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Abstract

This paper offers two novel backtests to evaluate the adequacy of well-known systemic risk
measures such as CoVaR, MES, SES, and SRISK. Both the new backtests are robust to
estimation risk, that is, their null distributions remain invariant in the presence of estimation
risk. While existing backtest is consistent against divergence from the null hypothesis up to a
finite order, the paper shows that the new backtests are fully consistent. The real-world
implications brought by the new backtests are economically significant as they reveal
significantly more cases of inadequate systemic risk modeling among the major financial

institutions.
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I. Introduction

In his recent keynote speech as the chairperson of the European Central Bank’s supervisory
board, Andrea Enria concluded that the recent pandemic and geopolitical events have turned into
macro-level shocks that could alarmingly put the stability of financial system at risk (Enria, 2022). It is
therefore crucial that financial supervisors and regulators have access to reliable measures describing
and anticipating risk with systemic effects, i.e., the systemic risk measures. To examine the reliability
and accuracy of these measures calls for proper validation tools. In today’s fast-paced world, the
financial system and its participants are responding and acting according to the latest news and events.
Thus, methods for testing the reliability of systemic risk measures must adapt accordingly, by placing
more attention to recent observations.

Existing literature on backtesting systemic risk is scarce, with the pioneering work contributed
by |Girardi and Ergiin/ (2013)), who propose to backtest the conditional value-at-risk (CoVaR) measure of
Adrian and Brunnermeier (2011, 2016)) using likelihood ratio method in the vein of |Kupiec| (1995) and
Christoffersen| (1998). A major contribution to backtesting systemic risk measures is given by
Banulescu-Radu, Hurlin, Leymarie, and Scaillet (2021)), hereafter also referred to as BHLS, who
provide methods to backtest multiple systemic risk measures considered as important and prominent by
the literature, i.e., the delta CoVaR (ACoVaR) of [Adrian and Brunnermeier (2016)), the conditional
capital shortfall measure of systemic risk (SRISK) of |/Acharya, Engle, and Richardson| (2012) and
Brownlees and Engle (2017), the marginal expected shortfall (MES) and the systemic expected shortfall
(SES) of |Acharya, Pedersen, Philippon, and Richardson! (2017)). To this objective, BHLS propose
non-likelihood-based statistic such as the t-statistic (to backtest e.g., CoVaR) and the Box-Pierce

statistic (to backtest e.g., MES), while taking into consideration the impact of estimation risk.



In this paper, we provide two classes of backtests for checking the adequacy of prominent
systemic risk measures. We begin with backtesting the CoVaR and MES measures. We exploit as with
existing literature the martingale difference sequence (mds) property of risk indicators derived under the
definitions of CoVaR and MES, with a complementary observation. In particular, we show, without
imposing additional conditions to existing works, how we can obtain a general procedure, i.e., one that
can be used to detect inadequate systemic risk estimated using either CoVaR or MES. This puts our
backtesting philosophy in line with the “better-safe-than-sorry” philosophy recently advocated by major
regulatory body such as the European Central Bank (see, e.g.,|Enria, 2022; Rehn, [2020). This follows
because in practice, the CoVaR and MES of a financial institution are usually forecasted by the same
risk model, and by backtesting CoVaR and MES jointly, we require the risk model to adequately
produce both estimates. Our philosophy imposes a more stringent requirement on institutional risk
modeling which in turn promotes a safer empirical practice.

By construction, the paper’s statistical hypotheses take into account simultaneously both the
unconditional and independence conditions commonly examined by the literature. We formulate the
first backtest by analogy with the kernel generalization of [Box and Pierce (1970) test in Hong (1996)),
and the additional technicality here lies with treating the impact of estimation risk which stems from
forecasting out-sample systemic risk using in-sample parameter estimates. Because our first backtest
tackles estimation risk using its standardizing factors, we refer to it as the “standardized” backtest. As
the effect of estimation risk can also be asymptotically treated by whitening the test statistic, we obtain
the second class of our backtest — the “whitened” backtest. Under regularity conditions, we show both
the proposed backtests converge in distribution to N(0, 1) under the null hypothesis.

We also explicitly study and establish the consistency of the new backtests. While the

Box-Pierce-type statistic developed in BHLS focuses on divergence from the null hypothesis up to the
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first m lag order, we show that our backtests are fully consistent to capture a wide range of empirical
alternatives. By extension, our backtests also generalize the methodology in |Girardi and Ergiin| (2013)
as it focuses on the first-order effect. Intuitively, such generalization is achieved by making m the
testing scope of our test statistics and then letting m — oo. This also appealingly makes the asymptotic
distribution of our backtests robust to any finite sample adjustments in m such as those discussed in
Breusch and Pagan (1980).

Additionally, we show how the new backtests can also be applied to examine the adequacy of
other prominent systemic risk measures. In particular, we show how the new backtests also
simultaneously examine the adequacy of the SES and SRISK measures. While existing backtest for
SES and SRISK are based on simulated test statistics, the new backtests need no modification. This
highlights the generality of the new backtests as they can be conveniently used to detect inadequate
systemic risk estimated using either CoVaR, MES, SES, or SRISK. We also discuss how our backtests
can be slightly tweaked from focusing on the distress system condition to examining other system level
of interest such as the median, which allows backtesting ACoVaR since it also evaluates CoVaR at the
median system condition.

The Box-Pierce-type statistic, upon allowing its testing scope to grow, can be viewed as a
special case of our backtests under the truncated uniform kernel. Both procedures assign equal weight
to each lag order. We offer downward weighting kernels to better match the new kernel-based backtests
with financial market stylized fact, since market participants are usually more influenced by recent news
than by remote past events. Simulation evidence highlights the optimality of our backtests. First, the
new backtests demonstrate detection power against alternatives that are of dynamic (i.e.,
time-dependent) nature and of time-invariant (i.e., unconditional) nature. A growing m improves power

against time-invariant alternatives but the opposite is observed against time-dependent alternatives. In
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this aspect, our downward weighting backtests stand out over existing equally weighted backtest as they
give better tradeoff between the two types of alternatives. Simulation evidence also highlights the
complementary finite-sample capacities of the new backtests. Our standardized backtest, which
preserves data dynamics more effectively, tends to yield better power against alternatives driven by
dynamic misspecification. Under the time-invariant alternatives whitened backtest gives slightly better
power than its standardized counterpart.

In addition to using simulated data, we also study the performance of the new backtests using
real-world data. We focus on the largest financial institutions as their failures (due to e.g., inadequate
risk evaluation) are often detrimental to the greater financial system. More precisely, as in|Brownlees
and Engle| (2017) and Banulescu-Radu et al.|(2021]) we study US institutions with market capitalization
greater than 5 billion dollars as of the end of June 2007. We collect data from early 2000 until late 2022
to study also the more recent pandemic-induced financial market crashes. Our findings confirm the
empirical improvement brought by the new backtests. For instance, compared to existing backtest the
new backtests demonstrate better empirical power as they reveal thousands more cases of inadequate
systemic risk modeling over the sample period. Such improvement is also of considerable economic
significance as it implies that the new backtests would have detected a larger scale of inadequate
systemic risk modeling among the major financial institutions. These additional cases could play an
important role in calling for a system-wide revision of existing risk modeling, which in turn would
improve the stability of the greater financial system. Our empirical evidence also confirms the
complementary features between the new backtests. Thus, we propose, in accordance with the
“better-safe-than-sorry” philosophy, that the new backtests are applied together to detect as many
indications about large-scale systemic risk inadequacies as possible.

In the spirit of Gourieroux and Zakotan| (2013) and Lazar and Zhang (2019), BHLS propose a



system indicator by adjusting the forecasting errors in a forecasted systemic risk series under an
objective function. In particular, the objective function in BHLS aims to adjust each forecast with the
same magnitude. This may not be optimal because the forecasting errors across a forecasted series are
generally nonuniform as, for instance, the next-period forecast is expected to be more accurate with a
smaller margin of error than the forecast multiple periods ahead. By reasonings similar to the
construction of the new backtests, we improve upon existing objective function such that it aims to
adjust with smaller magnitude the immediate forecasts and appropriately with greater magnitude the
forecasts multiple steps ahead. This is expected to give an indicator that reflects more accurately the
state of the financial system. Indeed, compared with existing indicator, the new indicator shows warning
signals that are more noticeable and alarming prior to both the 2008 subprime-induced and the 2020
pandemic-induced stock market crashes.

The remainder of this paper is organized as follows. Section [l spells out the framework and
statistical theory of the new backtests. Section [[I| provides Monte Carlo evidence highlighting the
improvement brought by the new backtests over existing backtest. Section |[V|confirms the
improvement using empirical data. Section [V|presents an early warning indicator for the financial

system. Section [VI] concludes.

II. Method and statistical theory

A. Preliminaries and definitions

We begin with some preliminaries, and we consider the following notations. Given two entities

Y = (V1,Ys), weletY; = (Y1, Ya,)' collect their returns at time ¢. In the context of backtesting



systemic risk, Y7 ; is the stock return of a financial institution, whereas Y5 ; is the system return which is
usually proxied by the return of a market index. We let €2, _; collect the information available at time
t — 1, and we denote by Fy (-|€2;_1) the joint distribution function of Y; given €2, i, such that we have
forany y = (y1,v2) € R%, Fy (y|Q_1) = P(Yi: <wy1,Yas < yo|%_1). Similarly, we let Fyo(-|2_1)
denote the marginal distribution of Y5, given §2,_;, such that we have for any y, € R,
Fyo(y2|%-1) = P(Ya: < y2|€%—1). For notational simplicity, we drop “almost surely” in all equalities
involving random variables.

We now introduce the definitions of systemic risk measures MES and CoVaR. Formally, for a

given a € [0, 1], the MES of an institution at time ¢ is defined as

(D MESyi4(a) =E(Y14|Ya: < VaRyos(a); 1),

where Va Ry () verifies VaRyq () = Fy (a|€;_1). Because a is typically specified at a small
value such as 5%, the event Y5 ; < VaRy- () captures the left tail distressed system condition. Thus,
M E Sy () quantifies the expected performance of a financial institution given that the system is in
distress. The CoVaR definition shares the similarity that it also emphasizes the distress system
condition. For a given /5 € [0, 1], the CoVaR of an institution at time ¢ is the quantity CoV aRy1 (5, «)

verifying the following equation

(2) ]P)(Yl,t < COV@RYl,t(Ba 04)|Y2,t < VaRYQ,t(a>; Qt—l) = .

The CoVaR definition differs slightly from that in Adrian and Brunnermeier| (2016)), where the main

difference is the use of an inequality (instead of an equality) for the conditioning event, that is



Y5+ < VaRys (). Our definition allows for losses beyond VaRy4 () and is in line with the
backtesting literature (see, e.g., Girardi and Ergiin, [2013; Banulescu-Radu et al., 2021). Besides, we
note CoVaRy1 (5, ) verifies CoVaRy1 (8, o) = F;l\lyggv(myg(a) (B]€%—1), where
Fy,|vs<VaRys(a)(-|€2:—1) is the conditional distribution of Y7 ; given Y5 ; < VaRys,(a) and §%;_;. In
other words, CoV aRy (3, o) measures an institution’s S-quantile return given that the system is in
distress.

In practice, systemic risk measures are typically estimated and forecasted from a parametric
model specified by academics, risk managers, or regulators. For instance, Brownlees and Engle  (2017)
and Banulescu-Radu et al. (2021)) consider the dynamic conditional correlation (DCC) specification to
model and forecast systemic risk. Therefore we suppose, along with other risk measures of interest,
VaRys (o) = VaRyqs(a, 0y) = Fyy (a1, 80) and
CoVaRy1 (B, a) = CoVaRy, (8, a,0y) = Fﬁ\lyggvmyg(a)(/@mt—l’ 60,), are computed from a
parametric model with true but unknown p-dimensional parameter vector 8, € @, C © C RP.

To backtest systemic risk measures, BHLS define a violation risk indicator based on the ex-post

risk sequence {CoVaRy1 (3, o, 0y), VaRys,.(, 0y)} evaluated at a specified («, /) level, namely

ht(a76700) = ]1[(Y1,t < COV@RYl,t(B>a>00)) N (Yz,t < VaRyz,t(Oé700))]-

Next, by identifying the MES-CoVaR relation, that is,

MESyi (o) = MESy14(a,8y) = fol CoVaRy1.(B, a,8y)dS, we obtain as with BHLS the risk



indicator for MES

1
Hy(a, 0) = / hu(cr, B, 8,)d8
0

= 1[Fy, (Y2, |%-1,60) < a] X [1 = Fy|va<vaRys(a,00)(Y1,t]2—1, 00)],

where the second equality follows by probability integral transform. The idea of backtesting risk
measures using their “respective” risk indicators is standard in the literature. For instance, h;(«, 3, 09)
and H,(«, 8) are analogous to risk indicators used in backtesting, respectively, the value-at-risk
measure (see, e.g., Berkowitz, Christoffersen, and Pelletier, 2011) and the expected shortfall measure
(see, e.g., Du and Escanciano, [2017). By the same reasoning, BHLS propose to use h;(«, 3, 6) to
backtest CoVaR at a specified («, 3) level, and to use H,(cv, 8y) to backtest MES at a specified « level.
To backtest risk measures the literature generally relies on exploiting the martingale difference
sequence (mds) property of risk indicators. The mds property of h;(«, 3, 8y) and H;(«, 8y) can be noted
as follows. First, by Bayes theorem we have P(h(a, 3,6y) = 1|Q;_1) = af. It follows from definition
(@) that, hy(c, 3, 8y) follows the Bernoulli(«f3) distribution, and that the ex-post centered indicator
{h(c, B,00) — af} is a mds at the specified («, ) level. Secondly, by Fubini’s theorem we note that
the mds property of {h;(«, 3,600) — a3} is preserved by integration, and that the mean of Hy(«, ;) is

given by a/2. Therefore, { H;(a, 6y) — «/2} is also a mds at the specified « level, that is
(3) ]E(Ht<04,90) —CY/QIQt,l) =0.

Notice that by definition of H;(«, 8y) and Fubini’s theorem we have

E(Hi(cr,00)|2-1) = fol E(h(a, 5,60)|Q—1)dS. It follows that for equation (3)) to hold the CoVaR



indicator hy(a, 3, 6y) must be properly modeled not just at a specified 5 but instead for all 8 € [0, 1].
This is a complementary observation to existing literature. It implies that by examining the MES
measure using H,(«, 0y) at a specified « level, we are simultaneously examining the CoVaR measure
using h.(a, 3, 0y), at the same « level but for all 5 € [0, 1]. Thus, we propose to examine MES and
CoVaR jointly based on the mds property of H,(«, 8y), which gives a general procedure, i.e., one that
can be conveniently used to detect inadequate systemic risk estimated using either CoVaR or MES. Our
procedure is in line with the “better-safe-than-sorry” philosophy advocated by major regulatory body
such as the European Central Bank[] This is because in practice, the CoVaR and MES of a financial
institution are usually estimated and forecasted by the same risk model (see, e.g., Banulescu-Radu et al.,
2021). By backtesting MES and CoVaR jointly, we require the risk model to adequately produce both
estimates. This imposes a more stringent requirement on institutional risk modeling which in turn

promotes a safer empirical practice.

B. The main hypotheses

Therefore, to backtest MES and CoVaR we focus on the mds { H;(«, 6y) — «/2} to obtain as
with the broader backtesting literature the zero mean condition, i.e., E(H;(«, 8y)) — a/2 = 0 and the
zero autocovariance condition, i.e., E[(H; (o, 6y) — E(H (o, 6y))) x (Hi—;(a, 89) — E(H (v, 0)))] =0

for all j > 1, which are sometimes referred to as the unconditional hypothesis and the independence

"'We note existing literature follows another (less stringent) philosophy which suggests backtesting CoVaR and MES
separately. This will allow for empirical cases where the MES estimate of an institution is inadequate, but the institution’s
CoVaR estimate (at a particular 3 level) is deemed adequate and can be relied upon, despite both measures are estimated by

the same risk model.
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hypothesis, respectively (see, e.g., Christoffersen, |1998; |Du and Escanciano, |2017; Banulescu-Radu
et al.,[2021).

To ensure asymptotic full detection power against both hypotheses, we construct a statistical
framework that considers both the unconditional and the independence conditions. This is achieved by
first applying E(H,(«, 8y)) = «/2, for all ¢, in the autocovariance () and autocorrelation p(j)

functions

4) v(j) = E[(Hi(a,80) — /2) x (Hi—j(, 00) — /2)],  p(j) = 7(5)/7(0).

Then, based on p(j) we specify the main hypotheses of the paper

Ho : p(j) =0, forall j > 1, H; : p(j)# 0 forany j > 1.

By construction, our hypotheses take into account jointly both the zero mean condition and the zero
autocovariance condition. A statistical test consistent against divergence from H), that is, with
asymptotic unit power under H;, would be consistent against both conditions. This is confirmed using
the new backtests in our simulation study.

In practice, we do not observe H;(«, 6y) and p(j) but we can estimate them using the observed
sample {Y7;, Yo} In this aspect, we note that the fundamental notion of backtesting is about
examining the quality of a sequence of forecasts (using e.g., Hj). This calls for a forecasting scheme.
For meaningful comparison we use as with BHLS the “fixed forecasting estimation scheme”. That is,
we first use an in-sample return data from ¢ = 1 tot = T (i.e., {Y14, ngt}le) to estimate 6, by e.g.,

éT, where éT is a consistent estimator for 8, with the asymptotic variance of VT (éT —6,) given by X.
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Then, using éT and the out-sample return data observed from¢ =7+ 1tot =T + n (ie.,

{Yi4, Yo, } 7 1), we forecast and compute { H,(a, éﬂ}ijﬁ? Therefore, the sample counterpart of

p(7) is given by

where 4, () is the sample autocovariance

©) ) = —— 3 (Hi,0r) — a/2) x (H,_s(a,0r) — a/2)

n —
J T4

A backtest can be readily constructed based on the Box-Pierce (Box and Pierce, [1970) test

statistic, namely

(7) S=nY_ p).
j=1

However, in the presence of estimation risk (i.e., n/T — w, and 0 < w < 00), it has been shown that S
does not follow a standard distribution. Besides, as .S checks H, up to a finite order m, it may not be

consistent against some higher order alternatives.

C. Test statistics and asymptotic theory

In this paper we propose for the context of backtesting systemic risk two classes of consistent

N(0, 1) backtests. The construction of our first backtest is analogous to the kernel generalization of
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Box-Pierce test in Hong|(1996), which takes into account all available p,,(j)

n—1

) n Y K/ m)pii),

j=1

where k(-) is a kernel function with kernel parameter m which is a positive integer. Some commonly
used k(-) are the Bartlett (BAR) kernel, the Daniell (DAN) kernel, the Parzen (PAR) kernel, the

Quadratic-Spectral (QS) kernel, and the truncated uniform (TRU) kernel

L—lzf, [el <1,

BAR: k(z) =
0, otherwise,
sin(7z)
DAN: k(z) = , —00 <z <00,
Tz
1—622+6z]*, 2] <0.5,
PAR: k(z) = < 2(1 — |2])3, 0.5 < 2] <1,
0, otherwise,
25 sin(67z/5
QS: k(z) = 19222 ( 6<7rz/5/ ) _ cos(67rz/5))7 —00 < z < 00,
L [z[ <1,
TRU: k(z) =

0, otherwise.

The BAR, PAR, and TRU kernels have compact support, and m can be viewed as the truncation
parameter for these kernels, i.e., k(2) = 0 for |z| > 1P| All the given kernels satisfy the assumptions on

k(-) in the online appendix. Except for the TRU kernel, all kernels discount the weights of higher order

ZNotably, Newey and West|(1987) propose to use the BAR kernel in the context of estimating Heteroskedasticity and

Autocorrelation Consistent (HAC) covariance matrix.
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lags. Using downward weighting kernel gives better match to the well-known stylized fact that financial
market is more influenced by recent news than by remote past events, and is thus expected to give better
empirical rejection power. As with S, expression (8) may not follow a standard asymptotic distribution
in the presence of estimation risk. We quantify and account for the impact of estimation risk in our test

statistics accordingly, and our first backtest is the standardized version of expression (§]), namely

S RG/mAG) — Mi(k)

Q" Vi (k)12 ;
where
Mink) = 3 G /m)[1 + wRGYSR()
Vilk) =2 3" K m)l1 + wRGYSRO)P + 23 S K /m)k?(i/m) R SRG)
o

and R(j) is given by

1

R(j) = m@{(ﬁt,j(a,eo) —a/2)Ve[Hi(,8)]}, 6¢€®O.

The quantities M, (k) and V3, (k) are approximately the mean and variance of expression (). The
additional technicality here with respect to the [Hong| (1996)) test lies with treating the impact of
estimation risk, which stems from estimating out-sample risk measures based on in-sample parameter
estimates. Intuitively, we quantify estimation risk by first measuring the sensitivity of the out-sample
risk indicator with respect to the in-sample parameter in the form of R(j). The sensitivity is then scaled

according to the asymptotic variance of the parameter estimates 3. Based on the calculated estimation
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risk we then quantify its impact on the asymptotic distribution of our test statistic, and the impact is
subsequently adjusted by Mj,,(k) and Vi, (k). This makes the asymptotic distribution of Q° robust to
estimation risk. In the absence of estimation risk (i.e., w = 0), M, (k) and V},,(k) reduce to
My (k) =30 " k2(j/m) and Vi, (k) = 2 > ' k1(j/m), respectively.

In practice a feasible test statistic () requires consistent estimators for R(j) and 3, which we
denote by R( j) and 3, respectively. Therefore, the feasible test statistic is given by

YRR )R () — Na(R)
o ‘71n<k)1/2

)

where (My,,(k), Vi,(k)) are defined as (M, (k), Vin(k)) with (R(j), X) replaced by (R(j), ).

We refer to () as the “standardized” backtest as it tackles estimation risk using its standardizing
factors. Because the effect of estimation risk can also be asymptotically addressed by whitening (i.e.,
decorrelating) the {p,(j)} sequence, we obtain the second class of our backtest Put {/,(j) ?:_11 in the
vector p,,, and let p,,.(j) denote the asymptotically whitened version of p,(j). In particular, p,,(j) can
be, but not limited to, the j-th element of the vector A-1/2 Pn, Where A is a consistent estimator of
matrix A whose (7, 7)-th element is given by A(i,7) = (4, j) + wR(1) X R(j), with 6(i, 7) the
Kronecker delta which takes the value of 1 if i = j and 0 if otherwise. Similarly, by putting {p(j) ;L;ll in
p, we have the j-th element of the vector A~'/2p, which we denote by p,.(j), being the true counterpart

of (7). The robust Box-Pierce-type backtest proposed in BHLS is based on the whitened sequence

S _nzpnr ‘

3Notably, the core concept of Generalized Least Squares (GLS) is based on the same whitening technique.
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and it has been shown that S, % x%(m) under regularity conditions.

Our second class of N(0, 1) backtest is also based on {,,-(7)}, namely

SR /MR, G) = S R G m)

Q: -
{2y kit /m) )

The standardizing factors in (), are those in () when there is no estimation risk (w = 0). Intuitively,
estimation risk has been adjusted by whitening {p,(j)}, and thus the standardizing factors of @),. need
no further adjustment. Therefore, we refer to (), as the “whitened” backtest. When the TRU kernel is
used, we obtain

{2m}1/2

QT’TRU -

Y

which can be viewed as the generalized BHLS statistic that allows m to grow. As with () we propose
downward weighting kernel for (), to give a closer match to financial market stylized facts. This is
expected to improve the detection power of our backtests. Indeed, ,try and .S, show similar power in
our simulation study, but are generally less optimal than the new backtests with downward weighting
kernels.

To ensure consistency against a wide range of empirical alternatives, we let the kernel parameter
m — which can be viewed as the testing scope parameter of () and (), — grow with the size of the
sample under examination at a proper rate, that is, m — oo as n — oo with m/n — 0. From a
theoretical perspective, passing m — oo also makes the asymptotic distribution of a backtest robust to
any finite sample adjustment in m. Indeed, if H;(«a, 8y) exhibits autoregressive behavior, the degree of

freedom in the asymptotic y? distribution of Box-Pierce-type test may require adjustment from m to
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m — ¢, where ¢ < oo is the order of the autoregression (see, e.g., Breusch and Pagan, |1980). This
becomes asymptotically irrelevant when a backtest allows m — oo, as with () and @),

We now give the asymptotic properties of ) and @),

Theorem 1. Suppose Assumptions 1—4 in the online appendix hold, and let 7" — oo, n — oo,

n/T — w < 0o, m — 0o, m/n — 0. Then Q) 4 N(0, 1) under Hi,.
Proposition 1. Suppose the conditions of Theoremhold. Then Q. 4 N(0, 1) under H.

Theorem 2. Suppose Assumptions 1-6 in the online appendix hold, and let 7" — oo, n — oo,

n/T — w < 0o, m — 0o, m/n — 0. Then

J=1

m;m@ 2, i,ﬂ(j) / {2 /0 h /&(z)dz] "

Proposition 2. Suppose the conditions of Theorem [2[hold. Then

ml/2 o0 00 1/2
o3 [ 2 [T

The detailed mathematical proof for the above results is provided in Online Appendix B-E. In
Theorem |1|and Proposition [1| we show under regularity conditions that both our backtests () and @),
follow the asymptotic N(0, 1) distribution under H, even in the presence of estimation risk. In Theorem
and Proposition 2] we show that whenever p(j) # 0 for any j > 1, which implies p,(j) # 0 for some
j > 1, we have m'/2/n@Q and m'/? /nQ, converge to a finite positive quantity. This shows that @) and
Q. diverge to positive infinity at rate n/m"/? to yield asymptotic full power. That is, for some constants
K, = o(n/m'?), we have P(Q > K,,) — 1 and P(Q, > K,) — 1 under H,. Thus, the new backtests
are consistent, providing a valuable addition to existing literature. Because () and (), go to positive

17



infinity under Hj, they are upper-tailed backtests; and the upper-tailed critical value of N(0, 1) at the 5%
significance level is approximately 1.645. Finally, although the new backtests are asymptotically
consistent, in small sample they may not give similar power since () is a standardized statistic while @),

is a whitened statistic. This is studied using simulation experiments.

D. Generalized backtests for other measures

In this subsection, we discuss how (@, @,.), which backtest CoVaR and MES, can also be
applied to backtest other prominent systemic risk measures, that is, the conditional capital shortfall
measure of systemic risk (SRISK) of |Acharya et al. (2012) and Brownlees and Engle (2017), the
systemic expected shortfall (SES) of /Acharya et al|(2017), and the ACoVaR measure of |/Adrian and
Brunnermeier| (2016). First, we show how backtesting SES or SRISK is equivalent to backtesting
(CoVaR, MES) using the new backtests. Secondly, we discuss how our backtests can be easily modified
to examine systemic risk at other level of system condition such as the median level, which concerns the

ACoVaR measure.

1. Backtesting SRISK and SES

We begin as usual with the definitions. Following |Acharya et al.| (2012), the SRISK of institution

Y] at time ¢ is given by

) SRISKy1(a) = gLy — (1 — g)Wiexp(18 x M ESy1.(a))],

where g € [0, 1] is the prudential capital fraction; L, , is the debt of institution Y;; and Wy ; > 0 is the

market value of institution Y;. Besides, in Acharya et al.|(2017) the association between SES and MES
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is given by
(10) SESYLt(O{) = [gLVYl,t — 1 — HMESYLt(OZ) —|— A]Wl,t,

where LV}, = (L1 + Wi,)/ Wi, is the leverage ratio of institution Y7; A and II > 0 are constant terms.
By taking the first derivatives we note that SRISKy(a) and SESy1 () are decreasing in

M E Sy +(a) monotonically. More generally, we denote by M;(M E Sy +(a)) any monotonic functions
of MESyi (), suchas SRISKy () and SESy1 (). Recall that to backtest CoVaR and MES we

use the H;(«) indicator, which we can rewrite as

Hi(a) = 1{(Y2; < VaRyz,(a))} /01 {[Y1, < CoVaRy1,4(8,a)]}dB,

with 1{[Y1; < CoVaRy1+(8, «)]} being the integrand over 5 € [0, 1]. The risk indicator associated

with M;(M E Sy +(«)) is naturally given by

f(a) = 1{(Yay < VaRysi(a)} / L{[My(Vis) > My(CoVaRy1s(5, )] }d5,

with T{[M;(Y1:) > M;(CoVaRy1+(5,«))]} being now the integrand over 3 € [0, 1]. We could
therefore propose to backtest SES or SRISK using H,(c), but notice that H,(cr) and H;(cv) are actually
identical as their integrands take the value of 1 at the same point in time. Computing any of our
backtests using H; () or Hy(c) gives the same value and the same conclusion. On this basis, we could
conveniently apply the proposed test statistics (@, @),.) to backtest SES or SRISK. This gives the new
backtests general capacities as they can be used to detect inadequate systemic risk estimated using

either CoVaR, MES, SES, or SRISK.
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2. Backtesting at other system conditions

We have thus far focused on backtesting at the distress system condition, which is the emphasis
of most systemic risk measures such as CoVaR, MES, SES, and SRISK. This is achieved by evaluating
Hi(«) at the left tail, e.g., by setting a = 5%. To backtest ACoVaR, we first note that it is given by the
difference between CoVaR evaluated at the distressed system condition and CoVaR evaluated at the
median system condition. It thus remains to show how our backtesting procedure can be modified to
examine systemic risk measures (such as CoVaR and SES) at various other system conditions such as
the median. This is achieved by generalizing the H,(«) indicator such that it can consider any level of

system condition specified by the range («ay, v, ), that is

Ht(Oél, Oéu)

1
=1{(VaRyo(cq) < Y5, < VGRyz,t(Oéu))}/ 1{[Y1: < CoVaRy14(5, ar, )]},
0

where as with the definition of CoVaRy1 (3, ) in equation (2), we have CoVaRy1 +(5, cu, o)
verifying P(Y1; < CoVaRy1+(5, cu, o) |VaRys(ay) < Yor < VaRysi(aw); %—1) = 5. The mean of
Hi(oy, o) is (a, — ay) /2, and we verify { Hy(oy, ay,) — (o, — ) /2} retains the mds property.
Moreover, using { H;(«y, av,) — (v, — ) /2} does not affect the asymptotic results of (Q, @,.). When
a; = 0and o, = «, Hy(ay, o) is equivalent to H;(«). The H;(ay, a,) indicator is useful when we
concern examining systemic risk measures at other levels of system condition. To backtest at the

median condition, we can set e.g., (ay, o) = (45%, 55%).
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III. Monte Carlo evidence

In this section we study the finite sample performance of the proposed backtests using
simulation experiments. Because a distressed financial system tends to drive broader economic
problems, it is repeatedly emphasized and quantified by the systemic risk literature. This is reflected by
the formulas of prominent systemic risk measures such as ACoVaR, MES, SES, and SRISK. Therefore,
we use throughout H, (o, o) with (o, ) = (0,5%), which is equivalent to using H,(«) with
a = 5%. We work with the DCC-GARCH data generating process (DGP) of Engle (2002) and |Aielli

(2013). More precisely, Y; is generated according to the following set of equations

Yie=oap+aonYii1+nig, 1=1,2, t=12..T,
B ;12 12 1/2
n: = (771,ta772,t) =0,'"2, oo =D,/"R/D,"",
D, = [(014,1),(1,094)'], 054 = Bio + 5@1771'2#1 + 31277@2#1]1(772',%1 < 0)+ Bis0i -1,
an R, = Diag(Q,)~/2Q,Diag(Q,) "%, Q¢ = (i1, @21.0)’, (qi,- @22,0)'],
Q.= (1—a—0b)S+ a(Diag(Q,_1)"?e,_1&,_Diag(Q;_1)'/?) + bQ;_1,

S = [(17 S),7 (87 1)/]7 €t = (61,157 52,t)/ = (Ul,t/ai/;, 772,75/0-;,/3)/7

QGig = (1 —a—0) + ag?,t—ﬂii,tq + b@ii—1-

The selected DGP aims to simulate data that reflects empirical stylized facts. We use first-order dynamic
as it reflects the tendency of market participants to respond and react to the latest news and events. The
data is generated with volatilities o; ; following the GARCH process in Glosten, Jagannathan, and
Runkle| (1993)), to allow for the well-known asymmetric market reactions. We generate separately for
each time period ¢ the innovation term z; from the standardized Student-t distribution with degree of

freedom v, i.e., z; ~ t,(0, Iy), where I is the identity matrix of order 2. This allows for the heavy tail
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feature of financial data. Moreover, we calibrate the parameters of DGP using observed data
spanning from 3-Jan-2000 to 31-Dec-2021. We use the daily security log-returns (in percentage) of
Bank of America as Y7 ;; we proxy Y5, using the log-returns of the Center for Research in Security

Prices (CRSP) value-weighted market index. Based on the estimated parameters, we set

(o0, 11, Bro, P11, P12, B13) = (0.0634,0.0015, 0.0268, 0.0302, 0.0228, 0.9160)

(12) (Qta0, o1, Bao, Bot, Boa, Baz) = (0.0708,0.0010, 0.0184, 0.0159, 0.0489, 0.9002)

(a,b,s,v) = (0.0318,0.9407,0.7721,7)

\

The calibrated parameters reflect financial market stylized facts. For instance, the positive signs in the
asymmetry parameters (32, f22) reflect the stronger market reactions to negative news than the positive
counterparts. The relatively large GARCH parameters (3;3, [F23) with respect to the ARCH parameters
(P11, P21) highlight the persistent feature in the volatility of financial series. The positive s parameter
captures the expected positive comovement between Bank of America and the financial market. A
relatively small v parameter reflects the heavy tails feature of financial returns. Also, the set of
parameters satisfies stationary requirements.

We study the impact of different kernel functions by considering all the kernels discussed
previously. To study the capacity of our backtests, we use a range of values for the kernel parameter
m = {5, 10,20, 30}. We consider several combinations of in-sample size and out-sample size
(T, n) = {(250, 250), (250, 500), (500, 500), (500, 250)}. For each combination we simulate
T + n + 500 observations, and then we discard the first 500 observations to work with the latest 7"+ n

data points. The objective here is to stabilize the generated data by reducing the effects of the initial
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values in the DGP, which we set as (Y10, Y20, 01,0, 020) = |10, @20, B10/(1 — B11 — 0.5812 — Bi3),
Bao/ (1 — Bar — 0.5822 — [23)].

Let ¢ collects the parameters in DGP with true values ¢y. To estimate ¢ we use the
maximum likelihood method, and therefore we note that the Student-t likelihood function (in logarithm)

of DGP (I1) for observation at time ¢ is given by

() = log [F(ZUQ—:]_ 1)} — log [F(%)] —log (1 _77277> — log(m)

+1 n

log <1 + m&‘;Rt_let),

2
(13) —1/2log(|oy|) —

where I'(+) is the gamma function and 7 = v~ is the inverse of the degree of freedom parameter, which
is constrained at 7 < 0.5 to ensure the existence of second moment. Parameter estimation is executed by
maximizing the sum of likelihood ), [;(¢), and we denote the estimated parameter vector by ¢r. With
qu we compute H,(a, quT), and we note that the consistency and asymptotic normality of (ﬁT have been
established for a general class of multivariate GARCH models (see, e.g., Fiorentini, Sentana, and

Calzolari, 2003, p. 535). That is, we have
VT(dr — do) % N(0,X),

where 3 /T is the asymptotic covariance matrix of ¢, which we estimate consistently using the
Hessian matrix obtained from the estimation procedure. To compute the test statistics it remains to
evaluate R( j) which we give in Online Appendix F. In this aspect, we face as with BHLS the challenge
of differentiability, which we address using the procedures suggested therein to obtain a consistent

estimate.
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Finally, we compute () and (), to examine Hj. For comparison we also compute the
Box-Pierce-type backtests, i.e., S and S,, where backtestings are performed based on the x?(m)
limiting distribution (BHLS, Corollary 2). Although this is generally not accurate for S, we include it to
highlight the effect of estimation risk. Throughout, testing significance level is 5%.

We begin with the size study, that is, backtesting systemic risk forecasts issued by the correctly
specified risk model (TT]). We refer to this study as experiment NULL, and we report the rejection rates
in Table|1] As expected, the size of the nonwhitened S backtest is severely distorted whereas the
whitened .S, backtest shows reasonable rejection rates. This is due to S having nonstandard distribution
in the presence of estimation risk, which is accounted for by whitening the test statistic as in S,.. By the
same reasoning, our whitened backtest (), also displays reasonable sizes across the combinations of
(T',n). In contrast to S, our nonwhitened backtest () is reasonably sized as it has considered estimation
risk in its standardizing factors explicitly. While () over rejects slightly when the sample size is small, it
shows stability as soon as (7', n) increases to 500. We also note the usual bootstrap procedure can be
readily applied if a better size is desired for small sample. Overall, both the proposed (),- and ()
backtests show robustness to estimation risk. Besides, the size of both backtests are stable under
different kernel functions along with a range of values for the kernel parameter m. In other words, the
asymptotic N(0, 1) distribution of (), and () established in Theorem and Proposition is well
approximated in small sample, even when the generated data exhibits heavier tails than the normal

distribution.

[Insert Table [I| approximately here]

We now study the ability of our backtests to detect alternative cases in which we have

inadequacy of the systemic risk measures. Although under regularity conditions both () and @), enjoy
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asymptotic unit detection power against divergence from the null hypothesis of measure adequacy, their
finite sample powers are not known and thus will be studied and compared in the following. We
continue the comparison with existing method, but we focus on the S, backtest since comparison with
S would be inaccurate as it is not a robust test. We design a series of experiments.

In the first alternative experiment, we simulate the scenario in which a risk manager specifies an
adequate model to estimate and forecast systemic risk, but based on a misspecified risk level. In other
words, the risk indicator is forecasted at risk level a; but the intended risk level is s, with ap # .
The desired statistical effect is simulated by inducing risk level mismatch between the risk indicator and

its mean in the autocovariance computation, that is

T+4n
1

nld) = —— D (Hi(ar, dr) — 02/2) x (Hy_j(a1, pr) — a2/2).

n —
J t=T+1+j

We refer to this experiment as ALTER1, and we note that it also allows us to examine the power of our
backtests against the unconditional hypothesis, that is, the condition E(H;(«a, ¢bg)) = a/2. We set

(a1, a2) = (5%, 10%); simulation results are reported in Table
[Insert Table 2| approximately here]

We observe the nontrivial rejection power by our backtests, and the power generally increases
with the sample size. This is in line with Theorem [2] and Proposition [2] We also observe an increase in
rejection rates as m increases. This is due to the time-invariant nature of the misspecification in this
experiment as the level of the risk indicator is incorrectly specified across each time period. Because the
time scope of all backtests increases in m, with that they naturally capture more evidence against

alternatives that persists in time. This results in a higher finite sample rejection rates. We observe that
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when the TRU kernel is used, (), yields similar rejection power as .S,. This is expected because the S,
backtest can be viewed as a special case of our (), backtest when the TRU kernel is used, as both
backtests assign equal weight to each lag order. We also observe the comparable performance across
kernels as m > 20. Overall, this experiment highlights that the new backtests possess detection power
against divergence from the condition E(H;(«, 6y)) = «/2, with @, having slightly better power than
(. The results also highlight that by letting m grow, the detection power of a backtest could increase as
it may capture more evidence against divergence from the null.

In the second alternative experiment, we simulate the scenario in which the distribution of the
systemic risk model is incorrectly specified. More precisely, systemic risk measures are estimated and

forecasted based on risk model (TT]) but the actual innovation of the data is contaminated as follows

zi ~[0.4 x t,(0 — 1.5, I, x V1.75) + 0.6 x x*(1)].

We refer to this experiment as ALTER2, and we report the rejection rates in Table 3] As is expected,
both ) and @), display rejection power against experiment ALTER2. Because the data is contaminated
across each time period, we also observe that the rejection rates increase in m. The equally weighted
backtest S, continues to yield comparable power to (), when the TRU kernel is applied. The
performance across kernel functions remains similar for this experiment. Overall, the experiment shows
that our backtests possess detection power against inadequate systemic risk forecasts due to

distributional misspecification, with (), having slightly better power than Q).
[Insert Table [3|approximately here]

In the third alternative experiment, we simulate the scenario in which we have data dynamics
being incorrectly specified. More precisely, systemic risk measures are estimated and forecasted based
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on risk model but the actual dynamics of Y; ; follow the threshold autoregressive process

Yie =ais X Yie1+mig, 1=1,2,

Q5 = 0.9 x ]l(ni,t—l < —].)

We refer to this experiment as ALTER3, and we report the rejection rates in Table i} We observe our
backtests continue to display rejection power that generally increases with the sample size. In contrast
to experiments ALTER1 and ALTER?2, we observe the rejection rates of all backtests decrease in m.
This is because, unlike experiments ALTER1 and ALTER2 in which we have time-invariant
misspecification, under experiment ALTER3 we have time-dependent alternative with a particular focus
on the first lag in the data dynamics. As a result, increasing the testing scope (i.e., by setting a large m)
may not capture more evidence against such alternative, and instead will reduce the overall evidence
captured by the backtests due to the averaging effect across the testing scope. We continue to observe S,
yielding comparable power to (), when the TRU kernel is applied, but their powers are lower than @),
with the downward weighting kernels. This is because a test that assigns more weights to observations
at lower lag order is expected to be more efficient against ALTER3, in which we have first-order
dynamic misspecification. Across the combinations of (7', n), we observe that using the downward
weighting kernels alleviates power reduction in m. Interestingly, the finite sample power of our )
backtest is notably higher than that of our (), backtest. This could be attributed to the fact that () is not a
whitened statistic, and due to that () preserves data dynamics more effectively and thus it tends to give
better power against alternatives driven by dynamic misspecification. To further examine such effect,

we carry out another dynamic driven alternative experiment.

[Insert Table @] approximately here]
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In the final experiment, we simulate the scenario in which a risk manager correctly specifies an
autoregressive process for the Y ; series, but misses some higher order and delayed effect. More
precisely, systemic risk measures are estimated and forecasted based on risk model (11)) but the actual

autoregressive dynamics of Y; ; admit a delayed effect

Yii=oaio+anYi—1 +0.75Y; 0 +miy, ©=1,2.

We refer to this experiment as ALTER4, and we report the rejection rates in Table [5] Overall, the power
pattern under ALTER4 is similar to that under ALTER3, as we have dynamic driven alternatives in both
experiments. We continue to observe the optimality of downward weighting backtests as they generally
outperform equally weighted backtests and they alleviate power reduction in m. For instance, in the

(T, n) = (500, 500) panel, the power given by @), with downward weighting kernels for m = 10 and

m = 20 is very comparable, whereas the power given by S, shows a clear decline as m increases from

10 to 20.

[Insert Table [5|approximately here]

Summing up the simulation study, the proposed () and (),. backtests show robustness against
estimation risk to display reasonable finite sample sizes, and they demonstrate nontrivial detection
power against alternatives of different natures. Setting a large m yields better power against alternatives
that are of time-invariant nature but the opposite is observed against alternatives that are of
time-dependent nature. In this aspect, downward weighting backtests such as () and (), are optimal as
they alleviate power reduction in m. Thus, the power improvement offered by the new backtests is more

significant under the time-dependent alternatives. Against alternatives driven by dynamic
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misspecification, we find that the standardized backtest () — which preserves data dynamics more
effectively — tends to yield better power than the whitened backtest (),.. We also find that under the
time-invariant alternatives whitened backtest gives slightly better power than standardized backtest.

Overall the new backtests demonstrate complementary capacities.

IV. Empirical evidence

A. Data

While the performance of the new backtests (() and (),.) has been demonstrated using simulated
data, it is equally important to verify their performance using real-world data. In this section, we apply
the new backtests to examine the reliability of systemic risk forecasts issued by major financial
institutions. For consistency with existing literature we focus on large US institutions, that is, we follow
Brownlees and Engle (2017) and Banulescu-Radu et al.| (2021) to use institutions with market
capitalization greater than 5 billion dollars as of the end of June 2007. The names and CRSP tickers of
the selected institutions are tabulated in Online Appendix G. We collect institutional observations
dating from early 2000 to late 2022, so that we also study the more recent pandemic-induced financial
market crashes. More precisely, we use daily observations from 3-Jan-2000 to 1-Dec-2022. Our dataset
is naturally unbalanced because not every institution has been trading continuously over the study
period. For instance, in 2008 Bear Stearns and Lehman Brothers collapsed over the subprime financial
crisis. We compute daily log-returns and market capitalization for the selected institutions using CRSP
database, and we consider as market return the daily log-return of the CRSP value-weighted market

index.
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At any given time period over the full sample, we examine for all available institutions the
reliability of their systemic risk forecasts provided the required out-sample data is available. When
moving our analysis across time periods, we use expanding window scheme to make full use of
in-sample data availability. More precisely, we use two years of daily observations as the initial
in-sample (i.e., from Jan-2000 to Jan-2002), and the sample length increases as we move forward with
our analysis on a monthly basis. Thus, our in-sample size 7" contains at least two years of data which is
approximately 500 observations.

We use testing parameters guided by our simulation study. The statistical significance level of all
backtests is kept at 5%. We maintain o = 5%. For any given institution, we model its in-sample return
series using the same risk model and the same estimation procedure implemented in the simulation
study. This yields parameter estimates of the risk model g&T, which then allows us to forecast the risk
indicator series Hy(c, qBT), fort =T +1,...,T + n. For this purpose we need to select the out-sample
size n, and we note that a value too large for this parameter would reduce the period available for
examination. For instance, to backtest one (three) year(s) of out-sample forecasts in 2021 would require
observed data up to 2022 (2025). We use n = 250, which is about one year of out-sample data. We then
compute our backtests to examine if the generated systemic risk forecasts are reliable. Both () and (),
backtests are used as we learn about their complementary capacities from the simulation study. As a
benchmark for existing methodology, we include the Box-Pierce-typed backtest by computing S,.. We
use downward weighting kernel for our backtests, and for natural comparison with .S, we use the
Bartlett kernel because it belongs to the class of truncated kernel. Regarding kernel parameter, we use
both the lowest and the highest values covered in the simulation study, i.e., m = (5, 30). In a typical

monthly analysis, we backtest the systemic risk forecasts issued by each institution so long as the
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required data is available. Accordingly, in each monthly analysis we apply Bonferroni correction to the

backtesting significance level based on the number of backtested institutions for that monthﬂ

B. Backtesting results

Figure[I] plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected by the () backtest (depicted in blue), the (). backtest (depicted in black), and the .S,
backtest (depicted in red). We observe that compared with .S,. both the new backtests have higher
detection frequencies over inadequate systemic risk forecasts as the blue and black bars dominate their
red counterparts on many occasions. This finding holds for both m. We also observe several sizeable
clusters in the plot, which we highlight and discuss in the following because these clusters imply that

the systemic risk forecasts of many major institutions are inaccurate and unreliable.
[Insert Figure [[|approximately here]

In the cluster between Jan-2003 and Jan-2004, the performance of all backtests is rather similar.
More precisely, the monthly average rejection frequencies by @), (), and S, are, respectively, 64%, 56%
and 54%, at m = 5. When m = 30, the average rejection rates are 75%, 70% and 72%, for (), (), and
Sy, respectively. In this cluster we observe for all three backtests an increase in rejection frequencies as

m increases. This is consistent with our expectation that by increasing the m parameter, the testing

4As highlighted in |Bajgrowicz, Scaillet, and Treccani| (2016)), the Bonferroni method is a relatively conservative
approach. Because the main objective of this empirical study is to examine the performance of the new backtests with
respect to a benchmark, a conservative approach is appropriate as it helps to ensure that any improvement from the new
backtests is not due to chance. For a liberal alternative to the Bonferroni method, one could refer to|Barras, Scaillet, and

Wermers| (2010). We thank a reviewer for sharing this discussion.
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scope of a backtest increases, which in turn may lead to the backtest detecting a more diverse forms of
systemic risk inadequacy. Economically, the tall 2003—-2004 cluster suggests that the risk forecasts of
many institutions for the period 2004-2005 were highly inadequate. This reflects the 2004-2005 credit
deterioration of the US market, which at its height saw the credit deterioration of several major US
entities such as General Motors to the junk status. Besides, the finding could also be attributed to the
fact that the DCC-GARCH specification is simply not a suitable model for systemic risk as far as this
period is concerned. In practice, risk managers should consider revising the model or using alternative
specifications.

In the cluster between Jan-2004 and Jan-2006, the monthly average rejection frequencies by ),
@, and S, are, respectively, 12%, 10% and 13%, at m = 5. When m = 30, the rejection rates are 27%,
26% and 20% for ), ), and S, respectively. Similar to the previous cluster, we observe an increase in
rejection frequencies across all backtests when m is large. When m = 5, S,. has slightly better
performance over () and ()., which reverses when m = 30. The reason as to why the detection rate of
S, does not catch up with our backtests is likely due to it losing some power when checking a larger
scope, a phenomenon too observed in our simulation study. By contrast, the rejection rates of the new
backtests increase and outperform S,.. This highlights that the empirical alternatives captured with a
large m could offset the potential loss in power when the backtest is properly weighted according to
empirical stylized facts. We obtain similar conclusions for the cluster between Jan-2011 and July-2011.

We now discuss the remaining major clusters of model inadequacy, that is, the cluster between
July-2014 and July-2015, the 2017 cluster, and the cluster beyond Jan-2019. The precise monthly
average rejection frequencies by (Q, @, S;) in the July-2014—July-2015 cluster are (40%, 24%, 3%) at
m = 5, and (16%, 9%, 1%) at m = 30. In the 2017 cluster, the rejection frequencies by (@), Q).., S,) are

(68%, 59%, 52%) at m = 5, and (62%, 51%, 8%) at m = 30. The tall 2017 cluster suggests that the
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DCC-GARCH specification may not be a suitable model to forecast systemic risk for 2018, which
could be due to the fact that this period witnessed several major international political events such as the
US-China tradewar and the UK’s Brexit. In the cluster beyond Jan 2019, the rejection frequencies by
(@Q, Q., S,) are (44%, 32%, 20%) at m = 5, and (37%, 29%, 8%) at m = 30. Given that the cluster
beyond Jan-2019 coincides with the run-up to the pandemic-induced market crashes, we highlight the
nontrivial under detection of S,. compared with the new backtests. In particular, S, under detects 24%
(12%) compared with @) (Q),.) at m = 5, and 29% (21%) compared with @) (Q),.) at m = 30. The
prominence of the new backtests over S, holds in the other two clusters regardless of m. Although all
three backtests suffer some power reduction in m, it is minimal for the new backtests. This further
highlights the optimality of our backtests in the tradeoff between losing detection power and detecting a
wider alternatives as the testing scope increases.

To see the economic implications brought by the new backtests on a greater scale, we note that
in any given month over the full examination period we backtest an average of 74 financial institutions.
We further note the monthly average rejection rates by (), ), S;) over the full examination period are
(18%, 15%, 11%) at m = 5, and (18%, 16%, 9%) at m = 30. Compared with (), S, under detects
7% per month x 228 months x 74 institutions = 1181 cases over the course of our empirical study
when m = 5. When m = 30, S, under rejects 1518 (1181) cases compared with ) ((),.). We note from
these numbers that the improvement of our backtests over .9, is of considerable economic significance,
since, if the new backtests are used instead of .S, a larger scale of inadequate systemic risk forecasts
would have been detected among major financial institutions. These additional cases could play a
critical role in prompting regulatory attention, which could call for a full-scale revision of existing
systemic risk modeling in the wider economy, which in turn would improve financial stability.

Although the average findings may suggest () regularly outperforms ()., we highlight that in
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some instances such as the Jan-2013—July-2013 period, (), has detected alternatives not captured by ().
This is in line with our simulation findings. The complementary performance of (), and () can be
attributed to them generally not capturing the same dynamics about systemic risk inaccuracy, since the
former is a whitened test whereas the latter is not. Thus, when examining the overall health of the
financial system in practice, regulators could apply the formula max (Q, @, ) to detect as many
indications about large-scale measure inadequacies of systemic risk as possible. This provides a
“better-safe-than-sorry” approach which is recently advocated by the European Central Bank (see, e.g.,
Rehn, 2020; [Enrial [2022).

One could argue that the empirical performance of the new backtests is only evident for a
relatively small n, and that the performance of all backtests would be very comparable when n
increases. To examine the sensitivity of our main findings, we repeat the backtesting analysis with a
larger n = 500, and we plot the results in Figure 2| Due to the more demanding out-sample size, the
time dimension of Figure [2] naturally reduces slightly compared with that of Figure[I] By the same
reasoning, the average number of institutions qualified for examination reduces to 73. Compared with
Figure[I] we observe an increase in rejection frequencies across all backtests. This is in line with
Theorem [2] and Proposition [2] that the power of our backtests is expected to increase in n. We also
observe that the overall rejection pattern for all backtests is similar to that in Figure (1}, with the new
backtests continue to outperform existing backtest. More precisely, the monthly average rejection rates
over the full sample by (Q, @Q,., S,.) are (29%, 24%, 17%) at m = 5, and (30%, 26%, 13%) at m = 30.
The economic implications offered by the new backtests are now more evident, as for instance, .S, under
rejects 2681 (2050) cases compared with ) (@) at m = 30. Unlike S,., we note the rejection rates of ()
and @, are similar across m, which highlights once again the optimality of our backtests as they give
optimal tradeoff in m.
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[Insert Figure [2[ approximately here]

To ensure that the empirical performance of the new backtests is not driven by a specific choice
of kernel function, we repeat every backtesting analysis using the QS kernel, which, unlike the BAR
kernel, belongs to the class of kernel with unbounded support. Figure [3] plots the analysis results for
every empirical setting considered thus far. The results suggest that our main findings are highly robust
as the prominence of () and (), over existing backtest remains highly evident. This highlights, as with
our simulation evidence, that the choice of kernel does not have a strong impact over the performance of

our backtests so long as the kernel function is downward weighting.
[Insert Figure |3[ approximately here]

Finally, we perform a robustness analysis by whitening p,,(j) up to the same order as the kernel
parameter, that is, we have p,,(j) being whitened up to order m, which we denote by p,,;-m (),
j =1, ..., m. Such partial whitening does not affect the computation of truncated whitened backtests
such as S, and ), with a truncated kernel. In particular, p,,.,,(7) is the j-th element of the vector
AL, where pi™ collects {hn(j)}72,, and A, is a m x m matrix with the same (i, j)-th element
as that in A. The Box-Pierce-type statistic based on fy,,, () is given by S, = n > i P2 (7). For
proper comparison we also use -, in our whitened backtest (), with the Bartlett kernel. We plot the

results in Figure ] and we can see that the rejection patterns are very similar to those in Figure[I|and

Figure 2] The improvement brought by the new backtests remains highly evident and robust.

[Insert Figure @] approximately here]
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C. Summary and regulatory implications

In summary, using real-world data generated by the major US financial institutions, we find that,
compared with existing approach, the new backtests () and (), offer better empirical power as they
reveal thousands more cases of systemic risk inadequacies. Such improvement is also of considerable
economic significance. Our findings remain robust under a series of sensitivity analyses including using
alternative kernel parameters, alternative sample sizes, and alternative kernel classes. Because of their
complementary features, () and (),. can be applied together to detect as many indications about
large-scale measure inadequacies of systemic risk as possible. This provides a useful
“better-safe-than-sorry” approach for financial supervisors and regulators.

We acknowledge that despite being estimated from an inadequate risk model, systemic risk
measures may still be useful in e.g., ranking financial institutions by their systemic relevance. This can
be attributed to ranking operations being impartial to effects that are uniform across all institutions such
as inaccuracy from using the same (inadequate) risk model. Using the same risk model for a group of
institutions is also fairly standard in the academic literature (see, e.g.,|Brownlees and Englel 2017}
Banulescu-Radu et al., 2021)). In reality, however, each financial institution usually has its own
proprietary risk model, which is regularly tested for accuracy and is subject to ongoing refinement. In
this aspect, () and (), serve as new statistical tools for checking, with better power, whether a risk
model can be further improved to produce more accurate systemic risk estimates. With more accurate

risk estimates across all financial institutions, financial stability will improve as a collective result.
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V. System warning indicator

In the spirit of Gourieroux and Zakoian| (2013) and Lazar and Zhang (2019), BHLS propose a

system indicator by solving the following quadratic program

n

1
(14) Q. = argmin —Z Hrii(a, or) — a/2)
a€]0,1] n j=1

The idea is based on correcting the n forecasting errors in the forecasted risk series Hr j(c, dA)T), for

7 =1, ...,n. Because the margin of error across a forecasted series is generally nonuniform — in
particular, the next-period forecast is expected to be more accurate with a smaller margin of error than
the forecast multiple periods ahead — assigning equal weight to correct each of the n forecasts in
equation regardless of the magnitude of their expected errors may not be optimal. Therefore, an
improved objective function is one that assigns nonuniform weights for the error corrections. Using the

kernel tools introduced so far, we can conveniently generalize equation (14]) as follows

(15) Q. = argmin Z] LR —ji/n) < (Hry(@, QBT) —a/2) ?
c a€)o,1] ijl /{32(1 _ ]/n)

When £ is set as the TRU kernel we retrieve the program objective in equation (I4). We propose to use
here downward weighting kernels such as the BAR function. When the systemic risk model is perfectly
specified, the objective function (13) gives . = « regardless of the kernel functions used. When
otherwise, the uniformly weighted function gives «.. that aims to adjust with the same magnitude each
of the n forecasts. Using the recommended kernel, the objective function yields «. that aims to adjust
with smaller magnitude the immediate forecasts and appropriately with greater magnitude the forecasts

n steps ahead. The a, obtained under our approach gives a closer match in correcting the expected
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forecasting errors, and thus an indicator based on our o is expected to reflect more accurately the state
of the financial system.
To build a warning indicator we quantify as with BHLS the deviation between the forecasted

A

measure M ESyq 41(c, (/gT) and the adjusted measure M E Sy 11(a., ¢r), 1.€.,

(16) EW (o, 000) = MESy1441(ct, 1) — MESy1 441 (0ve, d1).

To interpret EW I;(«, a.) we note that MES is typically negative valued because an institution is
expected to make a loss rather than a profit whenever the broader system is in distress. Hence, with the
convention that risk is associated with losses rather than profits, a positive EW I;(«, c.) indicates an
unexpected increase in systemic risk, whereas a negative EW I;(«, «..) indicates an unexpected
decrease in systemic risk. As with BHLS we use n = 250.

To illustrate on the system-wide scale the empirical unexpected deviation in systemic risk, we
plot in Figure |5|the EW I,(«, a..) indicator, which is calculated by summing the individual
EW Ii(a, o) of each institution studied previously. The sum is then scaled by the number of
institutions to ensure meaningful comparison across the time dimension. For comparison we plot in
black the indicator based on the BAR kernel, and in red the indicator based on the TRU kernel. As

discussed, the latter retrieves the program objective in BHLS.
[Insert Figure [5|approximately here]

We observe for the most part that both indicators are stable with very similar values. This is in
line with our expectation that weighting functions do not play a major role in times where the net

unexpected systemic risk among all institutions is close to zero. We observe the expected positive spikes
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before both the 2008 subprime-induced market crash and the 2020 pandemic-induced market crash. The
warning indicators capture the large-scale unexpected increase in systemic risk among the major
financial institutions. In other words, the number of institutions with unexpected increase in systemic
risk far exceeds that with unexpected decrease in systemic risk. More notably, our indicator yields
warning signals that are more profound by reacting more acutely and sharply prior to both crises. In
particular, compared with existing indicator the warning signals transmitted by our indicator prior to
both 2008 and 2020 market crashes are about 40% more alarming! This finding shows that by matching
more closely with the expected forecasting errors, our indicator yields warning signals that are more
noticeable to the regulators. This finding is especially significant in hindsight because the US financial
system indeed witnessed two major and unprecedented crises following steep spikes in the proposed
indicator. For instance, the subprime-induced system instability in 2008 saw the collapse of major
institutions such as Bear Stearns and Lehman Brothers; whereas the pandemic-induced system
instability in 2020 saw the US stock market facing a series of crashes and large-scale trading halts.

It could be noted that the pattern of model inadequacies in Section [[V|is not fully aligned with
the pattern of the EW I (v, ) indicator in Figure |5, For instance, the EW;(«, o) indicator is rather
tranquil during the 2003-2004 credit crisis, whereas the 2007-2008 subprime crisis is not associated
with inadequate modeling. First, we note that the adjustment in equation is only based on a
particular condition of systemic risk inadequacy that new backtests could detect. The measure
inadequacies reflected in Section |IV|could be due to other statistical properties being violated such as
serial correlation. Secondly, the EW I,(«, o) indicator is purely a mathematical operation that
aggregates a series of deviations described by equation (16, where each individual deviation need not
be statistically significant to be considered. In summary, while the new backtests focus on gauging the
adequacy of individual risk modeling in the statistical sense, when monitoring the overall financial
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health, both statistical-based measures (e.g., the proposed backtests) and mathematical-based measures
(e.g., the proposed warning indicator) should be consulted.

Finally, we perform several sensitivity analyses to ensure that our main findings are robust. We
confirm that setting a larger out-sample size (e.g., n = 500) and that using an alternative class of kernel

(e.g., the QS function), do not alter the main findings.

V1. Conclusion

This paper offered two classes of novel backtests for checking the adequacy of well-known
systemic risk measures. The asymptotic properties of the new backtests were established under
regularity conditions. The paper demonstrated the consistency of the new backtests, and showed that
both backtests follow the standard normal null distribution even in the presence of estimation risk. The
paper conducted extensive simulation and empirical exercises to verify the improvement brought by the
new backtests over existing method. Simulation evidence confirmed the optimality of the new backtests
as they gave optimal tradeoff between losing detection power and detecting a wider alternatives as the
testing scope increases. The empirical study highlighted the economic significance brought by the new
backtests as the evidence suggested that the new backtests would have detected a larger scale of
inadequate systemic risk modeling among the major financial institutions. Finally, the paper offered an
early warning indicator which, when compared with existing indicator, yielded more profound warning

signals prior to both the 2008 subprime-induced and the 2020 pandemic-induced market crashes.
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TABLE 1
Rejection rates under experiment NULL

This table reports experimental rejection rates (in %) of @), @, S and S, at the 5% significance level. The
subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the Parzen
kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30
T = 250, n = 250
BAR 5.8 7.1 7.0 7.1 (QrBAR 4.5 5.4 5.5 5.4
QraR 52 6.7 6.9 7.0 QrPAR 4.3 52 5.7 5.8
Qos 6.3 7.1 7.2 7.4 Qros 5.0 5.7 5.7 5.8
(pAN 5.8 7.0 7.6 8.0 QrDAN 4.6 6.1 6.0 6.0
QtrU 7.1 8.1 8.2 7.9 Q,TRU 6.4 6.8 6.6 6.7
S 9.0 11.5 13.8 14.6 S, 5.1 5.8 6.2 6.1
T = 250, n = 500
BAR 3.9 5.7 6.7 7.3 QrBAR 3.9 5.0 6.2 6.3
(@)Y 3.3 4.3 6.5 7.3 QrPAR 3.7 4.1 5.6 5.9
Qos 4.0 6.0 7.3 7.9 Qros 3.7 53 5.6 6.6
QpaN 4.1 5.8 75 8.2 QrDAN 3.7 55 6.1 7.0
QTRU 6.2 7.8 8.8 8.0 QrTRU 55 6.0 7.3 7.4
S 8.5 11.8 15.9 15.6 S, 4.6 5.7 6.6 7.1
T = 500, n = 250
QBAR 6.2 7.3 7.0 6.9 QrBAR 4.8 6.0 6.7 6.0
Qpar 4.7 6.7 6.9 6.9 QrpAR 4.0 5.2 6.4 7.0
Qos 6.5 7.6 73 7.3 Qros 49 6.5 6.6 6.7
(QpaN 6.1 7.9 8.3 8.4 QrDAN 5.0 6.3 7.3 7.0
QTrRU 7.9 8.3 7.8 8.5 QrTRU 6.3 6.3 6.5 7.0
S 8.9 9.1 11.0 12.4 S, 5.8 5.6 5.9 6.7
T = 500, n = 500
QBAR 5.0 5.3 5.7 6.4 QrBAR 5.4 5.3 5.1 4.8
QpAR 4.9 5.1 6.2 5.6 QrPAR 4.6 5.4 5.3 4.9
Qos 53 5.9 6.1 6.3 Qros 5.1 53 4.7 5.0
(pAN 5.4 5.8 5.9 7.3 QrDAN 5.6 5.4 5.2 5.2
QtrU 6.4 6.6 7.2 6.7 Q,TRU 4.7 45 5.4 5.4
S 7.7 9.3 11.8 12.5 S, 4.2 4.0 49 49
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TABLE 2
Rejection rates under experiment ALTER1

This table reports experimental rejection rates (in %, size-adjusted) of @), ), and S, at the 5% significance level.
The subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the
Parzen kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30
T = 250, n = 250
(BAR 22.1 23.9 29.3 30.5 QrBAR 24.5 26.9 31.3 32.8
QpAR 20.1 21.5 25.6 29.1 QrPAR 23.9 24.6 28.6 30.8
Qos 21.7 24.7 30.1 32.0 Qros 24.8 28.0 32.6 33.6
QpaN 23.1 25.5 29.7 32.9 QrDAN 27.7 28.0 32.2 34.6
QtrRU 23.9 27.4 31.9 342 QrTRU 26.2 30.1 335 37.0
S, 26.2 30.1 33.5 37.0
T = 250, n = 500
(BAR 30.6 31.0 354 37.7 QrBAR 35.6 37.6 40.6 44.8
(@) 30.2 322 32.6 35.8 QrPAR 32.7 35.8 38.6 40.4
Qos 31.5 32.0 36.8 38.2 Qros 36.0 38.2 422 44.7
QpaN 32.6 32.5 36.7 38.0 QrDAN 37.0 37.7 43.1 453
QTRU 32.5 34.8 38.4 41.1 QrTRU 36.3 40.1 43.1 46.2
S, 36.3 40.1 43.1 46.2
T = 500, n = 250
(BAR 19.6 22.0 26.8 30.4 QrBAR 22.7 24.4 28.1 30.9
QpaR 20.9 20.4 23.7 27.4 QrPAR 22.7 23.6 24.9 28.6
Qos 19.3 23.2 28.2 32.3 Qros 23.6 24.8 29.3 33.5
QpaN 21.2 23.6 26.4 30.1 QrDAN 242 24.5 29.2 34.2
QTtrRU 22.0 25.5 33.0 33.9 QrTRU 21.2 28.0 333 33.3
S, 21.2 28.0 33.3 33.3
T = 500, n = 500
QBAR 28.8 35.9 39.9 41.7 QrBAR 27.3 34.2 40.7 43.3
QpAR 23.3 31.3 36.1 40.3 QrPAR 25.7 31.8 36.6 40.9
Qos 30.0 35.2 40.3 44.5 Qros 30.5 36.2 43.3 445
(QpaN 30.4 35.8 42.3 41.7 QrDAN 30.6 35.9 43.0 45.3
QTrU 33.1 38.6 42.8 44.4 Q,TRU 36.0 41.8 45.1 47.0
S, 36.0 41.8 45.1 47.0
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TABLE 3
Rejection rates under experiment ALTER2

This table reports experimental rejection rates (in %, size-adjusted) of @), ), and S, at the 5% significance level.
The subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the
Parzen kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30
T = 250, n = 250
(JBAR 43.5 46.2 52.0 53.4 QrBAR 42.8 455 51.8 53.9
QraR 41.6 43.7 48.0 51.6 QrPAR 42.6 43.9 48.6 51.4
Qos 43.4 46.6 52.9 55.8 Qros 43.9 47.4 53.2 55.3
QpaN 45.4 48.1 52.4 55.3 QrDAN 46.0 47.7 52.1 55.0
QtrRU 45.4 50.4 54.5 58.1 QrTRU 45.3 50.2 54.7 58.3
S, 453 50.2 54.7 58.3
T = 250, n = 500
(BAR 54.6 56.3 62.3 64.0 QrBAR 55.2 58.1 65.0 70.1
QpraR 53.8 56.5 59.3 62.7 QrPAR 51.0 56.2 60.7 65.1
Qos 56.2 58.1 62.6 65.0 Qros 55.8 59.6 67.0 71.5
QpaN 57.5 58.8 63.9 65.5 QrDAN 58.2 60.6 68.6 71.6
QTrRU 57.6 60.8 64.1 66.3 QrTRU 57.9 63.5 68.4 70.6
S, 57.9 63.5 68.4 70.6
T = 500, n = 250
(BAR 44.0 48.4 55.1 58.5 QrBAR 45.9 48.7 53.6 58.1
QpArR 43.6 45.7 50.7 55.4 QrPAR 44.4 47.4 48.8 54.8
Qos 44.7 50.0 57.0 59.9 Qros 475 48.8 56.6 60.8
QpaN 46.2 50.5 55.1 58.3 QrDAN 47.2 49.5 56.0 60.9
QTrU 46.7 51.9 59.9 62.1 QrTRU 45.6 52.5 59.5 60.0
S, 45.6 52.5 59.5 60.0
T = 500, n = 500
QBAR 55.8 62.6 67.8 70.1 QrBAR 51.8 61.1 69.5 73.8
QpaR 52.1 58.4 64.4 67.9 QrPAR 50.4 57.0 64.8 69.8
Qos 56.6 63.1 68.1 72.2 Qros 55.4 63.7 72.9 75.1
pAN 58.1 63.3 69.8 70.1 QrDAN 56.0 64.1 72.6 76.3
QTrU 60.0 67.1 70.5 74.2 Q,TRU 61.4 70.0 74.8 75.8
S, 61.4 70.0 74.8 75.8
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TABLE 4
Rejection rates under experiment ALTER3

This table reports experimental rejection rates (in %, size-adjusted) of @), ), and S, at the 5% significance level.
The subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the
Parzen kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30

T = 250, n = 250
(JBAR 20.0 14.8 12.1 10.2 QrBAR 16.0 10.6 8.7 7.2
QpaR 23.8 17.0 11.8 10.7 QrPAR 20.7 12.8 8.8 7.8
Qos 18.4 12.0 10.3 8.3 Qros 14.2 9.3 75 5.7
QpaN 19.2 13.4 9.6 9.1 QrDAN 15.3 9.7 7.2 5.8
QTrU 11.0 8.1 5.8 5.8 Q,TRU 7.3 6.9 4.2 3.9
S, 73 6.9 42 3.9

T = 250, n = 500
(BAR 31.1 21.1 15.0 12.2 (QrBAR 23.5 14.2 10.0 9.0
QpraR 37.7 29.4 17.6 14.1 QrPAR 27.0 18.8 11.0 9.2
Qos 30.2 18.2 12.0 8.5 Qros 20.4 11.7 8.0 7.4
QpaN 30.7 18.3 12.0 8.1 Q,DAN 21.4 11.9 8.4 7.6
QTRU 17.5 11.0 6.8 5.9 QrTRU 10.7 6.8 6.5 5.9
S, 10.7 6.8 6.5 5.9

T = 500, n = 250
(BAR 24.5 17.8 13.7 11.8 QrBAR 17.7 9.7 6.5 6.3
QpArR 31.4 20.6 14.6 12.4 QrPAR 24.5 14.1 6.6 6.2
Qos 21.4 14.6 11.1 10.3 Qros 15.7 6.9 6.1 5.6
(pAaN 23.0 15.6 8.9 8.3 Q,DAN 15.6 7.0 6.0 5.7
QTrRU 12.8 8.6 9.1 8.7 QrTRU 6.0 5.9 5.4 4.6
S, 6.0 5.9 5.4 4.6

T = 500, n = 500
QBAR 39.9 32.3 23.3 20.4 QrBAR 18.6 12.0 10.0 8.7
QpaR 42.4 36.5 26.4 22.2 QrPAR 24.4 16.8 10.5 9.4
Qos 38.0 27.3 18.9 17.4 Qros 17.6 10.7 8.8 6.7
(pAN 37.9 28.8 20.4 13.9 QrbAN 17.1 10.4 8.4 7.1
QrrU 23.9 16.4 12.1 11.6 Q,TrRU 10.5 8.0 5.8 5.7
S, 10.5 8.0 5.8 5.7
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TABLE 5
Rejection rates under experiment ALTER4

This table reports experimental rejection rates (in %, size-adjusted) of @), ), and S, at the 5% significance level.
The subscripts BAR, DAN, PAR, QS and TRU denote, respectively, the Bartlett kernel, the Daniell kernel, the
Parzen kernel, the Quadratic-Spectral kernel and the Truncated Uniform kernel. The integer m denotes the kernel
parameter. Number of replications = 1000.

m 5 10 20 30 m 5 10 20 30
T = 250, n = 250
(JBAR 36.3 33.4 31.0 26.5 QrBAR 20.8 20.7 21.0 17.9
QpAR 29.0 34.4 30.7 30.3 QrPAR 16.1 21.8 21.7 20.2
Qos 35.9 30.8 28.5 26.1 Qros 22.8 21.5 20.0 15.8
QpaN 37.3 32.6 27.7 26.2 QrDAN 23.4 21.0 18.9 16.8
QtrRU 30.4 25.7 21.7 18.5 QrTRU 20.5 17.9 13.8 13.2
S, 20.5 17.9 13.8 13.2
T = 250, n = 500
(BAR 57.8 52.3 43.0 37.3 QrBAR 29.1 26.5 224 20.7
QrarR 52.2 59.0 47.9 42.3 QrPAR 19.5 29.4 24.3 21.7
Qos 58.5 49.6 38.5 31.6 Qros 30.3 25.2 20.0 17.3
QpaN 58.6 49.6 39.0 32.0 QrDAN 30.1 25.1 20.6 17.1
QtrU 492 37.5 26.8 25.2 QrTRU 24.6 18.1 14.1 11.9
S, 24.6 18.1 14.1 11.9
T = 500, n = 250
(BAR 37.4 37.1 35.8 34.2 QrBAR 25.8 24.9 21.5 19.8
QpaR 32.1 39.1 36.5 35.9 QrPAR 17.4 27.7 23.0 21.8
Qos 37.9 37.1 33.9 31.1 Qros 27.7 23.8 20.3 18.6
QpaN 38.6 37.4 31.8 28.2 QrDAN 26.7 23.5 20.3 18.2
QTrRU 35.2 29.1 26.3 21.6 QrTRU 21.6 18.7 14.3 12.2
S, 21.6 18.7 14.3 12.2
T = 500, n = 500
QBAR 58.5 60.5 55.2 51.6 QrBAR 28.9 31.9 30.0 27.6
QpAR 47.4 60.3 58.4 54.8 QrPAR 18.7 32.7 32.5 29.9
Qos 60.5 58.8 51.7 48.7 Qros 324 33.1 29.2 23.9
pAN 59.3 59.3 53.1 43.4 QrDAN 31.1 324 28.8 24.5
QTrU 55.4 49.1 37.5 33.2 QrTrRU 32.6 26.6 19.0 16.9
S, 32.6 26.6 19.0 16.9
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FIGURE 1
Empirical rejection rates

This figure plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected using the () backtest (depicted in blue), the (),. backtest (depicted in black), and the
S, backtest (depicted in red). The out-sample size is denoted by n. Backtesting significance level is 5%
with Bonferroni correction applied for every monthly analysis. The Bartlett kernel is used for () and (),
with kernel parameter m.
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FIGURE 2
Empirical rejection rates

This figure plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected using the () backtest (depicted in blue), the (),. backtest (depicted in black), and the
S, backtest (depicted in red). The out-sample size is denoted by n. Backtesting significance level is 5%
with Bonferroni correction applied for every monthly analysis. The Bartlett kernel is used for () and (),
with kernel parameter m.
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FIGURE 3
Empirical rejection rates

This figure plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected using the () backtest (depicted in blue), the (),. backtest (depicted in black), and the
S, backtest (depicted in red). The out-sample size is denoted by n. Backtesting significance level is 5%
with Bonferroni correction applied for every monthly analysis. The Quadratic-Spectral kernel is used
for () and @), with kernel parameter m.
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FIGURE 4
Empirical rejection rates

This figure plots on a monthly basis the percentage of institutions with inadequate systemic risk
forecasts detected using the () backtest (depicted in blue), the (),. backtest (depicted in black), and the
S, backtest (depicted in red). The out-sample size is denoted by n. Backtesting significance level is 5%
with Bonferroni correction applied for every monthly analysis. The Bartlett kernel is used for () and @),
with kernel parameter m. @), and S, are computed using P, (7).
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FIGURE 5

System warning indicator

This figure plots the EW I;(«, «..) indicator on a monthly basis. The black (red) line is based on «.
obtained by solving the quadratic program (13)) using the Bartlett (Truncated Uniform) kernel.
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Online Appendix

“Consistent Backtesting Systemic Risk Measures”

Soon Leong

October 2025

Summary and notations

The mathematical proof sketched here is inspired by Hong (1996) and Banulescu-Radu,
Hurlin, Leymarie and Scaillet (2021). The main added technicality with respect to Hong
(1996) is treating the impacts of estimation risk in our backtests, whereas that with
respect to Banulescu-Radu et al. (2021) is showing that both the new backtests are fully
consistent. Throughout the appendices, the following notations are used. The Euclidean
norm is denoted using || - ||. The notations O, and o, are the usual order in probability
notations. The scalar ¢ denotes a positive finite generic constant that may differ from

place to place. Let (pn(7),7(7)) be defined as (pn(5), 4 (5)) with 67 replaced by 6.

Appendix A Assumptions

Assumption 1. The stochastic process Y; = (Y14, Y2,) is strictly stationary and er-
godic, with unknown twice continuously differentiable conditional distribution function
By (y|Q—1) =P(Y1y <y, You < yo|Q_1), where y = (y1,42) € R

Assumption 2. The estimator 07 is consistent for @y, that is vT(67 — 8,) N N(0, %),
where X is a positive definite bounded matrix. Besides, there exists 3 such that T — 3% =
op(1).

Assumption 3. The quantity R(j) is summable with bounded smoothing estimator
R, (j,0) that is consistent at the optimal rate n=%3, and R,(j,07) = R(j). That is,
(i) 22520 RG] < oo, (ii) supgee, B [|Ve[Rn(j,0)]] = Op(1), 0 < j <n—1, and (iii)
R,.(j,00) — R(j) = Op(n~?").

Assumption 4. The kernel function k& : R — [—1,1] is a symmetric function that is
continuous at 0 and all points except a finite number of points on R, with £(0) = 1 and

7 K (2)dz < oo

Assumption 5. The autocorrelation statistics have bounded derivatives. That is, for

0<j <n-—1 supgee, E[[Velp(/)]|I* = O(1), and supgee, E[|Ve[rn(j)] — Volp(i)]lI* =
0(1).



Assumption 6. {H;(a,8)} is a fourth order stationary process with > -2 7(j) < oo
and 377 >0 >0 k(K 1)] < oo, where k1 (3, k, 1) is the fourth order cumulant
of the joint distribution of {H;(a, 6y), Heyj(v, 00), Hipr (v, 6p), Hipi(a, 8g)}

Appendix B Proof of Theorem 1

To begin we recall the () formula

o _ MEin KU/ m)AG) = Min(k)

b

‘7171(/{)1/2
where
Mha(K) = Y RG /)1 + wRGYERG),
(k) =2 3" K m)l1 + WRGYSRO)P + 23 S K /m)k?(i/m) R SRG)
o

Proof of Theorem 1. Recall the theorem

Theorem 1. Suppose Assumptions 1-4 in the online appendix hold, and let T" — o0,
n— 0o, n/T — w < 00, m — oo, m/n — 0. Then Q 4, N(0,1) under Hi.

The theorem can be given by the following lemmas

Lemma B.1. Suppose the conditions of Theorem 1 hold. Then

n S k2 m) {pa) + (Br — 80 Volou(i)]} — Mi(h

OO 4 N(0, 1),
where
Mink) = YK m) 1+ RGYER(),
Via(k) = 25K G/m) 1+ wRGYSROIP +2 373 K(i/m)k(jm) [ R(GY SR()
=



Lemma B.2. Suppose the conditions of Theorem 1 hold. Then

n S0 K m) {pz%u) —{Puli) + (61 - 90>/V0[Pn<ﬂ'>1}2}
IROLE = 0p(1).

Lemma B.3. Suppose the conditions of Theorem 1 hold. Then

>jo1 K2/ m)[L + wR()ER())] = 3571 K (j/m)[L + wR(j)'SR(j)]
%n(k)l/Z

= 0p(1).
Lemma B.4. Suppose the conditions of Theorem 1 hold. Then

—Ym%)m 51

Vin (k)12
O

Proof of Lemma B.1. 1t is useful to first calculate the conditional distribution of us +(6p)
and u124(6p). We recall the expression of Hi(a,6), and to reduce notational burden

dependence on the fixed quantity 6, is dropped

Hi(a,00) = Hi() = 1[Fy, (Yo, [41) < o] X [1 = Fripypcvans(a) (Yiel€i-1)]

= ]]_(UQ’t < Oé) X (]_ — U127t).

In the following we calculate the conditional distribution of ug; and uy2;. In particular,

we shall show using probability integral transform that

Ug4|Q—1 ~ U0, 1], (B.1)
g [{ 1, u2s < a} ~ U[0,1]. (B.2)

We begin with us;, which by definition us; = Fy, (Y24|%—1). Welet F,, (-|€%—1) denote

the conditional distribution of us,; given £2;,_;. We have for any v € R

Fouy(u|—1) = P(ugy < ul$_1)

(Fy, (Y2, [Q2-1) < ufy)
(Yo < Fy (ulQ4-1)191)
Fy, (Fy! (u]Q1)|Q%1)

P
P

u.

This implies uo|Q—1 ~ U[0,1]. We now focus on uiz; = Fy,|vo<vara(a)(Y1|%-1),



which can be written explicitly as ui2: = Fyi|va<vars(a)(Y1:[{Y2r < VaRy(a), 1}) =
Fyva<vars(@)(Yie[{uzy < a,Q_1}). By similar reasoning, we let F,,ju,<a(-[{u2; <

a,$_1}) denote the conditional distribution of uis; given us; < o and €;_;. We have

for any u € R

Fupy(ul{ugy <o, Q1)) = Pluggy < ul{ugy <o, 1})
(Fyiva<vars(a) (Y1 {ugy < o, 1)) < ul{ugy < o, Qi1})
(Y1 < F£|1y2§VaR2(a)(u|{U2,t <o, Qb)) {uss < o, Q0 })

Il
=

N

Y1|Y2<VaR2(«) <F5:1|1Y2SVGR2(04) (u|{u2,t S «, Qt—l}) {u2,t S «, Qt—l})

u.

This implies u12¢[{Q—1,u2¢ < a} ~ U[0,1], and verifies (B.1)-(B.2).

w

Put {pn(j)}7L, in the vector p,"". Under Hy, we have for any (possibly countably

infinite) collection of pi™ that
K, v/np™ 4 N0, K, K., (B.3)

where K, is a diagonal matrix collecting the kernel sequence {k(j/m)}72,. The result
follows directly from Proposition 2.9 of Hayashi (2000) that \/ﬁp,&m) 4, N(0, I,,) under
Hy, where I, is the identity matrix of order m. The result holds provided (i) Hy(«) can
be decomposed as ¢; + u, where i is a constant and ¢; is a martingale difference sequence
(mds); (ii) &; has constant and finite conditional second moment, that is, E(Z|Q;_1) =
0?2 < 0o. To verify the conditions we let p = /2, and we let &, = (H(a)—a/2). The proof
of (i) completes by noting the mds property of { H;(«) — a/2}, that is we have for all ¢,
E(g|Q-1) = E(Hy(a) — a/2]Q4_1) = 0. The result also implies E((H; (o) — a/2)?|4_1) =
E(H;(a)?|Q_1) — @?/4. Thus, to verify (ii) it suffices to show that E(H;(a)?|Q_1) = ¢ <

0o. We write

E(Ht(@)zmt—l) =K {E []1(U2,t < 04) X (1 - u12,t)2‘{Qt—lau2,t < 04}] ’Qt—l}
=K {]1(U2,t <a)E [(1 — U9 ) {1, ugy < Oé}] ’Qtfl}
=a/3 < 0. (B.4)

The first equality follows by the tower property that E(X|F)) = E(E(X|F)|F;) for
Fy; C F5. The last equality makes use of the results in (B.1)—(B.2) that ug+|€2:—1 ~ U[0, 1]
and w9 [{Q—1,uss < a} ~ U[0,1]. This implies, for instance, that 1(us; < )|y ~
Bernoulli(o) and that E[u?, ,[{Q1,us, < a}] = 1/3.

We now evaluate the limiting distribution of \/n(67 — 6y)'Ve[pn(j)]. To this we first



evaluate the probability limit of Vg[p,(7)]. By the quotient rule, we have

Volpn(5)] = 1(0) ' Vo [1a(5)] = 1(0) " pn(4) Val1n(0)]. (B.5)

The second term in (B.5) is 0,(1) by noting p,(j) 2 0, which is implied by 7,(j) 2 0,
which in turns follows by Markov’s inequality and E(v,(j)) = 0 under Hy. For the first
term, we have the quantity 7,(0)~" & [a(1/3 — a/4)]7!, which follows by continuous

mapping theorem, Markov’s inequality and

E[yn(0)] = E[E[7(0)[€2:-1]]

T+n

—E |- 3 El(Hi(0) - a/27I9 )

t=T+1

T+n

_E % S E[Hy(a)? — a2/40, 1]

t=T+1

= a(1/3— a/4), (B.6)

where we make use of the results in (B.4). We now focus on the quantity Vg[v,(j)]. By
the law of iterated expectation, we have E[Vg[v,(7)]] = E[E[Ve[7.(7)]|2-1]]. Thus we

evaluate

E[Vo b))%
= S E{Vel(Hila) ~ a/2) x (Hi_j(0) — a/2)]|% 1}

J t=T+1+j
= i ; > E{(Hi-5(0) = a/2)Vo[H(@)]| -1} + Vol His ()]E{(Hi(a) — a/2)| -1}
- E{(He ()~ a/2ValHi@)]|2 ),

t=T+1+j

1

n—j

where the second equality makes use of the product rule, and the last equality follows by
E{(H¢(a) —a/2)|Q_1} = 0. Therefore, we have Vg[v,(j)] & ﬁ ZEFT”HH E{(Ht—j(a) -
a/2)Vg|[H(a)]}, which follows by Markov’s inequality and

E[Valym(5)]] = E[E[Ve[yn(i)][€-1]] = E{(H;—;(a) — /2)Va[H ()]}

Therefore we have

p 1

Volpn(j)] = ME{(Ht—j(Q) —a/2)Ve[Hy(a)]} = R(j).



Given Valpn(j)] & R(j), v/ — +wVT, and Assumption 2, we have by Slutsky’s

theorem
k(j/m)v/n(0r — 85) Valpn(5)] = N(0,K*(j/m)wR(j) SR())), (B.7)

under the null. Since Vg[p,(j)] converges to the constant R(j), Slutsky’s theorem also
implies that the statistical randomness of the term k(j/m)y/n (01 — 0y)'V[pn(j)] is in-
duced by the 07 estimate which depends on the in-sample. By contrast, the randomness
of k(j/m)v/npn(j) is induced by the out-sample iid generalized errors (see, e.g., Rosen-
blatt, 1952). Given the statistical independence, we have

RG/m)V { pal0) + (0r = 06 Volpu(7)]} 5 N0, B2(j/m)[1 + wR(YSR()).  (BS)

Next, we study the dependence structure across time. Although {k(j/m)v/npn(j)}7i,
converges to a sequence of independent random variables as shown in (B.3), that is
generally not the case for {k(j/m)y/n(6r —6y)' Vg [pn(7)]}72,. However, we have the sum

of squares

n YK ) {u) + O — 00 Volpa()]}

J=1

which we denote in short by n 7" X2(j) = XM X converging to a sum of inde-
pendent sequence. This follows by first observing that we have from (B.7)—-(B.8)

VaX ™ 5 N0, Ay), (B.9)
where the (7, j)-th element of Ay is given by
A, §) = k(i/m)k(j/m)[6(i, j) + wR(1) TR(j)], (B.10)

with (4, j) being the Kronecker delta. Secondly, because the real symmetric matrix Ay
can be decomposed into Ay = VDV’ where V is an orthogonal matrix and D is a

diagonal matrix containing the eigenvalues of Aj, we have
V'ynX™ 2 N(0, D). (B.11)

The diagonal matrix D shows that V' \/ﬁXT(Lm) converges to a random vector of independ-
. 2
ent variables. This implies n X (™ X{™ = n 3> k2(j/m) { pu(5) + (B — 60 Volpn( j)]} ,

which is a sum of the squared variables in V'’ \/ﬁXfLm), converges to a sum of variables



> ity Z2(j), where {Z(j)}72, is a sequence of independent Gaussian variables. Let D(j)
denote the j-th element of D. Now, noting that > 7", D(j) is equal to the trace of Ay
and that Z;”’:l D?(j) is equal to the trace of Ay x Ay, we calculate using the Gaussian

moment generating function

B> 20) ij ¥ (j/m)[1 + wR(GYSR().
\Y Zz?(j) :2Zk4(j/m)[1+wR( 7)ZR(j) +222k2 i/m)k2(j /m)[wR(G) SR(5))?.

i)

Finally, as m — oo, which implies n — oo, we have by the Lindeberg central limit
theorem that

n SR m) {puli) + Br = 00 Volpu ()]} — Miak)

TNOLE — N(0,1),
where
Miu(k) = YK /m)[1 + wR(GYSRG),
Vi (k) = 22/&(;’/@[1 + wR(YSRG) + 222/& i)k (j /m)[wR(i) SR()].
g =

This completes the proof of Lemma B.1.

Proof of Lemma B.2. Recall Lemma B.2

n S K2(j/m) {ﬁi(]) {Pn() + (67— 80 Volpa(; >]}2}
Vi (R)172

= op(1).

First, we show that the denominator Vi, (k)2 = O(m!/?). Tt suffices to show Vy,,(k)/2 =
O(m). We write

[y

n—

Vin(k)/2 = ) K'(j/m)[1 +wR(j) SR(j)

(]

<.
Il
—

n—1

+ Z k(i /m)k2(j/m)[wR(i) ZR(j)]%. (B.12)
i

Mi

j=1



We begin by showing that the first term in (B.12) is O(m). We write
S K G/m)l + RO SRG)T
= 3G /m) + 20 Y K G/m)RGYSRG) + YK G/m)[RGYSRO). (813

By Assumption 4 and as m — 0o, n — 0o, m/n — 0, we have m~' 3"~ Lk /m) —
Jo” k*(2)dz < oo . Therefore, the first term in (B.13) is O(m). In the following we show
that the second term is O(1)

2 K /mIRG)SR()

< 203 3 K/ LRGP

= 2|3 {ZHR I+ Y8 /) ~ 1R >||2}

—0(1), (B.14)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,
lim,, o0 K*(j/m) — 1 — 0 and [k*(j/m) — 1| < 1. It remains to show that the third term
n (B.13) is O(1). By Cauchy-Schwarz inequality we write

3K /m) RG)YERG)?

SIE {zm (G/m)|IR( |!2} {Zkz (/m) | R(s >H2}

D {Z k?(j/m)HR(j)n?}
) { [Z_juRw + 3G m) - 11||R<j>r\2] }
— 0(1), (B.15)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,
lim,, 00 k%(j/m) — 1 — 0 and |k*(j/m) — 1] < 1. We shall now show that the second



term in (B.12) is O(m). By Cauchy-Schwarz inequality, we write

n—1 n—

> KA (i/m)k(j /m)[wR(i) SR(j))?
L

n

Jj=

—_
—_

-
< w?

J

k2 (i/m)k*(j /m)[R(i) ER(5))"

i

1

1 n—1

< w’||Z| Zk2 i/m) | R()[1*K* (5 /m) | R() I

1

3
|

ZWQHEH{ K (7/m) || R(j Hz} {Zk’2 ifm)||R(i )\!2}

7j=1

— 0(1) { k:Q(J/m)HR(j)H?}

where the last equality makes use of the result in (B.15). This verifies Vi, (k)'/? =
O(m'/?).

We now focus on the numerator. We have by Taylor’s theorem
p(3) = pu(d) + (O — 60)'Volpa(j)] + (0r — 60) f1(6r), 1< j<n—1,  (B.16)

where f1(07) is such that limg__,g, f1(67) = 0. Given Assumption 2 that (67 — 6,) =
O,(T~1/2) = O,(n~"/?) and that f,(87) is bounded by (87 — 6;), we have

pu(7) = pa(3) + (01 — 00)' Volou()] + Op(1/n). (B.17)
Multiplying both sides by \/n we get
Vibn(5) = Vpa(j) + V(01 — 00) Valpu(5)] + Op(n /). (B.18)

Squaring both sides gives

n0) —n { ) + (61— 00 Volpu()]}

= 2{\/1pn(j) + V(01 — 60)' Vo [pn(§)]}Op(n™"?) + Oy (n")
= 0,(n"'?). (B.19)

The last equality makes use of (B.8) that for all 1 < j < n — 1, \/npu(j) + v/n(0r —



00)'Velpn(j)] = Op(1). Therefore we have
oSG {6~ {u0) + 60— 0wl )
<m sup {nléi(]) -n {pn(]> + (éT - 90>,v9[pn(j)]}2} {m_l nz_l kQ(]/m)}

1<j<n—1

= O, (mn~1?). (B.20)

The last equality follows by Assumption 4. The proof completes by observing that the
expression of Lemma B.2 is O,(mn~Y2)/0,(m'?) = O,(m!/?/n'/?) = 0,(1), where the
last equality follows by m/n — 0.

]

Proof of Lemma B.3. Because Vi,,(k)'/? = O(m'/?) as shown in the proof of Lemma B.2,

it thus suffices to show
n—1 n—1
>R /m)[1+wRGYSR(G)] = Y _K(j/m)[1 + wR()SR()] = o (m'?). (B.21)
j=1 j=1
We first work out the consistency of R(j) for R(j). In particular we shall show
IR(j) — R(j)|| = Op(n~2F). (B.22)

By the triangle inequality we have

IR(j) — R(j)|| = IR (j, 0r) — R(j)||
< |R..(j. 07) — Ru(j,00)|| + | R0 (j, 60) — R(j)|- (B.23)

We write for the first term

|Ra(j6r) = Ralj. 60)]| < sup ||VolRa (. 0)][| x ||6r — 60

éE@o

= 0,(T™?) = 0,(n"1?), (B.24)

which follows by the mean value theorem, Markov’s inequality, Assumption 2 and As-
sumption 3(ii). Besides, with Assumption 3(iii) the second term in (B.23) is O,(n=%/?).
This verifies (B.22).

We now verify (B.21). For a,b=1,2,...,p, let Ry(j) (Ra(j)) denote the a-th element

10



of R(j) (R(j)), and let Sy (Sap) denote the (a,b)-th element of X (3). We write
S K20 ml1 + wRGYSRG) - imy’/mm +R()SR()

—ka2 (j/m) ZZR ab_Ra(j)Rb(j)Sab
a=1 b=1
p n—1

= wZZZk2 (/) (Ra(5) Ro(5) — Ra(i)Ro(3)) S

a=1 b=1 j=1

w;bij:kwm Sav = Sav) Ra(5) R ()
+w;§:§‘;k2y/m Ry(5) = Ra(5)Ro(1))(Sap = Su)

=w 2 ; Sab Zf K2 (5 /m)(Ra () Ro(5) = Ra() Ro(4))

+w;; ab = Sab Zk‘2 (/m)Ra(5) Ro(5)

+w;; ab — Sab Zk2 (7/m)(Ra(5) Ro() — Ra(5) Ro(4))
—wgbzlAl—i—w;;Angw;bzlAg, say. (B.25)

To complete the proof we shall show A; = 0,(m!/?) for i = 1,2,3. We begin with .A; and
As. Because by Assumption 2 we have Sy, = O,(1) and Sop — Sap = 0p(1) = O,(1), it
suffices to show Z?;ll k2(5/m)(Ra(5)Ro(j) — Ra(5)Ro(5)) = 0,(m*/?). We have

S KG/m) (R R) ~ B R)
= S RGm) )~ RG)G) ~ B + Z G Bali) - Rl Esl)

T Z k(3 /m)(Ry(§) — Ro(j)) Ra(5)

= ./411 + Alg + ./413, say. (BQG)

11



By Cauchy-Schwarz inequality, we write for A;;

1/2

n—1 1/2 n—1
A | < {Z (3 /m) (Ra(j) — Ra<j>>2} {_Z K2 (j /m) (Ro(5) — Rb(j>>2}

O ( 1/2/n2/5) > Op(ml/Q/n2/5)
O, (m/n*"?)
Op(m'/?) x Op(m'/? [n'1?) = 0,(m'7?), (B.27)

which makes use of m/n — 0, > 77, 'k2(j/m) = O(m) and (B.22). We now focus on Ajs.
By Cauchy-Schwarz inequality, we have

1/2

1/2 ¢4
IA12|<{Z%2 (G/m)(Ra(j) — Ra(j))Q} {ZkQ(j/m)Ri(j)}

= 0, 1/2/n2/5 {
O,
O,

3
,_.

1/2
)+, [k2(j /m) — l]Rf(j)}

1

<.
Il

-0 ( 1/2/n2/5
-0 ( 2/5/n2/5)

/‘\/‘\ HM
,_.

W) 0p(m"/?) (5.28)

where the first equality makes use of the result in (B.27), the second equality follows
by Assumption 3(i), dominated convergence theorem, lim,, o k*(j/m) — 1 — 0 and
|k2(j/m) — 1] < 1. By the same reasonings, we also have A3 = o0,(m!/?).

We now focus on Ay. Given Sy—Sa, = 0,(1) it suffices to show E;L:_ll k*(j/m)Ra(7)Re(j) =
O,(1). We have by Cauchy-Schwarz inequality

1/2 1 1/2
Zzﬁ (j/m)R {Z k(3 /m) B >} {Z kQ(j/m)Rz(ﬁ}
= 0,(1), (B.29)

which makes use of the result in (B.28) This completes the proof.

Proof of Lemma B.4. 1t suffices to show

~ A A

R(j)SR(j) & R(j)SR(j).

By Assumption 2 we have S 5 % The proof completes by the continuous mapping
theorem and by noting that we have R(j) 2 R(j) from the result in (B.22).
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Appendix C Proof of Proposition 1
Recall the formula of Q.
n >0 K2/ m)pn, (7) = Y52 KA(/m)

Qr = "
Loyt kgm)

Recall the proposition

Proposition 1. Suppose the conditions of Theorem 1 hold. Then Q, 4, N(0,1) under
H,.

Proof of Proposition 1. Recall that p,(j) is the j-th element of p, and that p,.(j) is

the j-th element of A~Y2p,. Let 7, collect {p,(j) + (Or — 04)'Vo[pn(j)] ") Let

ror = A7Y2p, and let 7,,(j) denote the j-th element of 7,.. The proposition can be

given by the following lemmas

Lemma C.1. Suppose the conditions of Proposition 1 hold. Then

WS R )i ) — S KRG m)
Loy thg/m)}

< N(0, 1).

Lemma C.2. Suppose the conditions of Proposition 1 hold. Then

n SR/ m) (,) — r20))
oyt wiim)}

= 0,(1).

O

Proof of Lemma C.1. The result is immediate from the proof of Lemma B.1. The key is
to note that we have from (B.8)—(B.10) /n7,, 4 N(0,A), where the (4, j)-th element of
A is given by A(i,j) = 0(i, j) +wR(i)’XR(j). Repeating the rest of the proof of Lemma
B.1 gives the desired result. [

Proof of Lemma C.2. Put {k?*(j/m) ?;11 in the vector K,5. We have from the proof of
Lemma B.2 that

m’1/2n/3;1Kn2/3n — m’l/Qnr;Kngrn = 0,(1).

13



Next, the proof of Lemma B.4 implies that A—A= 0p(1). By the continuous mapping

theorem
V205 ATV2PK A2 — i P ATV K ATV, = o (1).
Given Z;:ll k*(j/m) = O(m), we have

np, A V2K, A5, — nrl ATV2K, A 2y,
{25707 KA /m)}/?

= 0,(1).

This completes the proof. n

Appendix D Proof of Theorem 2

Recall the result

Theorem 2. Suppose Assumptions 1-6 in the online appendix hold, and let T — oo,
n — oo, n/T — w < 00, m — 00, m/n — 0. Then

/262 RN Zio;pQ(j)/ {2 /OOO k:4(z)dz} 1/2.

Proof of Theorem 2. Given Lemma B.4, to verify the theorem it suffices to show the

following lemmas

Lemma D.1. Suppose the conditions of Theorem 2 hold. Then

ZkQ (j/m) { + (67 — 60)'Vo[p } gif

Jj=1

Lemma D.2. Suppose the conditions of Theorem 2 hold. Then

S KG/m)G) ~ {pu0) + Or — 0 Talpui)]} = op(1)

Lemma D.3. Suppose the conditions of Theorem 2 hold. Then

2

Zk? (/) {pal3) + 61~ 60 Talpu(i)]} = {p() + Br — 60 Valp()]} = 0y(1).

14



Lemma D.4. Suppose the conditions of Theorem 2 hold. Then
n—1
n~t Y R /m)[L+ wR()ER()] = 0,(1).
j=1

Lemma D.5. Suppose the conditions of Theorem 2 hold. Then

m~ Wi, (k) & 2/ k*(z)dz.

0

Proof of Lemma D.1. We write

= S RG/mIRG) + YK G ) (6~ 00 Valp()])
+2 3" K2(j/m)p(7) (01 — 60)' Vialp(j)]
- Bln + BZn + B3n7 say.

To complete the proof we shall show By, 2 Z;’il 0%(5), Ban 2 0 and Bs, 2 0. We begin
with Bs,. By Cauchy-Schwarz inequality we have

B = 3K m){ (61— 00 Voo
< 10r — 6017 Y- K G/m) I 96lp)

= Op(m/T) = 0,(1).

The last equality follows by Markov’s inequality, Assumptions 2, 4 and 5. We now focus

15



on By,

5 iﬁ(i)-

The result follows by noting the summability condition in Assumption 6, which implies
> e p*(j) = 7 %(0) > 7v?(j) < oo. This implies that the second term goes to zero,
and that together with dominated convergence theorem, lim,, ,o, k?(j/m) — 1 — 0 and
|k%(j/m) — 1] < 1, the third term goes to zero.

Finally, we write for Bs,

_ZZkQ (j/m)p(j) (8 — 80)'Ve[p(j)]

_ 1/2 o 1/2
<2 {Z /fz(j/m)pZ(j)} X {Z k(G /m){(6r — 00)’%[/)(]’)]}2}
ot x B
=0(1) x 0,(1) = 0,(1).
This completes the proof.
O

Proof of Lemma D.2. By reasonings similar to that in the proof of Lemma B.2, we have
for1<j<mn-1

np2(j) — {pn( )+ (0 — 00)'Volpn(j )]}2

= 2{v/npa(j) + V(01 — 60)' Vo[pu(1)]}O, (/%) + O, (n")
= 0,(1), (D.1)

which implies

720) — { o) + (6r — 8 Volpu()]} = O(1/). (D2

16



Therefore we have
Z G /m) {0) = (i) + 6r - 60 Talon(i] )

<m sw {3200 {pu0) + 6r - 0Vl ()]} | {m_1 > k?(j/m}
= Oylm/m) = 0,(1)

(D.3)
This completes the proof.
0
Proof of Lemma D.3. We write
Z BGi/m) {pu(5) + (Br — 60 Volpn(i)]} — {0() + (8r — 80 Valp()]}
= ‘_ k(3 /m)le(5) — +Zk2 (7/m){ (01 — 60)' [V a[pn(5)] = Volp(7)]]}?
23 K /m)o() 61— 00) (V6lpa(3)) ~ Volo(i)]

= Cln + C2n + C?ma say.

To complete the proof we shall show C;, - 0, for i = 1,2,3. We begin with Cs,. By
Cauchy-Schwarz inequality we have

Con = ikQ(j/m){(éT = 60)'[Valpa ()] — Volp(h)II}*
< |67 — 6o|I? Zk2 (7/m)[Volpn(5)] = Velp(i)]II*

— 0,(m/T) = 0,(1).

The last equality follows by Markov’s inequality, Assumptions 2, 4 and 5. We now focus
on Cy,,

Cual =[S K/ m)20) - i K20 /m) )

= 72(0)2 2(j/m) Zk2 (G /m)V2(j

17



=[77%( ’ZkQJ/m 7)+ {Zk2j/m 172 |}
- }7_2(0) _’Yn ’611n+7n (0)Ci2n, say.

We have |772(0) — 7,2(0)| C11n = 0,(1), which follows by Markov’s inequality, E[y(0) —
7.(0)] = 0, and Cyy,, = 27;11 G /m)2 ) & >217%(j) < oo as implied in the proof
of Lemma D.1. Because 7,(0) = O(1), to show Cy,, = 0,(1) it remains to show that Cya,
vanishes in probability. Since [2() — 12()] = [1a(7) =1 +2 () (i) = 1), we
have by Cauchy-Schwarz inequality

Cion = Z K25 /m)y(5) — ()] + 2 Z k(g /m) ()] 17a(G) = 7))
n—1 1/2
<2 KG/MmbG) - +2Ci{i{zk2 (/M) () = )]2} :

By observing that we have sup;.;c, ; V[7,(j)] < en™!' given Assumption 6 (see, e.g.,
Hannan, 1970, p. 209) we therefore obtain Cya, = O,(m!'/2/n'/?) = 0,(1). Finally, given
Z;L:_ll k2(j/m)p*(5) & > 521 P?(j) < o0, and Cap, = 0p(1), we have Cz,, = 0,(1), since

n—1 1/2
Can < 2C5) {Z k%j/m)ﬁ(j)} :
j=1
This completes the proof.

O

Proof of Lemma D.j. Because m/n — 0, it suffices to show Z;:ll E2(j/m)[1+wR(j)XR(j)] =
O(m). We write

> K20 1+ wRGYSRG) = YK /m) + Y RG/mBGYSRG). (D4

The first term in (D.4) is O(m) by Assumption 4. We write for the second term

wjk2<j/m>R<j>'zR<j>

<wlZ) YK G/mIRG)?

J=1

18



= w| X {i||R(J')H2 + i[’f2(1/m) - 1]HR(J')HQ}
= 0(1), (D.5)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,
lim,, 00 k%(j/m) —1 — 0 and |k*(j/m) — 1| < 1. This completes the proof. O

Proof of Lemma D.5. We write

m” Vin(k) = 2m™ Z kK (j/m)[1 + wR(j) ZR(5))*

n—1 n—1

+2m Y SR /m)k (G /m)wR() SR(). (D.6)
j=1 i=1
i#]
To complete the proof we show that the first term converges to 2 fooo k4(,z)dg7 and that

the second term vanishes. We write for the first term

o™ S K fm) (1 + wR(YSR)?
= om YK )+ Am 0 R G/mRGYERG) + 2m? YEG/m)[RGYSRO)

(D.7)

For the first term in (D.7), we have 2m ™! Z;:ll kY (j/m) — 2 [;7 k*(z)dz given m — oo
as n — 0o, m/n — 0. In the following we show that the second and third terms in (D.7)

are o(1). We write for the second term
n—1
dm™lw Y K (/m)R(j) SR())
j=1

< a2 S K G /m| RGP

= am w3 { > IR + YK Gm) - 11|\R<j>|12}
=0(m™ ') =o(1), (D.8)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,

lim,, o0 K*(j/m) —1 — 0 and |k*(j/m) — 1] < 1. By Cauchy-Schwarz inequality we write
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for the third term in (D.7)
n—1
2m”w? Y K (G /m)[R() SR())?

j=1

< 2m” w2 {Z k(i/m) | R(j \!2} {Z K (i/m) | R(j )!!2}

7j=1

< 0m™) {Z kQ(j/m>||R<j>||2}
SIRGI + S G/m) - 11||R<j>|!2] }

— O(m™) { ]

=0(m™) x O(1) = o(1), (D.9)

where we make use of Assumption 2, Assumption 3(i), dominated convergence theorem,
lim,, o0 K*(j/m) — 1 — 0 and |k*(j/m) — 1| < 1.

To complete the proof it remains to show that the second term in (D.6) is o(1). By
Cauchy-Schwarz inequality, we write

—1 n—

2™ 30 3D )i G fm) WG ER()

7
< 2m”lw? ; ; K (i/m)k*(j/m)[R(i) SR(j)]?
< 2m~w?||3 ;Zi:L;ll€2<2'/m>HR(i)HQkQ(j/m)HR(ﬁH2
=2m~'w?(|Z {jzj;g (J/m)|| R(j HQ} {Zk2 ifm)|| R(: )IIZ}
=0(m™) {:‘Lzllkz(j/m)IR(J‘>2}2

= o(1),

where the last equality makes use of the result in (D.9). This completes the proof.
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Appendix E Proof of Proposition 2

Proof of Proposition 2. To ease the proof we introduce the following notations. Let r
collect {p(j) + (O — 09)'Vo[p(5)] "} Let p collect {p(j)}i=], let py collect {(6r —

600)'Volp(j)}i={. Let 7, = A'?r and let r,(j) denote the j-th element of r,. Let

p, = A72p and let p,(j) denote the j-th element of p,. Recall the result

Proposition 2. Suppose the conditions of Theorem 2 hold. Then
ml/2 by ) oo 1/2
, /2] K'(2)d :
0 %jzzlpr@)/“o (2]

The theorem is given by the following lemmas

Lemma E.1. Suppose the conditions of Proposition 2 hold. Then
n—1 o0
> KEG/myri (i) = Y pr()
j=1 j=1
Lemma E.2. Suppose the conditions of Proposition 2 hold. Then
n—1
DK /M), (5) = 12 (7) = 0p(1)
j=1

Lemma E.3. Suppose the conditions of Proposition 2 hold. Then

n—1

SR m)r2, () — 2() = 0,(1)

j=1
]

Proof of Lemma E.1. To begin we show Z;‘:—ll K2(5/m)r2(j) & Z?;ll k(5 /m)p2(j). To

that we note py = O,(T~/2) and A = O(1), which implies r, = A~Y2p + 0,(1). With

this we have

S G myr()

- T;Kn2rr
= [A2p+ AT po] KA p+ AT py]
= [A7V2p] K[ AT2 ]
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n—1
=D K /m)pi(i)
=1
In the following we shall show Z;L:_ll k2(j/m)p2(5) & > o021 pi(5). We write

Zk2 (j/m)p2(j Zpr ZPT +Zk32(j/m)_1]P$(j)

j=1

= Dln - DQn + D3n> say.

To complete the proof we shall show D,y,, — 0 and D3, — 0. We first show that D;,, =
Z;’il p2(j) < oo. Denote by A the largest eigenvalues of A™! and we note that
0 < Anaz < 1 because A is given by the sum of an identity matrix and a positive

semidefinite matrix. Therefore we have Z;:ll P2(5) = P AP < ez ol < lpll? =
pp= Z;L;ll p*(j), which, as n — oo, yields Y72, pF(j) < 2222, p*(j) < oco. The last
inequality follows from the result of Lemma D.1. This implies Dy, — 0. Finally, we have
Ds,, — 0 by dominated convergence theorem, lim,, ;o k*(j/m)—1— 0, [k*(5/m)—1| <1
and Dy, < oo. This completes the proof.

0

Proof of Lemma FE.2. We have shown in Lemma D.2 that
P K o — 7, Kpory, = 0,(1).

We also have A — A = 0p(1) from the proof of Lemma B.4. Therefore, by the continuous

mapping theorem
PLATVIK AT g — o ATVEK AT 2 = 0 (1),

This completes the proof.
m

Proof of Lemma E.3. The proof is immediate by noting that we have from Lemma D.3
T;Kngrn — 7 K,or = 0p(1),
which, given A = O(1), implies

r;lA_l/QK,LQA_lﬂrn — P ATVPK ATV = 0p(1).
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Appendix F  Computing R(j)
Recall that R(j) is given by

1

R(j) = ME{(HH(%%) —a/2)Ve[H(a, 00)]},

and that H;(a, 8)) is given by

Hy(a,00) = 1[Fy, (Yor|Q-1,00) < of x [1 = Fy,jya<vara(a) (Y11, 60)]

1
]I(U,QJ(O()) S Oé) X (1 — U127t(90)).

Because the indicator function 1(ug:(6y) < «) in Hi(a,6y) is not differentiable, we
follow Banulescu-Radu et al. (2021) to evaluate Vg[H; (v, 0)] using Vg[HtEB (e, Bp)], where
the quantity Ht@(a, 0,) is analogous to H;(a, 6y), but with the indicator function 1(-)
replaced by a continuously differentiable estimator. To ensure comparability we use
the same consistent smoothing estimator as that given in Banulescu-Radu et al. (2021,

Appendix E). Therefore, the consistent estimator for R(j) is given by

. 1 1 T+n

R(j) = Ru(j.0r) = a(l/3—a/4)n—j 2

t=T+1+j

(Hy—j(v,0r) — a/2)Vo[HD (o, 07)] |
{

Similarly, R(j) is the analogous counterpart of R(j) with true parameter

R(J) = Ry(00) = s > {(Hisfen00) = /2 Vol (0.00)]}.

t=T+1+j

Finally, we allow as with Banulescu-Radu et al. (2021, Appendix F) a small sample factor
V1 —j/n for R(j) and its estimators. This does not affect the asymptotic properties of

our backtests.
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Appendix G Institution tickers and names

Ticker Institution name Ticker Institution name

ABK AMBAC FINANCIAL GROUP INC HIG HARTFORD FINANCIAL SVCS GRP INC
ACAS AMERICAN CAPITAL STRATEGIES LTD HUM HUMANA INC

AET AETNA INC NEW ICE INTERCONTINENTALEXCHANGE INC
AFL AFLAC INC KEY KEYCORP NEW

AGE EDWARDS A G INC LEH LEHMAN BROTHERS HOLDINGS INC
AIG AMERICAN INTERNATIONAL GROUP INC LM LEGG MASON INC

AlZ ASSURANT INC LNC LINCOLN NATIONAL CORP

ALL ALLSTATE CORP LTR LOEWS CORP

AMP AMERIPRISE FINANCIAL INC MA MASTERCARD INC

AMTD AMERITRADE HOLDING CORP MBI M BIAINC

AOC AON CORP MER MERRILL LYNCH & CO INC

ATH ANTHEM INC MET METLIFE INC

AXP AMERICAN EXPRESS CO MI MARSHALL & ILSLEY CORP

BAC BANK OF AMERICA CORP MMC  MARSH & MCLENNAN COS INC
BBT B B & T CORP MTB M & T BANK CORP

BEN FRANKLIN RESOURCES INC MWD MORGAN STANLEY DEAN WITTER & CO
BK BANK NEW YORK INC NCC NATIONAL CITY CORP

BKLY BERKLEY W R CORP NMX NYMEX HOLDINGS INC

BLK BLACKROCK INC NTRS NORTHERN TRUST CORP

BOT C B O T HOLDINGS INC NYX NY S E GROUP INC

BRK BERKSHIRE HATHAWAY INC DEL PBCT PEOPLES BANK BRIDGEPORT

BSC BEAR STEARNS COMPANIES INC PFG PRINCIPAL FINANCIAL GROUP INC
C CITIGROUP INC PGR PROGRESSIVE CORP OH

CB CHUBB CORP PNC P N C BANK CORP

CBG C B RICHARD ELLIS GROUP INC PRU PRUDENTIAL FINANCIAL INC

CBH COMMERCE BANCORP INC NJ QCSB  QUEENS COUNTY BANCORP INC
CBSS COMPASS BANCSHARES INC RGBK REGIONS FINANCIAL CORP

CCR COUNTRYWIDE CREDIT INDS INC SAFC  SAFECO CORP

CI CIGN A CORP SCH SCHWAB CHARLES CORP NEW
CINF CINCINNATI FINANCIAL CORP SEIC S ETINVESTMENTS CO

CIT CIT GROUP INC NEW SLM S L M HOLDING CORP

CMA COMERICA INC SNV SYNOVUS FINANCIAL CORP

CMB CHASE MANHATTAN CORP NEW SPC ST PAUL COS INC

CME CHICAGO MERCANTILE EXCH HLDG INC  STI SUNTRUST BANKS INC

CNA C N A FINANCIAL CORP STT STATE STREET CORP

COF CAPITAL ONE FINANCIAL CORP SV STILWELL FINANCIAL INC

CVTY COVENTRY HEALTH CARE INC SVRN SOVEREIGN BANCORP INC

EGRP E TRADE GROUP INC TMK TORCHMARK CORP

FHS FOUNDATION HEALTH SYSTEMS INC TROW T ROWE PRICE ASSOC INC

FITB FIFTH THIRD BANCORP UB UNIONBANCAL CORP

FNF FIDELITY NATIONAL FINANCIAL INC UNH UNITED HEALTHCARE CORP

FNM FEDERAL NATIONAL MORTGAGE ASSN UNM UNUMPROVIDENT CORP

FRE FEDERAL HOME LOAN MORTGAGE CORP USB U S BANCORP DEL

FTU FIRST UNION CORP WFC WELLS FARGO & CO NEW

GNW  GENWORTH FINANCIAL INC WM WASHINGTON MUTUAL INC

GS GOLDMAN SACHS GROUP INC WU WESTERN UNION CO

HBAN HUNTINGTON BANCSHARES INC ZION ZIONS BANCORPORATION

HCBK HUDSON CITY BANCORP INC
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