL, and we report the rejection rates

in Table 1. As expected, the size of the nonwhitened S backtest is severely distorted whereas the

whitened Sr backtest shows reasonable rejection rates. This is due to S having nonstandard distribution

in the presence of estimation risk, which is accounted for by whitening the test statistic as in Sr. By the

same reasoning, our whitened backtest Qr also displays reasonable sizes across the combinations of

(T, n). In contrast to S, our nonwhitened backtest Q is reasonably sized as it has considered estimation

risk in its standardizing factors explicitly. While Q over rejects slightly when the sample size is small, it

shows stability as soon as (T, n) increases to 500. We also note the usual bootstrap procedure can be

readily applied if a better size is desired for small sample. Overall, both the proposed Qr and Q

backtests show robustness to estimation risk. Besides, the size of both backtests are stable under

different kernel functions along with a range of values for the kernel parameter m. In other words, the

asymptotic N(0, 1) distribution of Qr and Q established in Theorem 1 and Proposition 1 is well

approximated in small sample, even when the generated data exhibits heavier tails than the normal

distribution.

[Insert Table 1 approximately here]

We now study the ability of our backtests to detect alternative cases in which we have

inadequacy of the systemic risk measures. Although under regularity conditions both Q and Qr enjoy
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asymptotic unit detection power against divergence from the null hypothesis of measure adequacy, their

finite sample powers are not known and thus will be studied and compared in the following. We

continue the comparison with existing method, but we focus on the Sr backtest since comparison with

S would be inaccurate as it is not a robust test. We design a series of experiments.

In the first alternative experiment, we simulate the scenario in which a risk manager specifies an

adequate model to estimate and forecast systemic risk, but based on a misspecified risk level. In other

words, the risk indicator is forecasted at risk level α1 but the intended risk level is α2, with α2 ̸= α1.

The desired statistical effect is simulated by inducing risk level mismatch between the risk indicator and

its mean in the autocovariance computation, that is

γ̂n(j) =
1

n− j

T+n∑
t=T+1+j

(Ht(α1, ϕ̂T )− α2/2)× (Ht−j(α1, ϕ̂T )− α2/2).

We refer to this experiment as ALTER1, and we note that it also allows us to examine the power of our

backtests against the unconditional hypothesis, that is, the condition E(Ht(α,ϕ0)) = α/2. We set

(α1, α2) = (5%, 10%); simulation results are reported in Table 2.

[Insert Table 2 approximately here]

We observe the nontrivial rejection power by our backtests, and the power generally increases

with the sample size. This is in line with Theorem 2 and Proposition 2. We also observe an increase in

rejection rates as m increases. This is due to the time-invariant nature of the misspecification in this

experiment as the level of the risk indicator is incorrectly specified across each time period. Because the

time scope of all backtests increases in m, with that they naturally capture more evidence against

alternatives that persists in time. This results in a higher finite sample rejection rates. We observe that
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when the TRU kernel is used, Qr yields similar rejection power as Sr. This is expected because the Sr

backtest can be viewed as a special case of our Qr backtest when the TRU kernel is used, as both

backtests assign equal weight to each lag order. We also observe the comparable performance across

kernels as m > 20. Overall, this experiment highlights that the new backtests possess detection power

against divergence from the condition E(Ht(α,θ0)) = α/2, with Qr having slightly better power than

Q. The results also highlight that by letting m grow, the detection power of a backtest could increase as

it may capture more evidence against divergence from the null.

In the second alternative experiment, we simulate the scenario in which the distribution of the

systemic risk model is incorrectly specified. More precisely, systemic risk measures are estimated and

forecasted based on risk model (11) but the actual innovation of the data is contaminated as follows

zt ∼ [0.4× tν(0− 1.5, I2 ×
√
1.75) + 0.6× χ2(1)].

We refer to this experiment as ALTER2, and we report the rejection rates in Table 3. As is expected,

both Q and Qr display rejection power against experiment ALTER2. Because the data is contaminated

across each time period, we also observe that the rejection rates increase in m. The equally weighted

backtest Sr continues to yield comparable power to Qr when the TRU kernel is applied. The

performance across kernel functions remains similar for this experiment. Overall, the experiment shows

that our backtests possess detection power against inadequate systemic risk forecasts due to

distributional misspecification, with Qr having slightly better power than Q.

[Insert Table 3 approximately here]

In the third alternative experiment, we simulate the scenario in which we have data dynamics

being incorrectly specified. More precisely, systemic risk measures are estimated and forecasted based
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on risk model (11) but the actual dynamics of Yi,t follow the threshold autoregressive process

Yi,t = ai,t × Yi,t−1 + ηi,t, i = 1, 2,

ai,t = 0.9× 1(ηi,t−1 ≤ −1).

We refer to this experiment as ALTER3, and we report the rejection rates in Table 4. We observe our

backtests continue to display rejection power that generally increases with the sample size. In contrast

to experiments ALTER1 and ALTER2, we observe the rejection rates of all backtests decrease in m.

This is because, unlike experiments ALTER1 and ALTER2 in which we have time-invariant

misspecification, under experiment ALTER3 we have time-dependent alternative with a particular focus

on the first lag in the data dynamics. As a result, increasing the testing scope (i.e., by setting a large m)

may not capture more evidence against such alternative, and instead will reduce the overall evidence

captured by the backtests due to the averaging effect across the testing scope. We continue to observe Sr

yielding comparable power to Qr when the TRU kernel is applied, but their powers are lower than Qr

with the downward weighting kernels. This is because a test that assigns more weights to observations

at lower lag order is expected to be more efficient against ALTER3, in which we have first-order

dynamic misspecification. Across the combinations of (T, n), we observe that using the downward

weighting kernels alleviates power reduction in m. Interestingly, the finite sample power of our Q

backtest is notably higher than that of our Qr backtest. This could be attributed to the fact that Q is not a

whitened statistic, and due to that Q preserves data dynamics more effectively and thus it tends to give

better power against alternatives driven by dynamic misspecification. To further examine such effect,

we carry out another dynamic driven alternative experiment.

[Insert Table 4 approximately here]
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In the final experiment, we simulate the scenario in which a risk manager correctly specifies an

autoregressive process for the Yi,t series, but misses some higher order and delayed effect. More

precisely, systemic risk measures are estimated and forecasted based on risk model (11) but the actual

autoregressive dynamics of Yi,t admit a delayed effect

Yi,t = αi0 + αi1Yi,t−1 + 0.75Yi,t−2 + ηi,t, i = 1, 2.

We refer to this experiment as ALTER4, and we report the rejection rates in Table 5. Overall, the power

pattern under ALTER4 is similar to that under ALTER3, as we have dynamic driven alternatives in both

experiments. We continue to observe the optimality of downward weighting backtests as they generally

outperform equally weighted backtests and they alleviate power reduction in m. For instance, in the

(T, n) = (500, 500) panel, the power given by Qr with downward weighting kernels for m = 10 and

m = 20 is very comparable, whereas the power given by Sr shows a clear decline as m increases from

10 to 20.

[Insert Table 5 approximately here]

Summing up the simulation study, the proposed Q and Qr backtests show robustness against

estimation risk to display reasonable finite sample sizes, and they demonstrate nontrivial detection

power against alternatives of different natures. Setting a large m yields better power against alternatives

that are of time-invariant nature but the opposite is observed against alternatives that are of

time-dependent nature. In this aspect, downward weighting backtests such as Q and Qr are optimal as

they alleviate power reduction in m. Thus, the power improvement offered by the new backtests is more

significant under the time-dependent alternatives. Against alternatives driven by dynamic
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misspecification, we find that the standardized backtest Q — which preserves data dynamics more

effectively — tends to yield better power than the whitened backtest Qr. We also find that under the

time-invariant alternatives whitened backtest gives slightly better power than standardized backtest.

Overall the new backtests demonstrate complementary capacities.

IV. Empirical evidence

A. Data

While the performance of the new backtests (Q and Qr) has been demonstrated using simulated

data, it is equally important to verify their performance using real-world data. In this section, we apply

the new backtests to examine the reliability of systemic risk forecasts issued by major financial

institutions. For consistency with existing literature we focus on large US institutions, that is, we follow

Brownlees and Engle (2017) and Banulescu-Radu et al. (2021) to use institutions with market

capitalization greater than 5 billion dollars as of the end of June 2007. The names and CRSP tickers of

the selected institutions are tabulated in Online Appendix G. We collect institutional observations

dating from early 2000 to late 2022, so that we also study the more recent pandemic-induced financial

market crashes. More precisely, we use daily observations from 3-Jan-2000 to 1-Dec-2022. Our dataset

is naturally unbalanced because not every institution has been trading continuously over the study

period. For instance, in 2008 Bear Stearns and Lehman Brothers collapsed over the subprime financial

crisis. We compute daily log-returns and market capitalization for the selected institutions using CRSP

database, and we consider as market return the daily log-return of the CRSP value-weighted market

index.
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At any given time period over the full sample, we examine for all available institutions the

reliability of their systemic risk forecasts provided the required out-sample data is available. When

moving our analysis across time periods, we use expanding window scheme to make full use of

in-sample data availability. More precisely, we use two years of daily observations as the initial

in-sample (i.e., from Jan-2000 to Jan-2002), and the sample length increases as we move forward with

our analysis on a monthly basis. Thus, our in-sample size T contains at least two years of data which is

approximately 500 observations.

We use testing parameters guided by our simulation study. The statistical significance level of all

backtests is kept at 5%. We maintain α = 5%. For any given institution, we model its in-sample return

series using the same risk model and the same estimation procedure implemented in the simulation

study. This yields parameter estimates of the risk model ϕ̂T , which then allows us to forecast the risk

indicator series Ht(α, ϕ̂T ), for t = T + 1, ..., T + n. For this purpose we need to select the out-sample

size n, and we note that a value too large for this parameter would reduce the period available for

examination. For instance, to backtest one (three) year(s) of out-sample forecasts in 2021 would require

observed data up to 2022 (2025). We use n = 250, which is about one year of out-sample data. We then

compute our backtests to examine if the generated systemic risk forecasts are reliable. Both Q and Qr

backtests are used as we learn about their complementary capacities from the simulation study. As a

benchmark for existing methodology, we include the Box-Pierce-typed backtest by computing Sr. We

use downward weighting kernel for our backtests, and for natural comparison with Sr we use the

Bartlett kernel because it belongs to the class of truncated kernel. Regarding kernel parameter, we use

both the lowest and the highest values covered in the simulation study, i.e., m = (5, 30). In a typical

monthly analysis, we backtest the systemic risk forecasts issued by each institution so long as the
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required data is available. Accordingly, in each monthly analysis we apply Bonferroni correction to the

backtesting significance level based on the number of backtested institutions for that month.4

B. Backtesting results

Figure 1 plots on a monthly basis the percentage of institutions with inadequate systemic risk

forecasts detected by the Q backtest (depicted in blue), the Qr backtest (depicted in black), and the Sr

backtest (depicted in red). We observe that compared with Sr both the new backtests have higher

detection frequencies over inadequate systemic risk forecasts as the blue and black bars dominate their

red counterparts on many occasions. This finding holds for both m. We also observe several sizeable

clusters in the plot, which we highlight and discuss in the following because these clusters imply that

the systemic risk forecasts of many major institutions are inaccurate and unreliable.

[Insert Figure 1 approximately here]

In the cluster between Jan-2003 and Jan-2004, the performance of all backtests is rather similar.

More precisely, the monthly average rejection frequencies by Q, Qr and Sr are, respectively, 64%, 56%

and 54%, at m = 5. When m = 30, the average rejection rates are 75%, 70% and 72%, for Q, Qr and

Sr, respectively. In this cluster we observe for all three backtests an increase in rejection frequencies as

m increases. This is consistent with our expectation that by increasing the m parameter, the testing

4As highlighted in Bajgrowicz, Scaillet, and Treccani (2016), the Bonferroni method is a relatively conservative

approach. Because the main objective of this empirical study is to examine the performance of the new backtests with

respect to a benchmark, a conservative approach is appropriate as it helps to ensure that any improvement from the new

backtests is not due to chance. For a liberal alternative to the Bonferroni method, one could refer to Barras, Scaillet, and

Wermers (2010). We thank a reviewer for sharing this discussion.
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scope of a backtest increases, which in turn may lead to the backtest detecting a more diverse forms of

systemic risk inadequacy. Economically, the tall 2003–2004 cluster suggests that the risk forecasts of

many institutions for the period 2004–2005 were highly inadequate. This reflects the 2004–2005 credit

deterioration of the US market, which at its height saw the credit deterioration of several major US

entities such as General Motors to the junk status. Besides, the finding could also be attributed to the

fact that the DCC-GARCH specification is simply not a suitable model for systemic risk as far as this

period is concerned. In practice, risk managers should consider revising the model or using alternative

specifications.

In the cluster between Jan-2004 and Jan-2006, the monthly average rejection frequencies by Q,

Qr and Sr are, respectively, 12%, 10% and 13%, at m = 5. When m = 30, the rejection rates are 27%,

26% and 20% for Q, Qr and Sr, respectively. Similar to the previous cluster, we observe an increase in

rejection frequencies across all backtests when m is large. When m = 5, Sr has slightly better

performance over Q and Qr, which reverses when m = 30. The reason as to why the detection rate of

Sr does not catch up with our backtests is likely due to it losing some power when checking a larger

scope, a phenomenon too observed in our simulation study. By contrast, the rejection rates of the new

backtests increase and outperform Sr. This highlights that the empirical alternatives captured with a

large m could offset the potential loss in power when the backtest is properly weighted according to

empirical stylized facts. We obtain similar conclusions for the cluster between Jan-2011 and July-2011.

We now discuss the remaining major clusters of model inadequacy, that is, the cluster between

July-2014 and July-2015, the 2017 cluster, and the cluster beyond Jan-2019. The precise monthly

average rejection frequencies by (Q, Qr, Sr) in the July-2014–July-2015 cluster are (40%, 24%, 3%) at

m = 5, and (16%, 9%, 1%) at m = 30. In the 2017 cluster, the rejection frequencies by (Q, Qr, Sr) are

(68%, 59%, 52%) at m = 5, and (62%, 51%, 8%) at m = 30. The tall 2017 cluster suggests that the
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DCC-GARCH specification may not be a suitable model to forecast systemic risk for 2018, which

could be due to the fact that this period witnessed several major international political events such as the

US-China tradewar and the UK’s Brexit. In the cluster beyond Jan 2019, the rejection frequencies by

(Q, Qr, Sr) are (44%, 32%, 20%) at m = 5, and (37%, 29%, 8%) at m = 30. Given that the cluster

beyond Jan-2019 coincides with the run-up to the pandemic-induced market crashes, we highlight the

nontrivial under detection of Sr compared with the new backtests. In particular, Sr under detects 24%

(12%) compared with Q (Qr) at m = 5, and 29% (21%) compared with Q (Qr) at m = 30. The

prominence of the new backtests over Sr holds in the other two clusters regardless of m. Although all

three backtests suffer some power reduction in m, it is minimal for the new backtests. This further

highlights the optimality of our backtests in the tradeoff between losing detection power and detecting a

wider alternatives as the testing scope increases.

To see the economic implications brought by the new backtests on a greater scale, we note that

in any given month over the full examination period we backtest an average of 74 financial institutions.

We further note the monthly average rejection rates by (Q, Qr, Sr) over the full examination period are

(18%, 15%, 11%) at m = 5, and (18%, 16%, 9%) at m = 30. Compared with Q, Sr under detects

7% per month × 228 months × 74 institutions = 1181 cases over the course of our empirical study

when m = 5. When m = 30, Sr under rejects 1518 (1181) cases compared with Q (Qr). We note from

these numbers that the improvement of our backtests over Sr is of considerable economic significance,

since, if the new backtests are used instead of Sr, a larger scale of inadequate systemic risk forecasts

would have been detected among major financial institutions. These additional cases could play a

critical role in prompting regulatory attention, which could call for a full-scale revision of existing

systemic risk modeling in the wider economy, which in turn would improve financial stability.

Although the average findings may suggest Q regularly outperforms Qr, we highlight that in
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some instances such as the Jan-2013–July-2013 period, Qr has detected alternatives not captured by Q.

This is in line with our simulation findings. The complementary performance of Qr and Q can be

attributed to them generally not capturing the same dynamics about systemic risk inaccuracy, since the

former is a whitened test whereas the latter is not. Thus, when examining the overall health of the

financial system in practice, regulators could apply the formula max (Q,Qr) to detect as many

indications about large-scale measure inadequacies of systemic risk as possible. This provides a

“better-safe-than-sorry” approach which is recently advocated by the European Central Bank (see, e.g.,

Rehn, 2020; Enria, 2022).

One could argue that the empirical performance of the new backtests is only evident for a

relatively small n, and that the performance of all backtests would be very comparable when n

increases. To examine the sensitivity of our main findings, we repeat the backtesting analysis with a

larger n = 500, and we plot the results in Figure 2. Due to the more demanding out-sample size, the

time dimension of Figure 2 naturally reduces slightly compared with that of Figure 1. By the same

reasoning, the average number of institutions qualified for examination reduces to 73. Compared with

Figure 1, we observe an increase in rejection frequencies across all backtests. This is in line with

Theorem 2 and Proposition 2 that the power of our backtests is expected to increase in n. We also

observe that the overall rejection pattern for all backtests is similar to that in Figure 1, with the new

backtests continue to outperform existing backtest. More precisely, the monthly average rejection rates

over the full sample by (Q, Qr, Sr) are (29%, 24%, 17%) at m = 5, and (30%, 26%, 13%) at m = 30.

The economic implications offered by the new backtests are now more evident, as for instance, Sr under

rejects 2681 (2050) cases compared with Q (Qr) at m = 30. Unlike Sr, we note the rejection rates of Q

and Qr are similar across m, which highlights once again the optimality of our backtests as they give

optimal tradeoff in m.
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[Insert Figure 2 approximately here]

To ensure that the empirical performance of the new backtests is not driven by a specific choice

of kernel function, we repeat every backtesting analysis using the QS kernel, which, unlike the BAR

kernel, belongs to the class of kernel with unbounded support. Figure 3 plots the analysis results for

every empirical setting considered thus far. The results suggest that our main findings are highly robust

as the prominence of Q and Qr over existing backtest remains highly evident. This highlights, as with

our simulation evidence, that the choice of kernel does not have a strong impact over the performance of

our backtests so long as the kernel function is downward weighting.

[Insert Figure 3 approximately here]

Finally, we perform a robustness analysis by whitening ρ̂n(j) up to the same order as the kernel

parameter, that is, we have ρ̂n(j) being whitened up to order m, which we denote by ρ̂nrm(j),

j = 1, ...,m. Such partial whitening does not affect the computation of truncated whitened backtests

such as Sr and Qr with a truncated kernel. In particular, ρ̂nrm(j) is the j-th element of the vector

∆̂
−1/2
m ρ̂

(m)
n , where ρ̂

(m)
n collects {ρ̂n(j)}mj=1, and ∆̂m is a m×m matrix with the same (i, j)-th element

as that in ∆̂. The Box-Pierce-type statistic based on ρ̂nrm(j) is given by Sr = n
∑m

j=1 ρ̂
2
nrm(j). For

proper comparison we also use ρ̂nrm in our whitened backtest Qr with the Bartlett kernel. We plot the

results in Figure 4, and we can see that the rejection patterns are very similar to those in Figure 1 and

Figure 2. The improvement brought by the new backtests remains highly evident and robust.

[Insert Figure 4 approximately here]
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C. Summary and regulatory implications

In summary, using real-world data generated by the major US financial institutions, we find that,

compared with existing approach, the new backtests Q and Qr offer better empirical power as they

reveal thousands more cases of systemic risk inadequacies. Such improvement is also of considerable

economic significance. Our findings remain robust under a series of sensitivity analyses including using

alternative kernel parameters, alternative sample sizes, and alternative kernel classes. Because of their

complementary features, Q and Qr can be applied together to detect as many indications about

large-scale measure inadequacies of systemic risk as possible. This provides a useful

“better-safe-than-sorry” approach for financial supervisors and regulators.

We acknowledge that despite being estimated from an inadequate risk model, systemic risk

measures may still be useful in e.g., ranking financial institutions by their systemic relevance. This can

be attributed to ranking operations being impartial to effects that are uniform across all institutions such

as inaccuracy from using the same (inadequate) risk model. Using the same risk model for a group of

institutions is also fairly standard in the academic literature (see, e.g., Brownlees and Engle, 2017;

Banulescu-Radu et al., 2021). In reality, however, each financial institution usually has its own

proprietary risk model, which is regularly tested for accuracy and is subject to ongoing refinement. In

this aspect, Q and Qr serve as new statistical tools for checking, with better power, whether a risk

model can be further improved to produce more accurate systemic risk estimates. With more accurate

risk estimates across all financial institutions, financial stability will improve as a collective result.
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V. System warning indicator

In the spirit of Gourieroux and Zakoı̈an (2013) and Lazar and Zhang (2019), BHLS propose a

system indicator by solving the following quadratic program

αc = argmin
α̃∈]0,1[

[
1

n

n∑
j=1

(HT+j(α̃, ϕ̂T )− α/2)

]2

.(14)

The idea is based on correcting the n forecasting errors in the forecasted risk series HT+j(α, ϕ̂T ), for

j = 1, ..., n. Because the margin of error across a forecasted series is generally nonuniform — in

particular, the next-period forecast is expected to be more accurate with a smaller margin of error than

the forecast multiple periods ahead — assigning equal weight to correct each of the n forecasts in

equation (14) regardless of the magnitude of their expected errors may not be optimal. Therefore, an

improved objective function is one that assigns nonuniform weights for the error corrections. Using the

kernel tools introduced so far, we can conveniently generalize equation (14) as follows

αc = argmin
α̃∈]0,1[

[∑n
j=1 k

2(1− j/n)× (HT+j(α̃, ϕ̂T )− α/2)∑n
j=1 k

2(1− j/n)

]2

.(15)

When k is set as the TRU kernel we retrieve the program objective in equation (14). We propose to use

here downward weighting kernels such as the BAR function. When the systemic risk model is perfectly

specified, the objective function (15) gives αc = α regardless of the kernel functions used. When

otherwise, the uniformly weighted function gives αc that aims to adjust with the same magnitude each

of the n forecasts. Using the recommended kernel, the objective function yields αc that aims to adjust

with smaller magnitude the immediate forecasts and appropriately with greater magnitude the forecasts

n steps ahead. The αc obtained under our approach gives a closer match in correcting the expected
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forecasting errors, and thus an indicator based on our αc is expected to reflect more accurately the state

of the financial system.

To build a warning indicator we quantify as with BHLS the deviation between the forecasted

measure MESY 1,t+1(α, ϕ̂T ) and the adjusted measure MESY 1,t+1(αc, ϕ̂T ), i.e.,

EWIt(α, αc) = MESY 1,t+1(α, ϕ̂T )−MESY 1,t+1(αc, ϕ̂T ).(16)

To interpret EWIt(α, αc) we note that MES is typically negative valued because an institution is

expected to make a loss rather than a profit whenever the broader system is in distress. Hence, with the

convention that risk is associated with losses rather than profits, a positive EWIt(α, αc) indicates an

unexpected increase in systemic risk, whereas a negative EWIt(α, αc) indicates an unexpected

decrease in systemic risk. As with BHLS we use n = 250.

To illustrate on the system-wide scale the empirical unexpected deviation in systemic risk, we

plot in Figure 5 the EWI t(α, αc) indicator, which is calculated by summing the individual

EWIt(α, αc) of each institution studied previously. The sum is then scaled by the number of

institutions to ensure meaningful comparison across the time dimension. For comparison we plot in

black the indicator based on the BAR kernel, and in red the indicator based on the TRU kernel. As

discussed, the latter retrieves the program objective in BHLS.

[Insert Figure 5 approximately here]

We observe for the most part that both indicators are stable with very similar values. This is in

line with our expectation that weighting functions do not play a major role in times where the net

unexpected systemic risk among all institutions is close to zero. We observe the expected positive spikes
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before both the 2008 subprime-induced market crash and the 2020 pandemic-induced market crash. The

warning indicators capture the large-scale unexpected increase in systemic risk among the major

financial institutions. In other words, the number of institutions with unexpected increase in systemic

risk far exceeds that with unexpected decrease in systemic risk. More notably, our indicator yields

warning signals that are more profound by reacting more acutely and sharply prior to both crises. In

particular, compared with existing indicator the warning signals transmitted by our indicator prior to

both 2008 and 2020 market crashes are about 40% more alarming! This finding shows that by matching

more closely with the expected forecasting errors, our indicator yields warning signals that are more

noticeable to the regulators. This finding is especially significant in hindsight because the US financial

system indeed witnessed two major and unprecedented crises following steep spikes in the proposed

indicator. For instance, the subprime-induced system instability in 2008 saw the collapse of major

institutions such as Bear Stearns and Lehman Brothers; whereas the pandemic-induced system

instability in 2020 saw the US stock market facing a series of crashes and large-scale trading halts.

It could be noted that the pattern of model inadequacies in Section IV is not fully aligned with

the pattern of the EWI t(α, αc) indicator in Figure 5. For instance, the EWI t(α, αc) indicator is rather

tranquil during the 2003–2004 credit crisis, whereas the 2007–2008 subprime crisis is not associated

with inadequate modeling. First, we note that the adjustment in equation (15) is only based on a

particular condition of systemic risk inadequacy that new backtests could detect. The measure

inadequacies reflected in Section IV could be due to other statistical properties being violated such as

serial correlation. Secondly, the EWI t(α, αc) indicator is purely a mathematical operation that

aggregates a series of deviations described by equation (16), where each individual deviation need not

be statistically significant to be considered. In summary, while the new backtests focus on gauging the

adequacy of individual risk modeling in the statistical sense, when monitoring the overall financial
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health, both statistical-based measures (e.g., the proposed backtests) and mathematical-based measures

(e.g., the proposed warning indicator) should be consulted.

Finally, we perform several sensitivity analyses to ensure that our main findings are robust. We

confirm that setting a larger out-sample size (e.g., n = 500) and that using an alternative class of kernel

(e.g., the QS function), do not alter the main findings.

VI. Conclusion

This paper offered two classes of novel backtests for checking the adequacy of well-known

systemic risk measures. The asymptotic properties of the new backtests were established under

regularity conditions. The paper demonstrated the consistency of the new backtests, and showed that

both backtests follow the standard normal null distribution even in the presence of estimation risk. The

paper conducted extensive simulation and empirical exercises to verify the improvement brought by the

new backtests over existing method. Simulation evidence confirmed the optimality of the new backtests

as they gave optimal tradeoff between losing detection power and detecting a wider alternatives as the

testing scope increases. The empirical study highlighted the economic significance brought by the new

backtests as the evidence suggested that the new backtests would have detected a larger scale of

inadequate systemic risk modeling among the major financial institutions. Finally, the paper offered an

early warning indicator which, when compared with existing indicator, yielded more profound warning

signals prior to both the 2008 subprime-induced and the 2020 pandemic-induced market crashes.
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TABLE 1

Rejection rates under experiment NULL

This table reports experimental rejection rates (in %) of Q, Qr, S and Sr, at the 5% significance level. The
subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the Parzen
kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30

T = 250, n = 250

QBAR 5.8 7.1 7.0 7.1 QrBAR 4.5 5.4 5.5 5.4
QPAR 5.2 6.7 6.9 7.0 QrPAR 4.3 5.2 5.7 5.8
QQS 6.3 7.1 7.2 7.4 QrQS 5.0 5.7 5.7 5.8
QDAN 5.8 7.0 7.6 8.0 QrDAN 4.6 6.1 6.0 6.0
QTRU 7.1 8.1 8.2 7.9 QrTRU 6.4 6.8 6.6 6.7
S 9.0 11.5 13.8 14.6 Sr 5.1 5.8 6.2 6.1

T = 250, n = 500

QBAR 3.9 5.7 6.7 7.3 QrBAR 3.9 5.0 6.2 6.3
QPAR 3.3 4.3 6.5 7.3 QrPAR 3.7 4.1 5.6 5.9
QQS 4.0 6.0 7.3 7.9 QrQS 3.7 5.3 5.6 6.6
QDAN 4.1 5.8 7.5 8.2 QrDAN 3.7 5.5 6.1 7.0
QTRU 6.2 7.8 8.8 8.0 QrTRU 5.5 6.0 7.3 7.4
S 8.5 11.8 15.9 15.6 Sr 4.6 5.7 6.6 7.1

T = 500, n = 250

QBAR 6.2 7.3 7.0 6.9 QrBAR 4.8 6.0 6.7 6.0
QPAR 4.7 6.7 6.9 6.9 QrPAR 4.0 5.2 6.4 7.0
QQS 6.5 7.6 7.3 7.3 QrQS 4.9 6.5 6.6 6.7
QDAN 6.1 7.9 8.3 8.4 QrDAN 5.0 6.3 7.3 7.0
QTRU 7.9 8.3 7.8 8.5 QrTRU 6.3 6.3 6.5 7.0
S 8.9 9.1 11.0 12.4 Sr 5.8 5.6 5.9 6.7

T = 500, n = 500

QBAR 5.0 5.3 5.7 6.4 QrBAR 5.4 5.3 5.1 4.8
QPAR 4.9 5.1 6.2 5.6 QrPAR 4.6 5.4 5.3 4.9
QQS 5.3 5.9 6.1 6.3 QrQS 5.1 5.3 4.7 5.0
QDAN 5.4 5.8 5.9 7.3 QrDAN 5.6 5.4 5.2 5.2
QTRU 6.4 6.6 7.2 6.7 QrTRU 4.7 4.5 5.4 5.4
S 7.7 9.3 11.8 12.5 Sr 4.2 4.0 4.9 4.9
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TABLE 2

Rejection rates under experiment ALTER1

This table reports experimental rejection rates (in %, size-adjusted) of Q, Qr and Sr, at the 5% significance level.
The subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the
Parzen kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30

T = 250, n = 250

QBAR 22.1 23.9 29.3 30.5 QrBAR 24.5 26.9 31.3 32.8
QPAR 20.1 21.5 25.6 29.1 QrPAR 23.9 24.6 28.6 30.8
QQS 21.7 24.7 30.1 32.0 QrQS 24.8 28.0 32.6 33.6
QDAN 23.1 25.5 29.7 32.9 QrDAN 27.7 28.0 32.2 34.6
QTRU 23.9 27.4 31.9 34.2 QrTRU 26.2 30.1 33.5 37.0

Sr 26.2 30.1 33.5 37.0

T = 250, n = 500

QBAR 30.6 31.0 35.4 37.7 QrBAR 35.6 37.6 40.6 44.8
QPAR 30.2 32.2 32.6 35.8 QrPAR 32.7 35.8 38.6 40.4
QQS 31.5 32.0 36.8 38.2 QrQS 36.0 38.2 42.2 44.7
QDAN 32.6 32.5 36.7 38.0 QrDAN 37.0 37.7 43.1 45.3
QTRU 32.5 34.8 38.4 41.1 QrTRU 36.3 40.1 43.1 46.2

Sr 36.3 40.1 43.1 46.2

T = 500, n = 250

QBAR 19.6 22.0 26.8 30.4 QrBAR 22.7 24.4 28.1 30.9
QPAR 20.9 20.4 23.7 27.4 QrPAR 22.7 23.6 24.9 28.6
QQS 19.3 23.2 28.2 32.3 QrQS 23.6 24.8 29.3 33.5
QDAN 21.2 23.6 26.4 30.1 QrDAN 24.2 24.5 29.2 34.2
QTRU 22.0 25.5 33.0 33.9 QrTRU 21.2 28.0 33.3 33.3

Sr 21.2 28.0 33.3 33.3

T = 500, n = 500

QBAR 28.8 35.9 39.9 41.7 QrBAR 27.3 34.2 40.7 43.3
QPAR 23.3 31.3 36.1 40.3 QrPAR 25.7 31.8 36.6 40.9
QQS 30.0 35.2 40.3 44.5 QrQS 30.5 36.2 43.3 44.5
QDAN 30.4 35.8 42.3 41.7 QrDAN 30.6 35.9 43.0 45.3
QTRU 33.1 38.6 42.8 44.4 QrTRU 36.0 41.8 45.1 47.0

Sr 36.0 41.8 45.1 47.0
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TABLE 3

Rejection rates under experiment ALTER2

This table reports experimental rejection rates (in %, size-adjusted) of Q, Qr and Sr, at the 5% significance level.
The subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the
Parzen kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30

T = 250, n = 250

QBAR 43.5 46.2 52.0 53.4 QrBAR 42.8 45.5 51.8 53.9
QPAR 41.6 43.7 48.0 51.6 QrPAR 42.6 43.9 48.6 51.4
QQS 43.4 46.6 52.9 55.8 QrQS 43.9 47.4 53.2 55.3
QDAN 45.4 48.1 52.4 55.3 QrDAN 46.0 47.7 52.1 55.0
QTRU 45.4 50.4 54.5 58.1 QrTRU 45.3 50.2 54.7 58.3

Sr 45.3 50.2 54.7 58.3

T = 250, n = 500

QBAR 54.6 56.3 62.3 64.0 QrBAR 55.2 58.1 65.0 70.1
QPAR 53.8 56.5 59.3 62.7 QrPAR 51.0 56.2 60.7 65.1
QQS 56.2 58.1 62.6 65.0 QrQS 55.8 59.6 67.0 71.5
QDAN 57.5 58.8 63.9 65.5 QrDAN 58.2 60.6 68.6 71.6
QTRU 57.6 60.8 64.1 66.3 QrTRU 57.9 63.5 68.4 70.6

Sr 57.9 63.5 68.4 70.6

T = 500, n = 250

QBAR 44.0 48.4 55.1 58.5 QrBAR 45.9 48.7 53.6 58.1
QPAR 43.6 45.7 50.7 55.4 QrPAR 44.4 47.4 48.8 54.8
QQS 44.7 50.0 57.0 59.9 QrQS 47.5 48.8 56.6 60.8
QDAN 46.2 50.5 55.1 58.3 QrDAN 47.2 49.5 56.0 60.9
QTRU 46.7 51.9 59.9 62.1 QrTRU 45.6 52.5 59.5 60.0

Sr 45.6 52.5 59.5 60.0

T = 500, n = 500

QBAR 55.8 62.6 67.8 70.1 QrBAR 51.8 61.1 69.5 73.8
QPAR 52.1 58.4 64.4 67.9 QrPAR 50.4 57.0 64.8 69.8
QQS 56.6 63.1 68.1 72.2 QrQS 55.4 63.7 72.9 75.1
QDAN 58.1 63.3 69.8 70.1 QrDAN 56.0 64.1 72.6 76.3
QTRU 60.0 67.1 70.5 74.2 QrTRU 61.4 70.0 74.8 75.8

Sr 61.4 70.0 74.8 75.8
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TABLE 4

Rejection rates under experiment ALTER3

This table reports experimental rejection rates (in %, size-adjusted) of Q, Qr and Sr, at the 5% significance level.
The subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the
Parzen kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30

T = 250, n = 250

QBAR 20.0 14.8 12.1 10.2 QrBAR 16.0 10.6 8.7 7.2
QPAR 23.8 17.0 11.8 10.7 QrPAR 20.7 12.8 8.8 7.8
QQS 18.4 12.0 10.3 8.3 QrQS 14.2 9.3 7.5 5.7
QDAN 19.2 13.4 9.6 9.1 QrDAN 15.3 9.7 7.2 5.8
QTRU 11.0 8.1 5.8 5.8 QrTRU 7.3 6.9 4.2 3.9

Sr 7.3 6.9 4.2 3.9

T = 250, n = 500

QBAR 31.1 21.1 15.0 12.2 QrBAR 23.5 14.2 10.0 9.0
QPAR 37.7 29.4 17.6 14.1 QrPAR 27.0 18.8 11.0 9.2
QQS 30.2 18.2 12.0 8.5 QrQS 20.4 11.7 8.0 7.4
QDAN 30.7 18.3 12.0 8.1 QrDAN 21.4 11.9 8.4 7.6
QTRU 17.5 11.0 6.8 5.9 QrTRU 10.7 6.8 6.5 5.9

Sr 10.7 6.8 6.5 5.9

T = 500, n = 250

QBAR 24.5 17.8 13.7 11.8 QrBAR 17.7 9.7 6.5 6.3
QPAR 31.4 20.6 14.6 12.4 QrPAR 24.5 14.1 6.6 6.2
QQS 21.4 14.6 11.1 10.3 QrQS 15.7 6.9 6.1 5.6
QDAN 23.0 15.6 8.9 8.3 QrDAN 15.6 7.0 6.0 5.7
QTRU 12.8 8.6 9.1 8.7 QrTRU 6.0 5.9 5.4 4.6

Sr 6.0 5.9 5.4 4.6

T = 500, n = 500

QBAR 39.9 32.3 23.3 20.4 QrBAR 18.6 12.0 10.0 8.7
QPAR 42.4 36.5 26.4 22.2 QrPAR 24.4 16.8 10.5 9.4
QQS 38.0 27.3 18.9 17.4 QrQS 17.6 10.7 8.8 6.7
QDAN 37.9 28.8 20.4 13.9 QrDAN 17.1 10.4 8.4 7.1
QTRU 23.9 16.4 12.1 11.6 QrTRU 10.5 8.0 5.8 5.7

Sr 10.5 8.0 5.8 5.7
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TABLE 5

Rejection rates under experiment ALTER4

This table reports experimental rejection rates (in %, size-adjusted) of Q, Qr and Sr, at the 5% significance level.
The subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the
Parzen kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30

T = 250, n = 250

QBAR 36.3 33.4 31.0 26.5 QrBAR 20.8 20.7 21.0 17.9
QPAR 29.0 34.4 30.7 30.3 QrPAR 16.1 21.8 21.7 20.2
QQS 35.9 30.8 28.5 26.1 QrQS 22.8 21.5 20.0 15.8
QDAN 37.3 32.6 27.7 26.2 QrDAN 23.4 21.0 18.9 16.8
QTRU 30.4 25.7 21.7 18.5 QrTRU 20.5 17.9 13.8 13.2

Sr 20.5 17.9 13.8 13.2

T = 250, n = 500

QBAR 57.8 52.3 43.0 37.3 QrBAR 29.1 26.5 22.4 20.7
QPAR 52.2 59.0 47.9 42.3 QrPAR 19.5 29.4 24.3 21.7
QQS 58.5 49.6 38.5 31.6 QrQS 30.3 25.2 20.0 17.3
QDAN 58.6 49.6 39.0 32.0 QrDAN 30.1 25.1 20.6 17.1
QTRU 49.2 37.5 26.8 25.2 QrTRU 24.6 18.1 14.1 11.9

Sr 24.6 18.1 14.1 11.9

T = 500, n = 250

QBAR 37.4 37.1 35.8 34.2 QrBAR 25.8 24.9 21.5 19.8
QPAR 32.1 39.1 36.5 35.9 QrPAR 17.4 27.7 23.0 21.8
QQS 37.9 37.1 33.9 31.1 QrQS 27.7 23.8 20.3 18.6
QDAN 38.6 37.4 31.8 28.2 QrDAN 26.7 23.5 20.3 18.2
QTRU 35.2 29.1 26.3 21.6 QrTRU 21.6 18.7 14.3 12.2

Sr 21.6 18.7 14.3 12.2

T = 500, n = 500

QBAR 58.5 60.5 55.2 51.6 QrBAR 28.9 31.9 30.0 27.6
QPAR 47.4 60.3 58.4 54.8 QrPAR 18.7 32.7 32.5 29.9
QQS 60.5 58.8 51.7 48.7 QrQS 32.4 33.1 29.2 23.9
QDAN 59.3 59.3 53.1 43.4 QrDAN 31.1 32.4 28.8 24.5
QTRU 55.4 49.1 37.5 33.2 QrTRU 32.6 26.6 19.0 16.9

Sr 32.6 26.6 19.0 16.9
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FIGURE 1

Empirical rejection rates

This figure plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected using the Q backtest (depicted in blue), the Qr backtest (depicted in black), and the
Sr backtest (depicted in red). The out-sample size is denoted by n. Backtesting significance level is 5%
with Bonferroni correction applied for every monthly analysis. The Bartlett kernel is used for Q and Qr

with kernel parameter m.
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FIGURE 2

Empirical rejection rates

This figure plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected using the Q backtest (depicted in blue), the Qr backtest (depicted in black), and the
Sr backtest (depicted in red). The out-sample size is denoted by n. Backtesting significance level is 5%
with Bonferroni correction applied for every monthly analysis. The Bartlett kernel is used for Q and Qr

with kernel parameter m.
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FIGURE 3

Empirical rejection rates

This figure plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected using the Q backtest (depicted in blue), the Qr backtest (depicted in black), and the
Sr backtest (depicted in red). The out-sample size is denoted by n. Backtesting significance level is 5%
with Bonferroni correction applied for every monthly analysis. The Quadratic-Spectral kernel is used
for Q and Qr with kernel parameter m.
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FIGURE 4

Empirical rejection rates

This figure plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected using the Q backtest (depicted in blue), the Qr backtest (depicted in black), and the
Sr backtest (depicted in red). The out-sample size is denoted by n. Backtesting significance level is 5%
with Bonferroni correction applied for every monthly analysis. The Bartlett kernel is used for Q and Qr

with kernel parameter m. Qr and Sr are computed using ρ̂nrm(j).
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FIGURE 5

System warning indicator

This figure plots the EWI t(α, αc) indicator on a monthly basis. The black (red) line is based on αc

obtained by solving the quadratic program (15) using the Bartlett (Truncated Uniform) kernel.
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Online Appendix

“Consistent Backtesting Systemic Risk Measures”

Soon Leong

October 2025

Summary and notations

The mathematical proof sketched here is inspired by Hong (1996) and Banulescu-Radu,

Hurlin, Leymarie and Scaillet (2021). The main added technicality with respect to Hong

(1996) is treating the impacts of estimation risk in our backtests, whereas that with

respect to Banulescu-Radu et al. (2021) is showing that both the new backtests are fully

consistent. Throughout the appendices, the following notations are used. The Euclidean

norm is denoted using || · ||. The notations Op and op are the usual order in probability

notations. The scalar c denotes a positive finite generic constant that may differ from

place to place. Let (ρn(j), γn(j)) be defined as (ρ̂n(j), γ̂n(j)) with θ̂T replaced by θ0.

Appendix A Assumptions

Assumption 1. The stochastic process Yt = (Y1,t, Y2,t)
′ is strictly stationary and er-

godic, with unknown twice continuously differentiable conditional distribution function

FY (y|Ωt−1) = P(Y1,t ≤ y1, Y2,t ≤ y2|Ωt−1), where y = (y1, y2) ∈ R2.

Assumption 2. The estimator θ̂T is consistent for θ0, that is
√
T (θ̂T − θ0)

d−→ N(0,Σ),

where Σ is a positive definite bounded matrix. Besides, there exists Σ̂ such that Σ−Σ̂ =

op(1).

Assumption 3. The quantity R(j) is summable with bounded smoothing estimator

Rn(j,θ) that is consistent at the optimal rate n−2/5, and Rn(j, θ̂T ) = R̂(j). That is,

(i)
∑∞

j=0 ∥R(j)∥ < ∞, (ii) supθ∈Θ0
E ∥∇θ[Rn(j,θ)]∥ = Op(1), 0 ≤ j ≤ n − 1, and (iii)

Rn(j,θ0)−R(j) = Op(n
−2/5).

Assumption 4. The kernel function k : R → [−1, 1] is a symmetric function that is

continuous at 0 and all points except a finite number of points on R, with k(0) = 1 and∫∞
−∞ k2(z)dz < ∞.

Assumption 5. The autocorrelation statistics have bounded derivatives. That is, for

0 ≤ j ≤ n − 1, supθ∈Θ0
E∥∇θ[ρ(j)]∥2 = O(1), and supθ∈Θ0

E∥∇θ[ρn(j)] − ∇θ[ρ(j)]∥2 =

O(1).

1



Assumption 6. {Ht(α,θ0)} is a fourth order stationary process with
∑∞

j=1 γ
2(j) < ∞

and
∑∞

j=−∞
∑∞

k=−∞
∑∞

l=−∞|κ1(j, k, l)| < ∞, where κ1(j, k, l) is the fourth order cumulant

of the joint distribution of {Ht(α,θ0), Ht+j(α,θ0), Ht+k(α,θ0), Ht+l(α,θ0)}.

Appendix B Proof of Theorem 1

To begin we recall the Q formula

Q =
n
∑n−1

j=1 k
2(j/m)ρ̂2n(j)− M̂1n(k)

V̂1n(k)1/2
,

where

M̂1n(k) =
n−1∑
j=1

k2(j/m)[1 + ωR̂(j)′Σ̂R̂(j)],

V̂1n(k) = 2
n−1∑
j=1

k4(j/m)[1 + ωR̂(j)′Σ̂R̂(j)]2 + 2
n−1∑
j=1

n−1∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR̂(i)′Σ̂R̂(j)]2.

Proof of Theorem 1. Recall the theorem

Theorem 1. Suppose Assumptions 1–4 in the online appendix hold, and let T → ∞,

n → ∞, n/T → ω < ∞, m → ∞, m/n → 0. Then Q
d−→ N(0, 1) under H0.

The theorem can be given by the following lemmas

Lemma B.1. Suppose the conditions of Theorem 1 hold. Then

n
∑n−1

j=1 k
2(j/m)

{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

−M1n(k)

V1n(k)1/2
d−→ N(0, 1),

where

M1n(k) =
n−1∑
j=1

k2(j/m)[1 + ωR(j)′ΣR(j)],

V1n(k) = 2
n−1∑
j=1

k4(j/m)[1 + ωR(j)′ΣR(j)]2 + 2
n−1∑
j=1

n−1∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR(i)′ΣR(j)]2.

2



Lemma B.2. Suppose the conditions of Theorem 1 hold. Then

n
∑n−1

j=1 k
2(j/m)

{
ρ̂2n(j)−

{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

}
V1n(k)1/2

= op(1).

Lemma B.3. Suppose the conditions of Theorem 1 hold. Then∑n−1
j=1 k

2(j/m)[1 + ωR(j)′ΣR(j)]−
∑n−1

j=1 k
2(j/m)[1 + ωR̂(j)′Σ̂R̂(j)]

V1n(k)1/2
= op(1).

Lemma B.4. Suppose the conditions of Theorem 1 hold. Then

V1n(k)
1/2

V̂1n(k)1/2
p−→ 1.

Proof of Lemma B.1. It is useful to first calculate the conditional distribution of u2,t(θ0)

and u12,t(θ0). We recall the expression of Ht(α,θ0), and to reduce notational burden

dependence on the fixed quantity θ0 is dropped

Ht(α,θ0) = Ht(α) = 1[FY2(Y2,t|Ωt−1) ≤ α]× [1− FY1|Y2≤V aR2(α)(Y1,t|Ωt−1)]

≡ 1(u2,t ≤ α)× (1− u12,t).

In the following we calculate the conditional distribution of u2,t and u12,t. In particular,

we shall show using probability integral transform that

u2,t|Ωt−1 ∼ U[0, 1], (B.1)

u12,t|{Ωt−1, u2,t ≤ α} ∼ U[0, 1]. (B.2)

We begin with u2,t, which by definition u2,t = FY2(Y2,t|Ωt−1). We let Fu2(·|Ωt−1) denote

the conditional distribution of u2,t given Ωt−1. We have for any u ∈ R

Fu2(u|Ωt−1) = P(u2,t ≤ u|Ωt−1)

= P(FY2(Y2,t|Ωt−1) ≤ u|Ωt−1)

= P(Y2,t ≤ F−1
Y2

(u|Ωt−1)|Ωt−1)

= FY2(F
−1
Y2

(u|Ωt−1)|Ωt−1)

= u.

This implies u2,t|Ωt−1 ∼ U[0, 1]. We now focus on u12,t = FY1|Y2≤V aR2(α)(Y1,t|Ωt−1),

3



which can be written explicitly as u12,t = FY1|Y2≤V aR2(α)(Y1,t|{Y2,t ≤ V aR2,t(α),Ωt−1}) =
FY1|Y2≤V aR2(α)(Y1,t|{u2,t ≤ α,Ωt−1}). By similar reasoning, we let Fu12|u2≤α(·|{u2,t ≤
α,Ωt−1}) denote the conditional distribution of u12,t given u2,t ≤ α and Ωt−1. We have

for any u ∈ R

Fu12(u|{u2,t ≤ α,Ωt−1}) = P(u12,t < u|{u2,t ≤ α,Ωt−1})

= P(FY1|Y2≤V aR2(α)(Y1,t|{u2,t ≤ α,Ωt−1}) < u|{u2,t ≤ α,Ωt−1})

= P(Y1,t < F−1
Y1|Y2≤V aR2(α)

(u|{u2,t ≤ α,Ωt−1})|{u2,t ≤ α,Ωt−1})

= FY1|Y2≤V aR2(α)

(
F−1
Y1|Y2≤V aR2(α)

(u|{u2,t ≤ α,Ωt−1})
∣∣∣{u2,t ≤ α,Ωt−1}

)
= u.

This implies u12,t|{Ωt−1, u2,t ≤ α} ∼ U[0, 1], and verifies (B.1)–(B.2).

Put {ρn(j)}mj=1 in the vector ρ
(m)
n . Under H0, we have for any (possibly countably

infinite) collection of ρ
(m)
n that

Km

√
nρ(m)

n
d−→ N(0,KmKm), (B.3)

where Km is a diagonal matrix collecting the kernel sequence {k(j/m)}mj=1. The result

follows directly from Proposition 2.9 of Hayashi (2000) that
√
nρ

(m)
n

d−→ N(0, Im) under

H0, where Im is the identity matrix of order m. The result holds provided (i) Ht(α) can

be decomposed as εt+µ, where µ is a constant and εt is a martingale difference sequence

(mds); (ii) εt has constant and finite conditional second moment, that is, E(ε2t |Ωt−1) =

σ2 < ∞. To verify the conditions we let µ = α/2, and we let εt = (Ht(α)−α/2). The proof

of (i) completes by noting the mds property of {Ht(α)− α/2}, that is we have for all t,

E(εt|Ωt−1) = E(Ht(α)−α/2|Ωt−1) = 0. The result also implies E((Ht(α)−α/2)2|Ωt−1) =

E(Ht(α)
2|Ωt−1)−α2/4. Thus, to verify (ii) it suffices to show that E(Ht(α)

2|Ωt−1) = c <

∞. We write

E(Ht(α)
2|Ωt−1) = E

{
E
[
1(u2,t ≤ α)× (1− u12,t)

2|{Ωt−1, u2,t ≤ α}
]
|Ωt−1

}
= E

{
1(u2,t ≤ α)E

[
(1− u12,t)

2|{Ωt−1, u2,t ≤ α}
]
|Ωt−1

}
= α/3 < ∞. (B.4)

The first equality follows by the tower property that E(X|F1) = E(E(X|F2)|F1) for

F1 ⊆ F2. The last equality makes use of the results in (B.1)–(B.2) that u2,t|Ωt−1 ∼ U[0, 1]

and u12,t|{Ωt−1, u2,t ≤ α} ∼ U[0, 1]. This implies, for instance, that 1(u2,t ≤ α)|Ωt−1 ∼
Bernoulli(α) and that E[u2

12,t|{Ωt−1, u2,t ≤ α}] = 1/3.

We now evaluate the limiting distribution of
√
n(θ̂T − θ0)

′∇θ[ρn(j)]. To this we first
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evaluate the probability limit of ∇θ[ρn(j)]. By the quotient rule, we have

∇θ[ρn(j)] = γn(0)
−1∇θ[γn(j)]− γn(0)

−1ρn(j)∇θ[γn(0)]. (B.5)

The second term in (B.5) is op(1) by noting ρn(j)
p−→ 0, which is implied by γn(j)

p−→ 0,

which in turns follows by Markov’s inequality and E(γn(j)) = 0 under H0. For the first

term, we have the quantity γn(0)
−1 p−→ [α(1/3 − α/4)]−1, which follows by continuous

mapping theorem, Markov’s inequality and

E[γn(0)] = E[E[γn(0)|Ωt−1]]

= E

[
1

n

T+n∑
t=T+1

E[(Ht(α)− α/2)2|Ωt−1]

]

= E

[
1

n

T+n∑
t=T+1

E[Ht(α)
2 − α2/4|Ωt−1]

]
= α(1/3− α/4), (B.6)

where we make use of the results in (B.4). We now focus on the quantity ∇θ[γn(j)]. By

the law of iterated expectation, we have E[∇θ[γn(j)]] = E[E[∇θ[γn(j)]|Ωt−1]]. Thus we

evaluate

E[∇θ[γn(j)]|Ωt−1]

=
1

n− j

T+n∑
t=T+1+j

E{∇θ[(Ht(α)− α/2)× (Ht−j(α)− α/2)]|Ωt−1}

=
1

n− j

T+n∑
t=T+1+j

E{(Ht−j(α)− α/2)∇θ[Ht(α)]|Ωt−1}+∇θ[Ht−j(α)]E{(Ht(α)− α/2)|Ωt−1}

=
1

n− j

T+n∑
t=T+1+j

E{(Ht−j(α)− α/2)∇θ[Ht(α)]|Ωt−1},

where the second equality makes use of the product rule, and the last equality follows by

E{(Ht(α)−α/2)|Ωt−1} = 0. Therefore, we have ∇θ[γn(j)]
p−→ 1

n−j

∑T+n
t=T+1+j E{(Ht−j(α)−

α/2)∇θ[Ht(α)]}, which follows by Markov’s inequality and

E[∇θ[γn(j)]] = E[E[∇θ[γn(j)]|Ωt−1]] = E{(Ht−j(α)− α/2)∇θ[Ht(α)]}.

Therefore we have

∇θ[ρn(j)]
p−→ 1

α(1/3− α/4)
E{(Ht−j(α)− α/2)∇θ[Ht(α)]} = R(j).
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Given ∇θ[ρn(j)]
p−→ R(j),

√
n →

√
ω
√
T , and Assumption 2, we have by Slutsky’s

theorem

k(j/m)
√
n(θ̂T − θ0)

′∇θ[ρn(j)]
d−→ N(0, k2(j/m)ωR(j)′ΣR(j)), (B.7)

under the null. Since ∇θ[ρn(j)] converges to the constant R(j), Slutsky’s theorem also

implies that the statistical randomness of the term k(j/m)
√
n(θ̂T − θ0)

′∇θ[ρn(j)] is in-

duced by the θ̂T estimate which depends on the in-sample. By contrast, the randomness

of k(j/m)
√
nρn(j) is induced by the out-sample iid generalized errors (see, e.g., Rosen-

blatt, 1952). Given the statistical independence, we have

k(j/m)
√
n
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}

d−→ N(0, k2(j/m)[1 + ωR(j)′ΣR(j)]). (B.8)

Next, we study the dependence structure across time. Although {k(j/m)
√
nρn(j)}mj=1

converges to a sequence of independent random variables as shown in (B.3), that is

generally not the case for {k(j/m)
√
n(θ̂T −θ0)

′∇θ[ρn(j)]}mj=1. However, we have the sum

of squares

n
m∑
j=1

k2(j/m)
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

,

which we denote in short by n
∑m

j=1 X
2
n(j) ≡ nX

(m)
n

′
X

(m)
n , converging to a sum of inde-

pendent sequence. This follows by first observing that we have from (B.7)–(B.8)

√
nX(m)

n
d−→ N(0,∆k), (B.9)

where the (i, j)-th element of ∆k is given by

∆k(i, j) = k(i/m)k(j/m)[δ(i, j) + ωR(i)′ΣR(j)], (B.10)

with δ(i, j) being the Kronecker delta. Secondly, because the real symmetric matrix ∆k

can be decomposed into ∆k = V DV ′, where V is an orthogonal matrix and D is a

diagonal matrix containing the eigenvalues of ∆k, we have

V ′√nX(m)
n

d−→ N(0,D). (B.11)

The diagonal matrixD shows that V ′√nX
(m)
n converges to a random vector of independ-

ent variables. This implies nX
(m)
n

′
X

(m)
n = n

∑m
j=1 k

2(j/m)
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

,

which is a sum of the squared variables in V ′√nX
(m)
n , converges to a sum of variables
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∑m
j=1 Z

2(j), where {Z(j)}mj=1 is a sequence of independent Gaussian variables. Let D(j)

denote the j-th element of D. Now, noting that
∑m

j=1D(j) is equal to the trace of ∆k

and that
∑m

j=1D
2(j) is equal to the trace of ∆k ×∆k, we calculate using the Gaussian

moment generating function

E

[
m∑
j=1

Z2(j)

]
=

m∑
j=1

k2(j/m)[1 + ωR(j)′ΣR(j)],

V

[
m∑
j=1

Z2(j)

]
= 2

m∑
j=1

k4(j/m)[1 + ωR(j)′ΣR(j)]2 + 2
m∑
j=1

m∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR(i)′ΣR(j)]2.

Finally, as m → ∞, which implies n → ∞, we have by the Lindeberg central limit

theorem that

n
∑n−1

j=1 k
2(j/m)

{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

−M1n(k)

V1n(k)1/2
d−→ N(0, 1),

where

M1n(k) =
n−1∑
j=1

k2(j/m)[1 + ωR(j)′ΣR(j)],

V1n(k) = 2
n−1∑
j=1

k4(j/m)[1 + ωR(j)′ΣR(j)]2 + 2
n−1∑
j=1

n−1∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR(i)′ΣR(j)]2.

This completes the proof of Lemma B.1.

Proof of Lemma B.2. Recall Lemma B.2

n
∑n−1

j=1 k
2(j/m)

{
ρ̂2n(j)−

{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

}
V1n(k)1/2

= op(1).

First, we show that the denominator V1n(k)
1/2 = O(m1/2). It suffices to show V1n(k)/2 =

O(m). We write

V1n(k)/2 =
n−1∑
j=1

k4(j/m)[1 + ωR(j)′ΣR(j)]2

+
n−1∑
j=1

n−1∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR(i)′ΣR(j)]2. (B.12)
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We begin by showing that the first term in (B.12) is O(m). We write

n−1∑
j=1

k4(j/m)[1 + ωR(j)′ΣR(j)]2

=
n−1∑
j=1

k4(j/m) + 2ω
n−1∑
j=1

k4(j/m)R(j)′ΣR(j) + ω2

n−1∑
j=1

k4(j/m)[R(j)′ΣR(j)]2. (B.13)

By Assumption 4 and as m → ∞, n → ∞, m/n → 0, we have m−1
∑n−1

j=1 k
4(j/m) →∫∞

0
k4(z)dz < ∞ . Therefore, the first term in (B.13) is O(m). In the following we show

that the second term is O(1)

2ω
n−1∑
j=1

k4(j/m)R(j)′ΣR(j)

≤ 2ω∥Σ∥
n−1∑
j=1

k4(j/m)∥R(j)∥2

= 2ω∥Σ∥

{
n−1∑
j=1

∥R(j)∥2 +
n−1∑
j=1

[k4(j/m)− 1]∥R(j)∥2
}

= O(1), (B.14)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,

limm→∞ k4(j/m)− 1 → 0 and |k4(j/m)− 1| ≤ 1. It remains to show that the third term

in (B.13) is O(1). By Cauchy-Schwarz inequality we write

ω2

n−1∑
j=1

k4(j/m)[R(j)′ΣR(j)]2

≤ ω2∥Σ∥2
{

n−1∑
j=1

k2(j/m)∥R(j)∥2
}{

n−1∑
j=1

k2(j/m)∥R(j)∥2
}

= O(1)

{
n−1∑
j=1

k2(j/m)∥R(j)∥2
}2

= O(1)

{[
n−1∑
j=1

∥R(j)∥2 +
n−1∑
j=1

[k2(j/m)− 1]∥R(j)∥2
]}2

= O(1), (B.15)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,

limm→∞ k2(j/m) − 1 → 0 and |k2(j/m) − 1| ≤ 1. We shall now show that the second

8



term in (B.12) is O(m). By Cauchy-Schwarz inequality, we write

n−1∑
j=1

n−1∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR(i)′ΣR(j)]2

≤ ω2

n−1∑
j=1

n−1∑
i=1

k2(i/m)k2(j/m)[R(i)′ΣR(j)]2

≤ ω2∥Σ∥
n−1∑
j=1

n−1∑
i=1

k2(i/m)∥R(i)∥2k2(j/m)∥R(j)∥2

= ω2∥Σ∥

{
n−1∑
j=1

k2(j/m)∥R(j)∥2
}{

n−1∑
i=1

k2(i/m)∥R(i)∥2
}

= O(1)

{
n−1∑
j=1

k2(j/m)∥R(j)∥2
}2

= O(1),

where the last equality makes use of the result in (B.15). This verifies V1n(k)
1/2 =

O(m1/2).

We now focus on the numerator. We have by Taylor’s theorem

ρ̂n(j) = ρn(j) + (θ̂T − θ0)
′∇θ[ρn(j)] + (θ̂T − θ0)

′f1(θ̂T ), 1 ≤ j ≤ n− 1, (B.16)

where f1(θ̂T ) is such that limθ̂T→θ0
f1(θ̂T ) = 0. Given Assumption 2 that (θ̂T − θ0) =

Op(T
−1/2) = Op(n

−1/2) and that f1(θ̂T ) is bounded by (θ̂T − θ0), we have

ρ̂n(j) = ρn(j) + (θ̂T − θ0)
′∇θ[ρn(j)] +Op(1/n). (B.17)

Multiplying both sides by
√
n we get

√
nρ̂n(j) =

√
nρn(j) +

√
n(θ̂T − θ0)

′∇θ[ρn(j)] +Op(n
−1/2). (B.18)

Squaring both sides gives

nρ̂2n(j)− n
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

= 2{
√
nρn(j) +

√
n(θ̂T − θ0)

′∇θ[ρn(j)]}Op(n
−1/2) +Op(n

−1)

= Op(n
−1/2). (B.19)

The last equality makes use of (B.8) that for all 1 ≤ j ≤ n − 1,
√
nρn(j) +

√
n(θ̂T −
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θ0)
′∇θ[ρn(j)] = Op(1). Therefore we have

n

n−1∑
j=1

k2(j/m)

{
ρ̂2n(j)−

{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

}

≤ m sup
1≤j≤n−1

{
nρ̂2n(j)− n

{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

}{
m−1

n−1∑
j=1

k2(j/m)

}
= Op(mn−1/2). (B.20)

The last equality follows by Assumption 4. The proof completes by observing that the

expression of Lemma B.2 is Op(mn−1/2)/Op(m
1/2) = Op(m

1/2/n1/2) = op(1), where the

last equality follows by m/n → 0.

Proof of Lemma B.3. Because V1n(k)
1/2 = O(m1/2) as shown in the proof of Lemma B.2,

it thus suffices to show

n−1∑
j=1

k2(j/m)[1 + ωR̂(j)′Σ̂R̂(j)]−
n−1∑
j=1

k2(j/m)[1 + ωR(j)′ΣR(j)] = op(m
1/2). (B.21)

We first work out the consistency of R̂(j) for R(j). In particular we shall show

∥R̂(j)−R(j)∥ = Op(n
−2/5). (B.22)

By the triangle inequality we have

∥R̂(j)−R(j)∥ = ∥Rn(j, θ̂T )−R(j)∥

≤ ∥Rn(j, θ̂T )−Rn(j,θ0)∥+ ∥Rn(j,θ0)−R(j)∥. (B.23)

We write for the first term

∥Rn(j, θ̂T )−Rn(j,θ0)∥ ≤ sup
θ̃∈Θ0

∥∥∥∇θ[Rn(j, θ̃)]
∥∥∥×

∥∥∥θ̂T − θ0

∥∥∥
= Op(T

−1/2) = Op(n
−1/2), (B.24)

which follows by the mean value theorem, Markov’s inequality, Assumption 2 and As-

sumption 3(ii). Besides, with Assumption 3(iii) the second term in (B.23) is Op(n
−2/5).

This verifies (B.22).

We now verify (B.21). For a, b = 1, 2, ..., p, let Ra(j) (R̂a(j)) denote the a-th element
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of R(j) (R̂(j)), and let Sab (Ŝab) denote the (a, b)-th element of Σ (Σ̂). We write

n−1∑
j=1

k2(j/m)[1 + ωR̂(j)′Σ̂R̂(j)]−
n−1∑
j=1

k2(j/m)[1 + ωR(j)′ΣR(j)]

= ω

n−1∑
j=1

k2(j/m)

p∑
a=1

p∑
b=1

R̂a(j)R̂b(j)Ŝab −Ra(j)Rb(j)Sab

= ω

p∑
a=1

p∑
b=1

n−1∑
j=1

k2(j/m)(R̂a(j)R̂b(j)−Ra(j)Rb(j))Sab

+ ω

p∑
a=1

p∑
b=1

n−1∑
j=1

k2(j/m)(Ŝab − Sab)Ra(j)Rb(j)

+ ω

p∑
a=1

p∑
b=1

n−1∑
j=1

k2(j/m)(R̂a(j)R̂b(j)−Ra(j)Rb(j))(Ŝab − Sab)

= ω

p∑
a=1

p∑
b=1

Sab

n−1∑
j=1

k2(j/m)(R̂a(j)R̂b(j)−Ra(j)Rb(j))

+ ω

p∑
a=1

p∑
b=1

(Ŝab − Sab)
n−1∑
j=1

k2(j/m)Ra(j)Rb(j)

+ ω

p∑
a=1

p∑
b=1

(Ŝab − Sab)
n−1∑
j=1

k2(j/m)(R̂a(j)R̂b(j)−Ra(j)Rb(j))

= ω

p∑
a=1

p∑
b=1

A1 + ω

p∑
a=1

p∑
b=1

A2 + ω

p∑
a=1

p∑
b=1

A3, say. (B.25)

To complete the proof we shall show Ai = op(m
1/2) for i = 1, 2, 3. We begin with A1 and

A3. Because by Assumption 2 we have Sab = Op(1) and Ŝab − Sab = op(1) = Op(1), it

suffices to show
∑n−1

j=1 k
2(j/m)(R̂a(j)R̂b(j)−Ra(j)Rb(j)) = op(m

1/2). We have

n−1∑
j=1

k2(j/m)(R̂a(j)R̂b(j)−Ra(j)Rb(j))

=
n−1∑
j=1

k2(j/m)(R̂a(j)−Ra(j))(R̂b(j)−Rb(j)) +
n−1∑
j=1

k2(j/m)(R̂a(j)−Ra(j))Rb(j)

+
n−1∑
j=1

k2(j/m)(R̂b(j)−Rb(j))Ra(j)

= A11 +A12 +A13, say. (B.26)
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By Cauchy-Schwarz inequality, we write for A11

|A11| ≤

{
n−1∑
j=1

k2(j/m)(R̂a(j)−Ra(j))
2

}1/2{n−1∑
j=1

k2(j/m)(R̂b(j)−Rb(j))
2

}1/2

= Op(m
1/2/n2/5)×Op(m

1/2/n2/5)

= Op(m/n4/5)

= Op(m
1/2)×Op(m

1/2/n4/5) = op(m
1/2), (B.27)

which makes use of m/n → 0,
∑n−1

j=1 k
2(j/m) = O(m) and (B.22). We now focus on A12.

By Cauchy-Schwarz inequality, we have

|A12| ≤

{
n−1∑
j=1

k2(j/m)(R̂a(j)−Ra(j))
2

}1/2{n−1∑
j=1

k2(j/m)R2
b(j)

}1/2

= Op(m
1/2/n2/5)×

{
n−1∑
j=1

R2
b(j) +

n−1∑
j=1

[k2(j/m)− 1]R2
b(j)

}1/2

= Op(m
1/2/n2/5)×Op(1)

= Op(m
2/5/n2/5)×Op(m

1/10) = op(m
1/2) (B.28)

where the first equality makes use of the result in (B.27), the second equality follows

by Assumption 3(i), dominated convergence theorem, limm→∞ k2(j/m) − 1 → 0 and

|k2(j/m)− 1| ≤ 1. By the same reasonings, we also have A13 = op(m
1/2).

We now focus onA2. Given Ŝab−Sab = op(1) it suffices to show
∑n−1

j=1 k
2(j/m)Ra(j)Rb(j) =

Op(1). We have by Cauchy-Schwarz inequality

n−1∑
j=1

k2(j/m)Ra(j)Rb(j) ≤

{
n−1∑
j=1

k2(j/m)R2
a(j)

}1/2{n−1∑
j=1

k2(j/m)R2
b(j)

}1/2

= Op(1), (B.29)

which makes use of the result in (B.28) This completes the proof.

Proof of Lemma B.4. It suffices to show

R̂(j)′Σ̂R̂(j)
p−→ R(j)′ΣR(j).

By Assumption 2 we have Σ̂
p−→ Σ. The proof completes by the continuous mapping

theorem and by noting that we have R̂(j)
p−→ R(j) from the result in (B.22).
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Appendix C Proof of Proposition 1

Recall the formula of Qr

Qr =
n
∑n−1

j=1 k
2(j/m)ρ̂2nr(j)−

∑n−1
j=1 k

2(j/m){
2
∑n−1

j=1 k
4(j/m)

}1/2
.

Recall the proposition

Proposition 1. Suppose the conditions of Theorem 1 hold. Then Qr
d−→ N(0, 1) under

H0.

Proof of Proposition 1. Recall that ρ̂n(j) is the j-th element of ρ̂n and that ρ̂nr(j) is

the j-th element of ∆̂−1/2ρ̂n. Let rn collect {ρn(j) + (θ̂T − θ0)
′∇θ[ρn(j)]}n−1

j=1 . Let

rnr ≡ ∆−1/2rn, and let rnr(j) denote the j-th element of rnr. The proposition can be

given by the following lemmas

Lemma C.1. Suppose the conditions of Proposition 1 hold. Then

n
∑n−1

j=1 k
2(j/m)r2nr(j)−

∑n−1
j=1 k

2(j/m){
2
∑n−1

j=1 k
4(j/m)

}1/2

d−→ N(0, 1).

Lemma C.2. Suppose the conditions of Proposition 1 hold. Then

n
∑n−1

j=1 k
2(j/m) {ρ̂2nr(j)− r2nr(j)}{

2
∑n−1

j=1 k
4(j/m)

}1/2
= op(1).

Proof of Lemma C.1. The result is immediate from the proof of Lemma B.1. The key is

to note that we have from (B.8)–(B.10)
√
nrn

d−→ N(0,∆), where the (i, j)-th element of

∆ is given by ∆(i, j) = δ(i, j)+ωR(i)′ΣR(j). Repeating the rest of the proof of Lemma

B.1 gives the desired result.

Proof of Lemma C.2. Put {k2(j/m)}n−1
j=1 in the vector Kn2. We have from the proof of

Lemma B.2 that

m−1/2nρ̂
′

nKn2ρ̂n −m−1/2nr
′

nKn2rn = op(1).

13



Next, the proof of Lemma B.4 implies that ∆̂−∆ = op(1). By the continuous mapping

theorem

m−1/2nρ̂
′

n∆̂
−1/2Kn2∆̂

−1/2ρ̂n −m−1/2nr
′

n∆
−1/2Kn2∆

−1/2rn = op(1).

Given
∑n−1

j=1 k
4(j/m) = O(m), we have

nρ̂
′
n∆̂

−1/2Kn2∆̂
−1/2ρ̂n − nr

′
n∆

−1/2Kn2∆
−1/2rn

{2
∑n−1

j=1 k
4(j/m)}1/2

= op(1).

This completes the proof.

Appendix D Proof of Theorem 2

Recall the result

Theorem 2. Suppose Assumptions 1–6 in the online appendix hold, and let T → ∞,

n → ∞, n/T → ω < ∞, m → ∞, m/n → 0. Then

m1/2

n
Q

p−→
∞∑
j=1

ρ2(j)

/[
2

∫ ∞

0

k4(z)dz

]1/2
.

Proof of Theorem 2. Given Lemma B.4, to verify the theorem it suffices to show the

following lemmas

Lemma D.1. Suppose the conditions of Theorem 2 hold. Then

n−1∑
j=1

k2(j/m)
{
ρ(j) + (θ̂T − θ0)

′∇θ[ρ(j)]
}2 p−→

∞∑
j=1

ρ2(j).

Lemma D.2. Suppose the conditions of Theorem 2 hold. Then

n−1∑
j=1

k2(j/m)ρ̂2n(j)−
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

= op(1).

Lemma D.3. Suppose the conditions of Theorem 2 hold. Then

n−1∑
j=1

k2(j/m)
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

−
{
ρ(j) + (θ̂T − θ0)

′∇θ[ρ(j)]
}2

= op(1).
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Lemma D.4. Suppose the conditions of Theorem 2 hold. Then

n−1

n−1∑
j=1

k2(j/m)[1 + ωR(j)′ΣR(j)] = op(1).

Lemma D.5. Suppose the conditions of Theorem 2 hold. Then

m−1V1n(k)
p−→ 2

∫ ∞

0

k4(z)dz.

Proof of Lemma D.1. We write

n−1∑
j=1

k2(j/m)
{
ρ(j) + (θ̂T − θ0)

′∇θ[ρ(j)]
}2

=
n−1∑
j=1

k2(j/m)ρ2(j) +
n−1∑
j=1

k2(j/m){(θ̂T − θ0)
′∇θ[ρ(j)]}2

+ 2
n−1∑
j=1

k2(j/m)ρ(j)(θ̂T − θ0)
′∇θ[ρ(j)]

= B1n + B2n + B3n, say.

To complete the proof we shall show B1n
p−→

∑∞
j=1 ρ

2(j), B2n
p−→ 0 and B3n

p−→ 0. We begin

with B2n. By Cauchy-Schwarz inequality we have

B2n =
n−1∑
j=1

k2(j/m){(θ̂T − θ0)
′∇θ[ρ(j)]}2

≤ ∥θ̂T − θ0∥2
n−1∑
j=1

k2(j/m)∥∇θ[ρ(j)]∥2

= Op(m/T ) = op(1).

The last equality follows by Markov’s inequality, Assumptions 2, 4 and 5. We now focus

15



on B1n

B1n =
n−1∑
j=1

k2(j/m)ρ2(j)

=
∞∑
j=1

ρ2(j)−
∞∑
j=n

ρ2(j) +
n−1∑
j=1

[k2(j/m)− 1]ρ2(j)

p−→
∞∑
j=1

ρ2(j).

The result follows by noting the summability condition in Assumption 6, which implies∑∞
j=1 ρ

2(j) = γ−2(0)
∑∞

j=1 γ
2(j) < ∞. This implies that the second term goes to zero,

and that together with dominated convergence theorem, limm→∞ k2(j/m) − 1 → 0 and

|k2(j/m)− 1| ≤ 1, the third term goes to zero.

Finally, we write for B3n

B3n = 2
n−1∑
j=1

k2(j/m)ρ(j)(θ̂T − θ0)
′∇θ[ρ(j)]

≤ 2

{
n−1∑
j=1

k2(j/m)ρ2(j)

}1/2

×

{
n−1∑
j=1

k2(j/m){(θ̂T − θ0)
′∇θ[ρ(j)]}2

}1/2

= 2B1/2
1n × B1/2

2n

= O(1)× op(1) = op(1).

This completes the proof.

Proof of Lemma D.2. By reasonings similar to that in the proof of Lemma B.2, we have

for 1 ≤ j ≤ n− 1

nρ̂2n(j)− n
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

= 2{
√
nρn(j) +

√
n(θ̂T − θ0)

′∇θ[ρn(j)]}Op(n
−1/2) +Op(n

−1)

= Op(1), (D.1)

which implies

ρ̂2n(j)−
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

= Op(1/n). (D.2)
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Therefore we have

n−1∑
j=1

k2(j/m)

{
ρ̂2n(j)−

{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

}

≤ m sup
1≤j≤n−1

{
ρ̂2n(j)−

{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

}{
m−1

n−1∑
j=1

k2(j/m)

}
= Op(m/n) = op(1). (D.3)

This completes the proof.

Proof of Lemma D.3. We write

n−1∑
j=1

k2(j/m)
{
ρn(j) + (θ̂T − θ0)

′∇θ[ρn(j)]
}2

−
{
ρ(j) + (θ̂T − θ0)

′∇θ[ρ(j)]
}2

=
n−1∑
j=1

k2(j/m)[ρ2n(j)− ρ2(j)] +
n−1∑
j=1

k2(j/m){(θ̂T − θ0)
′[∇θ[ρn(j)]−∇θ[ρ(j)]]}2

+ 2
n−1∑
j=1

k2(j/m)ρ(j)(θ̂T − θ0)
′[∇θ[ρn(j)]−∇θ[ρ(j)]]

= C1n + C2n + C3n, say.

To complete the proof we shall show Cin
p−→ 0, for i = 1, 2, 3. We begin with C2n. By

Cauchy-Schwarz inequality we have

C2n =
n−1∑
j=1

k2(j/m){(θ̂T − θ0)
′[∇θ[ρn(j)]−∇θ[ρ(j)]]}2

≤ ∥θ̂T − θ0∥2
n−1∑
j=1

k2(j/m)∥∇θ[ρn(j)]−∇θ[ρ(j)]∥2

= Op(m/T ) = op(1).

The last equality follows by Markov’s inequality, Assumptions 2, 4 and 5. We now focus

on C1n

|C1n| =

∣∣∣∣∣
n−1∑
j=1

k2(j/m)ρ2(j)−
n−1∑
j=1

k2(j/m)ρ2n(j)

∣∣∣∣∣
=

∣∣∣∣∣γ−2(0)
n−1∑
j=1

k2(j/m)γ2(j)− γ−2
n (0)

n−1∑
j=1

k2(j/m)γ2
n(j)

∣∣∣∣∣
17



=
∣∣γ−2(0)− γ−2

n (0)
∣∣ n−1∑
j=1

k2(j/m)γ2(j) + γ−2
n (0)

{
n−1∑
j=1

k2(j/m)
∣∣γ2(j)− γ2

n(j)
∣∣}

=
∣∣γ−2(0)− γ−2

n (0)
∣∣ C11n + γ−2

n (0)C12n, say.

We have |γ−2(0)− γ−2
n (0)| C11n = op(1), which follows by Markov’s inequality, E[γ(0) −

γn(0)] = 0, and C11n =
∑n−1

j=1 k
2(j/m)γ2(j)

p−→
∑∞

j=1 γ
2(j) ≤ ∞ as implied in the proof

of Lemma D.1. Because γn(0) = O(1), to show C1n = op(1) it remains to show that C12n
vanishes in probability. Since |γ2(j)− γ2

n(j)| = [γn(j)−γ(j)]2+2 |γ(j)| |γn(j)− γ(j)|, we
have by Cauchy-Schwarz inequality

C12n =
n−1∑
j=1

k2(j/m)[γ(j)− γn(j)]
2 + 2

n−1∑
j=1

k2(j/m) |γ(j)| |γn(j)− γ(j)|

≤
n−1∑
j=1

k2(j/m)[γ(j)− γn(j)]
2 + 2C1/2

11n

{
n−1∑
j=1

k2(j/m)[γ(j)− γn(j)]
2

}1/2

.

By observing that we have sup1≤j≤n−1V[γn(j)] ≤ cn−1 given Assumption 6 (see, e.g.,

Hannan, 1970, p. 209), we therefore obtain C12n = Op(m
1/2/n1/2) = op(1). Finally, given∑n−1

j=1 k
2(j/m)ρ2(j)

p−→
∑∞

j=1 ρ
2(j) ≤ ∞, and C2n = op(1), we have C3n = op(1), since

C3n ≤ 2C1/2
2n

{
n−1∑
j=1

k2(j/m)ρ2(j)

}1/2

.

This completes the proof.

Proof of Lemma D.4. Becausem/n → 0, it suffices to show
∑n−1

j=1 k
2(j/m)[1+ωR(j)′ΣR(j)] =

O(m). We write

n−1∑
j=1

k2(j/m)[1 + ωR(j)′ΣR(j)] =
n−1∑
j=1

k2(j/m) + ω
n−1∑
j=1

k2(j/m)R(j)′ΣR(j). (D.4)

The first term in (D.4) is O(m) by Assumption 4. We write for the second term

ω
n−1∑
j=1

k2(j/m)R(j)′ΣR(j)

≤ ω∥Σ∥
n−1∑
j=1

k2(j/m)∥R(j)∥2

18



= ω∥Σ∥

{
n−1∑
j=1

∥R(j)∥2 +
n−1∑
j=1

[k2(j/m)− 1]∥R(j)∥2
}

= O(1), (D.5)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,

limm→∞ k2(j/m)− 1 → 0 and |k2(j/m)− 1| ≤ 1. This completes the proof.

Proof of Lemma D.5. We write

m−1V1n(k) = 2m−1

n−1∑
j=1

k4(j/m)[1 + ωR(j)′ΣR(j)]2

+ 2m−1

n−1∑
j=1

n−1∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR(i)′ΣR(j)]2. (D.6)

To complete the proof we show that the first term converges to 2
∫∞
0

k4(z)dz, and that

the second term vanishes. We write for the first term

2m−1

n−1∑
j=1

k4(j/m)[1 + ωR(j)′ΣR(j)]2

= 2m−1

n−1∑
j=1

k4(j/m) + 4m−1ω
n−1∑
j=1

k4(j/m)R(j)′ΣR(j) + 2m−1ω2

n−1∑
j=1

k4(j/m)[R(j)′ΣR(j)]2.

(D.7)

For the first term in (D.7), we have 2m−1
∑n−1

j=1 k
4(j/m) → 2

∫∞
0

k4(z)dz given m → ∞
as n → ∞, m/n → 0. In the following we show that the second and third terms in (D.7)

are o(1). We write for the second term

4m−1ω
n−1∑
j=1

k4(j/m)R(j)′ΣR(j)

≤ 4m−1ω∥Σ∥
n−1∑
j=1

k4(j/m)∥R(j)∥2

= 4m−1ω∥Σ∥

{
n−1∑
j=1

∥R(j)∥2 +
n−1∑
j=1

[k4(j/m)− 1]∥R(j)∥2
}

= O(m−1) = o(1), (D.8)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,

limm→∞ k4(j/m)−1 → 0 and |k4(j/m)−1| ≤ 1. By Cauchy-Schwarz inequality we write
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for the third term in (D.7)

2m−1ω2

n−1∑
j=1

k4(j/m)[R(j)′ΣR(j)]2

≤ 2m−1ω2∥Σ∥2
{

n−1∑
j=1

k2(j/m)∥R(j)∥2
}{

n−1∑
j=1

k2(j/m)∥R(j)∥2
}

≤ O(m−1)

{
n−1∑
j=1

k2(j/m)∥R(j)∥2
}2

= O(m−1)

{[
n−1∑
j=1

∥R(j)∥2 +
n−1∑
j=1

[k2(j/m)− 1]∥R(j)∥2
]}2

= O(m−1)×O(1) = o(1), (D.9)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,

limm→∞ k2(j/m)− 1 → 0 and |k2(j/m)− 1| ≤ 1.

To complete the proof it remains to show that the second term in (D.6) is o(1). By

Cauchy-Schwarz inequality, we write

2m−1

n−1∑
j=1

n−1∑
i=1
i ̸=j

k2(i/m)k2(j/m)[ωR(i)′ΣR(j)]2

≤ 2m−1ω2

n−1∑
j=1

n−1∑
i=1

k2(i/m)k2(j/m)[R(i)′ΣR(j)]2

≤ 2m−1ω2∥Σ∥
n−1∑
j=1

n−1∑
i=1

k2(i/m)∥R(i)∥2k2(j/m)∥R(j)∥2

= 2m−1ω2∥Σ∥

{
n−1∑
j=1

k2(j/m)∥R(j)∥2
}{

n−1∑
i=1

k2(i/m)∥R(i)∥2
}

= O(m−1)

{
n−1∑
j=1

k2(j/m)∥R(j)∥2
}2

= o(1),

where the last equality makes use of the result in (D.9). This completes the proof.
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Appendix E Proof of Proposition 2

Proof of Proposition 2. To ease the proof we introduce the following notations. Let r

collect {ρ(j) + (θ̂T − θ0)
′∇θ[ρ(j)]}n−1

j=1 . Let ρ collect {ρ(j)}n−1
j=1 , let ρ∇ collect {(θ̂T −

θ0)
′∇θ[ρ(j)]}n−1

j=1 . Let rr ≡ ∆−1/2r, and let rr(j) denote the j-th element of rr. Let

ρr ≡ ∆−1/2ρ, and let ρr(j) denote the j-th element of ρr. Recall the result

Proposition 2. Suppose the conditions of Theorem 2 hold. Then

m1/2

n
Qr

p−→
∞∑
j=1

ρ2r(j)

/[
2

∫ ∞

0

k4(z)dz

]1/2
.

The theorem is given by the following lemmas

Lemma E.1. Suppose the conditions of Proposition 2 hold. Then

n−1∑
j=1

k2(j/m)r2r(j)
p−→

∞∑
j=1

ρ2r(j)

Lemma E.2. Suppose the conditions of Proposition 2 hold. Then

n−1∑
j=1

k2(j/m)ρ̂2nr(j)− r2nr(j) = op(1)

Lemma E.3. Suppose the conditions of Proposition 2 hold. Then

n−1∑
j=1

k2(j/m)r2nr(j)− r2r(j) = op(1)

Proof of Lemma E.1. To begin we show
∑n−1

j=1 k
2(j/m)r2r(j)

p−→
∑n−1

j=1 k
2(j/m)ρ2r(j). To

that we note ρ∇ = Op(T
−1/2) and ∆ = O(1), which implies rr = ∆−1/2ρ+ op(1). With

this we have

n−1∑
j=1

k2(j/m)r2r(j)

= r
′

rKn2rr

= [∆−1/2ρ+∆−1/2ρ∇]
′
Kn2[∆

−1/2ρ+∆−1/2ρ∇]
p−→ [∆−1/2ρ]

′
Kn2[∆

−1/2ρ]
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=
n−1∑
j=1

k2(j/m)ρ2r(j).

In the following we shall show
∑n−1

j=1 k
2(j/m)ρ2r(j)

p−→
∑∞

j=1 ρ
2
r(j). We write

n−1∑
j=1

k2(j/m)ρ2r(j) =
∞∑
j=1

ρ2r(j)−
∞∑
j=n

ρ2r(j) +
n−1∑
j=1

[k2(j/m)− 1]ρ2r(j)

= D1n −D2n +D3n, say.

To complete the proof we shall show D2n → 0 and D3n → 0. We first show that D1n =∑∞
j=1 ρ

2
r(j) < ∞. Denote by λmax the largest eigenvalues of ∆−1, and we note that

0 < λmax ≤ 1 because ∆ is given by the sum of an identity matrix and a positive

semidefinite matrix. Therefore we have
∑n−1

j=1 ρ
2
r(j) = ρ

′
∆−1ρ ≤ λmax ∥ρ∥2 ≤ ∥ρ∥2 =

ρ
′
ρ =

∑n−1
j=1 ρ

2(j), which, as n → ∞, yields
∑∞

j=1 ρ
2
r(j) ≤

∑∞
j=1 ρ

2(j) < ∞. The last

inequality follows from the result of Lemma D.1. This implies D2n → 0. Finally, we have

D3n → 0 by dominated convergence theorem, limm→∞ k2(j/m)−1 → 0, |k2(j/m)−1| ≤ 1

and D1n < ∞. This completes the proof.

Proof of Lemma E.2. We have shown in Lemma D.2 that

ρ̂
′

nKn2ρ̂n − r
′

nKn2rn = op(1).

We also have ∆̂−∆ = op(1) from the proof of Lemma B.4. Therefore, by the continuous

mapping theorem

ρ̂
′

n∆̂
−1/2Kn2∆̂

−1/2ρ̂n − r
′

n∆
−1/2Kn2∆

−1/2rn = op(1).

This completes the proof.

Proof of Lemma E.3. The proof is immediate by noting that we have from Lemma D.3

r
′

nKn2rn − r
′
Kn2r = op(1),

which, given ∆ = O(1), implies

r
′

n∆
−1/2Kn2∆

−1/2rn − r
′
∆−1/2Kn2∆

−1/2r = op(1).
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Appendix F Computing R̂(j)

Recall that R(j) is given by

R(j) =
1

α(1/3− α/4)
E {(Ht−j(α,θ0)− α/2)∇θ[Ht(α,θ0)]} ,

and that Ht(α,θ0) is given by

Ht(α,θ0) = 1[FY2(Y2,t|Ωt−1,θ0) ≤ α]× [1− FY1|Y2≤V aR2(α)(Y1,t|Ωt−1,θ0)]

= 1(u2,t(θ0) ≤ α)× (1− u12,t(θ0)).

Because the indicator function 1(u2,t(θ0) ≤ α) in Ht(α,θ0) is not differentiable, we

follow Banulescu-Radu et al. (2021) to evaluate∇θ[Ht(α,θ0)] using∇θ[H
⊕
t (α,θ0)], where

the quantity H
⊕
t (α,θ0) is analogous to Ht(α,θ0), but with the indicator function 1(·)

replaced by a continuously differentiable estimator. To ensure comparability we use

the same consistent smoothing estimator as that given in Banulescu-Radu et al. (2021,

Appendix E). Therefore, the consistent estimator for R(j) is given by

R̂(j) = Rn(j, θ̂T ) =
1

α(1/3− α/4)

1

n− j

T+n∑
t=T+1+j

{
(Ht−j(α, θ̂T )− α/2)∇θ[H

⊕
t (α, θ̂T )]

}
.

Similarly, R̃(j) is the analogous counterpart of R̂(j) with true parameter θ0

R̃(j) = Rn(j,θ0) =
1

α(1/3− α/4)

1

n− j

T+n∑
t=T+1+j

{
(Ht−j(α,θ0)− α/2)∇θ[H

⊕
t (α,θ0)]

}
.

Finally, we allow as with Banulescu-Radu et al. (2021, Appendix F) a small sample factor√
1− j/n for R(j) and its estimators. This does not affect the asymptotic properties of

our backtests.
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Appendix G Institution tickers and names

Ticker Institution name Ticker Institution name

ABK AMBAC FINANCIAL GROUP INC HIG HARTFORD FINANCIAL SVCS GRP INC
ACAS AMERICAN CAPITAL STRATEGIES LTD HUM HUMANA INC
AET AETNA INC NEW ICE INTERCONTINENTALEXCHANGE INC
AFL AFLAC INC KEY KEYCORP NEW
AGE EDWARDS A G INC LEH LEHMAN BROTHERS HOLDINGS INC
AIG AMERICAN INTERNATIONAL GROUP INC LM LEGG MASON INC
AIZ ASSURANT INC LNC LINCOLN NATIONAL CORP
ALL ALLSTATE CORP LTR LOEWS CORP
AMP AMERIPRISE FINANCIAL INC MA MASTERCARD INC
AMTD AMERITRADE HOLDING CORP MBI M B I A INC
AOC AON CORP MER MERRILL LYNCH & CO INC
ATH ANTHEM INC MET METLIFE INC
AXP AMERICAN EXPRESS CO MI MARSHALL & ILSLEY CORP
BAC BANK OF AMERICA CORP MMC MARSH & MCLENNAN COS INC
BBT B B & T CORP MTB M & T BANK CORP
BEN FRANKLIN RESOURCES INC MWD MORGAN STANLEY DEAN WITTER & CO
BK BANK NEW YORK INC NCC NATIONAL CITY CORP
BKLY BERKLEY W R CORP NMX NYMEX HOLDINGS INC
BLK BLACKROCK INC NTRS NORTHERN TRUST CORP
BOT C B O T HOLDINGS INC NYX N Y S E GROUP INC
BRK BERKSHIRE HATHAWAY INC DEL PBCT PEOPLES BANK BRIDGEPORT
BSC BEAR STEARNS COMPANIES INC PFG PRINCIPAL FINANCIAL GROUP INC
C CITIGROUP INC PGR PROGRESSIVE CORP OH
CB CHUBB CORP PNC P N C BANK CORP
CBG C B RICHARD ELLIS GROUP INC PRU PRUDENTIAL FINANCIAL INC
CBH COMMERCE BANCORP INC NJ QCSB QUEENS COUNTY BANCORP INC
CBSS COMPASS BANCSHARES INC RGBK REGIONS FINANCIAL CORP
CCR COUNTRYWIDE CREDIT INDS INC SAFC SAFECO CORP
CI C I G N A CORP SCH SCHWAB CHARLES CORP NEW
CINF CINCINNATI FINANCIAL CORP SEIC S E I INVESTMENTS CO
CIT C I T GROUP INC NEW SLM S L M HOLDING CORP
CMA COMERICA INC SNV SYNOVUS FINANCIAL CORP
CMB CHASE MANHATTAN CORP NEW SPC ST PAUL COS INC
CME CHICAGO MERCANTILE EXCH HLDG INC STI SUNTRUST BANKS INC
CNA C N A FINANCIAL CORP STT STATE STREET CORP
COF CAPITAL ONE FINANCIAL CORP SV STILWELL FINANCIAL INC
CVTY COVENTRY HEALTH CARE INC SVRN SOVEREIGN BANCORP INC
EGRP E TRADE GROUP INC TMK TORCHMARK CORP
FHS FOUNDATION HEALTH SYSTEMS INC TROW T ROWE PRICE ASSOC INC
FITB FIFTH THIRD BANCORP UB UNIONBANCAL CORP
FNF FIDELITY NATIONAL FINANCIAL INC UNH UNITED HEALTHCARE CORP
FNM FEDERAL NATIONAL MORTGAGE ASSN UNM UNUMPROVIDENT CORP
FRE FEDERAL HOME LOAN MORTGAGE CORP USB U S BANCORP DEL
FTU FIRST UNION CORP WFC WELLS FARGO & CO NEW
GNW GENWORTH FINANCIAL INC WM WASHINGTON MUTUAL INC
GS GOLDMAN SACHS GROUP INC WU WESTERN UNION CO
HBAN HUNTINGTON BANCSHARES INC ZION ZIONS BANCORPORATION
HCBK HUDSON CITY BANCORP INC

24



References

Banulescu-Radu, D., Hurlin, C., Leymarie, J., Scaillet, O., 2021. Backtesting marginal

expected shortfall and related systemic risk measures. Management Science 67, 5730–

5754.

Hannan, E.J., 1970. Multiple Time Series. John Wiley and Sons. New York.

Hayashi, F., 2000. Econometrics. Princeton University Press.

Hong, Y., 1996. Consistent testing for serial correlation of unknown form. Econometrica

64, 837–864.

Rosenblatt, M., 1952. Remarks on a multivariate transformation. Annals of Mathematical

Statistics 23, 470–472.

25


	Introduction
	Method and statistical theory
	Preliminaries and definitions
	The main hypotheses
	Test statistics and asymptotic theory
	Generalized backtests for other measures
	Backtesting SRISK and SES
	Backtesting at other system conditions


	Monte Carlo evidence
	Empirical evidence
	Data
	Backtesting results
	Summary and regulatory implications

	System warning indicator
	Conclusion
	MAIN_Internet_Appendix.pdf
	Assumptions
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Proposition 2
	Computing (j) 
	Institution tickers and names


